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Abstract

Multi-headed self-attention-based Transformers have shown promise in different learning
tasks. Albeit these models exhibit significant improvement in understanding short-term
and long-term contexts from sequences, encoders of Transformers and their variants fail
to preserve layer-wise contextual information. Transformers usually project tokens onto a
sparse manifold and fail to preserve injectivity among the token representations. In this
work, we propose TransJect, an encoder model that guarantees a theoretical bound for
layer-wise distance preservation between a pair of tokens. We propose a simple alternative
to dot product attention to ensure Lipschitz continuity. This allows TransJect to learn
injective mappings to transform token representations to different manifolds with similar
topology and preserve Euclidean distance between every pair of tokens in subsequent layers.
Evaluations across multiple benchmark short- and long-sequence classification tasks show
maximum improvements of 6.8% and 5.9%, respectively, over the variants of Transformers.
TransJect achieves the best average accuracy on the long-range arena benchmark, show-
casing its superiority in capturing temporal and spatial hierarchical relationships from long
sequences. We further highlight the shortcomings of multi-headed self-attention from the
statistical physics viewpoint. Although multi-headed self-attention was incepted to learn
different abstraction levels within the networks, our empirical analyses suggest that dif-
ferent attention heads learn randomly and unorderly. On the contrary, TransJect adapts
a mixture of experts for regularization; these experts are found to be more orderly and
balanced and learn different sparse representations from the input sequences. TransJect
exhibits very low entropy, and therefore, can be efficiently scaled to larger depths.

1 Introduction

Over the past few decades, Deep Neural Networks (DNNs) have greatly improved the performance of var-
ious downstream applications. Stacking multiple layers has been proven effective in extracting features at
different levels of abstraction, thereby learning more complex patterns (Brightwell et al., 1996; Poole et al.,
2016). Since then, tremendous efforts have been made to build larger depth models and to make them
faster (Bachlechner et al., 2020; Xiao et al.). Self-attention-based Transformer model (Vaswani et al., 2017)
was proposed to parallelize the computation of longer sequences; it has achieved state-of-the-art performance
in various sequence modelling tasks. Following this, numerous efforts have been made to reduce computa-
tion and make the Transformer model suitable even for longer sequences (Katharopoulos et al., 2020; Peng
et al., 2020; Kitaev et al., 2020; Beltagy et al., 2020; Press et al., 2021; Choromanski et al., 2021; Tay et al.,
2021). However, very few of these studies discuss information propagation in large-depth models. A recent
study (Voita et al., 2019) characterized how token representations in Transformers change across layers
for different training objectives. The dynamics of layer-wise learning are essential to understand different
abstract levels a model could learn, preserve and forget to continue learning throughout the layers. However,
recent studies need to shed more light on how Transformers preserve contextual information across different
layers (Wu et al., 2020; Voita et al., 2019). Preserving distance and semantic similarity across layers is vital
to ensure that the model learns continuously without forgetting any previously-learned knowledge, much
like humans. To understand how Transformer encodes contextual similarities between tokens and preserves
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the similarities layer-wise and across different attention heads, we highlight an example in Figure 1. We
select three pairs of semantically-related tokens. We observe both the Euclidean and cosine distances of the
representations learned at different layers of pre-trained BERT-base (Devlin et al., 2018) and Transformer
trained on the IMDb sentiment classification task. We define the semantic similarity between tokens with
the cosine distance between their corresponding representations. The trained Transformer model preserves
the semantic similarity among the same tokens across layers. However, the Euclidean distance between their
representations increases in the upper layers, indicating that Transformer projects the representations to
different and sparse subspaces (a subspace with low density), albeit preserving the angle between them. On
the other hand, pre-trained BERT demonstrates a more erratic trend in terms of layer-wise preservation
of information. Additionally, we observe that the distances between different token representations vary
across different attention heads at different encoder layers in a haphazard manner. The primary objective
behind introducing multi-headed attention within Transformers is to learn different representations of to-
kens, attaining different linguistic properties. However, existing studies need to discuss elaborately how this
information is spread across different attention heads and layers. This lack of understanding restricts us
from formalizing the behaviors of self-attention-based Transformer models analytically.
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Figure 1: Layer-wise distances between a few selected tokens
from the text “This movie is terrible but it has some good ef-
fects.” We use pre-trained BERT and Transformer models to
extract token representations from different encoding layers.
Both models fail to preserve the inter-token semantic distance
and the spatial distance across the layers. Moreover, different
attention heads across different layers learn different linguis-
tic representations without preserving the previously-learned
knowledge.

Neuroscientists have been working for years
to understand how the human brain func-
tions and it simulates the bahaviors of phys-
ical sciences (Koch & Hepp, 2006; Vértes
et al., 2012). Arguably, the human brain
is more capable of ‘associative learning’ and
‘behavioral formation’, which can be at-
tributed to the number of neurons and their
inter-connectedness (synapses) rather than
the size of the brain, or the number of lay-
ers through which the information propa-
gates (Dicke & Roth, 2016). Although a
fully-grown human brain can have hundreds
of billions of neurons, it has been found
that at a time, only a tiny fraction of neu-
rons fire (Ahmed et al., 2020; Poo & Isaac-
son, 2009). This sparse firing can help the
brain sustain low entropy (energy). Entropy,
a measure that quantifies a state’s ran-
domness, is an essential tool to understand
the factors behind human intelligence (Saxe
et al., 2018; Keshmiri, 2020) and how the hu-
man brain operates. Similar attempts have
been made to understand the bridge between
the human brain, statistical physics (thermodynamics), and information theory (Collell & Fauquet, 2015).

