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Abstract
Scientific machine learning (SciML) is a relatively
new field that aims to solve problems from dif-
ferent fields of natural sciences using machine
learning tools. It is well-documented that the
optimizers commonly used in other areas of ma-
chine learning perform poorly on many SciML
problems. We provide an infinite-dimensional
view on optimization problems encountered in
scientific machine learning and advocate for the
paradigm first optimize, then discretize for their
solution. This amounts to first choosing an ap-
propriate infinite-dimensional algorithm which is
then discretized in a second step. To illustrate this
point, we show that recently proposed state-of-
the-art algorithms for SciML applications can be
derived within this framework. As the infinite-
dimensional viewpoint is presently underdevel-
oped in scientific machine learning, we formalize
it here and advocate for its use in SciML in the
development of efficient optimization algorithms.

1. Introduction
The investigation of optimization problems in function
spaces dates back at least to Newton’s minimal resistance
problem (Newton, 1687), sparking the field today known as
the calculus of variations. It took the mathematical commu-
nity until the beginning of the 20th century for the rigorous
concept of function spaces to emerge, initiated by works of
Fréchet, Hilbert, Riesz, and Fischer among many others. To-
day, optimization problems in function spaces are the basis
for many applications in engineering and science, including
fluid dynamics, solid mechanics, quantum mechanics, and
optimal design to name but a few areas of applications. Op-
timization in function spaces is intimately connected to the
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solution of partial differential equations (PDEs).

Recently, efforts have been made to apply machine learning
methods to scientific problems posed in function spaces.
Among the goals are the seamless integration of observa-
tional data and (partial) physical knowledge in the form
of PDEs using physics-informed neural networks (PINNs),
the solution of high-dimensional PDEs, such as the many-
electron Schrödinger equation, and the design of fast neural
surrogate models for many-query applications to replace
computationally expensive physics-based models, typically
referred to as neural operators. We collect these different
approaches under the name Scientific Machine Learning
(SciML), see also Subsection 2.1 for more details. Com-
mon to all of the methods is that they can be formulated in
infinite-dimensional function spaces that are dictated by the
underlying PDEs.

Many of the SciML methods lead to notoriously hard opti-
mization problems in practice, different from purely data-
driven deep learning applications. For PINNs in particular, it
is well documented that first-order methods plateau without
reaching high accuracy (Krishnapriyan et al., 2021; Wang
et al., 2021; Zeng et al., 2022), which has led many people
to believe that

there has been a lack of research on optimization
tasks for PINNs (Cuomo et al., 2022).

In particular, for neural network based PDE solvers, the op-
timization error seems to be dominating the approximation
and generalization error, hence rendering these problems
very different from many deep learning related tasks. More
principled approaches to optimization in SciML have just
started to be developed (Müller & Zeinhofer, 2023; Zeng
et al., 2022; anonymous, 2024). For variational Monte Carlo
methods with neural network ansatz functions the gold stan-
dard is K-FAC (Hermann et al., 2022), however, the op-
timization process is still very resource-consuming (Pfau
et al., 2020; Li et al., 2023). In general, there is no clear
consensus on best practices for principled choices of opti-
mization algorithms, however, there is a tendency towards
second-order optimization algorithms unlike in standard
deep learning applications.
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Function-space inspired methods for SciML Function-
space inspired methods provide a principled way to design
optimizers that take the specific problem structure into ac-
count. Such approaches have been proposed and used in su-
pervised learning and reinforcement learning (Amari, 1998;
Kakade, 2001; Martens, 2020) to great success. Here, we
discuss their potential in the context of SciML. We advo-
cate the position that modern optimization algorithms in
SciML should employ the function space geometry. The
idea is to choose a suitable infinite-dimensional optimiza-
tion algorithm based on the properties of the continuous
formulation. Only after the choice of an optimization al-
gorithm, the problem is discretized. This corresponds to
the well-known first optimize, then discretize approach in
PDE-constrained optimization, where linear methods rather
than networks are used (Hinze et al., 2008). We summarize
our main conclusions as follows:

• We argue that most state-of-the-art optimizers in
SciML can be obtained from a function-space prin-
ciple, although they are not commonly motivated this
way, see Section 4. This way, we identify an emerging
trend in optimization algorithms for SciML.

• Descpite the initial success of function-space inspired
methods in SciML, they have not yet been widely
adopted in the field. Hence, we advocate for their
use and development as we believe this has the poten-
tial to help SciML mature into off-the-shelf technology
that can be applied at an industrial scale.

The article is structured as follows. In Section 2 we dis-
cuss the problems of consideration form the field of Sci-
entific machine learning as well as the importance of the
development of more principled and efficient optimizers
in this field. In Section 3, we describe the derivation of
function-space inspired methods: Formulate the problem
at the continuous level. Typically, one views the problem
as an infinite-dimensional problem discretized by a neural
network ansatz. Choose an optimization algorithm that is
well-motivated for the infinite-dimensional problem1 and
discretize the algorithm in the tangent space of the neural
network ansatz. In Section 4, we discuss how different
state-of-the-art methods in SciML can be derived within
this framework and discuss their superiority to first-order
and certain second-order methods.

2. Scientific Machine Learning
We describe the problems from the field of scientific ma-
chine learning we consider here. Further, we give an
overview the current optimization approaches to these prob-

1The reader may for instance think of Newton’s method one-
step convergence for the solution of a quadratic problem.

lems highlighting that insufficient optimization is widely
believed to be the main bottleneck in this field.

2.1. Methods of Scientific Machine Learning

We briefly discuss a sample of influential works in scien-
tific machine learning. The unifying theme is the desire to
make neural networks conform to physical laws described in
terms of partial differential equations. In the later sections,
we refer to these examples and discuss the importance of
infinite-dimensional optimization algorithms for them.

Physics-Informed Neural Networks Proposed by (Dis-
sanayake & Phan-Thien, 1994) and popularized by (Raissi
et al., 2019), physics-informed neural networks merge ob-
servational data with physical prior knowledge in the form
of partial differential equations, see also the review arti-
cles (Karniadakis et al., 2021; Cuomo et al., 2022). A typi-
cal example is the task of finding a function uθ parametrized
as a neural network that matches observational data ud and
satisfies a partial differential equation, say

∂tu+N (u) = 0,

with given boundary and initial data. Here, N denotes a
partial differential operator. The PINN formulation2 of the
above problem reads

min
θ∈Θ

L(θ) =
1

2
∥uθ − ud∥2L2 +

1

2
∥∂tuθ +N (uθ)∥2L2 . (1)

Minimizing L corresponds to solving the PDE and con-
forming to the observational data ud. Alternatively, if a
variational principle for the PDE at hand is available, this
can be used to formulate a loss function. This approach,
known as the deep Ritz method, was proposed in (E & Yu,
2018). We remark that physics-informed neural networks
and the deep Ritz method can also be regarded as a method
to solve PDEs, ignoring the data term in the loss above.

