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ABSTRACT

Graph contrastive learning (GCL) aligns node representations through the uti-
lization of positive/negative node pairs, a selection process that typically relies
on the correspondences and non-correspondences among nodes within two aug-
mented graphs. The conventional GCL approaches incorporate negative samples
uniformly in the contrastive loss, resulting in the equal treatment of misclassified
false negative nodes, regardless of their proximity to the true positive. In this pa-
per, we present a Smoothed Graph Contrastive Learning model (SGCL), which
leverages the geometric structure of augmented graphs to exploit proximity infor-
mation associated with positive/negative pairs in contrastive loss. The proposed
SGCL adjusts the significance of these pairs in contrastive loss by incorporating
three distinct smoothing techniques that yield smoothed positive/negative pairs.
To enhance scalability for large-scale graphs, the proposed framework incorpo-
rates a graph batch-generating strategy that partitions the given graphs into multi-
ple subgraphs, facilitating efficient training in separate batches. Through extensive
experimentation in an unsupervised setting on various benchmarks, particularly
those of large scale, we demonstrate the superiority of our proposed framework.

1 INTRODUCTION

Graph Neural Networks (GNNs) Gilmer et al. (2017); Kipf & Welling (2017); Xu et al. (2019b)
have developed rapidly by providing the powerful frameworks for the analysis of graph-structured
data. A significant portion of GNNs primarily focus on (semi-)supervised learning, which requires
access to abundant labeled data Veličković et al. (2018); Kipf & Welling (2017); Behmanesh et al.
(2023). However, labeling graphs is challenging because they often represent specialized concepts
within domains like biology.

Graph Contrastive Learning (GCL), as a new paradigm of Self-Supervised Learning (SSL) Liu et al.
(2023) in the graph domain, has emerged to address the challenge of learning meaningful represen-
tations from graph-structured data Wu et al. (2023); Xie et al. (2023). They leverage the principles
of self-supervised learning and contrastive loss Li et al. (2019) to form a simplified representation
of graph-structured data without relying on supervised data.

In a typical GCL approach, several graph views are generated through stochastic augmentations of
the input graph. Subsequently, representations are learned by comparing congruent representations
of each node, as an anchor instance, with its positive/negative samples from other views Veličković
et al. (2019); Zhu et al. (2020); Hassani & Khasahmadi (2020). More specifically, the GCL approach
initially captures the inherent semantics of the graph to identify the positive and negative nodes.
Then, the contrastive loss efficiently pulls the representation of the positive nodes or subgraphs
closer together in the embedding space while simultaneously pushing negative ones apart.

Conventional GCL methods follow a straightforward principle when distinguishing between positive
and negative pairs: pairs of corresponding points in augmented views are considered positive pairs
(similar), while all other pairs are regarded as negative pairs (dissimilar) Zhu et al. (2020). This
strategy ensures that for each anchor node in one augmented view, there exists one positive pair,
while all remaining nodes in the second augmented view are paired as negatives.

In contrast to the positive pairs, which are reliably associated with nodes having a similar semantic,
there is a significant number of negative pairs that have the potential for false negatives. With this
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strategy, GCL approaches allocate negative pairs between views uniformly, while we intuitively
expect that in contrastive loss, misclassified nodes closer to the positive node should incur a lower
penalty compared to those located farther away. However, conventional GCL approaches lack a
mechanism to differentiate and appropriately penalize misclassified nodes based on proximity.

A straightforward approach for incorporating proximity information in the conventional GCL
method can be computing a dense geodesic distance matrix for the entire graph or using spectral
decompositions. However, these approaches can become expensive when applied in the context of
contrastive learning. To tackle this problem, we introduce a Smooth Graph Contrastive Learning
(SGCL) method, which effectively integrates the geometric structure of graph views into a smoothed
contrastive loss function. This loss function intuitively incorporates proximity information between
nodes in positive and negative pairs through three developed smoothing approaches.

To extend the proposed contrastive loss for large-scale graphs, the GCL framework incorporates a
mini-batch strategy. The integration of the mini-batch strategy significantly improves the efficiency
of the model in handling large-scale graphs, which is a crucial requirement within the vanilla con-
trastive loss framework.

We evaluate the SGCL framework in node and graph classification tasks across benchmarks of
various properties. Our results consistently demonstrate the superior performance of our method
compared to state-of-the-art GCL methods. Our contributions are summarized as follows:

• We introduce a novel graph contrastive objective function, which effectively incorporates
node proximity information to address uniform negative sampling limitations in conven-
tional GCL methods.

• We introduce three formulations for smoothing in the contrastive learning objective, incor-
porating proximity information in the assignment of positive and negative pairs.

• We extend the proposed model for large-scale graphs by incorporating a mini-batch strategy
into the GCL framework, enhancing model efficiency and computational scalability.

• We evaluate the GCL model for both node and graph classification on a diverse set of
benchmarks with different scales and demonstrate its superior performance over state-of-
the-art methods.

A comprehensive and detailed explanation of related work is presented in Appendix A.

2 BACKGROUND AND MOTIVATION

2.1 UNIFORM NEGATIVE SAMPLING

In the unsupervised GCL models introduced with two views i and j, for each anchor node v
(i)
t with

feature embedding h
(i)
t , the contrasting learning model defines a positive set P(v

(i)
t ) = {v(j)p }Pp=1,

consisting of P elements, and a negative set Q(v
(i)
t ) = {v(j)q }Qq=1, comprising Q elements.

In the absence of labeled information, these sets are confined to containing consistent samples within
each graph view. Essentially, the positive set is formed by pairing embeddings in the two augmented
graph views that align with the same node. Therefore, P = 1 and P(v

(i)
t ) = {v(j)p }, where v

(j)
p in

view j corresponds to v
(i)
t in view i. If corresponding nodes are in the same order in two views, then

t = p. Additionally, all incongruent samples in each view j are categorized as negative samples,
Q(v

(i)
t ) = {v(j)q }N−1

q=1,q ̸=t.

Considering the ground truth, positive/negative pairs demonstrate semantic congru-
ence/incongruence, particularly in relation to shared labels with the anchor. These pairs encompass
samples affiliated with either the same class (positive) or different classes (negative). However,
in the absence of labeled information, numerous incongruent nodes are false negative because
they have the potential to be semantically similar to the anchor node but are instead categorized
as negative pairs. This misalignment of the negative pairs adversely affects the learning process
due to its inadvertent impact on the objective function. Consider the contrastive loss function 1,
designed for each anchor node v

(i)
t . The objective is to minimize the distance between embeddings
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of positive pair {v(i)t , v
(i)
t } and simultaneously maximize the distance between embeddings of

negative pairs {v(i)t , v
(j)
q }N−1

q=1,q ̸=t:

Lcon(v
(i)
t , V (j)) = − log

(
exp (h

(i)
t .h

(j)
t /τ)

exp (h
(i)
t .h

(j)
t /τ) +

∑N−1
q=1,q ̸=t exp (h

(i)
t .h

(j)
q /τ)

)
(1)

Misalignment in negative pairs {v(i)t , v
(j)
k } detrimentally impacts the learning process by introducing

errors in the loss computation. The misalignment leads to an undesired increase in the loss, hindering
the optimization process. Specifically, the GCL model increases the distance between misaligned
negative pairs, and inadvertently separates semantically similar samples, leading to a degradation of
overall performance.

