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ABSTRACT

Representations from common pretrained language models have been shown to
suffer from the degeneration problem, i.e. they occupy a narrow cone in latent
space. This problem can be addressed by enforcing isotropy in latent space. In
analogy to variational autoencoders, we suggest applying a token-level variational
loss to a Transformer architecture and optimize the standard deviation of the prior
distribution in the loss function as model parameter to increase isotropy. The
resulting latent space is complete and interpretable: any given point is a valid
embedding and can be decoded into text again. This allows for text manipulations
directly in latent space. Surprisingly, features extracted at sentence-level show
competitive results on benchmark classification tasks.

1 INTRODUCTION

Self-supervised, attention-based language models are prone to overfitting or memorizing input data,
especially when trained on smaller datasets. Nevertheless, models such as BERT (Devlin et al.,
2019), based on an encoder-only architecture and trained on very large datasets, exhibit state-of-the-
art performance on common natural language processing tasks. The resulting token representations
of these models are distributed and highly contextual, but the latent space does not exhibit additional
structural properties such as isotropy and resulting completeness (Ethayarajh, 2019).

We develop an autoencoder architecture that avoids overfitting by increasing latent space isotropy.
At the same time, enforcing a complete latent space leads to a decoder that is able to interpret (i.e.
decode) any given point in latent space. While the primary goal are tasks that require paraphrase
generation, the resulting encoders surprisingly also perform on par in transfer tasks with smaller
training setups.

Previous work has shown that isotropic latent representation, i.e. distributed across latent space
instead of populating a narrow cone (Ethayarajh, 2019), can improve the performance of language
models on transfer tasks. Gao et al. (2019) improve the performance of a Transformer-based model
with increased isotropy by directly optimizing the cosine distance between the latent representa-
tions. Wang et al. (2020) suggest to control the singular value distribution of the output represen-
tation matrix and Li et al. (2020a) transform the original representation distribution into a Gaussian
distribution through normalizing flows to increase the isotropy of the underlying models.

Similar to Gao et al. (2019), we propose to apply a regularizing constraint during training to enforce
an isotropic and, even more, complete latent space. A common regularization network is the so-
called Variational Autoencoder (VAE) (Kingma & Welling, 2014). VAE networks consist of an
encoder that maps given input data not to a point in latent space but a distribution. A VAE’s decoder
is required to successfully reconstruct the original input from samples of the latent distribution.
Thus, the VAE is optimized to reconstruct the given input sequence whilst enforcing the latent
distributions to match a given prior distribution.

We propose a Variational Auto-Transformer (VAT), a VAE based on a Transformer architecture,
where the variational loss is computed at token level. We show that by enforcing a Gaussian distri-
bution as latent prior, the latent token-level representations become more isotropic in comparison to
models such as BERT. We introduce the prior distribution’s standard deviation as model parameter
to optimize isotropy and balance the language generation variety against the network’s reconstruc-
tion ability. Besides isotropy, the completeness of the latent space is demonstrated. The pretrained
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decoder can map back every point in latent space to a textual representation, be it actual encoded or
synthetic, sampled latent points. This allows for text generation through ”variational sampling” and
other manipulations such as interpolation directly in latent space. While the token-level representa-
tions can be used to generate or manipulate text, we also show that sentence-level representations,
e.g. obtained through averaging, are suitable for sentence classification tasks.

2 BACKGROUND

An autoencoder is a neural network architecture consisting of an encoder enc, that maps any input
x ∈ Rd to a point z = enc(x) in latent space, and a decoder dec, such that x ≈ dec(enc(x)) (Good-
fellow et al., 2016). The chosen network architecture defines the families E and D of the encoder
and decoder. During training of the autoencoder, the network parameters are optimized to find the
optimal (enc∗, dec∗) pair that minimizes a given loss function L:

(enc∗, dec∗) = argmin
(enc,dec)∈E×D

(L) (1)

For the standard autoencoder with continuous inputs x ∈ Rd, the reconstruction loss L = LREC is:

LREC = ∥x− dec(enc(x))∥2 (2)

Over-complete autoencoder architectures with many degrees of freedom are prone to a particular
form of overfitting: The encoder maps each data point x to an isolated point z in the latent space
such that the decoder memorizes the lossless reconstruction of each of these codes. This highly
discrete latent space lacks completeness and is of limited use for advanced NLP applications.