Unfortunately, Transformer and its variants are yet to be studied from these interdisciplinary viewpoints.
The current study bridges model sparsity and entropy. Towards this, we propose a complete redesign of
self-attention-based Transformer with enforced injectivitiy, aka TransJect. With injectivity, our model
imposes the constraint in which the representations of two distinct tokens are always different across all the
layers. We show that self-attention can be simplified to simple matrix multiplication with a straightforward
orthogonal parameterization and rearrangement of a non-normalized attention formulation. ReZero was pro-
posed by Bachlechner et al. (2020) to felicitate dynamical isometry and faster convergence for large-depth
models. Dynamical isometry loosely means that any perturbation to the input sequence leads to a similar
change to the output sequence. Networks with ReLU activation functions generally do not satisfy dynamical
isometry due to the singularities (Pennington et al., 2017). As shown in Figure 1, vanilla Transformers do
not propagate perturbations for all the inputs, inferring that they can also possibly not achieve dynamical
isometry. With a modified formulation of ReZero, our model maintains dynamical isometry and achieves
Lipschitz continuity, aiding in preserving layer-wise distances between tokens. By preserving layer-wise infor-
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mation within a fixed bound, TransJect ensures incremental learning throughout the encoding layers, much
similar to how humans learn continually. Kim et al. (2021) concluded that vanilla dot-product self-attention
is neither Lipschitz nor injective. Injective mappings ensure reversibility, showing inherent regularization
capability (Mangalam et al., 2022). Unlike Transformer, which only injects regularization through multi-
headed self-attention and dropout, TransJect does not require explicit regularizers and can be regularized
implicitly due to its inherent injectivity. To validate our hypotheses and empirically justify the superiority of
our model, we use two short and five long sequence classification tasks. TransJect outperforms Transformer
and other benchmark variants with an average margin of 3.4% and 2.2% on the short- and long-sequence
classification tasks, respectively. On the long sequence classification (LRA) benchmark, our model shows
the best performance, achieving 0.2% better accuracy than the best baseline, Skyformer (Chen et al., 2021).
Empirical analyses suggest a very low entropy of TransJect representations, indicating that TransJect
captures sparse and more orderly representations as compared to Transformer. Moreover, TransJect shows
13× lower inference runtime than Transformer, indicating its efficiency in encoding long input sequences.1

2 Related Works

Despite being a ubiquitous topic of study across different disciplines of deep learning, Transformer (Vaswani
et al., 2017) models may require better mathematical formalization. On a recent development, Vuckovic et al.
(2020) formalized the inner workings of self-attention maps through the lens of measure theory and estab-
lished the Lipschitz continuity of self-attention under suitable assumptions. However, the Lipschitz condition
depends on the boundedness of the representation space and the Lipschitz bound of the fully-connected feed-
forward layer (FFN). A similar study (Kim et al., 2021) also concluded that the dot-product self-attention
is neither Lipschitz nor injective under the standard conditions. Injectivity of the transformation map is
essential to ensure that the function is bijective, and therefore, reversible. Reversibility within deep neural
networks has always been an active area of study (Gomez et al., 2017; Arora et al., 2015; Chang et al.,
2018). A reversible network ensures better scaling in large depths and is more efficient than non-reversible
structures. Recently, Mangalam et al. (2022) designed a reversible Transformer and empirically highlighted
its effectiveness in several image and video classification tasks. However, any similar development has yet to
be made for developing scalable reversible sequential models.

Dynamical isometry is a property that mandates the singular value of the input-output Jacobian matrix
to be closer to one. Pennington et al. (2017) showed that dynamical isometry could aid faster convergence
and efficient learning. Following their idea, Bachlechner et al. (2020) showed that residual connections in
Transformers do not often satisfy dynamical isometry, leading to poor signal propagation through the models.
To overcome this, they proposed residual with zero initialization (ReZero) and claimed dynamical isometry for
developing faster and more efficient large-depth Transformers. Previously, Qi et al. (2020) enforced a stronger
condition of isometry to develop deep convolution networks efficiently. However, isometric assumptions are
not valid for sequential modeling due to different levels of abstraction within the input signals. Moreover,
isometry may not hold between contextually-dissimilar tokens.

Another essential aspect behind designing efficient large-depth models is ensuring model sparsity. Several
notable contributions have been made (Baykal et al., 2022; Jaszczur et al., 2021; Li et al., 2023; Tay et al.,
2020a) to enforce sparse activations within Transformers to make them more efficient and scalable. Li et al.
(2023) argued that sparse networks often resemble the sparse activations by the human brain, bearing a
similarity between artificial and biological networks. They empirically showed that the trained Transformers
are inherently sparse, and the sparsity emerges from all the layers. As discussed in the previous section,
Transformers project the representations sparsely onto sparse subspaces. Although sparse models are inher-
ently regularized and display lower entropy, by projecting the representations onto a sparse subspace, the
models push themselves further from being Lipschitz, preventing them from being reversible.

Voita et al. (2019) empirically showed how information propagation across different layers of Transformer
differs in different auto-regressive tasks. They concluded that Transformer forgets the contextual similarity
between tokens, at the gain of better predictive performances. In this work, we show that by enforcing
Lipschitz continuity, the model can preserve the contextual similarity, as well as, perform well on the final

1We commit to release the source code of TransJect upon acceptance of the paper.
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predictive task. Our proposed TransJect model generates an injective mapping to project tokens onto
dense subspaces, ensuring analytical Lipschitz continuity. TransJect learns projection function that neither
squeezes nor expands signals under random perturbations. Unlike Transformers, TransJect projects the
representations sparsely into dense subspaces. Further, it preserves the manifolds and the topology amongst
the contextually-relevant tokens in every layer. With the enforced injectivity, TransJect establishes a
theoretical guarantee for reversibility and thus can be scaled to larger depths. Further, TransJect displays
significantly lower entropy than Transformer, indicating a lower energy footprint and more efficiency.