Essentially, the negative pairs in the contrastive loss function are expected to contribute varying sig-
nificance based on their proximity to the true positive node. However, in the conventional contrastive
learning framework, which lacks information about the proximity of these nodes, all N −1 negative
pairs are handled in a uniform manner. In other words, the conventional contrastive learning ap-
proach treats all misclassified nodes equally regardless of whether the misclassification occurs near
the true positive or at a significant distance from it.

2.2 EXTENDING GRAPH GEOMETRY

The aforementioned limitations of conventional contrastive learning models arise from their inca-
pacity to utilize semantic information during the training process. Nevertheless, there remains an
advantage in exploiting the geometric information inherent in a graph to provide supplementary
insights.

In conventional contrastive learning models, the positive pairs between two views are represented
by a positive matrix Π

(i,j)
pos ∈ {0, 1}N×N with ’1’ on the diagonal and a negative matrix Π

(i,j)
neg =

1−Π
(i,j)
pos ∈ {0, 1}N×N with ’0’ on the diagonal and ’1’ in the off-diagonal elements.

We propose a smoothing strategy that goes beyond simple binary categorization of matrices as posi-
tive or negative and applies a form of smoothing to the standard contrastive loss. This strategy allows
nodes initially categorized as positive or negative to have values ranging from ’0’ to ’1’, indicating
their degree of association with positive or negative samples, respectively. The smoothing process
S(Π(i,j)

pos ,A(i)) effectively integrates the geometric structure of a graph G(i), enriching both positive
and negative pairs by encompassing neighborhood relationships and capturing the broader context
of the nodes V(i).

Smoothing involves updating the values of the nodes iteratively based on the values of their neigh-
boring nodes. This process helps to smooth the data while preserving the underlying graph struc-
ture. In a general setting, we take a binary positive matrix Π

(i,j)
pos as the input of the smoothing

approach S(Π(i,j)
pos ,A(i)) to generate a smooth positive matrix Π̃

(i,j)
pos ∈ [0, 1]

N×N . The correspond-
ing smoothed negative matrix Π̃

(i,j)
neg is then obtained as 1 − Π̃

(i,j)
pos . In the following, we formulate

three existing formulations for prompting smoothing, including Taubin smoothing Taubin (2023),
Bilateral smoothing Tomasi & Manduchi (1998), and Diffusion-based smoothing Gerig et al. (1992).

Taubin smoothing ST (V,L,K, µ, τ) involves iteratively performing two stages of filtering utilized
graph Laplacian matrix L ∈ RN×N to smooth the binary matrix V ∈ {0, 1}N×D as follows:

V(k+1) = (I+ µL)((I+ τL)V(k)) (2)

The interior filter refers to the positive Laplacian filter, which operates by smoothing the values
within the matrix V by moving each vertex to the average position of its neighbors. This process
tends to blur the details, where τ > 0 is a positive constant that controls the amount of smoothing.
Subsequently, the negative Laplacian filter is employed to rectify the oversmoothing that occurred
in the previous step. It moves each vertex in the opposite direction, preserving important geometric
features. Here, µ(< −τ) is a negative constant that corrects the oversmoothing from the previous
step.
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Figure 1: An illustrative example of the efficacy of the smoothing approaches on a grid graph G.
We color the grid according to the node value. In the left grid, initial values of 1 are represented
in yellow, whereas nodes with zero values are depicted in dark purple. Each smoothing approach
modifies the values of the zero nodes according to neighboring information.

Bilateral smoothing SB(V,A, σspa, σint) performs smoothing on a binary matrix V by combining
information from nearby nodes, considering both spatial proximity and intensity similarity. Spatial
proximity dspa captures the structural proximity between nodes within the graph by employing
shortest path distance metrics. Intensity similarity dint is determined by evaluating the similarity
in binary values between two nodes, typically quantified using metrics like the Hamming distance.
The bilateral filter weight w(i, j) is then computed, incorporating both criteria:

w(i, j) = exp

(
− dspa
2σ2

spa

− dint
2σ2

int

)
, (3)

where σ2
spa and σ2

int modulate the extent of both spatial and intensity smoothing, respectively.

The smoothed value of the central node vi is calculated as a weighted average of the binary values
in row i based on the calculated weights:

ṽi =
∑N

k=1 w(i, k)vk∑N
k=1 w(i, k)

(4)

Diffusion-based smoothing SD(V,A,K, η) represents a method that employs diffusion equation
to effectively diffuse information among nodes within a graph. It describes how data or attributes
propagate from one node to its neighboring nodes over time, thereby achieving binary value smooth-
ing. The smoothing process is first initialized with the original map matrix as the initial conditions,
where each binary value serves as the starting ”heat” at its respective node. Subsequently, the
new value for each node is iteratively calculated based on the chosen diffusion equation and the
binary values of its neighbors, considering the graph’s connectivity and the diffusion process as
v(k+1)
i = v(k)

i + ηv̄(k)i , where v̄(k)
i =

∑
j∈N (vi)

v(k)
j and a diffusion rate η is applied to determine

how much the binary value diffuses from one node to another.

It is worth noting that in the last step of all smoothing approaches, a masking step is applied to
preserve the initial ’1’ values while ensuring that the other smoothed values remain unchanged.

Figure 1 illustrates an example of the efficacy of the smoothing approaches. We take a specific
graph, such as a grid graph, and randomly establish a delta function, centered on specific vertices
within this graph, resulting in the creation of a binary matrix. Subsequently, we employ a variety
of smoothing techniques on this binary matrix. Given the uniform neighborhood structure of the
grid, the resulting output exhibits a Gaussian-like distribution, which its center aligned to the initial
vertex. However, the varied values in the smoothed matrix are indicative of the distinct strategies
employed in the smoothing process.

