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Abstract

Previous research on PAC-Bayes learning theory has focused extensively on establishing tight
upper bounds for test errors. A recently proposed training procedure, called PAC-Bayes
training, updates the network weights model toward minimizing these bounds. Although
this approach is theoretically sound, in practice, it has not achieved a test error as low as
those obtained by empirical risk minimization (ERM) with carefully tuned regularization
hyperparameters. Additionally, existing PAC-Bayes training algorithms (e.g., Pérez-Ortiz
et al. (2021)) often require bounded loss functions and may need a search over priors with
additional datasets, which limits their broader applicability. In this paper, we introduce a
new PAC-Bayes training algorithm with improved performance and reduced reliance on prior
tuning. This is achieved by establishing a new PAC-Bayes bound for unbounded loss and a
theoretically grounded approach that involves jointly training the prior and posterior using
the same dataset. Our comprehensive evaluations across various classification tasks and
neural network architectures demonstrate that the proposed method not only outperforms
existing PAC-Bayes training algorithms but also approximately matches the test accuracy of
ERM that is optimized by SGD/Adam using various regularization methods with optimal
hyperparameters.

1 Introduction

The PAC-Bayes bound plays a vital role in assessing generalization by estimating the upper limits of test
errors without using validation data. It provides essential insights into the generalization ability of trained
models and offers theoretical backing for practical training algorithms (Shawe-Taylor & Williamson, 1997).
For example, PAC-Bayes bounds highlight the discrepancy between the training and generalization errors,
indicating the need to incorporate regularizers in empirical risk minimization and explaining how larger
datasets contribute to improved generalization. Furthermore, the effectiveness of the PAC-Bayes bounds
in estimating the generalization capabilities of machine learning models has been supported by extensive
experiments across different generalization metrics (Jiang et al., 2019).

Traditionally, PAC-Bayes bounds have been primarily used for quality assurance or model selection (McAllester,
1998; 1999; Herbrich & Graepel, 2000), particularly with smaller machine learning models. Recent work has
introduced a framework that minimizes a PAC-Bayes bound during training large neural networks (Dziugaite
& Roy, 2017). Ideally, the generalization performance of deep neural networks could be enhanced by directly
minimizing its quantitative upper bounds, specifically the PAC-Bayes bounds, without incorporating any other
regularization tricks. However, the effectiveness of applying PAC-Bayes training to deep neural networks is
challenged by the well-known issue that PAC-Bayes bounds can become vacuous in highly over-parameterized
settings (Livni & Moran, 2020). Additionally, selecting a suitable prior, which should be independent of
training samples, is critical yet challenging. This often leads to conducting a parameter search for the prior
using separate datasets (Pérez-Ortiz et al., 2021). Furthermore, existing PAC-Bayes training methods are
typically tailored for bounded loss (Dziugaite & Roy, 2017; 2018; Pérez-Ortiz et al., 2021), limiting their
straightforward application to popular losses like Cross-Entropy.
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On the other hand, the prevalent training methods for neural networks, which involve minimizing empirical risk
with SGD/Adam, achieve satisfactory test performance. However, they often require integration with various
regularization techniques to optimize generalization performance. For instance, research has shown that
factors such as larger learning rates (Cohen et al., 2021; Barrett & Dherin, 2020), momentum (Ghosh et al.,
2022; Cattaneo et al., 2023), smaller batch sizes (Lee & Jang, 2022), parameter noise injection (Neelakantan
et al., 2015; Orvieto et al., 2022), and batch normalization (Luo et al., 2018) all induce higher degrees of
implicit regularization, yielding better generalization. Besides, various explicit regularization techniques, such
as weight decay (Loshchilov & Hutter, 2017), dropout (Wei et al., 2020), label noise (Damian et al., 2021) can
also significantly affect generalization. While many studies have explored individual regularization techniques
to identify their unique benefits, the interaction among these regularizations remains less understood. As
a result, in practical scenarios, one has to extensively tune the hyperparameters corresponding to each
regularization technique to obtain the optimal test performance.

Although further investigation is needed to fully understand the underlying mechanisms, training models using
ERM with various regularization methods remain the prevalent choice and typically deliver state-of-the-art
test performance. While PAC-Bayes training is built upon a solid theoretical basis for analyzing generalization,
its wider adoption is limited by existing assumptions about loss and challenges in prior selection. Moreover,
it is still an open question regarding how to enhance PAC-Bayes training to match the performance of ERM
methods with well-tuned regularizations. In this paper, we propose a practical PAC-Bayes-bound-based
training algorithm that nearly matches the performance of the optimally tuned ERM while being more robust
to the choice of hyperparameters. The key differences between the new algorithm and the previous ones are:

1. A new PAC-Bayes bound for unbounded loss is adopted for training, providing tighter numerical
values for highly over-parametrized models.