Variational Monte Carlo Methods Recently, neural net-
work based variational Monte Carlo (VMC) methods have
shown promising results for the solution of the many-
electron Schrödinger equation and presently allow ab initio
solutions for system sizes of the order of 100 electrons. We
refer to (Hermann et al., 2022) for an overview of this fast-
growing field. The idea is to parametrize the wave function
ψ by a neural network ψθ, where we denote the trainable
parameters by θ and to minimize the Raleigh quotient

min
θ∈Θ

⟨ψθ|Ĥ|ψθ⟩
⟨ψθ|ψθ⟩

where Ĥ is the Hamiltonian, which is typically a linear
second-order partial differential operator.

2We have omitted terms corresponding to initial and boundary
values for brevity of presentation.
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Operator Learning Operator learning aims at approxi-
mating an operator G : X → Y between function spaces
X and Y by a neural surrogate Gθ ≈ G, see (Kovachki
et al., 2023; Li et al., 2020). A prototypical example is
the emulation of the solution map G : f 7→ u of a given
PDE, where u = Gf is the solution of the PDE with data f .
Neural operators are typically trained using a regression for-
mulation, although incorporating PDE information is also
possible (Li et al., 2021). Combining both, a neural operator
loss function has the form

L(θ) =
1

2

N∑
i=1

∥Gθ(fi)− ui∥2Y + ∥D(Gθ(fi))− fi∥2Y ,

where (fi, ui)i=1,...,N denotes the training data, and the
u1, . . . , uN is typically generated by a classical solver. The
second term in the objective may reduce the need for training
data at the expense of a more difficult optimization problem.

2.2. Optimization in Scientific Machine Learning

In their nature, PINNs and related methods are very differ-
ent from the problems encountered in supervised learning
and reinforcement learning. Indeed, the points used in the
numerical discretization of the objective function (1) play
the role of data points, hence one has access to an unlimited
amount of data, which renders the problem as an optimiza-
tion rather than a statistical one. Further, it is known that
the optimization problems are very badly conditioned and
consequently, it is commonly believed that optimization
is one of the biggest challenges in SciML with training
pathologies being well documented (Wang et al., 2021; Kr-
ishnapriyan et al., 2021; Cuomo et al., 2022; De Ryck et al.,
2023; Liu et al., 2024). To address these difficulties in the
optimization, various adaptive weightings of the loss (Wang
et al., 2021; 2022b) and sampling strategies (Lu et al., 2021;
Nabian et al., 2021; Daw et al., 2022; Zapf et al., 2022;
Wang et al., 2022a; Wu et al., 2023; Tang et al., 2023; Jiao
et al., 2023) have been suggested, improving naive methods,
but failing to produce satisfactory accuracy. Achieving
highly accurate PINN solutions has just recently been real-
ized in (Zeng et al., 2022; Müller & Zeinhofer, 2023). As
we show in Section 4, all methods that succeed in produc-
ing accurate solutions can be interpreted from an infinite-
dimensional viewpoint. An illustration of the importance
of the infinite-dimensional perspective is provided in Fig-
ure 1, which demonstrates that respecting the function space
geometry can result in orders of magnitude improvement.

Variational Monte Carlo with neural network ansatz func-
tions routinely relies on the natural gradient method as pro-
posed in (Amari, 1998) and uses the K-FAC approximation
of the Fisher matrix, see (Martens & Grosse, 2015; Martens,
2020). In Section 4.1, we illustrate the derivation of the nat-
ural gradient method for VMC as an L2-gradient descent al-

Figure 1. Training curves for a PINN for a 2-dimensional Poisson
equation; the first order optimizers (Adam and Gradient Descent)
plateau, the second-order optimizers (ENGD and Newton) perform
much better, but the function-space inspired optimizer (ENGD)
reaches the highest accuracy by several orders of magnitude.

gorithm in function space. Note that for large problem sizes,
applications become dramatically resource-demanding, and
computation times up to 104 GPU hours for a single exper-
iment are reported in (Li et al., 2023). This illustrates the
importance of a well-suited training algorithm.

Neural operators for PDE-based applications usually require
an offline data generation phase using classical, grid-based
solvers to produce training data. Consequently, the neural
operator needs to be trained before it is eventually ready for
downstream applications. The training is typically carried
out with stochastic first-order methods like Adam.

3. Function-Space Inspired Optimization
In this section, we discuss the general principle of the dis-
cretization of iterative algorithms in Hilbert spaces, specific
examples are provided in Section 4. Assume that we aim to
solve a problem in a Hilbert space H, say an optimization or
saddle-point problem. To tackle this problem numerically,
we consider neural network functions of a given architecture
that form a parametric class of functions

M = {uθ : θ ∈ Θ} ⊆ H,

where Θ = Rp is the parameter space. It is usually straight-
forward to design neural networks such that uθ ∈ H as this
typically relies on smoothness properties of the activation
function. We will sometimes require the map

P : Θ → M ⊆ H, θ 7→ uθ, (2)

which we call the parametrization and assume that it is dif-
ferentiable. We furthermore define the generalized tangent
space of M at uθ as

span{∂θ1uθ, . . . , ∂θpuθ} = ran(DP (θ)) ⊂ H, (3)

where DP (θ) denotes the derivative of the parametrization.
Here, ∂θ1uθ, . . . , ∂θpuθ might be linearly dependent.
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The definitions above are not specific for neural networks
but are meaningful for general parametric ansatz classes.

The idea of designing optimization algorithms for paramet-
ric models that take the function space into account dates
back to the seminal works of Amari, who provided a dis-
cretization of a function space gradient descent known as
natural gradient descent (Amari, 1998) and we refer to the
surveys of (Ollivier et al., 2017; Martens, 2020) on function
space inspired methods utilizing the Fisher-Rao geometry.
Apart from their use in supervised learning, where it is at-
tributed to be more robust to data noise (Amari et al., 2020),
natural gradient methods enjoy great popularity in reinforce-
ment learning (Kakade, 2001; Peters et al., 2003; Morimura
et al., 2008; Moskovitz et al., 2020). Note that the methods
developed in supervised and reinforcement learning can not
directly be applied in SciML, where the function spaces
often consists of deterministic functions rather then proba-
bilistic models. Here, we describe the general philosophy
of function-space inspired methods.

3.1. Discretization of Minimization Methods

Consider an uncontrained optimization problem

min
u∈H

E(u), (4)

where E : H → R is a differentiable function on a Hilbert
space H. For this we consider the following scheme

uk+1 = uk + ηkdk, (5)

with an update direction dk that is given by

dk = −T−1
uk

(DE(uk)), (6)

where Tuk : H → H∗ is an invertible linear map that is
given by the concrete algorithm at hand. For example, we re-
cover gradient descent with dk = −∇E(uk) and Newton’s
method with dk = −D2E(uk)

−1(DE(uk)). In Section 4,
we provide explicit examples and discuss different choices
of function space algorithms in more detail.

Corresponding to (4), we define the loss function

L : Θ → R, L(θ) = E(uθ)

and aim to design an algorithm in parameter space

θk+1 = θk + ηkwk, (7)

such that uθk ≈ uk. To understand the dynamics we apply
Taylor’s theorem to uθk+1

= P (θk + ηkwk) and obtain

uθk+1
= uθk + ηkDP (θk)wk +O(η2k∥wk∥2).