2.1 VARIATIONAL AUTOENCODER

The variational autoencoder (VAE) (Kingma & Welling, 2014) can be thought of as generative au-
toencoder. A VAE encodes an input data point as a distribution over the latent space by adding
a regularization term to the loss function. The regularization term LREG assesses the Kulback-
Leibler divergence between the latent distribution and a standard Gaussian based on their means µ
and covariances Σ:

LREG = −DKL [N(µ,Σ), N(0, I)] (3)

µ and Σ are either estimated using standard point estimators from the encoder outputs, or computed
by learned functions such that µ = g(x) and Σ = h(x) with g ∈ G and h ∈ H , where G and H
are families of network architectures. G and H can contribute to the desired properties of the latent
representation by implicitly implementing dimensionality reduction or feature disentangling.

Decoding from the latent representation requires sampling from z ∼ N(µ,Σ). In order to enable
backpropagation despite this sampling operation, Kingma and Welling (Kingma & Welling, 2014)
introduced the reparameterization trick: Instead of sampling from the latent distribution, a random
sample ϵ ∼ N(0, I) from a standard Gaussian is drawn and then transformed by the computed mean
and standard deviation z = LT ϵ+ µ, where LT is the Cholesky factor of Σ.

The VAE’s total loss is the sum of the regularization and reconstruction term:

(enc∗, dec∗) = argmin
(enc,dec)∈E×D

(
LREC + LREG

)
= argmin

(enc,dec)∈E×D

(
∥x− dec(z)∥2 −DKL [N(µ,Σ), N(0, I)]

)
(4)

3 VARIATIONAL AUTO-TRANSFORMER

Initially proposed for machine translation, the Transformer (Vaswani et al., 2017) can be used as
language model and framed as autoencoder. Extended with a token-level variational loss, the VAT
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Figure 1: The proposed Variational Auto-Transformer architecture: Mean and covariance for the
variational loss (blue, dashed lines) are computed through two independent linear layers. The en-
coder and decoder (grey, solid lines) architecture is the same as in the original Transformer.

maps input tokens to context-aware, distributed latent representations. Figure 1 illustrates the ar-
chitecture of the VAT. The set of encoders E and decoders D is defined by the Transformer’s net-
work architecture based on self-attention modules. The encoder maps the embedded input sequence
X = {x1,x2, . . . ,xT }, X ∈ RT×d to a latent representation Z = {z1, z2, . . . ,zT }, Z ∈ RT×d,
where T is the sequence length and d is the model dimension. To do so, the model predicts mut

and σt from xt and samples zt ∼ N(µt,σt). Z is then used as attention source in the decoder to
predict the next word based on the already produced output. As X and Z depend on T , the objective
is to minimize

L =
1

T

T∑
t=1

(
Eq(Z|X)∥xt − dec(zt)∥2 −DKL [q(zt|X), p(zt)]

)
(5)

where p(zt) ∼ N(0, I) and q(zt|X) ∼ N(µt,Σt). More precisely, we let Σt = diag (expσt)
where the vector σt = (σj)j=1...d is predicted, so that computing the actual value of Σ involves the
exponential as a non-linear activation function.

The output of the encoder is passed to two linear layers in parallel. The linear layers have the
same number of input and output nodes and learn a transformation to predict µt and σt for each
token. The latent representation Z is used as input in the encoder-decoder attention layer of the
Transformer’s decoder.

3.1 SCALING THE REGULARIZATION LOSS

During our experiments, we experienced overfitting on the training data for the reconstruction loss.
The learning curves of a corresponding experiment are illustrated in Figure 2a. Weighting the reg-
ularization loss according to a logistic annealing function as suggested by Bowman et al. (2016) or
by a scaling factor β similar to the scaling of the beta-VAE (Higgins et al., 2017), but with β < 1,
only had little effect.