2. The PAC-Bayes training is enhanced by an optional second stage of Bayesian training, which uses
key parameters estimated from the PAC-Bayes training stage.

We provide mathematical analysis to support the proposed algorithm and conduct extensive numerical
experiments to demonstrate its effectiveness.

2 Preliminaries

This section outlines the PAC-Bayes framework. For any supervised learning problem, the goal is to find a
proper model h from some hypothesis space H, with the help of the training data S ≡ {zi}m

i=1, where zi is
the training pair with sample xi and its label yi. Given the loss function ℓ(h; zi) : h 7→ R, which measures
the misfit between the true label yi and the predicted label by h, the empirical and population/generalization
errors are defined as:

ℓ(h;S) = 1
m

m∑
i=1

ℓ(h; zi), ℓ(h;D) = ES∼D(ℓ(h;S)),

by assuming that the training and testing data are both i.i.d. sampled from the same unknown distribution
D. PAC-Bayes bounds include a family of upper bounds on the generalization error of the following type.
Theorem 2.1. (Maurer, 2004) Assume the loss function ℓ is bounded within the interval [0, 1]. Given a
preset prior distribution P over the model space H, and given a scalar δ ∈ (0, 1), for any choice of i.i.d
m-sized training dataset S according to D, and all posterior distributions Q over H,

Eh∼Qℓ(h;D) ≤ Eh∼Qℓ(h;S) +

√
log( 2

√
m

δ ) + KL(Q||P)
2m ,

holds with probability at least 1− δ. Here, KL stands for the Kullback-Leibler divergence.

A PAC-Bayes bound measures the gap between the expected empirical and generalization errors. It’s worth
noting that this bound holds for all posterior Q for any given data-independent prior P and, which enables
optimization of the bound by searching for the best posterior. In practice, the posterior mean corresponds to
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the trained model, and the prior mean can be set to the initial model. In this paper, we will use || · || to
denote a generic norm, and || · ||2 to denote the L2 norm.

The focus on Neural Networks: PAC-Bayes training algorithms, including the one proposed here, can
be applied to a wide range of supervised learning problems. However, in this paper, we will focus on the
training of deep neural networks for the following reasons:

Over-parameterized deep neural networks present a significant challenge for PAC-Bayes training, as the
Kullback-Leibler (KL) term in the PAC-Bayes bounds is believed to grow rapidly with the number of
parameters, quickly leading to vacuous bounds. According to the current literature, deep networks are indeed
one of the most critical models where existing PAC-Bayes training algorithms encounter difficulties.

Intuitively, minimizing the generalization bound does not require additional implicit or explicit regularization,
thus reducing the need for tuning. This advantage of reduced tuning is particularly significant in the training
of neural networks, where extensive tuning is typically required for ERM. However, for classical problems
such as Lasso, which involve only one or two hyperparameters, this advantage of PAC-Bayes training may be
less pronounced.

3 Related Work

PAC-Bayes bounds were first used to train neural networks in Dziugaite & Roy (2017). Specifically, the
bound McAllester (1999) has been employed for training shallow stochastic neural networks on binary
MNIST classification with bounded 0-1 loss and has proven to be non-vacuous. Following this work, many
recent studies (Letarte et al., 2019; Rivasplata et al., 2019; Pérez-Ortiz et al., 2021; Biggs & Guedj, 2021;
Perez-Ortiz et al., 2021; Zhou et al., 2018) expanded the applicability of PAC-Bayes bounds to a wider range
of neural network architectures and datasets. However, most studies are limited to training shallow networks
with binary labels using bounded loss, which restricts their broader application to deep network training.
Although PAC-Bayes bounds for unbounded loss have been established (Audibert & Catoni, 2011; Alquier &
Guedj, 2018; Holland, 2019; Kuzborskij & Szepesvári, 2019; Haddouche et al., 2021; Rivasplata et al., 2020;
Rodríguez-Gálvez et al., 2023; Casado et al., 2024), it remains unclear whether these bounds can lead to
enhanced test performance in training neural networks. This uncertainty arises partly because they usually
include assumptions that are difficult to validate or terms that are hard to compute in real applications.
For example, Kuzborskij & Szepesvári (2019) derived a PAC-Bayes bound under the second-order moment
condition of the unbounded loss. However, as mentioned in the paper, that bound is semi-empirical, in the
sense that it contains the population second order moment of the loss with respect to both the posterior and
the data distributions. Since conditional on the posterior, the samples are no longer i.i.d., this type of bound is
difficult to estimate. To the best of our knowledge, existing PAC-Bayes bounds built under the second-order
moment condition all suffer from this issue.

