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Abstract001

Neural topic models (NTMs) have advanced002
topic modeling through their flexibility, en-003
abling self-supervised learning with contrastive004
samples at the document or topic representation005
level. However, prior tf-idf-based augmenta-006
tion strategies provide limited guidance during007
training. To address this, we propose an adver-008
sarial framework with a trainable augmentation009
model that generates positive samples in the010
embedding space, leveraging contextualized011
word embeddings from large language models012
(LLMs). Experimental results demonstrate that013
our model surpasses previous approaches in014
topic coherence, highlighting the effectiveness015
of adversarial data augmentation in improving016
topic modeling performance.017

1 Introduction018

Topic modeling uses word co-occurrence pat-019

terns to extract latent topics from large text cor-020

pora, enabling applications such as text classifica-021

tion, clustering, regression, information retrieval,022

and recommendation systems (Mcauliffe and Blei,023

2007; Zhao et al., 2021; Wei and Croft, 2006;024

Wang and Blei, 2011). Latent Dirichlet alloca-025

tion (LDA) (Blei et al., 2003) is a foundational026

conventional model, while neural topic models027

(NTMs), based on the variational autoencoder028

(VAE) (Welling and Kingma, 2014) framework,029

have gained prominence with advances in deep030

learning and GPUs. The flexibility and extensibil-031

ity of NTMs have enabled extensions such as self-032

supervised learning, which leverage contrastive033

samples to improve topic representations and im-034

prove topic quality (Nguyen and Luu, 2021; Wu035

et al., 2022; Han et al., 2023).036

Self-supervised NTMs use various strategies037

to build contrastive samples. CLNTM (Nguyen038

and Luu, 2021) generates contrastive bag-of-words039

(BoW) samples based on tf-idf values: posi-040

tive samples replace unimportant words with re-041

constructed counterparts, while negative samples 042

replace salient words. VICNTM (Xu et al., 043

2025) uses the same strategy to create only pos- 044

itive samples and employing Variance-Invariance- 045

Covariance (VIC) regularization (Bardes et al., 046

2022) to act as implicit negative samples. However, 047

this tf-idf-based strategy causes positive samples to 048

become increasingly similar to anchor samples dur- 049

ing training, limiting their effectiveness in guiding 050

the learning process. 051

Adversarial data augmentation, widely used in 052

computer vision to improve model generalization, 053

generates informative positive samples by maxi- 054

mizing task loss while preventing collapse (Zhang 055

et al., 2020; Tang et al., 2020; Suzuki, 2022). 056

TeachAugment (Suzuki, 2022) introduces a teacher 057

model to guide augmentation, requiring no prior 058

knowledge or additional hyperparameters. This 059

framework ensures that the generated positive sam- 060

ples remain challenging for the target model while 061

still being recognizable by the teacher model. 062

Representation-level augmentation, which adds 063

adversarial perturbations to anchor samples in the 064

embedding space, is common in adversarial frame- 065

works for text data (Miyato et al., 2017; Zhu et al., 066

2020). Chen et al. (2023) proposed an adversar- 067

ial framework for low-resource text classification, 068

generating hard positive samples by mixing em- 069

beddings of important words with unknown-word 070

embeddings to improve robustness. 071

In this paper, we propose VICNTMxACE, 072

an extension of VICNTM incorporating an 073

Adversarial framework and Contextualized 074

Embeddings, as illustrated in Fig. 1. To en- 075

hance VICNTM’s performance, we optimize 076

positive sample generation by applying Suzuki 077

(2022)’s adversarial framework and adapting 078

a representation-level augmentation strategy 079

inspired by Chen et al. (2023). To augment anchor 080

samples in the embedding space, we replace BoW 081

representations with BERT-encoded word embed- 082
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Figure 1: Illustration of our model. The left part of the figure depicts the structure of the model, with red (solid)
lines representing the flow of anchor samples and yellow (dashed) lines indicating the flow of positive samples. The
right part of the figure illustrates the structure of the augmentation model in detail.