3 Background

Activation bound. For any function f : Rn → Rm, we define the activation bound Kf as supx ̸=0
||f(x)||p

||x||p
,

for a suitable integer p. For a linear map M , it is equivalent to the induced matrix norm ||M ||p. Intuitively,
this is the maximum scale factor by which a mapping expands a vector x. In Euclidean space, we usually
choose p = 2.

Lemma 1 (Activation bound of linear maps) For a matrix M ∈ Rn×m, KM is same as the largest absolute
singular value, under ||.||2.

Activation bound of self-attention. Transformer (Vaswani et al., 2017) relies upon bidirectional multi-
headed self-attention for capturing contextual similarity between tokens in the encoder. In each head, the
self-attention operation projects the original representation vector x into three difference subspaces with Q
(query), K (key) and V (value). Formally, Transformer calculates attention matrix SelfAttention(X) =
Attention(XW Q, XW K , XW V ) as,

Attention(Q, K, V ) = D−1AV , A = exp
(

QKT

√
d

)
, D = diag(AIN ). (1)

Here d is the hidden dimension, and N is the length of the sequence. With the normalization, D−1A,
Transformer ensures a stochastic attention matrix (i.e., column sum is 1).

Corollary 1 (Largest eigenvalue of a square stochastic matrix) The largest absolute value of any eigenvalue
of a square stochastic matrix is equal to 1.

As the activation bound of the matrix D−1A is 1, the activation bound of the attention map is the same as
the activation bound of W V . Usually, K and Q are used to project the original representations to different
subspaces. We show that having both Q and K in the same subspace with an orthogonal basis can reduce
the activation bound of the attention map to singular values of X.

Lipschitz Continuity. A function f : Rn → Rm under ||.||p norm is called Lipschitz continuous if there
exists a real number K ≥ 0 such that

||f(x) − f(y)||p ≤ K||x − y||p. (2)

for any x, y ∈ Rn. Although Lipschitz continuity can be defined over any metric space, in this paper, we
restrict its definition to only Euclidean space with p = 2. K is called Lipschitz bound.

Lemma 2 (Lipschitz bound for continuously differentiable functions). Any C1 function f : Rn → Rm with
bounded derivative has Lipschitz bound as supx||∇xf ||.

All the proofs presented in the paper are supplied in Appendix A.

4 Designing Injective Transformer

This section formally describes our model, TransJect. It inherits the structure from the vanilla Transformer
and achieves a smoother activation plane by utilizing injective maps for transforming token representations
across layers. For an L-layered stacked encoder, we aim to learn the representation of a sequence X =
{x1, x2, · · · , xN } at each layer l that preserves the pairwise distance between every pair of words within a
theoretical bound. We illustrate the components of TransJect in Figure 2.
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Figure 2: Internals of TransJect with (a) an L-layered encoder containing a Mixture of Experts (MOE)
with E experts, (b) approximated eigenvalue computation, (c) orthogonal attention with injective residual.
(d) The outputs of the intermediate encoder are fed to the orthogonal residual FFN. The hidden dimension
used for representing each token is denoted by d.

4.1 Space-Preserving Orthogonal Attention

The backbone of TransJect is the space-preserving orthogonal attention.

Theorem 1 (Space-Preserving Orthogonal Attention) Replacing W Q, W K , W V with real square orthogonal
matrices in non-normalized linear self-attention reduces the activation bound to the largest singular value of
X.

Proof. We can compute non-normalized attention as Attention(Q, K, V ) = (QKT )V =
(XW QW K T

XT )XW V . Here we use the linear attention (Katharopoulos et al., 2020) with the dot-product
similarity between Q and K. Being a real symmetric matrix, XT X can be decomposed into Q̃ΣQ̃T , which
leads to

Attention(Q, K, V ) = X W QW K T
Q̃︸ ︷︷ ︸

orthogonal

Σ︸︷︷︸
diagonal

Q̃T W V︸ ︷︷ ︸
orthogonal

. (3)

As the product of two orthogonal matrices is orthogonal, Equation 3 reduces to

Attention(Q, K, V ) = XUΣV (4)

with a suitable set of learnable orthogonal matrices U and V , and Σ being the matrix containing the
eigenvalues of XT X. ■

Assumption: Notice that the activation bound of the modified attention mechanism does not depend on any
learnable parameters, but rather can be bounded by the largest eigenvalue of XT X. Therefore, we assume to
have a stochastic XT X to ensure that the largest eigenvalue is always 1, and the attention operator preserves
the pairwise distance between any two tokens. In each layer, we learn orthogonal projection matrices, U
and V , whereas the diagonal matrix containing eigenvalues Σ is learned on the initial embedding obtained
from the initial embedding layer defined in Section 4.4, also denoted as l = 0.

5



Under review as submission to TMLR

Approximating eigenvalues. Eigenvalue decomposition is computationally expensive with a runtime
complexity of O(Bd3), with B being the batch size and d being the hidden dimension. In this work,
we use a simple approximation to compute Σ̃, the eigenvalues of XT X. Formally, we compute Ũ =
arg minU ||XT X − UΣUT ||, and Σ̃ = arg minΣ ||XT X − UΣUT ||. To learn the approximate eigenvalues,
we can minimize the reconstruction loss ||XT X −UΣUT || for a learnable orthogonal eigenvector U . We use
standardization to enforce the stochasticity constraint on Σ̃. Further, instead of deriving the eigenvalues,
we can also initialize a random diagonal matrix Σ̃, without any approximation that optimizes the only
task-specific training objective, without enforcing the reconstruction. We denote this version of the model
as Random-TransJect. We compute Σ̃ once, only on the initial token embeddings.