Recently, Dziugaite et al. (2021) suggested that a tighter PAC-Bayes bound could be achieved with a
data-dependent prior. They divide the data into two sets, using one to train the prior and the other to
train the posterior with the optimized prior, thus making the prior independent from the training dataset
for the posterior. This, however, reduces the training data available for the posterior. Dziugaite & Roy
(2018) and Rivasplata et al. (2020) justified the approach of learning the prior and posterior with the same
set of data by utilizing differential privacy. However, the argument only holds for priors provably satisfying
the so-called DP (ϵ)-condition in differential privacy, which limits their practical application. Pérez-Ortiz
et al. (2021) also empirically shows training with Dziugaite & Roy (2018) could sacrifice test accuracy if
the bound is not tight enough. In this work, we advance the PAC-Bayes training approach, enhancing its
practicality and showcasing its potential in challenging settings.

4 Proposed method

4.1 Motivation

To help readers understand the challenges involved in designing practical PAC-Bayes training algorithms
for deep neural networks, we begin by offering a detailed examination of the limitations inherent in current
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PAC-training algorithms and PAC-Bayes bounds. Most popular PAC-Bayes training algorithms (Dziugaite
& Roy, 2017; 2018; Pérez-Ortiz et al., 2021) are designed for learning problems with bounded loss. When
dealing with unbounded loss, it is necessary to clip the loss to a finite range before training, which can result
in suboptimal performance, as demonstrated in Table 1 in the numerical section.

Some PAC-Bayes bounds for unbounded loss have been established in the literature, extending the requirement
from bounded loss to sub-Gaussian loss (Theorem 5.1 of Alquier (2021)) or loss controlled by some finite
cumulant generating function (CGF) (Rodríguez-Gálvez et al., 2023). However, our numerical experiments
show that minimizing these bounds during training is ineffective. More explicitly, on CIFAR10 using CNN9,
the bound values of sub-Gaussian and CGF are 5.17 and 5.08, respectively. These values do not decrease
during training and are higher than the initial test error of 2.30 with random initialization, indicating that
these bounds do not contribute to improving the training process.

Lastly, the PAC-Bayes bound established under the (theoretically) weakest assumption is in Kuzborskij &
Szepesvári (2019), where the loss is only required to have a finite second-order moment. The associated
bound holds with probability 1− ex, x ≥ 2:

Eh∼Qℓ(h;D) ≤ Eh∼Qℓ(h;S) +

√
2

(
1
n2 + β

) (
KL (Q||P) + x+ x

2 ln (1 +m2β)
)
, (1)

where β = Eh∼Q
[
ℓ2(h;S) + Ez′∼Dℓ

2(h; z′)
]
. However, this bound is not easily amendable for training as the

term Eh∼QEz′∼Dℓ
2(h; z′) in β is a population second-order moment of the loss with respect to the data and

the posterior distribution. Since the data is no longer i.i.d. when conditioned on the posterior, estimating
this population second-order moment becomes challenging.

The above-mentioned limitations in related literature motivate us to design a new PAC-Bayes bound for
unbounded loss that is easy to apply in training.

4.2 A new PAC-Bayes Bound for Unbounded loss

We propose a training-friendly PAC-Bayes bound that holds under mild conditions.

4.2.1 Condition under which the new bound will hold

The new bound we shall propose is based on the following assumption of the loss function, detailed as follows.
Please note that the X in the following definition will represent the training loss in the later PAC-Bayes
analysis, and E[X] will represent the population loss.
Definition 4.1 (Exponential moment on finite intervals). Let X be a random variable defined on the
probability space (Ω,F ,P) and 0 ≤ γ1 ≤ γ2 ≤ ∞ be two numbers. We call any K > 0 an exponential
moment bound of X over the interval [γ1, γ2], when

E[exp (γ(E[X]−X))] ≤ exp (γ2K) (2)

holds for all γ ∈ [γ1, γ2].