To mimic (5), we would like that DP (θk)wk ≈ dk for
which we choose

wk ∈ arg min
w∈Rp

1

2
∥DP (θk)w − dk∥2Tuθk

, (8)

where ∥w∥2Tuθk
= ⟨Tuθkw,w⟩. Computing the normal

equations of (8) yields that the update direction is given by

wk = −G(θk)†∇L(θk), (9)

where G(θk) ∈ Rp×p denotes the Gramian matrix

G(θk)ij = ⟨Tuθ∂θiuθ, ∂θjuθ⟩, (10)

see Appendix A.1. By G(θk)† we denote a pseudo-inverse
of G(θk), i.e., a matrix satisfying GG†G = G. The dis-
cretized algorithm now reads

θk+1 = θk − ηkG(θk)
†∇L(θk). (11)

A typical damping strategy consists of adding an ϵk-scaled
identity to G. We have derived the discretized algorithm
by fitting the update direction (8). This implies that the
update direction DP (θk)wk in function space is the pro-
jection of dk onto ran(DP (θk)), i.e., the tangent space of
the model, which is well known for natural gradients in the
finite-dimensional setting, see (Amari, 2016; van Oostrum
et al., 2022), where we defer the proof to Appendix A.2.

Theorem 1. Assume we are in the above setting, i.e., con-
sider an algorithm of the form (5) that satisfies (6). We
assume additionally that the Tuθk are symmetric and pos-
itive definite. Then, for the discretized algorithm (11) it
holds

uθk+1
= uθk − ηkΠuθk [T

−1
uθk

(DE(uθk))] + ϵk, (12)

where Πu denotes the orthogonal projection onto the tan-
gent space with respect to the inner product ⟨Tu·, ·⟩. The
term ϵk corresponds to an error vanishing quadratically in
the step and step size length

ϵk = O(η2k∥G(θk)†∇L(θk)∥2).

Inspecting the function space dynamics (12) of the dis-
cretized algorithm, we see that they agree with the original
function space algorithm (5) up to the orthogonal projection
onto the tangent space of the model and an error vanishing
quadratically with the step size. See also Figure 2, which
confirms that the function-space inspired methods (E-NG
and GN-NG) lead to function updates that compensate the
error of the method much better.
Remark 2 (Connection to Galerkin Discretization). Galerkin
schemes in numerical analysis refer to the discretization
of linear forms and linear maps using finite dimensional
vector spaces (Brenner, 2008). We can interpret the dis-
cretization procedure discussed above as a Galerkin scheme
in the models tangent space, i.e., using the basis func-
tions ∂θ1uθ, . . . , ∂θpuθ. Discretizing the Fréchet derivative
DE(uθ) and Tuθ this way yields ∇L(θ) and G(θ). How-
ever, unlike in classical methods, the space used in the
Galerkin discretization changes at every iteration.
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uθ − u⋆ E-NG Newton GD

uθ − u⋆ GN-NG E-NG Newton GD

Figure 2. Shown is the heat map over the domain Ω of the function
space updates for two different problems, a linear Poisson equa-
tion (top) and a steady-state Navier-Stokes system (bottom), for
different optimizers, being an energy natural gradient (E-NG), a
Gauß-Newton natural gradient (GN-NG), which agrees with E-NG
for the Poisson equation, Newton’s methods and gradient descent
(GD); In addition, the error uθ − u⋆ is shown, where u⋆ is the true
solutions; note that the functions-space inspired methods (E-NG
and GN-NG) lead to updates that can compensate the error better.

Remark 3 (Extension to Non-Symmetric & Indefinite Tu).
If Tu is symmetric and positive definite, it naturally defines
a Riemannian metric. In this case, the discretized algorithm
in (11) agrees with a natural gradient method. When Tu is
non-symmetric or indefinite, (8) is not the right notion to
obtain an update direction, as Tu does not correspond to an
orthogonal projection in the strict sense. In this case, we
still use (9) although it is not the optimality condition of (8).
Assuming, for instance, coercivity or suitable inf-sup condi-
tions of Tu guarantees that wk is a quasi-best approximation
of dk. For the details, we refer to Appendix A.3.

3.2. Discretization of Saddle Point Problems

Another important problem class is given by saddle point
problems. Assume we are given a function

L : H× V → R

and we are looking for a saddle point (u∗, v∗), which means

L(u∗, v) ≤ L(u∗, v∗) ≤ L(u, v∗)

is satisfied for all u ∈ H and v ∈ V . Such a point solves a
minimax problem of the form

min
u∈H

max
v∈V

L(u, v).

Saddle point problems arise, for instance, from Lagrangian
approaches to constrained minimization problems. For their
solution, we again consider algorithms of the form

(uk+1, vk+1) = (uk, vk) + (duk , d
v
k)

where we assume that L is Fréchet differentiable and the
update direction is given by

(duk , d
v
k) = T−1

uk,vk
(DuL(uk, vk), DvL(uk, vk)).

Here, Tu,v : H × V → H∗ × V∗ is a bounded, linear,
and invertible map. Algorithms of the form described
above include Newton’s method for the solution of a critical
point of L, gradient descent-ascent, competitive gradient
descent (Schäfer & Anandkumar, 2019) as well as natural
hidden gradients (Mladenovic et al., 2021).

We discretize the problem with two neural networks uθ and
vψ with parameter spaces Θ and Ψ, respectively. This yields

L : Θ×Ψ → R, L(θ, ψ) = L(uθ, vψ)

and the parameter update

(θk+1, ψk+1) = (θk, ψk) + ηk(w
u
k , w

v
k),

the update directions are computed according to(
wuk
wvk

)
= G(θk, ψk)

†
(
∇θL(θk, ψk),
∇ψL(θk, ψk)

)
. (13)

Here, the Gramian carries a block structure and is obtained
by using

(∂θ1uθ, 0), . . . , (∂θpΘuθ, 0), (0, ∂ψ1vψ), . . . , (0, ∂ψpΨ vψ)

as a generating system for the tangent spaces, for details
see Appendix B. For projection results along the lines of
Theorem 1 see Appendix A.3

4. Specific Examples of Algorithms
We discuss several infinite-dimensional algorithms, illustrat-
ing the abstract framework of the previous section. As exam-
ples for applications, we discuss (i) neural network ansatz
classes for the solution of the many-electron Schrödinger
equation using an L2 gradient descent, (ii) the solution of a
nonlinear variational problem using the deep Ritz formula-
tion and Newton’s method in function space, (iii) Lagrange-
Newton for the solution of a saddle-point formulation of
a Poisson equation, and (iv) Gauss-Newton for the PINN
formulation of the Navier-Stokes equations. In all cases, the
infinite-dimensional algorithms translate to state-of-the-art
methods. Some of these methods were previously proposed,
but lacking the infinite dimensional viewpoint.

4.1. Hilbert Space Gradient Descent

We show that gradient descent in a Hilbert space corre-
sponds to natural gradient descent in parameter space, with
the Riemannian metric induced by the inner product of
the Hilbert space. We exemplify this using the variational
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formulation of Schrödinger’s equation. We find that the
Hilbert space gradient descent discretized in tangent space
corresponds to the state-of-the-art optimization method used
in quantum variational Monte Carlo methods, where the
wavefunction is parametrized as a neural network, see for
instance (Hermann et al., 2020; Pfau et al., 2020).