4.2 Injective Residual (IR)

For every layer l, we fine-tune the hidden representation by learning a new attention projection on the hidden
state learned in the previous layer. Formally, we define,

X(l) = X(l−1) + αl

L
F (X(l−1)). (5)

Here, F is the self-attention operator, followed by a suitable non-linear activation function, and αi ∈ (0, 1)
is the residual weight. In the previous studies, ReLU and GELU (Hendrycks & Gimpel, 2016) have been
popular choices for the activation function. In this work, we choose ELU (Clevert et al., 2015), a non-linear
C1 (continuous and differentiable) activation function with a Lipschitz bound of 1. Although ReLU is a
Lipschitz function with K = 1, it is not everywhere differentiable and injective.

Following Bachlechner et al. (2020), we adopt ReZero (residual with zero initialization) to enforce dynamical
isometry and stable convergence.

Lemma 3 (Residual contractions are injective). f : X → X + αl

L F (X) is injective.

To maintain the dimensionality, Transformer projects the representations to a lower-dimensional space, which
reduces the total number of synapses among the neurons by a factor of H, the number of heads. As opposed
to this, we devise a Mixture of Expert (MOE) attention motivated by Shazeer et al. (2017). With this, we
compute X(l,e) for each expert e ∈ {1, 2, · · · , E} in each layer l using Equation 5, learnable expert weights
λ

(l)
i s, and use a convex combination of them to compute,

X(l) =
E∑

e=1

λ(l)
e X(l,e), s.t.

E∑
e=1

λ(l)
e = 1. (6)

Note that λ
(l)
e is computed for each sample, and the same expert weights are used for all tokens within a

sample.

Corollary 2 (Injectivity of MOE). The mapping function defined in Equation 6 is injective.

4.3 Orthogonal Residual FFN (ORF)

We reformulate the position-wise FFNs with orthogonal parameterization. FFN layers in Transformer emu-
late a key-value memory (Geva et al., 2021). We enforce Lipschitz continuity on the feed-forward sublayer
to preserve the layer-wise memory. Formally, we define,

ORF (X(l)) = X(l) + αl

L
ELU

(
ELU(X(l)W1 + b1)W2 + b2

)
. (7)

To ensure invertibility, we use square matrices W1 and W2, both being orthogonally parameterized, i.e.,
W1W T

1 = W T
1 W1 = W2W T

2 = W T
2 W2 = I.

Corollary 3 (Injectivity of ORF). Orthogonal residual FFNs are injective.

Proof. Using the Lipschitz continuity of ELU, we can prove the corollary directly using Lemma 3. ■
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4.4 Injective Token Embedding

Positional encoding was introduced in Transformer for injecting the relative and absolute positional informa-
tion of tokens into the self-attention layer. It leverages sinusoidal representations of every position and adds
to the original token embeddings to infuse the positional information. To ensure injectivity at each layer, we
need to ensure that the initialization of the token embeddings is also injective i.e., no two tokens should have
exactly the same embedding. Unfortunately, the addition operator is not injective. Therefore, we compute
the initial embedding of token xi as Xi

(0) = Concat(Emb(xi), PEi,:). Here PE is defined similarly to the
positional encoding proposed by Vaswani et al. (2017). Concatenation ensures the injectivity of embeddings.
However, to maintain the dimensionality, we learn the initial embedding and positional encoding at a lower
dimensional space, R d

2 , where d is the hidden size in the encoder.

We define the final encoder mapping for each sublayer l as a composite mapping defined by,

SubLayer(l)(X(l−1)) = ORF ◦ MOE ◦ IR(X(l−1)). (8)

Theorem 2 The composite map defined in Equation 8 is an injective Lipschitz with an upper bound of e2.

A bounded activation bound ensures that the incremental learning of our encoder model reduces with large
depth, which makes our model scalable to larger depths. It further enforces the importance of learning
better embeddings in the initial embedding layer, which essentially drives the entire encoding. The runtime
complexity of our orthogonal non-normalized attention is O(Nd2), whereas dot-product self-attention has a
runtime complexity of O(N2d + Nd2). In a comparable setting where N >> d, TransJect should have a
lower runtime complexity than Transformer.

5 Experimental Setup

We evaluate TransJect and its variants on seven short- and long-sequence classification tasks. We use the
original train-test split for all of these tasks, where the training data is used only for model training, and
the test data is used for evaluating TransJect and the other baselines. We evaluate all the models in terms
of test accuracy.

5.1 Tasks and Datasets

Model IMDb AGnews
Transformer (Vaswani et al., 2017)† 81.3 88.8
Transformer+ReZero (Bachlechner et al., 2020) 83.4 89.6
Transformer+Orthogonal Parameterization 85.1 86.3
Linformer (Wang et al., 2020)† 82.8 86.5
Synthesizer (Tay et al., 2021)† 84.6 89.1
TransJect 88.1 88.8
Random-TransJect 86.5 90.2

Table 1: Text classification accuracy on IMDb and AGnews (re-
sults highlighted with † are taken from Tay et al. (2021)).

We choose the IMDb movie review
sentiment classification (Maas et al.,
2011) and the AGnews topic classifi-
cation (Zhang et al., 2015) datasets for
short text classification – the former one
is a binary classification task, whereas
the latter one contains four classes. For
IMDb and AGnews classifications, we
choose a maximum text length of 512.
In all these two classification tasks, we
keep the configuration of our models with
L = 6, E = 4, and d = 512. For these
two tasks, we use a mean pooling on the hidden representation obtained by the final encoder layer before
passing it to the final classification layer. We utilize the BERT pre-trained tokenizer2 to tokenize the texts
for these two tasks.