dings (Devlin et al., 2019), compressed using a083

CNN encoder (Xu et al., 2023). Experiments on084

three widely used datasets demonstrate that our085

model outperforms baseline and state-of-the-art086

VAE-based models in topic coherence. An ablation087

study further verifies the effectiveness of each088

newly added component.089

2 Related works090

Research on NTMs has become an integral part091

of topic modeling. ProdLDA (Srivastava and Sut-092

ton, 2017) was the first NTM to use the VAE093

framework, with a logistic normal prior approx-094

imating the Dirichlet prior. Building on ProdLDA,095

SCHOLAR (Card et al., 2018) incorporated exter-096

nal information and improved topic quality by re-097

fining implementation details and leveraging word098

log-frequency.099

Meanwhile, adversarial NTMs using generative100

adversarial networks (Goodfellow et al., 2014) gen-101

erate negative samples via a generator and distin-102

guish them with a discriminator (Wang et al., 2019,103

2020; Hu et al., 2020), but Nguyen and Luu (2021)104

showed that mutual information between positive105

and anchor samples is more beneficial. Building on106

SCHOLAR, they proposed CLNTM, which uses107

tf-idf to generate both positive and negative sam-108

ples. Avoiding the limitations of negative samples,109

Xu et al. (2025) adopted the same augmentation110

strategy to generate only positive samples and intro-111

duced regularizations between positive and anchor112

samples, as well as among samples within each113

group. Contrastive learning has also been utilized114

in other NTMs in various ways (Wu et al., 2022;115

Han et al., 2023).116

Unlike the adversarial topic models, our model 117

consists of an augmentation model, a self- 118

supervised NTM as the target model, and a teacher 119

model, which will be described in the next section. 120

3 Methodology 121

In this paper, we propose VICNTMxACE, an ex- 122

tension of the regularized self-supervised NTM, 123

VICNTM (Xu et al., 2025), using an adversarial 124

framework. Fig. 1 illustrates the model structure. 125

For each minibatch of documents X , where each 126

document consists of a sequence of tokens, an- 127

chor samples X are obtained with each sample rep- 128

resented as word embeddings {w0,w1, · · · ,wn} 129

via the LLM encoder, with n being the maximum 130

number of tokens it can process. Positive sam- 131

ples X
′
= αϕ(X) are generated through the aug- 132

mentation model αϕ(·), parameterized by ϕ. The 133

anchor and positive word embeddings are com- 134

pressed and concatenated into a single embedding, 135

denoted as Xc = g(X) and X
′
c = g(X

′
), re- 136

spectively, which are then fed into the target model 137

(VICNTM), consisting of an encoder and decoder 138

parameterized by θ = {θenc,θdec}. VIC regular- 139

ization (Bardes et al., 2022) is applied to the in- 140

ferred topic distributions Z and Z ′. Finally, the 141

reconstructed BoW representations Xrecon are used 142

to compute the reconstruction error against the an- 143

chor BoW representations XBoW. This model gen- 144

erates hard positive samples to enrich information 145

and enhance NTM training, improving topic qual- 146

ity. The rest of this section details the adversarial 147

framework, augmentation model, and target model. 148

Adversarial framework In this paper, we adopt 149

TeachAugment (Suzuki, 2022) as the adversarial 150
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framework, which consists of three components: an151

augmentation model for generating positive sam-152

ples from input samples, a target model trained153

on these positive samples, and a teacher model,154

implemented as the exponential moving average155

(EMA) of the target model. The adversarial frame-156

work is trained by alternately optimizing the target157

model to minimize its loss with a fixed augmenta-158

tion model and optimizing the augmentation model159

to maximize the target model’s loss while minimiz-160

ing the teacher model’s loss.161

Augmentation model Similar to Chen et al.162

(2023), we build a noising network to produce163

informative positive samples by adding noise to164

the anchor samples. This is achieved by utiliz-165

ing eUNK and applying a multilayer perceptron166

(MLP) followed by a sigmoid function. As il-167

lustrated in Fig. 1, the weight γi determines the168

degree to which the anchor word embedding is re-169

tained. Each augmented embedding is computed170

as w
′
i = γi ·wi + (1− γi) · eUNK.171

Target model VICNTM incorporates VIC regular-172

ization into SCHOLAR(Card et al., 2018), utilizing173

the same sampling strategy as CLNTM (Nguyen174

and Luu, 2021). The model generates positive sam-175

ples using the previously mentioned tf-idf-based176

sampling strategy, followed by applying VIC reg-177

ularization to the anchor and positive latent topic178

representations. Given a minibatch with N docu-179

ments, the model is trained by minimizing the re-180

construction term, the Kullback-Leibler divergence181

term, and the regularization term, as shown below:182

Lθ(X,X ′) = LNTM + LVICReg(Z,Z′)183

=
(∑N

i −Eqθenc (zi|xi)[log pθdec(xi|zi)]184

+ KL[qθenc(zi|xi)∥p(zi)]
)