Problem Formulation We are interested in solving the
problem

min
ψ
E(ψ) =

⟨ψ|Ĥ|ψ⟩
⟨ψ|ψ⟩

(14)

where Ĥ is the Hamiltonian, typically a linear second-order
partial differential operator, and ψ denotes the wave func-
tion, see for instance (Toulouse et al., 2016). Using an
L2(Ω) gradient descent with initial value u0 for the mini-
mization of E amounts to

ψk+1 = ψk − ηkI−1(DE(ψk)), k = 0, 1, 2, . . . (15)

where ηk > 0 denotes a step size and I : L2(Ω) → L2(Ω)∗

is the Riesz isometry of L2(Ω), given by ψ 7→ ⟨ψ|·⟩. Note
that (15) is formal3 as we can not in general guarantee that
DE(ψk) ∈ L2(Ω)∗.

Neural Network Discretization We choose a neural net-
work ansatz ψθ for the wavefunction and define the loss

L(θ) =
⟨ψθ|Ĥ|ψθ⟩
⟨ψθ|ψθ⟩

,

where in practice a reformulation is used and the integrals
are computed using Monte Carlo quadrature. We use the
shorthand notation ψ̂ = ψ

∥ψ∥L2
. To discretize (15), note that

the Riesz isometry I corresponds to the map Tuθ and leads
to the Fisher matrix

G(θ)ij = I(∂θi ψ̂θ)(∂θj ψ̂θ) =
∫
∂θi ψ̂θ∂θj ψ̂θ dx.

The update in parameter space thus becomes

θk+1 = θk − ηkG(θk)
†∇L(θk).

Correspondence to Natural Gradient Descent The
above discussion shows that the L2(Ω) gradient descent
leads to the well-known natural gradient descent using the
Fisher information matrix. This algorithm is state of the art
for quantum variational Monte Carlo methods with neural
network discretization (Pfau et al., 2020; Li et al., 2023).
Note, that in this context the scalability of the method relies
on the K-FAC approximation of G. We discuss scalability
issues in more detail in Section 4.5.

3For the discretized algorithm this is not a problem.

4.2. Newton’s Method

Next, we showcase Newton’s method for the solution of a
semilinear elliptic equation in variational form, i.e., we use
the Deep Ritz method (E & Yu, 2018) for its solution. The
example is taken from (Müller & Zeinhofer, 2023), where it
is shown that this approach yields highly accurate solutions,
for both PINN type objectives of linear PDEs and convex
minimization problems like the example discussed here.

Problem Formulation Let Ω ⊂ Rd with d = 1, 2, 3 and
consider the minimization problem4

min
u∈H1(Ω)

E(u) =

∫
Ω

|∇u|2

2
+
u4

4
− fudx. (16)

Newton’s method for the minimization of (16) for a given
initial value u0 ∈ H1(Ω) is

uk+1 = uk −D2E(uk)
−1(DE(uk)), k = 0, 1, 2, . . .

where the Hessian is given by

D2E(u)(v, w) = (∇v,∇w)Ω + 3(u2v, w)Ω.

Neural Network Discretization We choose a neural net-
work ansatz uθ with parameter space Θ and define the loss
function

L(θ) = E(uθ) =

∫
Ω

|∇uθ|2

2
+
u4θ
4

− fuθ dx.

For the discretization we note that Tuθ = D2E(uθ), which
yields

G(θ)ij = D2E(uθ)(∂θiuθ, ∂θiuθ)

= (∇∂θiuθ,∇∂θjuθ)Ω + 3(u2θ ∂θiuθ, ∂θjuθ)Ω.

The algorithm in parameter space becomes

θk+1 = θk − ηkG(θk)
†∇L(θk), k = 0, 1, 2, . . . (17)

for some initial parameters θ0 and a stepsize ηk > 0.

Correspondence to Generalized Gauss-Newton To see
the connection of the above method to a generalized Gauss-
Newton approach in parameter space, we compute the Hes-
sian of L. In fact, D2L(θ)ij equals

D2E(uθ)(∂θiuθ, ∂θjuθ) +DE(uθ)(∂θi∂θjuθ).

Generalized Gauss-Newton methods use the first term in the
above expansion in an algorithm of the form (17), which
shows that the discretized Newton method and generalized
Gauss-Newton coincide, which was recently proposed for
the deep Ritz method by (Hao et al., 2023).

4Dimensions larger than 3 can be considered as well, but re-
quire a different functional setting as in four or more dimensions
members of H1(Ω) are not integrable in fourth power.

6



Optimization in SciML Should Employ the Function Space Geometry

Remark 4. The method described above was proposed as a
natural gradient method in (Müller & Zeinhofer, 2023) un-
der the name energy natural gradient descent. It was shown
that it is highly efficient and capable of producing accurate
solutions for PINN-type formulations of linear PDEs and
deep Ritz formulations of semilinear elliptic PDEs.
Remark 5. Newton in function space for linear PDEs us-
ing a PINN formulation yields the standard Gauss-Newton
algorithm for l2 regression in parameter space. This is a
consequence of the discussion in Section 4.4. We refer to
the Remark 11 for details.

4.3. Lagrange-Newton

The Lagrange Newton algorithm is a solution method for
equality-constrained problems (Hinze et al., 2008). It ap-
plies Newton’s method to find a critical point of the La-
grangian formulation of the constrained problem. We exem-
plify its application for the solution of a Poisson equation
which yields the recently proposed competitive physics-
informed neural networks (CPINNs) formulation (Zeng
et al., 2022). Moreover, we demonstrate that for linear PDEs
the discretization of the Lagrange-Newton algorithm leads
to Competitive Gradient Descent (CGD), see (Schäfer &
Anandkumar, 2019). The work (Zeng et al., 2022) demon-
strates in great detail that the application of CGD to the
saddle point formulation of linear PDEs yields state-of-the-
art accuracy for PINN type optimization problems.

Problem Formulation Given Ω ⊂ Rd, f ∈ L2(Ω), g ∈
H3/2(∂Ω) we consider the constant energy J(u) = 0 and
the following problem

min
u∈H2(Ω)

J(u) s.t.

{
∆u+ f = 0 in Ω,

u− g = 0 on ∂Ω.
(18)

Note that the only feasible point of the above minimization
problem is the solution u∗ of Poisson’s equation −∆u∗ =
f with boundary data g. The corresponding Lagrangian
functional L : H2(Ω)× L2(Ω)× L2(∂Ω) → R is given by

L(u, λ, µ) = (λ, f +∆u)Ω + (µ, u− g)∂Ω. (19)

The unique saddle point or Nash equilibrium of L is
(u∗, 0, 0) and satisfies

max
λ,µ

min
u

[
(λ, f +∆u)Ω + (µ, u− g)∂Ω

]
,

see Appendix C.1 for details. The minimax formulation
above is the CPINN formulation proposed in (Zeng et al.,
2022) applied to Poisson’s equation.

Employing the Lagrange-Newton algorithm, we aim to solve

DL(u, λ, µ) = 0

via Newton’s method. The unique zero of DL is (u∗, 0, 0)
which corresponds to the sought-after saddle point. As DL
is linear, Newton’s method converges in one step for any
initial value (u0, λ0, µ0), hence it holds that

(u∗, 0, 0) = (u0, λ0, µ0) + (du0
, dλ0

, d∆µ0
)

where the update direction (du0
, dλ0

, dµ0
) is given by

−D2L(u0, λ0, µ0)
−1[DL(u0, λ0, µ0)].