Due to the similarity of this condition to others in the literature, we provide a few remarks to clarify its
position.
Remark 4.2 (The left-side moment). Similar to certain other PAC-Bayes conditions in the literature (Alquier,
2021), this definition requires only the left-side moment to be bounded. Specifically, it requires the boundedness
of E[exp (γ(E[X]−X))] with γ > 0 rather than with any γ ∈ R. The reason for this left-side requirement
stems from the need to establish only an upper bound for the population loss. An upper bound on the
population loss E[X] in terms of the empirical loss X translates to upper bounding E[X]−X, which with
positive γ, leads to the left-side condition.
Remark 4.3 (γ within a finite interval bounded away from 0). In practice, we will set γ1 and γ2 both to
finite positive values. We observe that oftentimes, the restriction of γ to a finite interval [γ1, γ2] with γ1 > 0
reduces the bound K. All previous bounds use γ1 = 0.
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Remark 4.4 (Non-negative loss). Since most loss functions in machine learning (e.g., Cross-Entropy, L1, MSE,
Huber loss, hinge loss, Log-cosh loss, quantile loss) are non-negative, it is of great interest to analyze the
strength of Definition 4.1 under X ≥ 0. In this case, we can show that Definition 4.1 is weaker than the
second-order moment condition.
Lemma 4.5 (Comparison with the second-order-moment condition). For non-negative random variable
X ≥ 0, the existence of K on the interval γ ∈ [0,∞) in Definition 4.1 can be implied by the existence of the
second-order moment EX2 <∞.

The assumption X ≥ 0 in Lemma 4.5 can be further relaxed to X ≥ −M with M > 0, as in this case the
random variable X +M is non-negative to which Lemma 4.5 can be applied.
Remark 4.6 (Comparison with the first-order-moment condition). Still under the assumption X ≥ 0, when
the γ1 in Definition 4.1 is finite (bounded away from 0), the existence of K can be implied by the existence
of first-order moment. Indeed, by taking K = E[X]

γ1
, the inequality E[X] − X ≤ E[X] (assumed X ≥ 0)

immediately implies equation 2. However, this argument does not hold when γ1 → 0. Hence we cannot say
our condition is as weak as the first-order moment condition.

Proof of Lemma 4.5. We show that EX2 <∞ implies Definition 4.1 holding for any γ ∈ [0,∞) with some
finite K. Since EX2 <∞, we have (EX)2 ≤ EX2 <∞. If γ ≥ 1

EX , then it suffices to take the K in

Eeγ(EX−X) ≤ eγ2K

to be K = EX
γ ≤ (EX)2 ≡ K1. If γ < 1

EX , then using the inequality

ex ≤ 1 + x+ x2, ∀x < 1

with x := γ(EX −X) ≤ γEX < 1, we have

Eeγ(EX−X) ≤ E(1 + γ(EX −X) + γ2(EX −X)2) = 1 + γ2Var(X) ≤ eγ2Var(X)

Therefore, it suffices to take K = Var(X) ≡ K2. Collecting the two cases, we see taking K = max{K1,K2}
would be enough for Definition 4.1 to hold with γ1 = 0, γ2 =∞.

Now, we generalize Definition 4.1 to the PAC-Bayes setting where the random variable is parameterized by
models in a hypothesis space.

Let us first explain what we mean by random variables parameterized by models in a hypothesis space. In
supervised learning, we define X(h) as X(h) ≡ ℓ(h(x), y), where h is the model and ℓ is the misfit between
the model output h(x) and the data y. For a fixed model h, X(h) is a random variable whose randomness
comes from the input pairs (x, y) ∼ D (D is the data distribution). Since X(h) varies with h, we call it a
random variable parameterized by the model h.
Definition 4.7 (Exponential moment over hypotheses). Let X(h) be a random variable parameterized by the
hypothesis h in some hypothesis space H (i.e., h ∈ H), and fix an interval [γ1, γ2] with 0 ≤ γ1 < γ2 ≤ ∞. Let
{Pλ,λ ∈ Λ} be a family of distribution over H parameterized by λ ∈ Λ ⊆ Rk. Then, we call any non-negative
function K(λ) an exponential moment bound for X(h) over the priors {Pλ,λ ∈ Λ} and the interval [γ1, γ2],
if the following holds

Eh∼Pλ
E[exp (γ(E[X(h)]−X(h)))] ≤ exp (γ2K(λ)),

for all γ ∈ [γ1, γ2], and any λ ∈ Λ ⊆ Rk. The minimal such K(λ) is

Kmin(λ) = sup
γ∈[γ1,γ2]

1
γ2 log(Eh∼Pλ

E[exp (γ(E[X(h)]−X(h)))]). (3)

Similar to Definition 4.1, when dealing with non-negative loss, the existence of the exponential moment
bound Kmin is guaranteed, provided that the second-order moment of the loss is bounded, or provided that
the first-order moment of the loss is bounded and γ1 is bounded away from 0.
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Remark 4.8 (Dependency of K on prior parameters). The key difference in Definition 4.7 compared to prior
work is that we allow the exponential moment bound K to depend on the prior parameter λ, rather than
requiring a single K to hold for all possible λ ∈ Λ. This advantage carries over into the PAC-Bayes bound
established in the next section.