To further highlight the effectiveness of TransJect on longer sequences, we evaluate our model on the LRA
benchmark (Tay et al., 2020b). LRA benchmark consists of five long sequence classification tasks – ListOps
(Nangia & Bowman, 2018), Byte-level text classification on IMDb review (CharIMDb) dataset (Maas et al.,
2011), Byte-level document retrieval on AAN dataset (Radev et al., 2013), Pathfinder (Linsley et al., 2018),

2https://huggingface.co/bert-base-uncased
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Model ListOps Text Retrieval Pathfinder Image Avg.
Transformer (Vaswani et al., 2017)† 38.4 61.9 80.7 65.2 40.6 57.4
Transformer+ReZero (Bachlechner et al., 2020) 38.3 59.1 79.2 68.3 38.6 56.7
Transformer+Orthogonal Parameterization 39.6 58.1 81.4 68.9 42.2 58.0
Reformer (Kitaev et al., 2020)† 37.7 62.9 79.0 66.5 48.9 59.0
Big Bird (Zaheer et al., 2020)† 39.3 63.9 80.3 68.7 43.2 59.1
Linformer (Wang et al., 2020)† 37.4 58.9 78.2 60.9 38.0 54.7
Informer (Zhou et al., 2021)† 32.5 62.6 77.6 57.8 38.1 53.7
Nystromformer (Xiong et al., 2021)† 38.5 64.8 80.5 69.5 41.3 58.9
Performers (Choromanski et al., 2021)† 38.0 64.2 80.0 66.3 41.4 58.0
Skyformer (Chen et al., 2021)† 38.7 64.7 82.1 70.7 40.8 59.4
TransJect 42.2 64.9 80.3 71.5 38.9 59.6
Random-TransJect 40.1 64.6 80.2 72.6 40.2 59.5

Table 2: Test accuracy on the LRA benchmark (results highlighted with † are taken from Chen et al. (2021)).

and Image classification on the CIFAR-10 dataset (Krizhevsky & Hinton, 2010). We follow the evaluation
methodologies followed by Chen et al. (2021). In all these classification tasks, we keep the configuration of
our models with L = 2, E = 4, and d = 512. Except for the text classification task, we use max pooling
on the hidden representation obtained from the final encoder layer before feeding to the final classification
feed-forward layer. We furnish the other hyperparameter details in Appendix B.1.

5.2 Results
Short sequence classification. Table 1 shows the performance of the competing models. On IMDb
classification, TransJect outperforms Transformer with a 6.8% margin. TransJect achieves 3.5% better
accuracy than Synthesizer, the best baseline. With zero residual initialization, Transformer can achieve 2.1%
better accuracy in the IMDb classification task. We use an additional ablation of Transformer, where all the
learnable weight matrices are parameterized orthogonally. Orthogonal parameterization improves accuracy
on IMDb classification by 3.8%. On the AGnews topic classification task, Random-TransJect achieves
90.2% accuracy, 1.1% better than the best baseline. Interestingly, Random-TransJect performs better than
TransJect on the AGnews classification task; injecting randomness through randomly initialized eigenvalues
aids in 1.4% performance improvement. Limited contextual information can create difficulty reconstructing
XT X from the approximate eigenvalues. Therefore, having randomly-initialized eigenvalues can aid in
learning better context when the context itself is limited.

Long sequence classification. We evaluate TransJect against Transformer along with several of its
recent variants and report the test accuracy in Table 2. Similar to short sequence classification tasks,
TransJect is very effective for long sequences and consistently outperforms all the baselines. Out of five
tasks, TransJect achieves the best performance in three and beats the best baseline, Skyformer by 0.2%
on the leaderboard. TransJect achieves 2.3% and 0.2% better test accuracies on ListOps and byte-level
text classification tasks, respectively, than the corresponding best baselines, Big Bird and Skyformer. In-
terestingly, Random-TransJect achieves the best performance on the Pathfinder task, with a wide margin
of 1.9%. The ListOps task evaluates the ability to learn long-range hierarchical dependencies, whereas the
Pathfinder task evaluates the ability to learn spatial dependencies. As argued by Chen et al. (2021), learn-
ing both these dimensions poses difficulty for self-attention-based methods. With a superior performance
on both tasks, TransJect showcases its effectiveness in learning long-term patterns from both temporal
sequences and sequences with different hierarchical dimensions. Moreover, the Random-TransJect performs
better than TransJect on both Pathfinder and Image classification tasks with a margin of 1.1% and 1.3%,
respectively. We argue that the sparsity in inputs in these two visual tasks is difficult to be approximated
by the eigenvalues, which costs TransJect in these tasks.

5.3 Robustness of TransJect under different configurations

We evaluate TransJect under different hyperparameter settings to understand its robustness under different
configurations. For this purpose, we choose IMDb and byte-level text classification (CharIMDb) and high-
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light the test accuracy in Figure 3. On both the tasks, we observe that shallower TransJect is preferred over
the deeper model; however, the standard deviation is a meagre 1.7% and 0.8%, respectively, compared to
2.7% and 6.6% of Transformer. Although increasing hidden size improves performance on shorter text classi-
fication, hidden size does not have any orderly impact on longer sequence classification. On the other hand,
more experts in MOE typically help TransJect achieve better generalisation and improve performances.
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Figure 3: Performances of TransJect and Transformer under dif-
ferent configurations on the IMDb and CharIMDb classification
tasks. Compared to Transformer, TransJect displays more sta-
ble behavior under different configurations.

6 Analysis

To understand the connections behind
model depth, activation bounds and en-
tropies, we conduct detailed statistical
analyses on our model and Transformer.
We use the IMDb and CharIMDb classi-
fication tasks for these studies as part of
short long-range classification tasks, re-
spectively. We use the outputs inferred
by our models on a subsample of the test
data for these analyses.