Further, for test functions (δu, δλ, δµ) and (δ̄u, δ̄λ, δ̄µ) the
Hessian

D2L(u0, λ0, µ0)((δu, δλ, δµ), (δ̄u, δ̄λ, δ̄µ))

is given via the formulaδuδλ
δµ

T  0 (·,∆·)Ω (·, ·)∂Ω
(·,∆·)Ω 0 0
(·, ·)∂Ω 0 0

δ̄uδ̄λ
δ̄µ

 . (20)

Neural Network Discretization We choose neural net-
works uθ, λψ , µξ and set as a competitive loss

L(θ, ψ, ξ) = (λψ,∆uθ + f)Ω + (µξ, uθ − g)∂Ω.

For given initial parameters θ0, ψ0, ξ0 we discretize the
Lagrange-Newton algorithm above in tangent space via in-
serting ∂θiuθ, ∂ψiλψ, ∂ξiµξ into the Hessian D2L and the
derivative DL, see Appendix B for details. This yields a
block matrix G = G(θ, ψ, ξ) of the form

G(θ, ψ, ξ) =

 0 A B
AT 0 0
BT 0 0

 ,

where

Aij = (∂ψjλψ,∆∂θiuθ)Ω, Bij = (∂ξjµξ, ∂θiuθ).

The algorithm becomes

(θ, ψ, ξ)k+1 = (θ, ψ, ξ)k − ηkG
†
k∇L(θk, ψk, ξk), (21)

where ηk is a suitably chosen stepsize where damping yields

(θ, ψ, ξ)k+1 = (θ, ψ, ξ)k−ηk(Gk+ϵk Id)†∇L(θk, ψk, ξk).

Correspondence to Competitive GD Adapting the nota-
tion, we translate equation (4) of (Schäfer & Anandkumar,
2019) to our setting, which describes an iteration of CGD.
For a fixed small η > 0, the update direction (dθ, dψ, dξ) is
given by

−

 Id η−1D2
θ,ψL η−1D2

θ,ξL

η−1D2
ψθL Id η−1D2

ψ,ξL

η−1D2
ξ,θL η−1D2

ξ,ψL Id

−1 ∇θL
∇ψL
∇ξL
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and this matrix coincides precisely with η−1G + Id, for
which we provide the elementary computations in the ap-
pendix C.1. In compact notation, this corresponds to

(dθ, dψ, dξ) = (η−1G+ Id)−1DL

= η[G+ η Id]−1DL.

This means it is precisely a discretized Lagrange-Newton
method with damping.
Remark 6. The connection between Competitive Gradient
Descent on parameter space and Lagrange-Newton in func-
tion space can be extended to general linear PDEs. However,
it does not extend to the nonlinear case, which leads to a
non-vanishing first diagonal entry in the matrix (20).

4.4. Gauss-Newton

We discuss a function space version of the Gauss-Newton
algorithm for the solution of nonlinear least-squares prob-
lems. We exemplify the algorithm using a PINN-type for-
mulation for the Navier-Stokes equations. We show that
Gauss-Newton in function space leads to Gauss-Newton in
parameter space. This approach was proposed in (anony-
mous, 2024) for the solution of the Navier-Stokes equations
with neural network ansatz. There it is shown that it yields
state of the art accuracy for neural network approximations
of solutions of the Navier-Stokes equations.

Problem Formulation For Ω ⊂ Rd and forcing f , the
steady-state Navier-Stokes equations in velocity-pressure
formulation are given by

−∆u+ (u · ∇)u+∇p = f in Ω

div u = 0 in Ω,
(22)

with suitable boundary conditions. We reformulate (22) in
least-squares, i.e., PINN form and assume – for brevity of
presentation mainly – that the ansatz space for the velocity
consists of divergence-free functions that satisfy the desired
boundary conditions.5 This yields

E(u, p) =
1

2
∥R(u, p)∥2L2(Ω)d , (23)

for a suitably defined nonlinear residual R. Note that the
problem is neither quadratic nor convex in (u, p). Here,
we choose Gauß-Newton as a function space algorithm as
we are facing a least squares problem. The Gauss-Newton
algorithm in function space linearizesR at the current iterate
and explicitly solves the resulting quadratic problem, see
also (Dennis Jr & Schnabel, 1996). Following this strategy,
we obtain

(uk+1, pk+1) = (uk, pk)− T−1
k [DE(uk, pk)],

5Modifying neural network ansatz spaces to fulfill these re-
quirements is not uncommon, see (Sukumar & Srivastava, 2022;
Richter-Powell et al., 2022)

where Tk is given by6

Tk = DR(uk, pk)
∗DR(uk, pk).

Neural Network Discretization We choose neural net-
works uθ and pψ as an ansatz for the velocity and the pres-
sure and denote the PINN loss by

L(θ, ψ) =
1

2
∥ −∆uθ + (uθ · ∇)uθ +∇pψ − f∥2L2(Ω)d .

Next, we discretizeDR(uθ, pψ)∗DR(uθ, pψ) in the tangent
space of the neural network ansatz following the abstract
framework. This yields a block-matrix

G = G(θ, ψ) =

(
A B
BT C

)
.

Setting ξi = ∆∂θiuθ + (uθ · ∇)∂θiuθ + (∂θiuθ · ∇)uθ as
an abbreviation, we have

Aij = (ξi, ξj)L2(Ω)d , Bij = (ξi,∇∂ψjpψ)L2(Ω)d (24)

and
Cij = (∇∂ψipψ,∇∂ψjpψ)L2(Ω)d . (25)

Using the above computations, the algorithm in parameter
space becomes(

θk+1

ψk+1

)
=

(
θk
ψk

)
− ηkG(θk, ψk)

†∇L(θk, ψk).

Correspondence to Gauss-Newton in Parameter Space
We show that Gauss-Newton in parameter space and func-
tion space coincide, given a suitable integral discretization.
For quadrature points (xi)i=1,...,N in Ω we define the dis-
crete residual r : (θ, ψ) → RN to be

|Ω|√
N

 (−∆uθ + (uθ · ∇)uθ +∇pψ − f)(x1)
...

(−∆uθ + (uθ · ∇)uθ +∇pψ − f)(xN )

 .

The discretized PINN formulation of (22) reads

minL(θ, ψ) =
1

2
∥r(θ, ψ)∥2l2 . (26)

It is straight-forward to see that applying Gauss-Newton
to (26) yields the matrix G = G(θ, ψ) – if in the discretiza-
tion of the integrals in the matrices (24) and (25) the same
quadrature points as in the definition of r are being used.
We provide the details in Appendix C.2.
Remark 7. The correspondence between Gauss-Newton in
function space and its counterpart in parameter space holds
for general nonlinear least-squares problems, not only for
the Navier-Stokes equations, see Appendix C.2.