In the context of contrastive learning on graphs, the positive matrix Π̃
(i,j)
pos can be considered as

a mapping from G(i) to G(j), with its rows and columns corresponding to nodes in G(i) to G(j),
respectively. The goal of the smoothing approach is to extend this mapping to the neighbors of the
paired nodes. In this specific context, since the rows of the positive matrix Πpos(i,j) are associated
with nodes in G(i), the smoothing approach utilizes the geometry of graph view G(i). Similarly, for
the positive matrix Π

(j,i)
pos , the smoothing approach utilizes to the geometric properties of the graph

view G(j).
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Figure 2: In the general context of conventional contrastive learning approaches, for every anchor
node v

(i)
4 in G(i), a corresponding positive node v

(j)
4 exists in G(j), with all other node pairs being

negative (left image). Smoothing techniques, which leverages the geometry of graph G(i), effectively
extract neighboring node information of an anchor node v

(i)
4 and generate smoothed positive and

negative pairs matrices Π̃(i,j)
pos and Π̃

(i,j)
neg (right image).

Figure 2 illustrates the distinctions between positive and negative pairs in the conventional con-
trastive learning framework and our proposed smoothed contrastive approach. Notably, when con-
sidering a specific anchor node v

(i)
t in G(i) paired with v

(j)
k in G(j), the graph information from G(i)

is employed to generate the smoothed positive and negative pairs matrices Π̃(i,j)
pos and Π̃

(i,j)
neg .

3 METHOD: SMOOTHED GRAPH CONTRASTIVE LEARNING

3.1 PRELIMINARIES

In the domain of unsupervised graph representation learning, we introduce an undirected graph
G = (V, E), where V constitutes the node set {v1, v2, ..., vN}, and E denotes the edge set, formally
captured as E ⊆ V ×V . Within this contextual framework, we establish the definition of two pivotal
matrices: the feature matrix X ∈ RN×F , wherein each xi ∈ RF represents the feature vector
associated with a distinct node vi; and the adjacency matrix A ∈ {0, 1}N×N , where the binary
element ai,j equals 1 if and only if an edge exists between nodes vi and vj .

The objective is to develop a GNN encoder fθ(X,A) that takes feature representations and graph
structural characteristics of the graph as input and generates reduced-dimensional node embeddings
H = fθ(X,A) ∈ RN×F ′

, where F ′ ≪ F . Ultimately, the reduced-dimensional node embeddings
prove to be invaluable assets in subsequent tasks, particularly in node classification.

3.2 FRAMEWORK

The main objective of the proposed framework is unsupervised node classification, with a specific
focus on effectively addressing medium and large-scale graphs. We introduce a novel framework,
termed Smoothed Graph Contrastive Learning (SGCL), designed to construct node embeddings
by seamlessly incorporating the geometric structure of augmented graphs to facilitate a smooth
alignment between positive and negative pairs.

The comprehensive architecture of our framework is visually illustrated in Figure 3. In the following
sections, we will outline the sequential processing steps of the proposed framework.

3.2.1 SUBGRAPH GENERATING

In order to address the challenge of scalability and to accommodate the contrastive loss for large-
scale graphs, we leverage the random-walk mini-batches generation approach, proposed by Graph-
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Figure 3: Overview of the Proposed SGCL Model. The SGCL model utilizes a mini-batch gener-
ation approach to generate |B| subgraphs (mini-batches). For each subgraph Ĝb, two distinct aug-
mentation methods are employed to produce two different views Ĝ(i)

b and Ĝ(j)
b . The GCN encoders

fθi and fθj are then utilized to learn feature embeddings H(i)
b and H

(j)
b , respectively. Subsequently,

two smoothed positive matrices Π̃
(i,j)
pos and Π̃

(j,i)
pos are computed by leveraging the geometric struc-

tures of the graphs. These matrices are used in the contrastive loss JSGCL to encourage the smooth
interaction of node representations between the two views. This loss function, scores the agreement
between these representations for all batches, serving as training loss.

SAINT Zeng et al. (2020), to generate subgraphs from a given graph. More specifically, an entire
graph G is partitioned into a set of |B| mini-batches denoted as Ĝ = {Ĝ1, . . . , Ĝb, . . . , Ĝ|B|}, where
each Ĝb = (V̂b, Êb) represents a sampled subgraph. It is essential to note that the construction of
subgraphs varies depending on the specific sampling approach employed. Leveraging the insights
gained from the variance analysis within GraphSAINT, it introduces a collection of lightweight and
efficient mini-batch generation approaches, which are detailed in Appendix B.

3.2.2 GENERATING GRAPH VIEWS VIA AUGMENTATION

Two categories of graph augmentation approaches are broadly used in GCL models: (1) feature-
based augmentations, which manipulate the initial node features, often through operations such as
masking or the introduction of Gaussian noise, and (2) structure-based augmentations and corrup-
tions, which involve alterations to the underlying structure of graphs, such as adding or removing
connectivities and sub-sampling. In the proposed framework, such strategies as sub-sampling aug-
mentation can pose challenges, particularly in constructing positive and negative node pairs across
multiple views. Empirical evidence consistently demonstrates the effectiveness of two essential
augmentation strategies for optimal results: edge dropping and node feature masking. Their combi-
nation generates two distinct graph views for each mini-batch Ĝb, referred to as Ĝ(1)

b and Ĝ(2)
b .

More specifically, in each view i, we construct the augmented graph Ĝ(i)
b as follows: Ĝ(i)

b =

(T (i)
x (Xb), T (i)

A (Ab)), where Tx(X) = X⊙(1−MX) and TA(A) = A⊙(1−MA)+(1−A)⊙MA.
The feature value mask matrix MX ∼ N (0,Σ) is employed to replace original values with Gaussian
noise. Additionally, the perturbation location mask MA uses a Bernoulli distribution and randomly
drops edges from the adjacency matrix with a specified probability.

3.2.3 ENCODERS

The main component of the proposed framework is the encoder network with a parameter set θ, de-
noted as fθ. This network operates on an augmented graph as input, generating reduced-dimensional
feature embeddings for each node within the graph. Subsequently, these reduced-dimensional node
embeddings play a pivotal role in various follow-up tasks, with a particular emphasis on node clas-
sification. We have the flexibility to employ any encoders capable of constructing node embeddings
without imposing constraints. Within this framework, we opt for the widely adopted Graph Convo-
lution Network (GCN) Kipf & Welling (2017) as the foundational graph encoders. For each view i,
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we employ a dedicated graph encoder H = fθi(X,A) : RN×F × RN×N → RN×F ′
that leverages

adjacency and feature matrices as two congruent structural perspectives of GCN layers 1.

The GCN operates across multiple layers, wherein the message-passing process is recurrently ap-
plied at each layer. The node representations are updated in a layer-wise manner: H(l+1) =

σ
(
D̃−1/2ÃD̃−1/2H(l)W(l)

)
, where Ã denotes the symmetrically normalized adjacency matrix,

calculated as Ã = A + I with diagonal matrix I ∈ RN×N , D̃ii =
∑

j Ãij ∈ RN×N is the degree
matrix, W(l) ∈ RFl×Fl+1 is the learned weight matrix for layer l, σ is activation function, and
H(l) ∈ RN×Fl is the node representation in layer l.