Thus, we propose to scale the covariance matrix of the target distribution of LREG instead. This is
motivated by the observation that standard Gaussians in d-dimensional latent spaces (e.g. d ≥ 128)
will overlap considerably if their mean values are - at the same time - regularized to zero. As a
consequence, LREG cannot be minimized by the model without increasing LREC in an undesirable
way. Scaling the standard deviation to a too small value, though, might result in peaky distributions,
having no regulatory effect and resulting in a trivial reconstruction objective.
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(a) Standard Gaussian N(0, I) (b) Gaussian N (0, diag(0.4))

Figure 2: Weighted regularization (top) and reconstruction loss (bottom) for train and test data over
several epochs for two different Gaussians applied as prior distribution for the regularization term.

We adapt the computation of the regularization loss to incorporate a scaling factor s for the standard
deviation as hyperparameter. The closed form of the VAE loss function1 with a prior standard
deviation σp = s ∈ (0, 1] and prior µp = 0 for a specific token’s layer outputs σt and µt becomes

−DKL [N(µt,σt), N(0, diag(s))] =

d∑
i=1

1

2
log(σ2

t,i)−
σ2
t,i + µ2

t,i

2s2
− log(s) +

1

2
(6)

This results in codes zt = σt · ϵ′t + µ being distributed according to a Gaussian with zero mean
and a predefined standard deviation, ϵ′ ∼ N(0, diag(s)). The optimal balance between LREC and
LREG as expressed by the value of s ∈ (0, 1] is related to the representations’ isotropy and will be
determined experimentally.

4 EXPERIMENTS

The aim of the experiments is to balance the two loss terms. LREC should be low to maintain
the reconstruction ability of the network, while a too small scaling value s implies that the VAT
essentially behaves as regular AE. At the same time, we want to optimize the isotropy of the latent
representations. In order to choose the best setting, we observe both, the resulting loss values and
the properties of the latent space in terms of similarity between representations.

Our VAT model architecture is smaller than the original Transformer architecture, as it is not in-
tended for machine translation. The VAT consists of N = 4 encoder and decoder layers, respec-
tively, with H = 8 attention heads each and a model dimensionality of d = 128. A logistic annealing
function (Bowman et al., 2016) is applied to weight LREG. The VAT is trained on the train split of
the WMT19 de-en dataset (Barrault et al., 2019) using English sentences only. WMT19 contains
data from the news commentary, Wiki titles, Europarl, ParaCrawl and Common Crawl corpora. The
data is tokenized using subword tokenization with a target vocabulary of 215 tokens. The full details
on model and training parameters are listed in the appendix.

4.1 OPTIMAL SCALING PARAMETER

The isotropy of the learned representations z is assessed as a function of the scaling factor s ∈ (0, 1].
Ethayarajh (2019) introduced the notion of isotropy of the latent space as the mean cosine similarity
between vector representations of random tokens. In an isotropic latent space, representations of
randomly sampled tokens have low cosine similarity and do not cluster in a specific direction.

1Refer to Odaibo (2019) for the derivation of the closed form.
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(a) Cosine similarities of the latent representations
of the VAT at the end of the training process de-
noting the isotropy of the latent space and the con-
textuality of token representations.

(b) Reconstruction loss, weighted regularization
loss and total loss of the VAT at the end of the
training process.

Figure 3: Optimizing the scaling factor s with respect to isotropy and loss values.

In addition to isotropy, Ethayarajh (2019) introduces the notion of self-similarity and intra-sentence
similarity. A high self-similarity, i.e. mean cosine similarity between representations of the same to-
ken in different sentences, indicates that neighboring representations capture similar concepts which
contributes to the smoothness of the latent space. Intra-sentence similarity measures the mean cosine
similarity of tokens occurring in the same sentence to the mean sentence representation, thus being
related to contextuality.