6More precisely this means that ⟨Tk(δu, δp), (δ̄u, δ̄p)⟩ equals
(DR(uk, pk)(δu, δp), DR(uk, pk)(δ̄u, δ̄p))L2(Ω)d .
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4.5. Scalability

Function-space inspired algorithms like those discussed in
the previous section yield require the solution of a large
system of linear equations of the size of the parameters dΘ,
which is intractable in high parameter dimension dΘ. Since
this is a critical aspect we briefly review matrix-free second-
order optimization as discussed in (Schraudolph, 2002), and
the K-FAC approach (Martens & Grosse, 2015) that allows
to efficiently compute approximate inverses of G(θk).

Matrix-Free Second-Order Optimization In certain sit-
uations, the matrix G(θ) allows for the computation of
matrix-vector products v 7→ G(θ)v without the need for
matrix assembly and storage at a comparable computational
cost to the gradient ∇L(θ). With matrix-vector products
available one can resort to iterative linear solvers that only
require matrix-vector products, such as the CG or GMRES
methods (Trefethen & Bau, 2022). For example, matrix-
vector products are available for PINN-type loss functions
of linear PDEs that are optimized using Newton’s method
in function space. In this setting, the resulting optimiza-
tion in parameter space is the Gauss-Newton method, see
also Remark 5 and Remark 11. More precisely, it holds
G(θ) = JT (θ) · J(θ), where J(θ) is the Jacobian of a suit-
ably scaled residual r. Then, Jacobian-vector products and
vector-Jacobian products can be efficiently computed us-
ing automatic differentiation, relying on a combination of
forward and backward modes. The matrix-vector product
G(θ) · v for a given vector v ∈ Rp can be computed as

w = J(θ)v, G(θ)v = (wT · J(θ))T .

Further details on matrix-free optimization methods can be
found in (Schraudolph, 2002) and a successful application
is demonstrated in (Zeng et al., 2022).

K-FAC Kronecker-Factorized Approximate Curvature (K-
FAC) is used to approximate the Fisher information matrix
or Gauß-Newton matrix (Martens & Grosse, 2015; Eschen-
hagen et al., 2024). The approach approximates the matrix
G(θ) as the Kronecker product of much smaller matrices
G(θ) ≈ A(θ)⊗B(θ), which by the properties of the Kro-
necker product yields G(θ)−1 ≈ A(θ)−1 ⊗ B(θ)−1. The
Kronecker structure stems from the linear layers in the neu-
ral network ansatz making the concrete K-FAC approxima-
tion dependent on the structure of the ansatz set. K-FAC is
the state-of-the-art method for optimization in neural net-
work based variational Monte Carlo methods (Pfau et al.,
2020; Li et al., 2023; Scherbela et al., 2023).

5. Conclusion and Outlook
We consider a variety of problems in scientific machine
learning for which optimization is arguably the biggest chal-

Function Space Parameter Space Name
Gradient Descent NGD NGD

Newton GGN ENGD
Lagrange-Newton CGD CPINNs

Gauss-Newton GN GNNGD

Table 1. Translation of optimization algorithms; here NGD stands
for natural gradient descent, GN for Gauss-Newton, GGN for
generalized Gauss-Newton, ENGD for energy natural gradient
descent (Müller & Zeinhofer, 2023), GNNGD for Gauss-Newton
natural gradient descent (anonymous, 2024), and CPINNs for com-
petitive PINNs (Schäfer & Anandkumar, 2019).

lenge and no principled way or commonly accepted best-
practices for optimization exists. We provide a principled
way to transfer infinite dimensional optimization algorithms
to nonlinear neural network ansatz classes which follows
the paradigm of first optimize, then discretize. Here, it is
the idea to first choose an algorithm in function space that
is well aligned with the problem and then to discretize is
using neural networks. We show that this approach offers a
unified view on many state-of-the-art optimization routines
currently employed in SciML, see Table 1. This leads us to
the following conclusions:

• Function-space inspired optimization is currently un-
derdeveloped in the field of scientific machine learning.

• The Function-space perspective yields principled way
to design problem-specific optimization algorithms in
SciML. This has the potential to greatly improve the
performance on many current SciML tasks.

Based on our discussion, we propose the following program
for the development of efficient function space-algorithms
in scientific machine learning:

• Design function-space inspired methods for more
SciML problems, in particular this requrires under-
standing what an appropriate function-space algorithm
is for a given problem at hand.

• Provide fast implementations of function-space in-
spired algorithms. Note that the methods developed
in the other contexts can usually not be applied as the
function-space geometries in SciML often incorporate
PDE specific terms.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Details Abstract Framework
For now, we will work under the assumption that the map Tu is symmetric and positive semi-definite. We denote the inner
product induced by T by

[w1, w2]Tu := ⟨Tuw1, w2⟩
and the generalized norm by ∥w∥2Tu = [w,w]Tu .

A.1. Derivation of Normal Equations of (8)

Lemma 8. We consider a differentiable parametrization P : Θ → H and dk = T−1
uθk

(DE(uθk)) ∈ H, where we assume
Tuθk : H → H∗ to be symmetric, linear and bounded. Then it holds that

wk ∈ argmin
1

2
∥DP (θk)w − dk∥2Tuθk

, (27)

if and only if

G(θk)wk = −∇L(θk),

where

G(θ)ij = ⟨Tuθk∂θiuθk , ∂θjuθ⟩.

Proof. The right-hand side in (27) is up to the constant term 1
2∥dk∥

2
Tuθk

given by

ℓ(w) :=
1

2
∥DP (θk)w∥2Tuθk

− [DP (θk)w, dk]Tuθk
. (28)

Using DP (θ)w =
∑
i wi∂θiuθ and the definition of [·, ·]Tu , the first term of (28) takes the form

1

2

∑
i,j

wiwj⟨Tuθk∂θiuθk , ∂θjuθk⟩ =
1

2
w⊤G(θk)w,

where G(θ)ij = ⟨Tuθk∂θiuθk , ∂θjuθ⟩. The second term in (28) amounts to

−
∑
i

⟨wi∂θiuθk , Tuθk dk⟩ =
∑
i

⟨∂θiuθk , DE(uθk)⟩ = w⊤∇L(θk),

where we used dk = −T−1
uθk

(DE(uθk)) and the chain rule ∂θiL(θ) = DE(uθ)∂θiuθ. Overall, this yields

ℓ(w) =
1

2
w⊤G(θk)w + w⊤∇L(θk),

where the optimizers of this function are characterized by

0 = ∇ℓ(w) = G(θk)w +∇L(θk).

A.2. Proof of Theorem 1

Theorem 1. Assume we are in the above setting, i.e., consider an algorithm of the form (5) that satisfies (6). We assume
additionally that the Tuθk are symmetric and positive definite. Then, for the discretized algorithm (11) it holds

uθk+1
= uθk − ηkΠuθk [T

−1
uθk

(DE(uθk))] + ϵk, (12)

where Πu denotes the orthogonal projection onto the tangent space with respect to the inner product ⟨Tu·, ·⟩. The term ϵk
corresponds to an error vanishing quadratically in the step and step size length

ϵk = O(η2k∥G(θk)†∇L(θk)∥2).

Proof. This is a direct consequence of (27) as the best approximation is given by the orthogonal projection.

13
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A.3. Extension to Non-Symmetric and Indefinite Tu

Recall that we consider an iterative algorithm in a Hilbert space H of the form

uk+1 = uk + ηkdk, with dk = T−1
uk

(DE(uk)).