Activation bounds and entropy.
Continuing our initial discussion on pre-
serving layer-wise distances between to-
kens, we calculate the distribution of ac-
tivation bounds at different encoding lay-
ers. As defined in Section 3, we compute
the activation factor for each encoding
layer for TransJect and Transformer. Formally, for lth layer, we compute the activation factor

A(l) = EXEi ̸=j

[ ||X (l)
i − X (l

j ||

||X (0)
i − X (0)

j ||

]
. (9)

Here X (l) ∈ RN×d is the hidden representation of the sequence X at lth layer. Similarly, we compare the
differential entropy (aka. entropy) of the hidden representations learned by TransJect at each layer to
understand how the entropy state changes across the layers. We calculate differential entropy as,

entropy(l)
(

X (l)
)

= Ej,h

[
− log X (l)

j,h

]
= −Ej

[∫
H

Xj,h log Xj,hdh
]

(10)

Note that X (l)
j,hi

=
hi ̸=hj

X (l)
j,hj

leads the entropy to −∞. Thus sparser states always have lower entropy and

are more deterministic. At the same time, unorderly, random and stochastic states have higher entropy. We
highlight the distribution of activation factors and entropy of token embeddings at every layer of TransJect
and Transformer in Figure 4a. The empirical activation bound of TransJect is ≈ 1, much less than the
theoretical bound of e2 ≈ 7.39. Although we do not claim for Lipschitz continuity in the dot-product space,
the empirical activation bound under dot-product is also ≈ 1. Unlike TransJect, Transformer has much
higher empirical activation bounds. Interestingly, Transformer aims to preserve the semantic similarity at
the later layers at the expense of distance; however, TransJect can preserve both of them with a tighter
bound, leading to a more robust representation for each token. We also highlight the activation factors of
Transformer with orthogonal parameterization. Although orthogonal parameterization leads to much lower
activation, it is still higher than our model.

The average entropy obtained by TransJect on IMDb classification is −1.3 with a standard deviation of
0.12. On the other hand, Transformer obtains an average entropy of 5.80 with a standard deviation of 0.13.
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Figure 4: We observe higher activation factors for Transformer, whereas the median empirical activation
factor for TransJect is ≈ 1 << e2. Lower entropy for TransJect indicates that at the neuron level as well
as at the expert level, the representations are more orderly.
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Figure 5: Distribution of activation factors and entropy with different model configurations of TransJect
and Transformer on IMDb and CharIMDb classification tasks.

With a higher activation factor, Transformer projects the tokens onto much sparser and random subspaces,
increasing the system’s overall entropy. On the other hand, representations learned by TransJect are more
orderly and thus have low entropy. Moreover, the entropy of TransJect does not increase perpetually, which
according to the second law of thermodynamics, suggests a reversible process. We observe a high positive
correlation of 0.92 between entropy and the activation factor. The same argument can be used to explain the
higher entropy in later layers of Transformer. Additionally, we report the entropy of the representations at
each attention head and expert level in Figure 4b. Although TransJect displays higher entropy at the expert
level, it is still lesser than the corresponding attention heads of the Transformer model. Further, the changes
in inter-quartile ranges in the later layers of Transformer show increasing randomness in larger depths, which
can also be attributed to the higher activation factors. On the other hand, TransJect stabilises the entropy
in the later layer. We also highlight the connections between activation bounds and total entropy under
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(a) IMDb classification (b) CharIMDb classification

Figure 6: Expert weights on (a) IMDb and (b) CharIMDb classification tasks. The mode around 0.25
highlights the inherent load-balancing capabilities among the experts.

Model #Parameters
Transformer (Vaswani et al., 2017) 190.1M
Transformer with dff = 512 95.6M
TransJect (E = 1) 66.2M
TransJect (E = 8) 286.8M

(a) Comparison of number of parameters.

Model Speed ↑
1k 2k 3k 4k

Transformer (Vaswani et al., 2017) 1.0 1.0 1.0 1.0
Transformer+Orthogonal Parameterization 1.0 1.0 1.1 1.4
TransJect 5.0 9.6 12.8 26.3

(b) Comparison of inference speed.

Table 3: Comparison of the number of learnable parameters and inference speed on the CharIMDb classi-
fication task. The number of parameters is computed for encoders with L = 6 and d = 512. Transformer
uses hidden size dff = 2048 in the feedforward layer, whereas TransJect uses the original encoder hidden
dimension to maintain invertibility. We compute the test-time inference speed on long-range text classifica-
tion tasks on various text lengths. The reported numbers are speedups w.r.t. Transformers.

different model configurations in Figure 5 for TransJect and Transformer, respectively. We observe that
more experts in MOE increase activation at the final layer. On the other hand, with a larger dropout for
Transformer, the model regularizes more and creates more sparsity, leading to lower activation factors and
entropy. Contrary to TransJect, increasing the number of layers of the Transformer increase the activation.
This behavior indicates the layer-agnostic property of our model.

Effectiveness of expert model. We observe individual importance of experts and how they interplay in
the mixture model. We illustrate the expert weight distribution in Figure 6, confirming that the experts
are well-balanced and that our model does not require an enforced load balancing. Further, we calculate
the entropy of each expert representation to understand how it constituents the final representation at
every layer. The expert entropy value of TransJect is −2.2. Computing an equivalent entropy of different
attention heads for Transformer gives us an entropy of 0.67. The lower entropy displayed by the mixture
of experts highlights the generalization capabilities of the experts. Different experts learn differently but
orderly, unlike random and sparse learning by the attention heads of Transformer models.

Preserving distances between tokens. Figure 7 shows representations obtained on tokens of a sample
text at different encoder layers, projected onto 2-D. We use isometric mapping (Tenenbaum et al., 2000) for
projecting the high dimensional vectors to the 2−D space. TransJect maintains the initial embedding space
throughout the layers, showing robustness in learning initial embeddings. On the other hand, Transformer
expands the projection subspaces to more sparse subspaces, even though they project semantically similar
tokens closer.