3.2.4 SMOOTHED CONTRASTIVE OBJECTIVE

To end-to-end training of the encoders and promote node representations, we introduce an innovative
contrastive objective. This objective utilizes a smoothed positive pairs matrix Π̃

(i,j)
pos to encourage the

agreement between encoded embeddings of two nodes, namely, v(i)t and v
(j)
p , in two different views

with degree π̂
(i,j)
pos (t, p), while also distinguish their embeddings with a degree of 1 − π̂

(i,j)
pos (t, p).

The objective is defined as follows:

L(i,j)
SGCL =∥ Π̃(i,j)

pos ⊙ (1−C(i,j)) ∥2F +λ ∥ (1− Π̃(i,j)
pos )⊙C(i,j) ∥2F (5)

where λ > 0 defines the trade-off between two terms during optimizing and C(i,j) is the similarity
matrix between the normalized embeddings Ĥ(i) and Ĥ(j) of identical networks, computed via
cosine similarity along the ”feature” dimension:

C(i,j) =
Ĥ(i)Ĥ(j)T

∥ Ĥ(i) ∥∥ Ĥ(j) ∥
(6)

In the proposed contrastive objective, the first term enforces the stability of the preservation in the
embeddings of positive pairs by minimizing the discrepancy between 1 and each element of C(i,j).
This alignment is achieved with the values in the smoothed positive pairs matrix Π̃

(i,j)
pos , effectively

equivalent to maximizing C(i,j) for positive pairs. Conversely, the second term actively promotes
a substantial diversity in the embeddings of negative pairs by minimizing each element of C(i,j)

concerning the values in the smoothed negative pairs matrix Π̃
(i,j)
neg = 1− Π̃

(i,j)
pos .

At each training epoch, the smoothed positive pairs matrix Π̃
(i,j)
pos is computed by incorporating

the geometric structure of the graph view G(i) into each smoothing approaches mentioned in Sec-
tion 2.2. For instance, we use Taubin smoothing, which yields Π̃

(i,j)
pos = ST (Π

(i,j)
pos ,L(i), µ, τ)

and Π̃
(j,i)
pos = ST (Π

(j,i)
pos ,L(j), µ, τ). Ultimately, we optimize the model parameters by consid-

ering all |B| batches within the given graph concerning the overall innovated contrastive loss
JSGCL = 1

2|B|
∑|B|

b=1(L
(i,j)
SGCL + L(j,i)

SGCL).

An ablation study evaluating the impact of different terms in the contrastive objective, along with an
exploration of the hyperparameter λ, is presented in Appendix F.2.

4 EXPERIMENTS

We conduct empirical evaluations of our proposed SGCL model through node and graph classifi-
cation tasks, using a variety of publicly available benchmark datasets. For node classification, the
benchmarks encompass a wide range of graph sizes, including smaller to medium-scaled ones such
as Cora, Citeseer, Pubmed Sen et al. (2008), CoauthorCs Sinha et al. (2015), Computers, and Photos
McAuley et al. (2015), as well as larger datasets like ogbn-arxiv, ogbn-products, ogbn-proteins, and
all of which are sourced from the Open Graph Benchmark Hu et al. (2020). For graph classifica-
tion, we employ MUTAG Kriege & Mutzel (2012), PTC Kriege & Mutzel (2012), IMDB-Binary
Yanardag & Vishwanathan (2015), PROTEINS Wale et al. (2008), and ENZYMES Borgwardt et al.
(2005) benchmarks. Appendix C provides comprehensive details of the benchmarks.

1For the sake of simplicity, we omit the view index in superscript and the batch index in subscript.
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4.1 BASELINES

In our empirical study, we incorporate a variety of models for comparison. For node classification,
these models encompass representative node classification models, as well as recently-introduced
graph contrastive learning models, such as DGI Veličković et al. (2019), GRACE Zhu et al. (2020),
MVGRL Hassani & Khasahmadi (2020), GBT Bielak et al. (2022), BGRL Thakoor et al. (2022),
CGRA Duan et al. (2023), and GRLC Peng et al. (2023) serving as our baseline models. For graph
classification, we employ seven state-of-the-art methods for graph contrastive learning, including
InfoGraph Sun et al. (2019), GraphCL You et al. (2020), MVGRL Hassani & Khasahmadi (2020),
BGRL Thakoor et al. (2022), AD-GCL Suresh et al. (2021), LaGraph Xie et al. (2022), and CGRA
Duan et al. (2023). Supplementary details of hyperparameters and architecture are described in
Appendix D. The computational cost of the proposed model, in comparison to the baselines, is also
provided in Appendix E.2.

4.2 NODE CLASSIFICATION

Node classification is one of the important downstream tasks, employed to reflect the effectiveness
of the learned graph representation. In the first experiment, we employ six small and medium-
scale benchmark datasets: Cora, Citeseer, Pubmed, CoauthorCS, Computers, and Photo. The pro-
posed models are derived by incorporating three distinct smoothing techniques in the proposed mod-
els: SGCL-T (Taubin smoothing), SGCL-B (Bilateral smoothing), and SGCL-D (Diffusion-based
smoothing). Table 1 reports the performance of the proposed SGCL model and compares the re-
sults with baseline models. To generate mini-batches in this experiment, we utilize a random-walk
sampling, as outlined in Appendix B. A summary of the results derived from other mini-batching
approaches is reported in Table 8.

Table 1: Comparison of node classification accuracies of proposed models vs. baselines on small
and medium-scaled graphs (mean ± std).

Model Cora Citeseer Pubmed CoauthorCS Computers Photo
DGI Veličković et al. (2019) 82.43±1.3 70.96±2.4 83.13±0.6 91.67±0.7 65.07±1.2 77.15±1.1
GRACE Zhu et al. (2020) 83.16±1.9 68.68±1.3 85.68±0.3 91.43±0.7 81.89±0.6 89.33±1.7
MVGRL Hassani & Khasahmadi (2020) 85.44±1.8 72.51±2.9 86.33±0.7 92.91±0.5 85.90±0.6 91.48±0.9
BGRL Thakoor et al. (2022) 79.12±2.7 63.77±1.7 84.17±0.7 91.6±0.65 84.27±0.5 92.31±0.4
GBT Bielak et al. (2022) 76.91±1.8 59.46±2.9 85.92±0.5 91.45±0.8 88.11±0.9 91.29±0.7
SGCL-T 86.54±1.4 73.71±2.0 86.57±0.5 92.99±0.4 87.83±1.4 93.05±0.9
SGCL-B 87.50±1.7 73.65±1.3 86.13±0.6 93.15±0.4 87.89±0.7 92.31±1.3
SGCL-D 85.22±0.8 72.66±2.4 86.27±0.5 93.21±0.4 85.47±1.2 91.86±0.7

The results indicate that our proposed model outperforms the majority of benchmarks, providing
validation for the effectiveness of our proposed learning framework. In comparison to other bench-
marks, the ”Computers” graph exhibits a notably high average node degree but a lower degree of
homophily (see Table 4). Consequently, this reduces the significance of neighboring nodes in the
proposed smoothing approaches, leading to performance degradation compared to MVGRL.