Here, Tuk : H → H∗ is a continuous, linear, and bijective map, E : H → R is a function whose extrema or saddle points
we aim to find. The update direction dk satsifies the equation

⟨Tukdk, w⟩ = ⟨DE(uk), w⟩ for all w ∈ H.

Now we again introduce a neural network discretization of this algorithm and assume that we are at step k with parameters
θk and the corresponding function uθk . The discretization in tangent space and the solution of equation (9) is nothing but
replacing the space of test functions by the tangent space of the neural network ansatz at θk, i.e., with wk = G(θk)

†∇L(θk)
and dθk = DP (θk)wk we have

⟨Tuθk dθk , w⟩ = ⟨DE(uθk), w⟩ for all w ∈ TuθkM.

Here TuθkM is the tangent space of the neural network ansatz at uθk , i.e., span{∂θ1uθk , . . . ∂θpuθk}. For general invertible,
but possibly non-symmetric and indefinite Tuθk , we are interested in quasi-best approximation results of the form

∥dk − dθk∥H ≤ C · inf
d∈TuθkM

∥dk − d∥H. (29)

Such an estimate satisfies the best approximation property of an orthogonal projection up to a constant C7 and thus
guarantees that the function space update directions dk are closely matched. Results like (29) are well-known in the finite
element literature and hold if certain inf-sup conditions are satisfied both on the continuous and the discrete level. We refer
to (Xu & Zikatanov, 2003; Boffi et al., 2013) for an introduction. Note that the verification depends on the properties on the
infinite-dimensional level and the concrete structure of the discrete ansatz spaces which is not the case for symmetric and
positive definite operators.

B. Discretization of Saddle Point Problems
We recall our notation for saddle point problems. Given a map

L : H× V → R, (u, v) 7→ L(u, v)

we are looking for a saddle point (u∗, v∗). For their solution we employ an iterative algorithm of the form

(uk+1, vk+1) = (uk, vk) + (duk , dvk).

We assume that L is Fréchet differentiable and the update direction is given by

(duk , dvk) = T−1
uk,vk

(DL(u, v)).

Here,
Tuk,vk : H× V → H∗ × V∗

is a bounded, linear, and invertible map. Recall our notation for the competitive loss L

L : Θ×Ψ → R, L(θ, ψ) = L(uθ, vψ),

where uθ and vψ are two neural networks with parameter spaces Θ and Ψ, respectively. We then employ

{(∂θiuθ, 0)}i=1,...,pΘ and {(0, ∂ψivψ)}i=1,...,pΨ

7This constant should ideally not depend on critical parameters.
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for the discretization in the neural network’s tangent space. To discretize the linear map T = Tuθ,vψ , note that we can write
it in block structure

T =

(
T 1 T 2

T 3 T 4

)
with T1 : H → H∗, T2 : V → H∗, T3 : H → V∗, and T4 : V → V∗. The corresponding matrix G = G(θ, ψ) inherits this
block structure

G =

(
G1 G2

G3 G4

)
and it holds

G1
ij = ⟨T1∂θiuθ, ∂θjuθ⟩H, G2

ij = ⟨T2∂ψjvψ, ∂θiuθ⟩H
and

G3
ij = ⟨T3∂θjuθ, ∂ψivψ⟩V , G2

ij = ⟨T4∂ψivψ, ∂ψjvψ⟩V .

For the derivative of L note that the chain rule implies

(DuL(uθ, vψ)(∂θiuθ), DvL(uθ, vψ)(∂ψjvψ)) = (∇θL(θ, ψ)i,∇ψL(θ, ψ)j),

i.e., corresponds to the gradient of the function L. The algorithm in parameter space with the additional introduction of a
step size ηk > 0 reads

(θk+1, ψk+1) = (θk, ψk)− ηkG
†
k∇L(θk, ψk),

A typical damping strategy consists of adding an ϵ-scaled identity to G and reads as

(θk+1, ψk+1) = (θk, ψk)− ηk(Gk + ϵk Id)
†∇L(θk, ψk).

Remark 9 (Interpretation of Update Direction). A similar projection result to the one provided for minimization problems
can obtained for discretized saddle point problems under appropriate assumtions on T , see Appendix A.3.

C. Extended Examples
This Appendix provides detailed proofs for omitted details in Section 4.

C.1. Details for Section 4.3 on Lagrange-Newton Methods

Recall that we aim to solve

min
u∈H2(Ω)

J(u) = 0 s.t.

{
∆u+ f = 0 in Ω,

u− g = 0 on ∂Ω.
(30)

Given Ω ⊂ Rd open and bounded with a C1,1 boundary, f ∈ L2(Ω), and g ∈ H3/2(∂Ω). Note that elliptic regularity
theory (Grisvard, 2011) guarantees the existence of a solution u∗ ∈ H2(Ω) to this problem.

Equivalence of Saddle Points and Critical Points of the Lagrangian We now considering the Lagrangian of the
constrained minimization problem which is given by

L : H2(Ω)× L2(Ω)× L2(∂Ω) → R, L(u, λ, µ) = (λ, f +∆u)Ω + (µ, u− g)∂Ω. (31)

As L is a sum of continuous bilinear forms, it is Fréchet differentiable with derivative

DL(u, λ, µ)((δu, δλ, δµ)) = ((λ,∆δu)Ω + (µ, δu)∂Ω, (δλ, f +∆u)Ω, (δµ, u− g)∂Ω). (32)

Recall that a saddle point – or in this case equivalently a Nash equilibrium – of L is a triplet (u∗, λ∗, µ∗) that satisfies

L(u∗, λ, µ) ≤ L(u∗, λ∗, µ∗) ≤ L(u, λ∗, µ∗), ∀u, λ, µ ∈ H2(Ω)× L2(Ω)× L2(∂Ω). (33)
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It is well-known, see for instance (Zeidler, 2012) Theorem 2.F, that a saddle point (u∗, λ∗, µ∗) satisfies the minimax problem

L(u∗, λ∗, µ∗) = max
λ,µ

min
u

L(u, λ, µ) = min
u

max
λ,µ

L(u, λ, µ) = min
u

max
λ,µ

[
(λ, f +∆u)Ω + (µ, u− g)∂Ω

]
.

The minimax formulation above is the CPINN formulation proposed in (Zeng et al., 2022) applied to Poisson’s equation.

Lemma 10. The unique saddle point of L is (u∗, 0, 0), where u∗ ∈ H2(Ω) denotes the solution to (30). Furthermore, the
triplet (u∗, 0, 0) is the unique zero of DL.

Proof. It is easy to see that the triplet (u∗, 0, 0) satisfies the defining inequalities (33) of a saddle point as all expressions
evaluate to zero. Given another triplet (u∗∗, λ∗∗, µ∗∗) that satisfies 33 we realize that the condition

L(u∗∗, λ, µ) ≤ L(u∗∗, λ∗∗, µ∗∗), for all λ ∈ L2(Ω), µ ∈ L2(∂Ω)

can only hold with a finite value for L(u∗∗, λ∗∗, µ∗∗) if u∗∗ = u∗. Moreover

L(u∗, λ∗∗, µ∗∗) ≤ L(u, λ∗∗, µ∗∗), for all u ∈ H2(Ω)

can only hold with a finite value for L(u∗, λ∗∗, µ∗∗) if λ∗∗ = µ∗∗ = 0. Hence (u∗∗, λ∗∗, µ∗∗) = (u∗, 0, 0).