BERT exhibits low isotropy (mean cosine similarity > 0.4) in its last layers (Ethayarajh, 2019), a
phenomenon known as representation degeneration (Gao et al., 2019). In contrast to BERT with
high contextuality with respect to the low isotropy, we expect a more complete latent space for the
VAT and thus high isotropy. The results in Figure 3a2 are computed for the STS12 datasets Agirre
et al. (2012). The average cosine similarity between randomly sampled words is low for smaller s
values, suggesting an isotropic latent space with representations distributed across space. The latent
space is most isotropic at s = 0.4.

The average self-similarity of tokens greater than 0.6 suggests a mapping of similar concepts
into the same region, indicating smoothness in the latent space. The intra-sentence similarity for
0.5 ≥ s ≥ 0.1 is lower than the self-similarity, but still above the similarity of random words.
This indicates that contextual information is captured in the representations. Interestingly, for
1 ≥ s ≥ 0.6, the token representations seem to ”collapse” into an identical representation for
all positions in a sequence resulting in an intra-sentence similarity of 1. Among the words with most
context-specific representations are mainly stopwords as they have lowest self-similarity.

In Figure 3b, we report the final loss values after training the models for 3 epochs with different
scaling factors s ∈ (0, 1]. Scaling values 1 ≥ s ≥ 0.6 result in near zero regularization losses
and high reconstruction error. The original input cannot be reproduces any more. This observation
corresponds to the findings from Figure 3a, where the representations within a sentence are identical.
Starting from s = 0.5, the reconstruction loss drops and with s = 0.4, the reconstruction loss falls
below the regularization loss. Values smaller than s = 0.4 further decrease the positive effects of
the variational model, as the achievable variety of generated text is reduced. This phenomenon is
referred to as posterior collapse (Lucas et al., 2019).

Combining the findings from evaluating the loss and latent space properties in Figure 3, we select
s = 0.4 as scaling factor for further evaluating the VAT. This value corresponds to good reconstruc-
tion ability and isotropic representations which impacts both the generation of text as well as the
performance on classification tasks. Also, the learning curves corresponding to s = 0.4 exhibit no
overfitting any more (see Figure 2b).

2Different from Ethayarajh (2019), Figure 3a depict the plain intra-sentence and self similarity, i.e. not
adjusted for isotropy.
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In this class, we will introduce several fundamental concepts.
In this class, we will introduce several fundamental concepts.

In this class, we will introduce several fundamental principles.
In this area, we will introduce several fundamental principles.
In this process, we will introduce several educational concepts.
In this class, I will introduce several fundamental principles.
In this progress, we will introduce private fundamental concepts.
In this class, we have received several fundamental concepts.
In this class, we will introduce several public projects.
In April 2013, we will introduce several fundamental issues.
In this class, we will find several fundamental principles.
In one class, she will introduce several fundamental concepts.

Table 1: Variational Sampling. Example sentence (in bold) was
used as input to the VAT, with the decoded mean representation
and samples from the latent distribution (in italics).

Generative models have shown great promise in modeling
complex distributions.
advantages, results, achievements, quality, answers
participation, moments, experience, passion, joy, benefits, in-
terests

Table 2: Variational Sampling. Example sentence (in bold) that
was used as input to the VAT, with only the underlined token
being sampled. Samples from the latent distribution in italics.

I want to talk to you.
I want to report.
I said:
She didn’t want to say.
She didn’t want to be with him.
He was silent for a long moment.
He was silent for a long moment.
He was my father.
It was my face.
It was my turn.

Table 3: Interpolation. First and
last sentence (in bold) were given
as input to the VAT. Intermedi-
ate sentences were obtained by
token-wise linear interpolation be-
tween the two latent representa-
tions padded to the same length.