For further investigation and to facilitate a comprehensive comparison with the existing state-of-
the-art, we replicated this experiment in a full-batch scenario, adhering to the commonly employed
data split in self-supervised learning as provided in the Open Graph Benchmark 2, as described in
Appendix E.1 (Table 6).

The observed performance verifies the enhanced capacity achieved through the utilization of the
geometric structure inherent in graphs, enabling improved exploration of positive and negative pairs
within the conventional contrastive learning framework. It is worth noting that SGCL-T, which
leverages Laplacian information using the Tubin smoothing approach, provides better and more
promising results, even slightly outperforming the other smoothing approaches.

In the second experiment, we perform experiments on three large-scale graphs: ogbn-arxiv, ogbn-
products, and ogbn-proteins. In this experiment, the significance of the mini-batch generation step of
the proposed framework becomes more prominent since employing full-batch large-scale graphs can
impose considerable demands on GPU memory due to the necessity of loading all node embeddings

2https://ogb.stanford.edu/docs/nodeprop/
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onto the GPU. In this experiment, we employ a random-walk sampling approach to generate mini-
batches. The results presented in Table 2, demonstrate that the proposed SGCL model consistently
outperforms other contrastive learning methods on large-scale graphs.

Table 2: Comparison of node classification accuracies of proposed models vs. baselines on large-
scaled graphs (mean ± std).

Model ogbn-arxiv ogbn-products ogbn-proteins
DGI Veličković et al. (2019) 67.07±0.5 68.68±0.6 94.11±0.1
GRACE Zhu et al. (2020) 67.92±0.4 72.10±0.7 94.11±0.2
MVGRL Hassani & Khasahmadi (2020) 60.68±0.5 69.90±0.9 93.87±0.3
BGRL Thakoor et al. (2022) 63.88±0.2 66.23±0.5 92.94±0.3
GBT Bielak et al. (2022) 69.05±0.3 65.74±0.4 94.07±0.3
SGCL-T 69.30±0.5 75.97±0.1 94.64±0.2
SGCL-B 69.24±0.3 74.33±0.4 93.55±0.2
SGCL-D 69.03±0.4 74.15±0.2 93.19±0.1

It’s worth noting that ogbn-products serves as an excellent benchmark for our proposed models
due to two key advantages. Firstly, its high homophily rate increases the likelihood of discovering
neighboring nodes of positive pairs as new positive pairs, enhancing the performance of the model.
Secondly, by using mini-batch graphs, instead of the full-batch graph with numerous connected
components, we can effectively move beyond the extremely small components. This approach pro-
vides richer neighboring information, resulting in the generating of more efficient augmented graphs
that contribute to the improved performance of the contrastive loss framework.

4.3 GRAPH CLASSIFICATION

Graph classification is another important downstream task, employed to reflect the effectiveness of
the learned graph representation. In this experiment, we follow the InfoGraph Sun et al. (2019) set-
ting for graph classification and compare the accuracy with self-supervised state-of-the-art methods.
The results reported in Table 3 indicate that, in comparison to the best-performing state-of-the-art
methods, the proposed model demonstrates enhanced accuracy for IMDB-BINARY, PROTEINS,
and ENZYMES, while maintaining comparable accuracy on other benchmarks. It’s worth mention-
ing that the accuracies of all models are reported from their respective published papers, except for
the BGRL results, which we reproduced under the same experimental setting.

Table 3: Comparison of graph classification accuracies of proposed models vs. baselines (mean ±
std).

Model IMDB-Binary PTC MUTAG PROTEINS ENZYMES
InfoGraph Sun et al. (2019) 73.0±0.9 61.7±1.4 89.0±1.1 74.4±0.3 50.2±1.4
GraphCL You et al. (2020) 71.1±0.4 63.6±1.8 86.8±1.3 74.4±0.5 55.1±1.6
MVGRL Hassani & Khasahmadi (2020) 74.2±0.7 62.5±1.7 89.7±1.1 71.5±0.3 48.3±1.2
AD-GCL Suresh et al. (2021) 71.5±1.0 61.2±1.4 86.8±1.3 75.0±0.5 42.6±1.1
BGRL Thakoor et al. (2022) 72.8±0.5 57.4±0.9 86.0±1.8 77.4±2.4 50.7±9.0
LaGraph Xie et al. (2022) 73.7±0.9 60.8±1.1 90.2±1.1 75.2±0.4 40.9±1.7
CGRA Duan et al. (2023) 75.6±0.5 65.7±1.8 91.1±2.5 76.2±0.6 61.1±0.9
SGCL-T 75.2±2.8 64.0±1.6 89.0±2.3 79.4±1.9 65.3±3.6
SGCL-B 73.2±3.7 62.5±1.8 87.0±2.8 81.6±2.3 63.7±1.6
SGCL-D 75.8±1.9 62.6±1.4 86.0±2.6 81.5±2.3 64.3±2.2

5 CONCLUSION

Conventional Graph Contrastive Learning (GCL) methods use a straightforward approach for dis-
tinguishing positive and negative pairs, often leading to challenges in uniformly identifying negative
pairs regardless of their proximity. In this paper, we introduced a Smooth Graph Contrastive Learn-
ing (SGCL) method, which incorporates the geometric structure of graph views into a smoothed
contrastive loss function. SGCL offers an intuitive way that employs three smoothing approaches to
consider proximity information when assigning positive and negative pairs. The GCL framework is
enhanced for large-scale graphs by incorporating a mini-batch strategy, leading to improved model
efficiency and computational scalability. The evaluations, conducted on graphs of varying scales,
consistently show that SGCL outperforms state-of-the-art GCL approaches in node and graph clas-
sification tasks. This emphasizes the effectiveness of the smoothed contrastive loss function in
capturing and utilizing proximity information, ultimately improving the performance of the SGCL.
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A RELATED WORK

A.1 GRAPH REPRESENTATION LEARNING

In recent years, graph neural networks (GNNs) have made significant progress, by the emergence of
a multitude of methods dedicated to enhancing graph representation learning. These methods have
been designed to address various aspects of network embeddings, including proximity, structure,
attributes, learning paradigms, and scalability Wu et al. (2021); Bronstein et al. (2017). Among the
notable GNN approaches, Graph Convolutional Networks (GCN) Kipf & Welling (2017) is one of
the foundational GNNs that uses convolutional operations to capture local and global information
from neighboring nodes, making them effective for tasks like node classification. To overcome the
constraints associated with conventional graph convolutions and their approximations, the Graph
Attention Network (GAT) Veličković et al. (2018) introduces the notion of masked self-attentional
layers, thereby enhancing its capacity to capture crucial node relationships. By integrating an autore-
gressive moving average (ARMA) filter, GNN-ARMA Bianchi et al. (2021) extends the functional-
ity of GNNs to adeptly capture global graph structures. GWCN, as proposed in Xu et al. (2019a);
Behmanesh et al. (2022), utilizes graph wavelets as spectral bases for convolution. This innovative
approach enables the modeling of both local and global structural patterns within graphs. GRAND
Chamberlain et al. (2021) presents an interesting perspective on graph convolution networks (GCNs)
by interpreting them as a solution to the heat diffusion equation. TIDE Behmanesh et al. (2023)
introduces an innovative approach to tackle the oversmoothing challenge in the message-passing-
based approaches by leveraging the diffusion equation to enable efficient and accurate long-distance
communication between nodes in a graph.

