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Abstract

Neural topic models (NTMs) have advanced
topic modeling through their flexibility, en-
abling self-supervised learning with contrastive
samples at the document or topic representation
level. However, prior tf-idf-based augmenta-
tion strategies provide limited guidance during
training. To address this, we propose an adver-
sarial framework with a trainable augmentation
model that generates positive samples in the
embedding space, leveraging contextualized
word embeddings from large language models
(LLMs). Experimental results demonstrate that
our model surpasses previous approaches in
topic coherence, highlighting the effectiveness
of adversarial data augmentation in improving
topic modeling performance.

1 Introduction

Topic modeling uses word co-occurrence pat-
terns to extract latent topics from large text cor-
pora, enabling applications such as text classifica-
tion, clustering, regression, information retrieval,
and recommendation systems (Mcauliffe and Blei,
2007; Zhao et al., 2021; Wei and Croft, 2006;
Wang and Blei, 2011). Latent Dirichlet alloca-
tion (LDA) (Blei et al., 2003) is a foundational
conventional model, while neural topic models
(NTMs), based on the variational autoencoder
(VAE) (Welling and Kingma, 2014) framework,
have gained prominence with advances in deep
learning and GPUs. The flexibility and extensibil-
ity of NTMs have enabled extensions such as self-
supervised learning, which leverage contrastive
samples to improve topic representations and im-
prove topic quality (Nguyen and Luu, 2021; Wu
et al., 2022; Han et al., 2023).

Self-supervised NTMs use various strategies
to build contrastive samples. CLNTM (Nguyen
and Luu, 2021) generates contrastive bag-of-words
(BoW) samples based on tf-idf values: posi-
tive samples replace unimportant words with re-

constructed counterparts, while negative samples
replace salient words. VICNTM (Xu et al,
2025) uses the same strategy to create only pos-
itive samples and employing Variance-Invariance-
Covariance (VIC) regularization (Bardes et al.,
2022) to act as implicit negative samples. However,
this tf-idf-based strategy causes positive samples to
become increasingly similar to anchor samples dur-
ing training, limiting their effectiveness in guiding
the learning process.

Adversarial data augmentation, widely used in
computer vision to improve model generalization,
generates informative positive samples by maxi-
mizing task loss while preventing collapse (Zhang
et al., 2020; Tang et al., 2020; Suzuki, 2022).
TeachAugment (Suzuki, 2022) introduces a teacher
model to guide augmentation, requiring no prior
knowledge or additional hyperparameters. This
framework ensures that the generated positive sam-
ples remain challenging for the target model while
still being recognizable by the teacher model.

Representation-level augmentation, which adds
adversarial perturbations to anchor samples in the
embedding space, is common in adversarial frame-
works for text data (Miyato et al., 2017; Zhu et al.,
2020). Chen et al. (2023) proposed an adversar-
ial framework for low-resource text classification,
generating hard positive samples by mixing em-
beddings of important words with unknown-word
embeddings to improve robustness.

In this paper, we propose VICNTMxACE,
an extension of VICNTM incorporating an
Adversarial framework and Contextualized
Embeddings, as illustrated in Fig. 1. To en-
hance VICNTM’s performance, we optimize
positive sample generation by applying Suzuki
(2022)’s adversarial framework and adapting
a representation-level augmentation strategy
inspired by Chen et al. (2023). To augment anchor
samples in the embedding space, we replace BoW
representations with BERT-encoded word embed-
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Figure 1: Illustration of our model. The left part of the figure depicts the structure of the model, with red (solid)
lines representing the flow of anchor samples and yellow (dashed) lines indicating the flow of positive samples. The
right part of the figure illustrates the structure of the augmentation model in detail.

dings (Devlin et al., 2019), compressed using a
CNN encoder (Xu et al., 2023). Experiments on
three widely used datasets demonstrate that our
model outperforms baseline and state-of-the-art
VAE-based models in topic coherence. An ablation
study further verifies the effectiveness of each
newly added component.