Investigating the derivative of the Lagrangian (32), we see that (u∗, 0, 0) is a critical point. Furthermore, for any other
critical point (u∗∗, λ∗∗, µ∗∗) the last two equations of (32) imply that u∗∗ = u∗. The first equation reads

(λ,∆δu)Ω + (µ, δu)∂Ω = 0 for all δu ∈ H2(Ω).

We assume first that µ ∈ H3/2(∂Ω) and consider the auxiliary problem of finding δ∗u ∈ H2(Ω) that satisfies

∆δ∗u = λ in Ω,

δ∗u = µ on ∂Ω.

Testing with this δ∗u yields
∥λ∥2L2(Ω) + ∥µ∥2L2(∂Ω) = 0

and thus the desired fact λ = µ = 0. If µ is merely L2(∂Ω) we use the density of H3/2(∂Ω) ⊂ L2(∂Ω) and replace µ in the
auxiliary equation by µϵ ∈ H3/2(∂Ω) such that (µ, µϵ)L2(∂Ω) > 0. This then implies again λ = 0 and then also µ = 0.

Correspondence of Lagrange-Newton and Competitive Gradient Descent We provide the missing computations to
verify the correspondence claimed in the main text. Recall that

D2L(u0, λ0, µ0)((δu, δλ, δµ), (δ̄u, δ̄λ, δ̄µ))

is given by

(
δu δλ δµ

) 0 (·,∆·)Ω (·, ·)∂Ω
(·,∆·)Ω 0 0

(·, ·)∂Ω 0 0

δ̄uδ̄λ
δ̄µ

 .

Discretizing this matrix in the tangent space of the neural network ansatz, i.e., using the functions ∂θiuθ, ∂ψiλψ, ∂ξiµξ
yields a block matrix of the form

G(θ, ψ, ξ) =

 0 A B

AT 0 0

BT 0 0

 , (34)

where
Aij = (∂ψjλψ,∆∂θiuθ)Ω, B = (∂ξjµξ, ∂θiuθ).
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The matrix employed in competitive gradient descent for this problem is Id ηD2
θ,ψL ηD2

θ,ξL

ηD2
ψθL Id ηD2

ψ,ξL

ηD2
ξ,θL ηD2

ξ,ψL Id

 .

For the reader’s convenience we recall the loss function

L(θ, ψ, ξ) = (λψ,∆uθ + f)Ω + (µξ, uθ − g)∂Ω.

We compute the partial derivatives of L

∂θiL(θ, ψ, ξ) = (λψ,∆∂θiuθ)Ω + (µξ, ∂θiuθ)∂Ω,

∂ψj∂θiL(θ, ψ, ξ) = (∂ψjλψ,∆∂θiuθ)Ω,

∂ξj∂θiL(θ, ψ, ξ) = (∂ξjµξ, ∂θiuθ)∂Ω.

This shows that the first row and column of the CGD matrix and the Lagrange-Newton matrix agree. We proceed to compute

∂ξiL(θ, ψ, ξ) = (∂ξiµξ, uθ − g)∂Ω,

∂ψj∂ξiL(θ, ψ, ξ) = 0,

which guarantees the correspondence of the remaining blocks. Note that the derivatives

∂2θiL(θ, ψ, ξ), ∂2ψiL(θ, ψ, ξ), ∂2θiL(θ, ψ, ξ), ∂2ξiL(θ, ψ, ξ)

do not vanish unless uθ, λψ and µξ are linear in θ, ψ and ξ, respectively. This shows once more that applying Newton’s
method to the discrete problem does not reproduce the infinite-dimensional algorithm.

C.2. Details for Section 4.4 on Gauss-Newton Methods

In this Section we derive the Gauss-Newton method in function spaces for the solution of nonlinear least-squares problems
and discuss the connection to the classical Gauss-Newton method in Euclidean space.

Derivation of the Gauss-Newton Method Assume we are given a Fréchet differentiable function R : H → L2(Ω)
defined on a Hilbert space H and we aim to minimize the energy

E : H → R, E(u) =
1

2
∥R(u)∥2L2(Ω).

Here we discuss the approach for an abstract space H. To obtain the formulas for Navier-Stokes as discussed in Section 4.4
set

H = H2(Ω)d ×H1(Ω).

Given an iterate uk ∈ H, the Gauss-Newton algorithm produces an update uk+1 = uk + dk by adding the direction dk
which is given via

dk = argmin
v∈H

1

2
∥R(uk) +DR(uk)v∥2L2(Ω) ≈

1

2
∥R(uk + v)∥2L2(Ω)

The optimality condition of the quadratic problem that dk needs to satisfy is given by

DR(uk)
∗R(uk) +DR(uk)

∗DR(uk)dk = 0.

This is an equality in the Hilbert space H andDR(uk)∗ : L2(Ω) → H denotes the Hilbert space adjoint of the mapDR(uk).
Applying the Riesz isomorphism I : H → H∗ to the equation above yields

DE(uk) + IDR(uk)∗DR(uk)dk = 0

as an equality in H∗ and it shows that for any u ∈ H the map Tu for Gauss-Newton’s method is given by

Tu : H → H∗, Tu = I ◦DR(u)∗ ◦DR(u).
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Thus, for a neural network discretization uθ the Gramian resulting from Tuθ is given by

G(θ)ij = (DR(uθ)[∂θiuθ], DR(uθ)[∂θjuθ])L2(Ω).

Approximating the integrals in the inner product above by Monte Carlo sampling8 x1, . . . , xN ∈ Ω yields

G(θ)ij ≈
|Ω|
N

NΩ∑
k=1

DR(uθ)[∂θiuθ](xk)DR(uθ)[∂θjuθ](xk). (35)

Correspondence to Gauss-Newton in Parameter Space Here we prove the correspondence between Gauss-Newton in
function space and parameter space. Consider the residual function r : Θ → RN

r(θ) =

√
|Ω|
N

R(uθ)(x1)
...

R(uθ)(xN )

 .

Then we can define a discrete loss function

L(θ) =
1

2
∥r(θ)∥2l2 ≈ 1

2
∥R(uθ)∥2L2(Ω) = E(uθ).

Applying the Euclidean version of the Gauss-Newton method to r requires the Jacobian J of r, which is given by

J(θ) =

√
|Ω|
N

DR(uθ)[∂θ1uθ](x1) . . . DR(uθ)[∂θpuθ](x1)
...

DR(uθ)[∂θ1uθ](xN ) . . . DR(uθ)[∂θpuθ](xN )

 .

It is clear that JT (θ)J(θ) is the same as the approximation of the Gramian in equation (35), given that the same quadrature
points are used.
Remark 11 (Correspondence of Newton and Gauss-Newton for linear PDEs). In the case of a linear PDE, i.e., when R is an
affine linear map the previous computations show that Newton’s method in function space, as described in Section 4.2, also
leads to Gauss-Newton’s method in parameter space. In this case, DR(uk) is independent of uk and agrees with the linear
part of R.

8Any other quadrature is equally possible.
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