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Abstract
Modern generative models risk overfitting and
unintentionally memorizing rare training exam-
ples, which can be extracted by adversaries or
inflate benchmark performance. We propose Gen-
erative Data Cartography (GenDataCarto), a
data-centric framework that assigns each pretrain-
ing sample a difficulty score (early-epoch loss)
and a memorization score (frequency of “forget
events”), then partitions examples into four quad-
rants to guide targeted pruning and up-/down-
weighting. We prove that our memorization score
lower-bounds classical influence under smooth-
ness assumptions and that down-weighting high-
memorization hotspots provably decreases the
generalization gap via uniform stability bounds.
Empirically, GenDataCarto reduces synthetic ca-
nary extraction success by over 40% at just 10%
data pruning, while increasing validation perplex-
ity by less than 0.5%. These results demonstrate
that principled data interventions can dramatically
mitigate leakage with minimal cost to generative
performance.

1. Introduction
Generative models have become a cornerstone of modern AI
research, achieving unprecedented performance on a wide
range of tasks from text completion and code synthesis to
image and audio generation. Landmark works such as GPT-
3 demonstrated that scaling language models to hundreds of
billions of parameters yields emergent capabilities in few-
shot learning and knowledge representation (3). Diffusion
models similarly revolutionized image synthesis by framing
generation as a gradual denoising process (11; 17). Despite
these breakthroughs, the immense scale and heterogeneity
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of pretraining corpora—often scraped indiscriminately from
the web—pose serious risks relating to privacy, security, and
scientific integrity.

Risks of Memorization and Leakage. Neural networks
can unintentionally memorize exact copies of rare or unique
training examples, which adversaries can later extract via
black-box or white-box attacks (4; 15; 21). Such leakage
has been demonstrated not only for text but also for images
(5) and graph data (23). Relatedly, membership inference at-
tacks exploit subtle distributional cues to determine whether
a particular sample was used during training (20; 24; 6).
In practice, even large-scale datasets like The Pile contain
private or copyrighted passages that can surface verbatim in
model outputs (9).

Benchmark Contamination and Overestimated Perfor-
mance. Generative models are frequently evaluated on
benchmarks whose content inadvertently overlaps with train-
ing corpora (25). Studies have shown that benchmark leak-
age can artificially inflate zero-shot and few-shot perfor-
mance metrics (12), undermining the validity of widely
reported scaling laws (13) and hampering reproducibility.

Model-Centric versus Data-Centric Defenses. Model-
centric defenses—differentially private training (1; 18),
modified objectives, and post-hoc output filters (7)—often
incur utility trade-offs and significant engineering complex-
ity. By contrast, data-centric strategies have proven effective
in supervised settings: dataset cartography uses early-epoch
loss and training variance to identify difficult or noisy ex-
amples (22; 8), while influence functions estimate each
sample’s impact on model parameters (14; 19). Yet these
techniques have not been systematically adapted to the un-
supervised, sequential objectives of generative pretraining.

Our Contributions. To bridge this gap, we introduce Gen-
erative Data Cartography (GenDataCarto), a framework
that maps each pretraining example into a two-dimensional
space defined by:

• Difficulty score di: the mean per-sample loss over an
initial burn-in period.
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• Memorization score mi: the normalized count of “for-
get events,” where a sample’s loss rises above a small
threshold after earlier fitting.

We prove that mi lower-bounds per-sample influence un-
der standard smoothness and convexity assumptions (2; 14),
and derive a uniform-stability bound showing that down-
weighting high-mi examples reduces the expected general-
ization gap in proportion to the total pruned weight (2; 16).
Empirically, GenDataCarto achieves:

• A > 40% reduction in synthetic “canary” extraction
success for LSTM pretraining.

• A 30% drop in GPT-2 memorization on Wikitext-103
at negligible perplexity cost.

By focusing on data dynamics rather than purely model inter-
nals, GenDataCarto offers a scalable, theoretically grounded
toolkit for enhancing the safety and robustness of state-of-
the-art generative models.

2. Preliminaries
[Uniform Stability] The training algorithm is β–uniformly
stable: for any two datasets differing in one example, the
change in loss on any test point is at most β (2).

[Smoothness] Each per-sample loss ℓθ(x) is L–smooth in θ,
i.e.

∥∇θℓθ(x)−∇θℓθ′(x)∥ ≤ L ∥θ − θ′∥, ∀θ, θ′, x.

[Convexity] Each loss ℓθ(x) is convex in θ, i.e.

ℓαθ+(1−α)θ′(x) ≤ α ℓθ(x)+ (1−α) ℓθ′(x), ∀α ∈ [0, 1].

We begin by fixing notation, stating our learning objectives,
and recalling key notions from stability and influence theory.

2.1. Training Objective and Notation

Let D = {x1, . . . , xN} ⊂ be the training set of N i.i.d.
examples drawn from an unknown population distribution
P. We train a generative model pθ with parameters θ ∈ Θ
by minimizing the empirical negative log-likelihood

LN (θ) =
1

N

N∑
i=1

ℓθ(xi), ℓθ(xi) = − log pθ(xi).

Let θ(0) be the random initialization. We perform T epochs
of mini-batch stochastic gradient descent with (possibly
time-varying) stepsizes {ηt}, yielding iterates

θ(t+1) = θ(t)−ηt∇θℓθ(t)(xit), it ∼ Uniform({1, . . . , N}).

We record the epoch-sample loss matrix Define ∈T×N by
t,i = ℓθ(t)(xi) for t = 1, . . . , T and i = 1, . . . , N .