Efficiency comparison. We compare the models in terms of total learnable parameters in Table 3a. In an
equivalent setup, TransJect has 50% more learnable parameters as compared to Transformers. We report
the test-time speed on CharIMDb classification task with different length of input sequences in Table 3b.
On average, we observe 13× speedup w.r.t Transformers, which increases to 26× for longer sequences of
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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Figure 7: Isomap plot of layer-wise token embeddings learned by (a) TransJect and (b) Transformer on
the text “This movie is terrible, but it has some good effects.” We highlight four semantically-relevant
words and visualize their positions to understand how different models project tokens onto different sub-
spaces in different encoding layers. TransJect preserves the relative distances between the tokens and their
interconnectedness over the layers, indicating that the projection manifolds are topologically similar.

length more than 4k. We further observe that orthogonal parameterization can improve efficiency for longer
sequences. Albeit being highly parameterized, TransJect is more efficient than Transformers.

7 Conclusion

In this work, we introduced TransJect, a new learning paradigm in language understanding by enforcing a
distance-preserving criterion in the multi-layered encoder models. We derived that by enforcing orthogonal
parameterization and utilizing smooth activation maps, TransJect can preserve layer-wise information prop-
agation within a theoretical bound, allowing the models to regularize inherently. We further argued against
implicit regularization techniques like dropout, preferred injectivity, and tighter activation bounds for bet-
ter generalization and efficiency. Our empirical analyses suggested a superior performance of TransJect
over Transformers and self-attention-based baselines. Overall, we observed lower entropy with TransJect
with low variance, which according to statistical mechanics, suggests a reversible process. Our thorough
analyses also established the connection between activation bounds and entropy. These findings encourage
us to explore the natural laws of science for building better, more intuitive, and more cognitive artificial
intelligence. Although TransJect showed superior performances in several sequence classification tasks, the
model assumptions may not hold for decoding. Our model relies on exact or approximated eigenvalues of
the contextual vectors to encode information, an assumption that can not be applied to decoding tasks.
This restricts our model from being widely used for auto-regressive tasks. Further, as explained previously,
TransJect may be ineffective for sequences with limited context. In the future, we would like to extend these
ideas to develop scalable injective auto-regressive models. Further, we will also explore the interpretability
aspects of the reversible encoder and encoder-decoder models.
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A Theoretical Results

We furnish the proofs of all the theoretical results presented in the main text.

A.1 Proof of Lemma 1

KM = sup
x ̸=0

||Mx||2
||x||2

= sup
||x||2=1

||Mx||2.

Squaring both the side, we decompose M as UΣV T , where U and V are orthogonal matrices, and Σ is the
diagonal matrix containing the singular values (square root of eigenvalues of MT M), Σ1 ≥ Σ2 ≥ Σ3 · · · ≥ 0.
For an orthogonal matrix U , ||Ux||22 = ||xT UT Ux||2 = ||xT x||2 = ||x||22. This leads to

||Mx||22 = ||UΣV T x||2
2 = ||Σx||22 =

n∑
i=1

Σ2
i x2

i .

Hence,

K2
M = sup∑n

i=1
x2

i
=1

n∑
i=1

Σ2
i x2

i .

Being a convex sum, K2
M ≤ Σ2

1. Hence, KM ≤ |Σ1|, which completes the proof. ■

A.2 Proof of Corollary 1

For any square stochastic matrix M ∈ Rn×n,

MI =


∑n

j=1 Mj,1∑n
j=1 Mj,2

...∑n
j=1 Mj,n

 =


1
1
...
1

 = I.

Hence, 1 is an eigenvalue of M . Next, we prove that 1 is the largest eigenvalue of M . For any eigenvalue
λ and its corresponding eigenvector v, λv = Mv. Without loss of generality, we assume arg maxi |vi| = 1.
Hence, for the 1st entry in this column vector λv1 =

∑n
j=1 M1,jvj . Using triangle inequality we get,

|λ||v1| ≤ |λv1| = |
n∑

j=1
M1,jvj | ≤

n∑
j=1

|M1,j ||v1| ≤ |v1|.

Hence, for any eigenvalue |λ| ≤ 1. Hence, it proves our corollary that the largest eigenvalue is 1. ■

A.3 Proof of Lemma 2

For any x, y ∈ Rn, we define g : [0, 1] → Rm as

g(t) = f(x + t(y − x)). (11)

It is easy to verify that g(0) = f(x) and g(1) = f(y).

f(y) − f(x) = g(1) − g(0) =
∫ 1

0
∇tg(t)dt. (12)

Using chain rule of differentiation on Equation 11, we get,

∇tg(t) = ∇tf
(

x + t(y − x)
)

(y − x).
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Using this in Equation 12, we get

||f(y) − f(x)|| =
∣∣∣∣∣∣ ∫ 1

0
∇tf

(
x + t(y − x)

)
(y − x)dt

∣∣∣∣∣∣ ≤
∫ 1

0

∣∣∣∣∣∣∇tf
(

x + t(y − x)
)

(y − x)dt
∣∣∣∣∣∣.

As f is C1, the supremum of its derivative exists, which allows us to set supt

∣∣∣∣∣∣∇tf
(

x + t(y − x)
)∣∣∣∣∣∣ = K and

deduce
||f(y) − f(x)|| ≤ K||y − x||

∫ 1

0
dt = K||y − x||. ■

A.4 Proof of Lemma 3

Let us assume ∃x ̸= y such that f(x) = f(y), which implies ||f(x) − f(y)|| = 0. Using triangle inequality
and Equation 5 we get

x − y = f(x) − f(y) − αl

L
· (F (x) − F (y))

=⇒ ||x − y|| ≤ ||f(x) − f(y)|| + | − αl

L
| · ||F (x) − F (y)||

=⇒ ||x − y|| ≤ |αl

L
| · ||F (x) − F (y)|| <

1
L

· ||F (x) − F (y)||

Here F is the non-linear operator defined as ELU(xUΣV ). We can use Lemma 2 to derive the Lipschitz
bound for ELU non-linear function as 1 (derivative of ELU is bounded by 1). Being a linear mapping,
both Lipschitz bound and activation bound are the same for UΣV , i.e., ||UΣV ||. Using the orthogo-
nality conditions of U and V and the fact that the largest eigenvalue of Σ is 1, we derive the Lipschitz
bound of UΣV as 1. Using the chain rule of differentiation and properties of supremum, we calculate
supx||∇xF (x)|| ≤ supx||∇xELU(x)|| · ||UΣV || = 1. Thus, the Lipschitz bound of F is 1.