However, it’s essential to emphasize that the majority of these methods depend on supervised data,
and this can be a significant limitation in real-world applications due to the difficulties associ-
ated with acquiring labeled datasets. Several traditional unsupervised graph representation learning
methods are designed to learn meaningful representations of nodes in a graph without the need for
labeled data or explicit supervision. DeepWalk Perozzi et al. (2014) employs random walks and
skip-gram modeling to capture local graph structure, while node2vec Grover & Leskovec (2016)
extends this approach with a versatile biased random walk strategy encompassing breadth-first and
depth-first exploration. LINETang et al. (2015) focuses on preserving both first-order and second-
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order proximity information in large-scale networks, and GraphSAGE Hamilton et al. (2017) com-
bines random walk sampling and aggregation to capture both local and global graph structure. HOPE
Ou et al. (2016) leverages higher-order proximity information to capture structural patterns beyond
pairwise node relationships in graphs.

A.2 GRAPH CONTRASTIVE LEARNING

Self-supervised learning (SSL) has emerged as a powerful paradigm for mitigating the challenges
posed by expensive, limited, and imbalanced labels. It enables deep learning models to train on
unlabeled data, reducing the reliance on annotated labels Xie et al. (2023).

Contrastive Learning (CL) is a popular SSL technique known for its simplicity and strong empirical
performance. Its fundamental objective is to create meaningful representations by pushing dissimilar
pairs apart and pulling similar pairs closer together. Graph Contrastive Learning (GCL) extends the
concept of CL to the domain of graphs. However, dealing with the irregular structure of graph
data presents more complex challenges in designing strategies for constructing positive and negative
samples compared to CL applied to visual or natural language data Wu et al. (2023).

Numerous papers have emerged to address the challenges associated with GCL. These papers pri-
marily focus on sharing valuable insights and practical approaches for three key elements of con-
trastive learning: data augmentation, pretext tasks, and contrastive objective Wu et al. (2023).

Deep Graph Infomax (DGI) Veličković et al. (2019) and InfoGraph Sun et al. (2019) are two fun-
damental contrastive learning models that train a node encoder by maximizing mutual information
between the node representation and the global graph representation. DGI is designed for node
representation learning, whereas InfoGraph focuses on graph-level representations.

MVGRL Hassani & Khasahmadi (2020) is one of the recent GCL approaches that accomplishes the
learning of both node and graph-level representations by considering two matrices, namely adja-
cency and diffusion, as congruent views of a standard contrastive framework.

The fundamental of the aforementioned GCL approaches is the maximization of local-global mutual
information within a framework. However, they all rely on a readout function to generate the global
graph embedding which this function can be overly restrictive and may not always be achievable.
Moreover, for approaches like DGI Veličković et al. (2019), there is no guarantee that the result-
ing graph embedding can effectively capture valuable information from the nodes, as it may not
adequately preserve the distinctive features found in node-level embeddings.

Several GCL approaches, including GRACE Zhu et al. (2020), GraphCL You et al. (2020), and
CSSL Zeng & Xie (2021), deviate from the conventional approach of contrasting local-global mutual
information. Notably, these methods do not rely on making assumptions about the use of injective
readout functions to generate the graph embedding.

The effectiveness of the GCL models depends on comparing each item with many negative points
He et al. (2020). However, relying on these negative examples is problematic, especially for graphs,
where defining negative samples in a meaningful manner is particularly difficult.

To address this challenge, several Graph contrastive learning methods have emerged that eliminate
the need for explicit negative pairs. For instance, BGRL applies the BYOL method Grill et al.
(2020) to graphs as a GCL approach that doesn’t depend on negative pairs Thakoor et al. (2022).
Additionally, Graph Barlow Twins (GBT) utilizes a cross-correlation-based loss function instead of
negative samples Bielak et al. (2022).

In our approach, we neither treat negative pairs the same way as in GRACE nor ignore them like in
BGRL. Instead, we make use of negative pairs within the contrastive loss, but with a unique approach
– we use the geometric structure of graphs to effectively consider proximity among negative pairs in
contrastive learning, rather than treating them all the same.

B MINI-BATCH GENERATING APPROACHES

Random node sampler approach randomly selects a subset of nodes from a given graph G = (V, E)
according to a probability distribution P (v), where v represents individual nodes in the graph. The
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distribution P (v) assigns a probability to each node, indicating the likelihood of that node being
included in the sampled subset Vs.

Random edge sampler approach randomly selects edges from a given graph G = (V, E) based on
a predefined probability distribution. For each edge e in the set of edges E , an independent decision
is made to determine whether it should be included in the subgraph Gs. This decision is guided by
a probability value P (e) assigned to each edge. The sampler incorporates a budget parameter m to
constrain the expected number of sampled edges, ensuring that

∑
P (e) = m, as described in Zeng

et al. (2020).

Random walk sampler approach begins by randomly selecting r root nodes as starting points on the
entire graph G = (V, E). From each of these starting nodes, random walks of length r are conducted
to generate subgraphs Zeng et al. (2020). To manage the potential issue of generating excessively
large subgraphs, a batch size parameter m is commonly employed, ensuring the approximate number
of samples per batch.

Ego graph sampler approach generates subgraphs centered around a specific ”ego” node in a graph
G = (V, E). This mini-batch generation approach provides a localized perspective on the graph
by constructing a k-hop ego-graph centered at node vi, where ”k-hop” indicates that the subgraph
includes nodes that can be reached within k steps from vi. Importantly, the sampler ensures that the
maximum distance between vi and any other nodes within the ego-graph is limited to k, as expressed
mathematically by ∀vj ∈ V, | d(vi, vj) |< k Zhu et al. (2021a).