2 Related works

Research on NTMs has become an integral part
of topic modeling. ProdLDA (Srivastava and Sut-
ton, 2017) was the first NTM to use the VAE
framework, with a logistic normal prior approx-
imating the Dirichlet prior. Building on ProdLDA,
SCHOLAR (Card et al., 2018) incorporated exter-
nal information and improved topic quality by re-
fining implementation details and leveraging word
log-frequency.

Meanwhile, adversarial NTMs using generative
adversarial networks (Goodfellow et al., 2014) gen-
erate negative samples via a generator and distin-
guish them with a discriminator (Wang et al., 2019,
2020; Hu et al., 2020), but Nguyen and Luu (2021)
showed that mutual information between positive
and anchor samples is more beneficial. Building on
SCHOLAR, they proposed CLNTM, which uses
tf-idf to generate both positive and negative sam-
ples. Avoiding the limitations of negative samples,
Xu et al. (2025) adopted the same augmentation
strategy to generate only positive samples and intro-
duced regularizations between positive and anchor
samples, as well as among samples within each
group. Contrastive learning has also been utilized
in other NTMs in various ways (Wu et al., 2022;
Han et al., 2023).

Unlike the adversarial topic models, our model
consists of an augmentation model, a self-
supervised NTM as the target model, and a teacher
model, which will be described in the next section.

3 Methodology

In this paper, we propose VICNTMxXACE, an ex-
tension of the regularized self-supervised NTM,
VICNTM (Xu et al., 2025), using an adversarial
framework. Fig. 1 illustrates the model structure.
For each minibatch of documents X, where each
document consists of a sequence of tokens, an-
chor samples X are obtained with each sample rep-
resented as word embeddings {wq, w1, -, Wy}
via the LLM encoder, with n being the maximum
number of tokens it can process. Positive sam-
ples X = a4 (X)) are generated through the aug-
mentation model oy (-), parameterized by ¢. The
anchor and positive word embeddings are com-
pressed and concatenated into a single embedding,
denoted as X, = ¢(X) and X, = g(X'), re-
spectively, which are then fed into the target model
(VICNTM), consisting of an encoder and decoder
parameterized by @ = {@epc, Odec }- VIC regular-
ization (Bardes et al., 2022) is applied to the in-
ferred topic distributions Z and Z’. Finally, the
reconstructed BoW representations Xecon are used
to compute the reconstruction error against the an-
chor BoW representations Xpow. This model gen-
erates hard positive samples to enrich information
and enhance NTM training, improving topic qual-
ity. The rest of this section details the adversarial
framework, augmentation model, and target model.
Adversarial framework In this paper, we adopt
TeachAugment (Suzuki, 2022) as the adversarial



framework, which consists of three components: an
augmentation model for generating positive sam-
ples from input samples, a target model trained
on these positive samples, and a teacher model,
implemented as the exponential moving average
(EMA) of the target model. The adversarial frame-
work is trained by alternately optimizing the target
model to minimize its loss with a fixed augmenta-
tion model and optimizing the augmentation model
to maximize the target model’s loss while minimiz-
ing the teacher model’s loss.

Augmentation model Similar to Chen et al.
(2023), we build a noising network to produce
informative positive samples by adding noise to
the anchor samples. This is achieved by utiliz-
ing eynk and applying a multilayer perceptron
(MLP) followed by a sigmoid function. As il-
lustrated in Fig. 1, the weight v; determines the
degree to which the anchor word embedding is re-
tained. Each augmented embedding is computed
as w; = v - w; + (1 — ) - eunk.

Target model VICNTM incorporates VIC regular-
ization into SCHOLAR(Card et al., 2018), utilizing
the same sampling strategy as CLNTM (Nguyen
and Luu, 2021). The model generates positive sam-
ples using the previously mentioned tf-idf-based
sampling strategy, followed by applying VIC reg-
ularization to the anchor and positive latent topic
representations. Given a minibatch with N docu-
ments, the model is trained by minimizing the re-
construction term, the Kullback-Leibler divergence
term, and the regularization term, as shown below:
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where A, u, and v are hyperparameters.