5 VARIATIONAL LANGUAGE MODEL

During training, the VAT encoder produces variants of the input tokens by drawing from the latent
distribution. The VAT decoder has to be able to reproduce the original sequence given variational
input. At test time, both approaches are possible: Decoding with the standard deviation set to 0, i.e.
zt = µt, leads to a deterministic representation and is used for classification tasks. For sequence
generation, decoding zt = σt · ϵ′ + µt allows to generate variants of the original input sequence, a
process we refer to as variational sampling. Variational language modeling thus denotes the various
ways of manipulations and computations in the latent space that are possible with the VAT’s latent
distributions. As examples, we discuss anecdotal results from variational sampling and interpolation.

Tables 1 and 2 illustrate the generating capabilities of the VAT with variational sampling. In the
second line in Table 1, the VAT is able to reconstruct the original sequence (first line), which refers
to decoding with zt = µt, i.e. without sampling. The following lines show exemplary variants
of the input sentence obtained by randomizing the latent representations, displaying 12 variational
samples. It is interesting that, while mostly maintaining the original sentence structure and original
context, variants are found for almost all tokens. This gives an idea of the structure of the latent space
and the contextuality of the representations. The approach is comparable to paraphrase generation,
which is often obtained through back-translation (Sennrich et al., 2016), (Wieting & Gimpel, 2018)
or by directly trained on supervised data in the form of paraphrase sentence pairs (Gupta et al.,
2018).

Table 2 illustrates variational sampling for a single token, where the input sequence (in bold) is
reconstructed according to zt = µt except for the underlined token for which sampling is allowed.
This setting is similar to a nearest neighbor search over a fixed corpus. The second line lists the
obtained samples. By masking the underlined token, this approach is similar to gap filling (Donahue
et al., 2020), (Wu et al., 2019). Variational sampling, both for tokens and sequences, can be useful
for generating paraphrases in tasks such as dialog generation, question answering etc.

We also experimented with latent space interpolation similar to (Bowman et al., 2016), (Liu & Liu,
2019), (Li et al., 2020b). We linearly interpolate the latent representations of two sentences (padded
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STS12 STS13 STS14 STS15 STS16 STSb SICK-R Average

Published in (Reimers & Gurevych, 2019)
BERT-start 20.16 30.01 20.09 36.88 38.08 16.50 42.63 29.19
BERT-mean 38.78 57.98 57.98 63.15 61.06 46.35 58.40 54.81

Our results
MiniBERT-start -2.19 0.87 1.27 0.81 -3.46 -2.41 0.61 -0.64
MiniBERT-mean -1.14 -3.83 1.63 0.21 7.25 -5.3 -1.73 -0.42
MiniBERT-sum -0.50 -1.54 0.60 -0.72 0.11 1.21 1.67 0.12
VAT-start 17.45 12.10 14.74 20.09 31.14 30.70 37.15 23.34
VAT-mean 45.60 45.43 52.07 55.45 58.13 50.83 47.08 50.66
VAT-sum 45.60 45.43 52.07 55.45 58.13 51.56 48.88 51.02

Table 4: Spearman rank correlation between the cosine similarity of sentence representations and
gold label similarity for different semantic textual similarity (STS) tasks without fine-tuning the
underlying models to the target data.

to the same length) with three intermediate steps. Decoding the intermediate representations results
in the sentences illustrated in Table 3 for two examples. Observing a smooth interpolation trajectory
as in the examples is not always the case. It is possible that after decoding, the intermediate steps are
mapped to the same sentence as seen for one sentence in the second example. This is especially true
with increasing size of training data: The more training data, the more contextualized representations
for the same word type that are mapped close to each other in latent space will exist.

6 SENTENCE REPRESENTATIONS

For the construction of sentence representations, we compare two pooling operations (average, sum).
Additionally, the start token (”CLS”) representation can be used as embedding for the whole sen-
tence, but this approach has been shown to be inferior to mean pooling in semantic similarity tasks
for BERT (Reimers & Gurevych, 2019). We denote the different approaches as VAT-mean, VAT-
sum and VAT-start, respectively. We compare our model to the original BERT model (base) and,
for a fair comparison in terms of model size, to a smaller variant with similar network dimensions
than the VAT. BERT has L = 12 encoder layers and the model and representation dimension is
d = 768. The smaller BERT model3 (Turc et al., 2019), which we refer to as MiniBERT, has
d = 128 and L = 4, the same size as the VAT. Both BERT and MiniBERT were trained on a much
larger collection of datasets (Wikipedia, BookCorpus, CommonCrawl) than the VAT.