C PROPERTIES AND STATISTICS OF THE BENCHMARKS

The properties of different graph datasets used in the node and graph classification experiments are
provided in Table 4 and 5, respectively. The homophily rate h denotes the degree to which nodes in
the graph connect with similar nodes (homophily) versus nodes with dissimilar nodes (heterophily).
The diameter of large-scaled graphs is performed using Breadth-First Search (BFS) from a sample
of 1,000 nodes selected at random.

Table 4: The statistics of the datasets for node classification evaluation

Scale Dataset #Nodes #Edges #Feature #Class #CC h% Avg. N.D. Diameter

Small Cora 2,485 5,069 1,433 7 78 80.4 4.08 19
Citeseer 2,120 3,679 3,703 6 438 73.5 3.47 28

Medium

PubMed 19,717 44,324 500 3 1 80.2 4.5 18
CoauthorCs 18,333 81,894 6,805 15 1 80 8.93 24
Computers 13,381 245,778 767 10 314 77.7 36.74 10
Photos 7,487 119,043 745 8 136 82.7 31.8 11

Large
ogbn-arxiv 169,343 1,166,243 128 40 1 65.4 13.67 23
ogbn-products 2,449,029 61,859,140 100 47 52,658 80.8 51.54 27
ogbn-proteins 132,534 39,561,252 8 94 1 91 597 9

#CC: Number of connected components, h%: Homophily rate, Avg. N.D: Average node degrees

Table 5: The statistics of the datasets for graph classification evaluation
Dataset #Graph Avg. node Avg. edge #Features #Class
MUTAG 188 17.9 39.6 7 2
PTC 344 14.29 14.69 19 2
IMDB-Binary 1,000 19.8 193.1 1 2
PROTEINS 1,113 39.1 145.6 3 2
ENZYMES 600 32.63 124.3 3 6

D EXPERIMENTAL SETUP

In all experiments, we follow the linear evaluation scheme outlined in Veličković et al. (2019).
Initially, we start by training the ’2-layer’ GCN encoders using the proposed SGCL framework in
an unsupervised manner. The training process consists of 200 iterations, and we utilize the Adam
optimizer with a learning rate of 1e−3. Subsequently, the obtained embeddings are used to perform
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node or graph classification on a downstream task, employing a l2− regularized logistic regression
classifier. The mean classification accuracy, along with the standard deviation, is then reported on
the test nodes after conducting 5000 training runs.

In the mini-batch scenario of the node classification task, we employ a random-walk batch genera-
tion approach to create subgraphs from the input graph. We then conduct node classification for a
downstream task, with a split ratio of 0.1/0.1/0.8 for train/validation/test. In both graph classification
and the full-batch scenario of node classification, we follow the widely adopted data split used in
self-supervised learning, as outlined in the Open Graph Benchmark.

To implement the proposed model, we leveraged the extensive capabilities offered by the PyGCL
library, as introduced in Zhu et al. (2021b). For the graph augmentation, we employ the augmentor
base class provided by PyGCL, which includes Edge Removing (ER) and Node Feature Masking
(FM), both with a drop probability of 0.5.

Additionally, for a comprehensive comparison, we conducted experiments on all baselines using the
PyGCL library since there was a lack of extensive baseline experimentation, especially for large-
scale graphs. The implementation of all experiments will be made available after the acceptance of
this draft.

In the mini-batch generation using the random-walk sampler, we set the batch size to 2000 with a
random walk length of 4 and 3 starting root nodes for all benchmark datasets. However, for the
ogbn-products benchmark, we use a batch size of 500 with a random walk length of 20.

In the smoothing techniques, we set the parameters as follows: For Taubin smoothing, we use
µ = −0.4, τ = 0.3, and K = 2. In the case of Bilateral smoothing, we employ σspa = 0.1 and
σinit = 2. Finally, for Diffusion-based smoothing, we utilize η = 0.03 and K = 2.

All experiments are implemented using PyTorch 1.13.1 and PyTorch Geometric 2.2.0 and conducted
on NVIDIA A100 GPUs with 40GB of memory.

E SUPPLEMENTARY EXPERIMENTS

E.1 NODE CLASSIFICATION IN FULL-BATCH SCENARIO

Given the computational resource constraints, we are able to conduct experiments on small and
medium-scale benchmarks using a full-batch scenario. As a result, to establish a fair and robust
comparison with the existing state-of-the-art methods, we replicated the node classification exper-
iment in a full-batch scenario, adhering to the commonly employed data split in self-supervised
learning as provided in the Open Graph Benchmark. Table 6 demonstrates that, without any mini-
batch generating step, SGCL outperforms state-of-the-art methods in four out of six benchmarks.
However, it’s worth noting that the superiority of SGCL with the mini-batch generating step is more
pronounced.

Table 6: Comparison of node classification accuracies of proposed models vs. baselines on small
and medium-scaled graphs in full-batch scenario (mean ± std).

Model Cora Citeseer Pubmed CoauthorCS Computers Photo
DGI Veličković et al. (2019) 76.28±0.04 69.33±0.14 83.79±0.08 91.63±0.08 71.96±0.06 75.27±0.02
GRACE Zhu et al. (2020) 81.80±0.19 71.35±0.07 85.86±0.05 91.57±0.14 84.77±0.06 89.50±0.06
MVGRL Hassani & Khasahmadi (2020) 84.98±0.11 71.29±0.04 85.22±0.04 91.65±0.02 88.55±0.02 91.90±0.08
BGRL Thakoor et al. (2022) 80.21±1.14 66.33±2.10 81.78±1.06 90.19±0.82 84.24±1.32 89.56±1.01
GBT Bielak et al. (2022) 79.32±0.31 65.78±1.33 86.35±0.48 91.87±0.07 90.43±0.18 92.23±0.18
CGRA Duan et al. (2023) 82.71±0.01 69.23±1.19 82.15±0.46 91.26±0.27 89.76±0.36 91.54±1.06
GRLC Peng et al. (2023) 83.50±0.24 70.02±0.16 81.20±0.20 90.36±0.27 88.54±0.23 91.80±0.77
SGCL-T 84.45±0.04 71.26±0.06 84.11±0.08 92.14±0.09 86.81±0.01 92.71±0.05
SGCL-B 85.08±0.12 72.77±0.33 83.67±0.06 92.16±0.15 88.24±0.05 92.43±0.03
SGCL-D 84.47±0.25 70.32±0.04 85.22±0.02 92.04±0.05 84.98±0.34 90.09±0.11

While SGCL continues to demonstrate superior performance across most benchmarks in this case, it
is noteworthy that SGCL exhibits enhanced performance in the mini-batch scenario compared to the
full-batch. We attribute this difference to the presence of a substantial number of connected compo-

16



Under review as a conference paper at ICLR 2024

nents in the full-batch graph. However, our framework benefits from mini-batch graphs, which can
generate more connected mini-batches using a random-walk sampling approach. This enables our
framework to leverage proximity information within the mini-batch graphs more effectively than in
the full-batch graph.