Using this we get

||x − y|| <
1
L

· ||x − y||.

Which contradicts that fact that 1
L ≤ 1. Hence, we prove the lemma by contradiction. ■

A.5 Proof of Corollary 2

Let us assume x(l) ̸= y(l) such that

E∑
e=1

λex(l−1) + αl

L

E∑
e=1

λeELU(x(l−1)M (l−1,e)) =
E∑

e=1
λey(l−1) + αl

L

E∑
e=1

λeELU(y(l−1)M (l−1,e)).

Using
∑E

e=1 λe = 1 we obtain,

x(l−1) + αl

L

E∑
e=1

λeELU(x(l−1)M (l−1,e)) = y(l−1) + αl

L

E∑
e=1

λeELU(y(l−1)M (l−1,e))

=⇒ ||x(l−1) − y(l−1)|| = ||αl

L

E∑
e=1

λeELU(x(l−1)M (l−1,e)) − αl

L

E∑
e=1

λeELU(y(l−1)M (l−1,e))||

=⇒ ||x(l−1) − y(l−1)|| <
1
L

||
E∑

e=1
λeELU(x(l−1)M (l−1,e)) −

E∑
e=1

λeELU(y(l−1)M (l−1,e))||

17



Under review as submission to TMLR

Using Lipschitz bound of ELU(x(l−1)M (l−1,e)) as 1, we obtain

||x(l−1) − y(l−1)|| <
1
L

E∑
e=1

λe||x(l−1) − y(l−1)|| = 1
L

||x(l−1) − y(l−1)||.

This contradicts that fact that 1
L ≤ 1. Hence, we prove the corollary by contradiction. ■

A.6 Proof of Theorem 2

Being a composition of continuously differentiable injective functions, f = ORF ◦MOE◦IR is a continuously
differentiable injective function.

Next, we compute the Lipschitz bound for f . For the sake of simplicity, let us assume α1
L = α2

L · · · = αl

L =
α < 1

L . We first expand f as

f(x) =
E∑

e=1
λex +

E∑
e=1

λeα · ELU(xU eΣV e) + α · ELU(x).

x = ELU
( E∑

e=1
λexW1 +

E∑
e=1

λeα · ELU(xU eΣV e)W1 + b1

)
W2 + b2.

=⇒ x = ELU
(

xW1 +
E∑

e=1
λeα · ELU(xU eΣV e)W1 + b1

)
W2 + b2. (13)

We break down the expression and compute the Lipschitz bound of ELU(xUΣV )W1 + b1 first. Using the
Lipschitz continuity of ELU, we get

||ELU(xUΣV )W1 + b1 − ELU(yUΣV )W1 − b1||
= ||ELU(xUΣV )W1 − ELU(yUΣV )W1||
≤ ||ELU(xUΣV ) − ELU(yUΣV )|| · ||W1||
≤ ||ELU(xUΣV ) − ELU(yUΣV )||
≤ ||xUΣV − yUΣV ||
≤ ||x − y|| · ||U || · ||Σ|| · ||V ||
≤ ||x − y||.

Feeding this into Equation 13 and using the fact
∑E

e=1 λe = 1, we get

||x − y||
≤ (||x − y|| · ||W1|| + |α| · ||x − y||) · ||W2||
≤ (1 + |α|)||x − y||.

Finally,

||f(x) − f(y)||
≤ ||x − y|| + |α| · ||x − y|| + |α|(1 + |α|) · ||x − y||
≤ (1 + |α|)2||x − y||

< (1 + 1
L

)2||x − y||.
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Here, f is a layer-wise operator. Hence, for all the L encoder layers,

||f(x) − f(y)|| < (1 + 1
L

)2L||x − y||.

Using limn→∞(1 + 1
n )n = e, we get ||f(x) − f(y)|| < e2||x − y||. ■

B Experimental Setup

B.1 Training Setup

All IMDb and AGNews classification experiments are run for 30 epochs. We use an early stopping based on
the test loss with the patience of 4 epochs to terminate learning on plateaus. For both these experiments, we
use Adam optimizer with a learning rate of 0.0005, β1 = 0.9, β2 = 0.98 and ϵ = 10−9. We use both training
and test batches of size 32. We follow the implementation details shared by Chen et al. (2021) for the LRA
benchmark. All these experiments are run for 50k steps. One Tesla P100 and one Tesla V100 GPU are used
for conducting all the experiments. For each task, we report the average accuracy across three different runs.

B.2 Implementation Details

To enforce orthogonality during the forward pass and after backpropagation, we use PyTorch parame-
terization3. This implementation uses different orthogonal maps (e.g. householder or Cayley mapping)
to ensure orthogonality. It further uses the framework of dynamic trivialization (Lezcano Casado, 2019)
to ensure orthogonality after gradient descent. We use the implementation by Scikit-learn4 that uses
1 − cosine_similarity as the cosine distance. Cosine similarity is the cosine of the angle between two
vectors which lies in [−1, 1]. Thus the distance lies in [0, 2].

3https://pytorch.org/docs/stable/generated/torch.nn.utils.parametrizations.orthogonal.html
4https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_distances.html
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