In this paper, the target model takes continu-
ous representations from the augmentation model
instead of discrete BoW representations. To lever-
age the rich information in word embeddings, we
use the method by Xu et al. (2023), employing a
CNN encoder to compress a sequence of 512 word
embeddings (1024 dimensions each) into four em-
beddings of the same size. These are concatenated
into a 4096-dimensional representation, which is
then fed into the target model to infer its topic dis-
tribution.

Overall, our model is trained by optimizing the
following min-max objective:
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The target model and augmentation model are
trained in the same manner as in TeachAugment,
with the teacher model parameterized by 6 imple-
mented as the EMA of the target model.

4 Experiments

Dataset #Docs Avg. Length  Split (%)
20NG 16469  89:152 48/12/40
IMDb 46304  78is4 50/25/25
Wiki 28590 13201057 70/15/15

Table 1: Dataset details.

We conducted experiments on three widely used
datasets: 20Newsgroups (20NG) (Lang, 1995),
IMDb movie reviews (IMDb) (Maas et al., 2011),
and Wikitext-103 (Wiki) (Merity et al., 2017), to
evaluate topic coherence (NPMI (Lau et al., 2014))
and topic diversity (TD (Dieng et al., 2020)) on
the top ten words in each topic for topic numbers
K =50and K = 200. Each experiment was run
ten times with different random seeds. The datasets
were preprocessed following Xu et al. (2025)’s ap-
proach, with modifications inspired by other ap-
proaches (Card et al., 2018; Xu et al., 2023). Ta-
ble 1 summarizes the dataset details after prepro-
cessing. The LLM encoder was implemented us-
ing BERT-large (Devlin et al., 2019), while the
CNN encoder followed Xu et al. (2023)’s imple-
mentation. Hyperparameters, including batch size,
the number of batches per update for the augmen-
tation model, and the weights for the VIC regu-
larization, were optimized using Optuna (Akiba
et al., 2019). We compared our model against VAE-
based approaches, including ProdLDA (Srivastava
and Sutton, 2017), ECRTM (Wu et al., 2023),
TSCTM (Wu et al., 2022), SCHOLAR (Card et al.,
2018), CLNTM (Nguyen and Luu, 2021), and VIC-
NTM (Xu et al., 2025).

Tables 2 and 3 present the results for NPMI and
TD, respectively. Our model significantly outper-
formed other approaches on 20NG and IMDb in
NPM]I, the primary focus of this paper. However,
the slightly lower NPMI on the Wiki dataset com-
pared to other SCHOLAR-based models may result



Dataset 20NG IMDb Wiki

K 50 200 200 50 200
ProdLDA 0.2347+0.0083 0.173920.0028 0.1075+0.0061 0.0735+0.0020 0.2554+0.0064 0.1916+0.0037
ECRTM 0.2354+0.0113 0.16300.0029 0.1048+0.0075 0.06050.0076 0.37990.0078 0.2457+0.0038
TSCTM 0.2469+0.0084 0.1571x0.0052 0.1262+0.0129 0.0787+0.0023 0.4250+0.0204 0.2075+0.0103
SCHOLAR 0.35190.0075 0.3122z0.0015 0.1551+0.0062 0.1274=+0.0018 0.5138+0.0147 0.4571+0.0045
CLNTM 0.3530+0.0063 0.311520.0055 0.1568+0.0056 0.1255=0.0017 0.514100112  0.4564+0.0052
VICNTM 0.3543+0.0064 0.3148z0.0051 0.1558+0.0069 0.1272+0.0026 0.5090=0.0083 0.4587+0.0031
VICNTMXACE 0.3632:00046 0.3452:00055 0.1678x00065 0.1353+0.0065 0.5122+0.0149 0.455520.0047

Table 2: Results on NPMI when K = 50 and K = 200. Boldface indicates the optimal performance in each

experiment.