The sentence representations are tested using the SentEval (Conneau & Kiela, 2018) toolkit4. The
toolkit evaluates static sentence representations on two different classes of tasks: semantic similarity
and sentence classification tasks. Table 4 lists the correlation values of the different sentence repre-
sentation methods on the semantic textual similarity (STS) tasks. For each pair of semantically sim-
ilar sentences, the spearman correlation rank between the cosine of their latent representations and
a human-labeled gold standard (between 0 and 5) is computed (no fine-tuning or transfer learning).
The correlation of VAT-based sentence representations is on par with BERT-based representations
which is surprising given the smaller model architecture and capacity of the VAT. For both VAT and
BERT, start token based representations show less correlation than those obtained by average or sum
pooling. Representations obtained from the MiniBERT model do not show any correlation at all,
indicating that the BERT architecture requires a larger model size.

The classification tasks included in the SentEval toolkit comprise binary (MR, CR, SST2) and fine-
grained (SST5) sentiment or polarity classification tasks, paraphrase detection (MRPC), natural lan-
guage inference (SICK-E) and question-type classification (TREC) tasks. As paraphrase detection
and natural language inference require the comparison of two sentences, the pair of input sentences
is concatenated and separated by a special separation token to form a single input vector. For the
classification tasks, we compare the performance of the VAT to that of MiniBERT in two ways: in a
feature-based approach and in a fine-tuning approach.

3https://github.com/google-research/bert
4https://github.com/facebookresearch/SentEval
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MR CR SST2 SST5 TREC MRPC SICK-E

Feature-based Approach
MiniBERT-start 50.8/50.1 63.9/63.8 51.2/49.9 27.7/24.6 23.7/18.2 67.8/66.5 56.4/56.7
MiniBERT-mean 50.9/50.1 61.6/60.9 53.0/50.3 24.4/25.1 22.9/18.2 65.5/65.9 55.6/55.9
MiniBERT-sum 51.9/49.6 62.2/59.7 51.4/51.5 25.8/23.0 23.0/20.8 64.8/57.6 48.4/49.7
VAT-start 60.5/59.6 63.8/63.8 61.6/63.3 29.4/29.3 35.1/40.4 67.5/66.5 56.4/56.7
VAT-mean 61.0/60.2 63.9/63.8 61.4/60.7 30.4/31.0 44.1/48.6 67.5/66.6 59.2/58.5
VAT-sum 61.2/60.5 66.8/65.7 61.0/62.6 31.5/32.2 46.8/54.8 69.6/68.5 67.8/66.6

Fine-tuning Approach
MiniBERT-start 72.8/72.1 64.4/61.9 80.6/83.2 36.7/36.1 32.1/38.8 68.9/66.5 56.4/56.7
MiniBERT-mean 76.0/75.6 73.4/65.6 81.0/83.3 38.0/37.9 72.4/73.2 71.8/68.6 58.2/58.1
MiniBERT-sum 73.8/70.7 75.4/67.6 70.0/81.6 35.8/32.8 70.8/69.6 68.9/63.0 57.6/44.3
VAT-start 74.5/74.6 76.3/72.5 82.7/82.6 37.8/38.6 82.7/87.2 70.0/69.9 61.6/61.3
VAT-mean 73.8/74.1 75.0/72.5 81.7/82.4 39.9/40.0 84.1/85.2 68.9/63.7 64.2/61.8
VAT-sum 72.9/73.2 78.6/74.5 82.6/83.3 40.7/39.9 84.7/88.2 69.7/68.3 62.0/60.8

Table 5: Dev/test accuracies on the SentEval transfer classification tasks. A single dense layer with
nonlinear activation and Adam optimizer is used as classification layer. Bold values indicate the best
test result for each task in the feature-based and fine-tuning approach.