185

+ λs(Z,Z′) + µ[v(Z) + v(Z′)]186

+ ν[c(Z) + c(Z′)], (1)187

where λ, µ, and ν are hyperparameters.188

In this paper, the target model takes continu-189

ous representations from the augmentation model190

instead of discrete BoW representations. To lever-191

age the rich information in word embeddings, we192

use the method by Xu et al. (2023), employing a193

CNN encoder to compress a sequence of 512 word194

embeddings (1024 dimensions each) into four em-195

beddings of the same size. These are concatenated196

into a 4096-dimensional representation, which is197

then fed into the target model to infer its topic dis-198

tribution.199

Overall, our model is trained by optimizing the 200

following min-max objective: 201

max
ϕ

min
θ

EX∼D

[
Lθ(Xc,X

′
c) 202

− Lθ̂(Xc,X
′
c)
]
. (2) 203

The target model and augmentation model are 204

trained in the same manner as in TeachAugment, 205

with the teacher model parameterized by θ̂ imple- 206

mented as the EMA of the target model. 207

4 Experiments 208

Dataset # Docs Avg. Length Split (%)
20NG 16469 89±152 48/12/40
IMDb 46304 78±54 50/25/25
Wiki 28590 1320±1057 70/15/15

Table 1: Dataset details.

We conducted experiments on three widely used 209

datasets: 20Newsgroups (20NG) (Lang, 1995), 210

IMDb movie reviews (IMDb) (Maas et al., 2011), 211

and Wikitext-103 (Wiki) (Merity et al., 2017), to 212

evaluate topic coherence (NPMI (Lau et al., 2014)) 213

and topic diversity (TD (Dieng et al., 2020)) on 214

the top ten words in each topic for topic numbers 215

K = 50 and K = 200. Each experiment was run 216

ten times with different random seeds. The datasets 217

were preprocessed following Xu et al. (2025)’s ap- 218

proach, with modifications inspired by other ap- 219

proaches (Card et al., 2018; Xu et al., 2023). Ta- 220

ble 1 summarizes the dataset details after prepro- 221

cessing. The LLM encoder was implemented us- 222

ing BERT-large (Devlin et al., 2019), while the 223

CNN encoder followed Xu et al. (2023)’s imple- 224

mentation. Hyperparameters, including batch size, 225

the number of batches per update for the augmen- 226

tation model, and the weights for the VIC regu- 227

larization, were optimized using Optuna (Akiba 228

et al., 2019). We compared our model against VAE- 229

based approaches, including ProdLDA (Srivastava 230

and Sutton, 2017), ECRTM (Wu et al., 2023), 231

TSCTM (Wu et al., 2022), SCHOLAR (Card et al., 232

2018), CLNTM (Nguyen and Luu, 2021), and VIC- 233

NTM (Xu et al., 2025). 234

Tables 2 and 3 present the results for NPMI and 235

TD, respectively. Our model significantly outper- 236

formed other approaches on 20NG and IMDb in 237

NPMI, the primary focus of this paper. However, 238

the slightly lower NPMI on the Wiki dataset com- 239

pared to other SCHOLAR-based models may result 240
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Dataset 20NG IMDb Wiki
K 50 200 50 200 50 200
ProdLDA 0.2347±0.0083 0.1739±0.0028 0.1075±0.0061 0.0735±0.0020 0.2554±0.0064 0.1916±0.0037

ECRTM 0.2354±0.0113 0.1630±0.0029 0.1048±0.0075 0.0605±0.0076 0.3799±0.0078 0.2457±0.0038

TSCTM 0.2469±0.0084 0.1571±0.0052 0.1262±0.0129 0.0787±0.0023 0.4250±0.0204 0.2075±0.0103

SCHOLAR 0.3519±0.0075 0.3122±0.0015 0.1551±0.0062 0.1274±0.0018 0.5138±0.0147 0.4571±0.0045

CLNTM 0.3530±0.0063 0.3115±0.0055 0.1568±0.0056 0.1255±0.0017 0.5141±0.0112 0.4564±0.0052

VICNTM 0.3543±0.0064 0.3148±0.0051 0.1558±0.0069 0.1272±0.0026 0.5090±0.0083 0.4587±0.0031

VICNTMxACE 0.3632±0.0046 0.3452±0.0055 0.1678±0.0065 0.1353±0.0065 0.5122±0.0149 0.4555±0.0047

Table 2: Results on NPMI when K = 50 and K = 200. Boldface indicates the optimal performance in each
experiment.