Dataset 20NG IMDb Wiki

K 50 200 50 200 50 200
ProdLDA 0.8858+0.0068  0.6892:0.0100 0.6694x00175  0.5809:0.0148  0.8364x00142  0.6248+0.0116
ECRTM 0.8790z0.0424  0.9544+00059 0.9616200145 0.9409:0.1053  0.980620.0073  0.9118+0.0190
TSCTM 0.9302+00314  0.5508:0.0177  0.9772x00090  0.8570:0.0188  0.9878x0.0055  0.7871+0.0404
SCHOLAR 0.8874x00218  0.5037x00077 0.8778z001609  0.6895:00076  0.9912:00047  0.8221:0.0124
CLNTM 0.8904x00189  0.5084100120  0.8592:00302  0.7033:0.0084  0.987620.0068 0.8223+0.0119
VICNTM 0.8878x0.0136  0.4998:00110  0.8712200239  0.6947x00120 0.9842:00107 0.8242+0.0168
VICNTMXACE  0.8696z00162  0.2905:00137  0.8180200650 0.1601x0.0310  0.9746+00204  0.7522+0.0231

Table 3: Results on TD when K = 50 and K = 200.

K 50 200
NPMI TD NPMI TD
w/o TeachAugment — 0.3528+0.0083  0.8736:0.0149  0.3427:00057  0.2910z0.0178
w/o word noising 0.357920.0075  0.8732:0.0238  0.3385200073  0.2872+0.0204
w/o CNN 0.3577+0.0097  0.8766200169  0.3341:000490  0.4142+0.0076
w/o LLM & CNN 0.3542:+00068  0.8880x0.0159  0.3117200052  0.5011x0.0065
VICNTMxACE 0.3632:00046  0.8696x00149  0.3452:00149  0.290520.0137

Table 4: Ablation study on the 20NG dataset.

from truncation, as the average document length
exceeds 512 tokens. Although this may not apply
to all datasets, due to the inverted pyramid struc-
ture, essential words are typically at the beginning
of documents, while supplementary ones near the
end may be truncated by the LLM tokenizer. CNN
compression may further disregard less important
words, reducing unique words and exacerbating
this issue, especially as the number of topics in-
creases, highlighting the need for an optimal K.

Additionally, Table 4 presents the results of
the ablation study on the 20NG dataset. w/o
LLM&CNN, which replaces embeddings with
BoW representations, demonstrates that introduc-
ing the LLM encoder and the CNN encoder sig-
nificantly improves NPMI. However, this improve-
ment comes at the cost of reduced topic diversity,
highlighting a clear trade-off between the two met-
rics. When the CNN encoder is replaced with an
MLP encoder (w/o CNN), the performance reaches
intermediate levels when K = 200. This suggests
that the local feature extraction capability of the
CNN encoder plays a crucial role in enhancing
model performance. w/o word noising replaces the

noising network in the augmentation model with
an MLP f(-) so that w; = f(w;), showing that the
noising network contributes more when K = 200.
w/o TeachAugment shows that when the number
of topics is optimal, the TeachAugment framework
contributes the most, demonstrating that adversari-
ally generating positive samples is effective in our
proposed model.

5 Conclusion

We proposed VICNTMxACE, a self-supervised
NTM with adversarial data augmentation, leverag-
ing word embeddings from an LLM encoder and
a trainable augmentation model to generate posi-
tive samples. To our knowledge, this is the first
adversarial framework applied to a VAE-based self-
supervised NTM. Experiments show that our model
outperforms its predecessor and other VAE-based
NTMs in topic coherence, particularly on datasets
with documents shorter than a given length. An ab-
lation study further highlights that topic coherence
benefits from adversarially generated informative
positive samples and word embeddings.



6 Limitations

The introduction of the LLM encoder and the CNN
encoder increases training time and computational
resource requirements. Further improving topic co-
herence requires the document length being close
to or shorter than the token limitation of the LLM.
However, selecting an LLM with higher capacity
would further increase computational costs. While
we optimized several hyperparameters, those re-
lated to the CNN encoder remain unexplored. Fur-
thermore, the positive examples generated by our
model have not been demonstrated to be more
informative than those generated by previous ap-
proaches. This will need to be explored in future
work.
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