Both presented approaches are different from how state-of-the-art models are trained for transfer
tasks. Given the smaller model capacity, we do not expect on-par performance, but rather want to
better understand the kind of information stored in the representations and the potential that comes
with additional classification layers on top of the model. The comparison to MiniBERT serves as
baseline.

For the feature-based approach, the sentence representations are extracted from the pretrained mod-
els and then passed to a single classification layer trained with an Adam optimizer (Kingma & Ba,
2015). Given the results in Table 5 (top), the sum of the individual token representations is best
suited as standalone feature for sentence classification. As VAT-sum outperforms VAT-mean on all
tasks, the dimensions of the latent representations seem to be well disentangled. With the excep-
tion of the SST2 task, the start representation yields lowest accuracy values suggesting that the first
representations does not capture the full context of a sentence. MiniBERT, which is designed for
fine-tuning rather than feature extraction, mostly does not reach the performance of VAT variants.
The difference between MiniBERT and VAT is especially large for the TREC task.

For assessing the performance with a fine-tuning approach, we extend the underlying models by a
single non-linear dense classification layer and optimize with Adam. For the VAT, we only reuse the
encoder part to access the latent representations Z. For each task, we trained for five epochs Note
that the MiniBERT results can differ from the results in the original publication (Turc et al., 2019),
as we do not further tune the model or the training process.

In Table 5 (bottom), we see a performance leap for all of the models compared to their feature-based
results. While VAT-sum was performing best for the feature-based approach, the method to produce
sentence-level representations is not that decisive for the fine-tuning approach. The differences
between sum, mean and start are not as great as for the semantic similarity tasks any more, neither
for MiniBERT nor for VAT. It is interesting that MiniBERT is in lead for sentiment classification
tasks, whereas VAT shows outstanding performance on the TREC (topic classification) task.

7 RELATED WORK

The architecture of variational autoencoders has been optimized for various natural language pro-
cessing tasks by implementing various kinds of networks for encoder and decoder. The variational
loss is applied to a sentence-level latent representation in all these models. Some of the networks do
not contain a decoder any more, such that the latent representations are not interpretable.

Several models were suggested to solve common document or text classification tasks: Gururangan
et al. (2019) use MLPs as encoder and decoder to learn latent vectors from bag-of-words inputs
that are used for document classification. Mahabadi et al. (2021) compress BERT-based sentence

8



Under review as a conference paper at ICLR 2022

representations through a Gaussian prior distribution for transfer classification tasks. Deudon (2018)
implements a siamese network architecture based on sentence representations from a VAE with Bi-
LSTMs for semantic similarity classification.

Zhao et al. (2018) use a LSTM-based VAE for dialog generation. Miao et al. (2016) rely on MLPs
in a VAE for both document modeling and answer selection. Wang & Wan (2019) introduce a
Transformer-based VAE for story completion, where the missing plot is conditioned on the latent
representation z capturing the distribution of the story plot. Shu et al. (2020) propose a Transformer-
based non-autoregressive model specifically for machine translation that incorporates a predictor
network for the length of the target sentence.

Various network architectures have been proposed for the more general task of language modeling.
Bowman et al. (2016) apply the variational loss on the last hidden state of a LSTM sequence-to-
sequence model. In iVAE (Fang et al., 2019), an MLP produces sample-based distributions from an
LSTM’s hidden representation concatenated to random noise. Yang et al. (2017) apply an LSTM
as encoder and a CNN as decoder in a language model. Liu & Liu (2019) add a feed-forward
layer to a Transformer model to map the encoder outputs to a mean and variance vector which
are then upsampled and passed to the decoder followed by an LSTM layer. OPTIMUS (Li et al.,
2020b) extends this idea to large-scale language models. The encoder weights are initialized with
pre-trained BERT weights, the decoder with those from a pre-trained GPT-2 model. The latent
representation of the start token is used as sentence-level representation.