Dataset 20NG IMDb Wiki
K 50 200 50 200 50 200
ProdLDA 0.8858±0.0068 0.6892±0.0100 0.6694±0.0175 0.5809±0.0148 0.8364±0.0142 0.6248±0.0116

ECRTM 0.8790±0.0424 0.9544±0.0059 0.9616±0.0145 0.9409±0.1053 0.9806±0.0073 0.9118±0.0190

TSCTM 0.9302±0.0314 0.5508±0.0177 0.9772±0.0090 0.8570±0.0188 0.9878±0.0055 0.7871±0.0404

SCHOLAR 0.8874±0.0218 0.5037±0.0077 0.8778±0.0169 0.6895±0.0076 0.9912±0.0047 0.8221±0.0124

CLNTM 0.8904±0.0189 0.5084±0.0129 0.8592±0.0302 0.7033±0.0084 0.9876±0.0068 0.8223±0.0119

VICNTM 0.8878±0.0136 0.4998±0.0110 0.8712±0.0239 0.6947±0.0129 0.9842±0.0107 0.8242±0.0168

VICNTMxACE 0.8696±0.0162 0.2905±0.0137 0.8180±0.0650 0.1601±0.0310 0.9746±0.0294 0.7522±0.0231

Table 3: Results on TD when K = 50 and K = 200.

K 50 200
NPMI TD NPMI TD

w/o TeachAugment 0.3528±0.0083 0.8736±0.0149 0.3427±0.0057 0.2910±0.0178

w/o word noising 0.3579±0.0075 0.8732±0.0238 0.3385±0.0073 0.2872±0.0204

w/o CNN 0.3577±0.0097 0.8766±0.0169 0.3341±0.0049 0.4142±0.0076

w/o LLM&CNN 0.3542±0.0068 0.8880±0.0159 0.3117±0.0052 0.5011±0.0065

VICNTMxACE 0.3632±0.0046 0.8696±0.0149 0.3452±0.0149 0.2905±0.0137

Table 4: Ablation study on the 20NG dataset.

from truncation, as the average document length241

exceeds 512 tokens. Although this may not apply242

to all datasets, due to the inverted pyramid struc-243

ture, essential words are typically at the beginning244

of documents, while supplementary ones near the245

end may be truncated by the LLM tokenizer. CNN246

compression may further disregard less important247

words, reducing unique words and exacerbating248

this issue, especially as the number of topics in-249

creases, highlighting the need for an optimal K.250

Additionally, Table 4 presents the results of251

the ablation study on the 20NG dataset. w/o252

LLM&CNN, which replaces embeddings with253

BoW representations, demonstrates that introduc-254

ing the LLM encoder and the CNN encoder sig-255

nificantly improves NPMI. However, this improve-256

ment comes at the cost of reduced topic diversity,257

highlighting a clear trade-off between the two met-258

rics. When the CNN encoder is replaced with an259

MLP encoder (w/o CNN), the performance reaches260

intermediate levels when K = 200. This suggests261

that the local feature extraction capability of the262

CNN encoder plays a crucial role in enhancing263

model performance. w/o word noising replaces the264

noising network in the augmentation model with 265

an MLP f(·) so that w
′
i = f(wi), showing that the 266

noising network contributes more when K = 200. 267

w/o TeachAugment shows that when the number 268

of topics is optimal, the TeachAugment framework 269

contributes the most, demonstrating that adversari- 270

ally generating positive samples is effective in our 271

proposed model. 272

5 Conclusion 273

We proposed VICNTMxACE, a self-supervised 274

NTM with adversarial data augmentation, leverag- 275

ing word embeddings from an LLM encoder and 276

a trainable augmentation model to generate posi- 277

tive samples. To our knowledge, this is the first 278

adversarial framework applied to a VAE-based self- 279

supervised NTM. Experiments show that our model 280

outperforms its predecessor and other VAE-based 281

NTMs in topic coherence, particularly on datasets 282

with documents shorter than a given length. An ab- 283

lation study further highlights that topic coherence 284

benefits from adversarially generated informative 285

positive samples and word embeddings. 286
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6 Limitations287

The introduction of the LLM encoder and the CNN288

encoder increases training time and computational289

resource requirements. Further improving topic co-290

herence requires the document length being close291

to or shorter than the token limitation of the LLM.292

However, selecting an LLM with higher capacity293

would further increase computational costs. While294

we optimized several hyperparameters, those re-295

lated to the CNN encoder remain unexplored. Fur-296

thermore, the positive examples generated by our297

model have not been demonstrated to be more298

informative than those generated by previous ap-299

proaches. This will need to be explored in future300

work.301
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