E.2 COMPUTATIONAL ANALYSIS

The computational cost of graph contrastive learning models is analyzed through two distinct com-
ponents: pre-training and downstream task evaluation. In the pre-training phase, the process in-
volves augmentation generation, encoder computation, and computation of the contrastive objective
for each batch. In the downstream task phase, the model learns two input/output MLP layers and
evaluates the model for node classification. We conduct the computation analysis to evaluate the
runtime performance of three variants of the SGCL model and compare these variants with sev-
eral baseline methods on graphs of different scales, ranging from small to medium and large-scale
graphs. The results of these experiments are summarized in Table 7.

Table 7: Runtime performance comparison of the proposed model and baselines across graphs of
different scales (seconds).

Model Phase Small
(Cora)

Medium
(CoauthorCS)

Large
(ogbn-arxiv)

DGI pre-training 0.0391 0.0916 0.0732
downstream 0.0024 0.0148 0.0837

GRACE pre-training 0.0713 0.3186 0.4233
downstream 0.0024 0.0148 0.0845

MVGRL pre-training 0.2266 0.7824 0.9407
downstream 0.0024 0.0148 0.0833

BGRL pre-training 0.0927 0.1849 0.1755
downstream 0.0024 0.0149 0.0846

GBT pre-training 0.0343 0.1387 0.5388
downstream 0.0024 0.0148 0.0844

SGCL-T pre-training 0.1916 1.5012 2.1334
downstream 0.0025 0.0149 0.0841

SGCL-B pre-training 1.3484 3.3491 3.9549
downstream 0.0025 0.0151 0.0848

SGCL-D pre-training 1.3771 3.4538 4.0496
downstream 0.0024 0.0151 0.0841

These results indicate that during pre-training, SGCL-T on the Cora dataset outperforms MVGRL
in running time. However, in other experiments, the computational cost of the proposed model
is slightly increased compared to the baselines, primarily attributed to the computation associated
with the smoothing approach. Specifically, its computational load is approximately twice that of
MVGRL. It’s noteworthy to highlight that the computational costs in the downstream evaluation
phase across all models are nearly identical on each benchmark. This implies that, despite the
more computations during the pre-training phase, our model demonstrates efficiency during the
downstream evaluation phase.

F ABLATION STUDY

F.1 EVALUATING WITH OTHER MINI-BATCHING GENERATION METHODS

We conduct node classification experiments employing other mini-batching generation methods,
including random node-sampling, random edge-sampling, and Ego-graph. A summary of the results
derived from these mini-batching approaches is reported in Table 8.

F.2 INFLUENCE OF DIFFERENT TERMS OF CONTRASTIVE OBJECTIVE

To perform an ablation study on the contrastive objective, we evaluate the significance of each term
of Eq. 5 and subsequently combine them with hyperparameter λ. Table 9 provides the accuracies
of different variants of SGCL achieved by different components of the contrastive objective on
three benchmarks of varying scales: small (Cora), medium (CoauthorCS), and large (ogbn-arxiv).
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Table 8: Accuracy comparison of proposed models with various mini-batching generation ap-
proaches (mean ± std).

Model Sampling method Cora Citeseer Pubmed CoauthorCS Computers Photo

SGCL-T

RW-sampler 86.54±1.4 73.71±2.0 86.57±0.49 92.99±0.36 87.83±1.4 93.05±0.94
Ego-graph 84.93±4.2 71.20±3.4 85.70±0.84 93.09±0.37 86.38±0.9 93.15±0.86
Node-sampler 84.12±1.8 70.42±3.3 85.94±0.49 92.87±0.58 85.92±0.44 92.24±0.65
Edge-sampler 85.59±2.1 70.66±1.4 86.76±0.43 93.23±0.86 86.28±1.3 92.31±1.2

SGCL-B

RW-sampler 87.50±1.7 73.65±1.3 86.13±0.61 93.15±0.39 87.89±0.71 92.31±1.3
Ego-graph 84.56±1.3 72.87±1.7 85.88±0.33 93.10±0.44 86.57±1.2 93.05±0.85
Node-sampler 84.49±1.1 70.84±1.9 85.90±1.0 93.18±0.4 85.68±0.57 91.95±1.0
Edge-sampler 84.26±1.7 71.86±2.2 86.19±0.7 92.85±0.64 84.52±0.58 91.66±1.1

SGCL-D

RW-sampler 85.22±0.79 72.66±2.4 86.27±0.53 93.21±0.4 85.47±1.2 91.86±0.72
Ego-graph 85.00±1.4 72.57±2.4 85.75±0.98 92.93±0.3 80.04±0.82 89.07±0.71
Node-sampler 84.26±1.7 72.51±1.1 85.18±1.0 93.06±0.41 78.68±0.64 89.33±1.6
Edge-sampler 86.47±1.2 70.42±0.83 86.57±0.7 93.26±0.08 73.31±0.74 90.61±0.32

Initially, we observe that the exclusion of any term from the loss function results in deteriorated or
collapsed solutions, aligning with our expectations. Subsequently, we investigated the influence of
the combination of two individual terms using an optimal value of λ.

To select the value of λ, we initially set it as λ = 1/2N . However, in the experiments, we determined
its optimal value through grid search. For instance, on the Photo dataset, the optimal value for λ
was found to be around 2.3e− 4. This value aligns with our first initialization when considering the
batch size of N = 2000 in the experiments.

Table 9: Accuracies of different SGCL variants influenced by individual components of the con-
trastive objective Eq. 5.

Model Benchmark (A) (B) L(i,j)
SGCL (λ)

small (Cora) 84.13±3.1 83.54±1.0 86.54±1.4 (4e-4)
SGCL-T medium (CoauthorCS) 91.36±0.7 90.87±0.4 92.99±0.4 (1e-4)

large (ogbn-arxiv) 68.92±0.0 67.05±0.0 69.30±0.5 (1e-4)
small (Cora) 85.26±2.9 85.54±1.3 87.50±1.7 (4e-4)

SGCL-B medium (CoauthorCS) 93.04±0.1 91.45±0.3 93.15±0.4 (1e-4)
large (ogbn-arxiv) 68.73±0.3 68.29±0.4 69.24±0.3 (1e-4)
small (Cora) 84.91±1.8 82.81±2.1 85.22±0.8 (4e-4)

SGCL-D medium (CoauthorCS) 92.4±0.52 91.09±0.2 93.2±0.4 (1e-4)
large (ogbn-arxiv) 68.40±0.3 68.29±0.3 69.03±0.4 (1e-4)

(A): ∥ Π̃
(i,j)
pos ⊙ (1−C(i,j)) ∥2F

(B): ∥ (1− Π̃
(i,j)
pos )⊙C(i,j) ∥2F
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