In contrast to these networks, the VAT’s variational loss is applied at token-level which allows for
direct manipulations in the latent space. Token-level reguralisation has been previously applied to
RNNs for language modeling (Li et al., 2020c). While language modeling is the training objective
of the VAT, we also investigate the performance of the trained model on text classification tasks.

8 DISCUSSION AND CONCLUSION

The goal of the proposed VAT model is to obtain isotropic representations mapped to a smooth and
complete latent space. The hyperparameter and scaling factor s is directly optimized to meet these
criteria. The effect can be seen especially for text generation, where the VAT is able to produce
coherent sequences through manipulations directly in latent space. However, optimizing LREG

comes at the cost of LREC . Perfect reconstruction of the original input is not possible at all times
any more.

Reducing the representations to a single sentence-level vector preserves contextual information.
Semantic similarity tasks demonstrate that the smaller model capacity of the VAT is sufficient to
capture semantic information that is on a par with larger BERT architectures. However, models
explicitly trained to improve the performance on semantic similarity tasks are out of reach.

The VAT is able to produce more robust standalone sentence-level features when compared with
MiniBERT for the feature-based classification approach. VAT outperforms the similar-sized MiniB-
ERT also when being fine-tuned on sentence classification tasks, but is far from the state-of-the-art
performance known from BERT-sized models with more sophisticated training procedures. Inter-
estingly, VAT shows its peak performance for the topic classification task TREC. In our setup, the
VAT captures topic-related information even better than sentiment.

Tasks involving the comparison of two sentences (MRPC, SICK-E), represented by a single con-
catenated vector, cannot be successfully solved by either VAT or MiniBERT. Some model variants
(MiniBERT included) only learn to predict the most frequent class. The reason could be the smaller
model sizes that are incapable of capturing the information of two concatenated sentences, as espe-
cially the VAT was never trained on such a setting. Instead of a concatenated vector, the comparison
task could be solved using a siamese network architecture, similar to Deudon (2018).Optimizing
the regularization loss at token-level could even allow the training of a multilingual model or a
translation model, given sufficient training data.

9
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REPRODUCIBILITY STATEMENT

All data used for training and evaluation of the model are publicly available. The WMT19
dataset was obtained through the tensorflow library at https://www.tensorflow.org/
datasets/catalog/wmt19_translate, all other datasets are available through the Sen-
tEval toolkit at https://github.com/facebookresearch/SentEval. The source code
for instantiating and training our model as well as for decoding and generating variational samples
is made available as supplementary material. Hyperparameters and training settings are described
in Section 4 and – in more detail – in Appendix A.
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A APPENDIX

MODEL DETAILS

The implemented VAT consists of N = 4 encoder and decoder layers, respectively, with H = 8
attention heads each. The encoder and decoder architecture including the positional embedding is
the same as in the original Transformer (Vaswani et al., 2017) and can be seen in Figure 1. The
model dimensionality d = 128, the dimension in the feed forward layers is 512. Dropout during
training is set to 0.1. The Noam optimizer Vaswani et al. (2017) operates with 50, 000 warmup steps.
A logistic annealing function Bowman et al. (2016) with 50, 000 warmup steps and an initial value
of 0.00025 is applied to weight the regularization term of the loss function.

The VAT is trained on the train split of the WMT19 de-en dataset Barrault et al. (2019) using English
sentences only. The data is tokenized using subword tokenization with a target vocabulary of 215
tokens. Batch size is set to 128. Decoded sentences that are presented as results are obtained through
beam search with beam size 5.
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ENERGY CONSUMPTION

Experiments were conducted using a private infrastructure, which has an estimated carbon efficiency
of 0.197 kgCO2eq/kWh. A single epoch takes 20 hours of computation on a RTX 2080 Ti (TDP of
250W) GPU. For the training of a VAT model for 3 epochs, total emissions are estimated to be 0.99
kgCO2eq according to the ML impact calculator Lacoste et al. (2019) available at:

https://mlco2.github.io/impact#compute.
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