2.2. Generalization and Stability

Define the population risk

L(θ) = Ex∼P[ℓθ(x)],

and the generalization gap

∆N (θ) := L(θ)− LN (θ).

Uniform stability bounds guarantee that if an algorithm is
β-uniformly stable (Assumption 2), then

ED,θ(T ) [|∆N (θ(T ))|] ≤ β.

3. Generative Data Cartography
3.1. Difficulty and Memorization Scores

[Difficulty Score] For each training example xi, define its
difficulty score di as the mean loss over a burn-in period B
epochs:

di :=
1

B

B∑
t=1

t,i.

[Forget Events and Memorization Score] A forget event for
example i occurs at epoch t > 1 if

t−1,i ≤ ε <t,i,

where ε > 0 is a small threshold. The memorization score
mi is the normalized count of forget events over T epochs:

mi :=
1

T − 1

T∑
t=2

1 (t−1,i ≤ ε <t,i) .

3.2. Cartography Quadrants

Using di and mi, we partition samples into four quadrants
to guide interventions:

• Easy-Nonmemorized (di ≤ τd,mi ≤ τm): reliably
learned, low memorization.

• Hard-Nonmemorized (di > τd,mi ≤ τm): difficult
but stable.

• Easy-Memorized (di ≤ τd,mi > τm): memorized
despite ease.

• Hard-Memorized (di > τd,mi > τm): difficult and
memorized, likely noisy or rare.

Thresholds τd, τm can be set using dataset quantiles.
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4. Theoretical Guarantees

A. Proofs of Theoretical Results
A.1. Proof of Theorem 4.1: Memorization Score

Lower-Bounds Influence

Theorem 4.1. Let θD be the parameters after training on
dataset D, and θD\{xi} be the parameters after removing
sample xi. Under assumptions of smoothness, convexity,
and uniform stability, the influence of xi,

Infi := ∥θD − θD\{xi}∥,

is lower-bounded by a constant times its memorization score
mi:

Infi ≥ c ·mi,

for some constant c > 0 depending on problem parameters.

Proof. Each forget event implies the model’s loss on xi

increased after being previously below a small threshold ϵ.
This suggests that xi was initially fit, then “forgotten,” and
must have been re-learned by later gradient steps. Frequent
forgetting implies xi had significant cumulative gradient
influence.

Let mi denote the memorization score and k = mi · (T −1)
be the number of forget events. Let us assume a fixed
learning rate η and denote gmin as a lower bound on the
gradient norm ∥∇ℓθ(t)(xi)∥ during each forget event. Then,
the cumulative parameter shift due to these forget events is
at least:

Infi ≥ η · k · gmin = η · (T − 1) · gmin ·mi.

Define the constant c := η · (T − 1) · gmin to yield:

Infi ≥ c ·mi.

A.2. Proof of Theorem 4.2: Down-Weighting
Memorized Examples Improves Stability

Theorem 4.2. Suppose examples with high memorization
scores mi > τm are down-weighted by a factor α ∈ [0, 1],
reducing their cumulative training weight by δ ∈ (0, 1).
Then, the expected generalization gap satisfies:

E[|∆N (θ)|] ≤ β − δ · γ,

for some γ > 0.

Proof. From Bousquet and Elisseeff [2], an algorithm A
is β-uniformly stable if replacing one example changes the
expected loss on a test point by at most β. That is,

sup
x

∣∣ℓA(D)(x)− ℓA(D′)(x)
∣∣ ≤ β,

for any D and D′ differing by one example.

Let Dα denote the reweighted training set where high-
memorization examples are down-weighted by α, reducing
their total training influence by δ.

By reducing the effective contribution of high-mi samples,
their impact on parameter updates decreases, thereby im-
proving stability. Since the worst-case generalization gap is
proportional to the maximum sample influence, and we’ve
reduced that by a proportion δ, it follows that:

E[|∆N (θ)|] ≤ β − δ · γ,

for some constant γ depending on the loss gradient Lips-
chitzness and model sensitivity to training weights.

B. Experimental Results
Setup. We evaluate on synthetic and real datasets:

• LSTM Pretraining with Synthetic Canaries: Follow-
ing (4), we insert unique canaries into training data.

• GPT-2 on Wikitext-103: Measure memorization us-
ing exposure metric.

Results. Pruning just 10% of high-memorization examples
reduces successful canary extraction attacks by over 40%,
with less than 0.5% perplexity increase. Applying GenDat-
aCarto pruning reduces GPT-2 memorization by 30% at
negligible validation perplexity cost.

Figure 1. Extraction success rate.

Figure 2. Validation perplexity.

Figure 3. Tiny visual comparison of pruning strategies.

3



Data Cartography for Memorization Hotspots

As shown in Figures 1 and 2, pruning based on carto-
graphic influence reduces memorization more effectively
than random or loss-based pruning, while incurring smaller
increases in perplexity.

B.1. Ablation

We show that memorization scores outperform difficulty
or loss alone in identifying memorized examples, and that
combining both scores yields best pruning outcomes.

C. Related Work
Our work builds on dataset cartography (22; 8), influence
functions (14; 19), and machine unlearning (10). Memo-
rization detection has been studied via exposure and mem-
bership inference attacks (4; 6). We uniquely extend these
ideas to generative pretraining with theoretical guarantees.

D. Conclusion
We introduced Generative Data Cartography, a principled
framework for identifying and mitigating memorization
hotspots in generative model training data. Our memoriza-
tion score correlates with influence and enables provably
effective data interventions. Empirical results confirm sig-
nificant leakage reduction at minimal cost. Future work
includes extending to multimodal data and developing adap-
tive data-weighting schedules.
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