In practice, there are two options to compute K(λ): one is to use the upper bound derived in the proof of
Lemma 4.5 extended to the case of exponential moment over hypotheses, and the other is to estimate Kmin
directly from equation 3. For both options, we need to estimate the expectation of some random variable
from the training data. However, compared to the previous bound equation 1, which requires estimating the
expectation of the loss with respect to the posterior distribution Q, the task of estimating the expectation in
equation 3 with respect to the prior distribution Pλ for a given λ is much easier. This is because, conditional
on the prior, the training data remains i.i.d., allowing the approximation of the population mean by the
empirical mean with high accuracy when the data is abundant.

4.2.2 A new PAC-Bayes bound

We are ready to present the PAC-Bayes bound for losses that satisfy Definition 4.7.
Theorem 4.9 (PAC-Bayes bound for unbounded loss with a preset prior distribution). Given a prior
distribution Pλ over the hypothesis space H, parametrized by λ ∈ Λ. Assume the loss ℓ(h, zi) as a random
variable parametrized by h satisfies Definition 4.7. For any 0 < δ < 1 and γ ∈ [γ1, γ2], we have

PrS

(
∀Q ∈ Q,Eh∼Qℓ(h;D) ≤ Eh∼Qℓ(h;S) + 1

γm
(log 1

δ
+ KL(Q||Pλ)) + γK(λ)

)
≥ 1− δ

where Q is the set of all probability distributions.

The proof of this theorem is available in Appendix A.1.
Remark 4.10 (Asymptotic convergence rate). By setting γ, γ1 = O(m−1/2), we observe that the asymptotic
behavior of this bound aligns with the O(m−1/2) convergence rate of popular PAC-Bayes bounds in the
literature.
Remark 4.11 (Applicability on CE loss). This theorem combined with Lemma 4.5 guarantees that the
O(m−1/2) convergence rate is achieved for CE loss under a bounded second-order moment condition.
Remark 4.12 (The role of K(λ)). The improvement of the new bound primarily stems from our definition
of K(λ). Specifically, Def 4.7 allows K to be dependent on both the range of γ and the prior parameter
λ. This flexibility reduces the value of K. The trade-off is that γ1 and γ2 need to be selected in advance
as hyperparameters, and K(λ) must be estimated from data and optimized during training, which slightly
increases the difficulty of the optimization.

To support the claim of this remark, we provide numerical evidence of the advantage of our K in Figure 1.
All baseline PAC-Bayes bounds for unbounded loss can be written in the form of

Eh∼Qℓ(h;D) ≲ Eh∼Qℓ(h;S) + KL(Q||P)
mγ

+ γK, (4)

where ≲ hides some absolute constant. Namely, all such bounds have a K term, although they follow different
definitions. When the loss is assumed to be sub-Gassuain, K is defined as the sub-Gaussian norm of the loss
(Theorem 5.1 of Alquier (2021)). Under the CGF condition, K is calculated based on the specific choice of
the CGF (Rodríguez-Gálvez et al., 2023) (see Appendix C.2 for our choice of CGF in this experiment). For
our bound, the K is chosen as our Kmin(λ), estimated from the 50K CIFAR10 samples. We follow standard
practice in PAC-Bayes training literature by using a Gaussian prior and posterior, fixing the mean of the
prior to the random Kaiming initialization, and applying a single prior variance for all weights. According
to Definition 4.7, our K depends on γ1 and γ2, and the prior parameter λ, which, in the Gaussian case,
corresponds to the variance or the standard deviation (std) of the prior. Since the change of K with respect
to γ2 is very minimal, Figure 1 only plots K as a function of the prior std and γ1. The K values in the
previous two bounds (i.e., sub-Gaussian and CGF) do not depend on these parameters. Hence, they are
represented by two horizontal planes. We observe the following:
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Figure 1: This figure shows how our value of K improves compared to the sub-Gaussian and CGF bounds.
Our K changes based on the values of γ1 and the prior standard deviation, while the previous bounds stay
the same because they don’t depend on these parameters. We tested many different pairs of γ1 and prior
standard deviation and found the combination that, upon optimizing over the posterior, leads to the smallest
bound, marked by the vertical dotted line. The figure shows that near this best combination, our K is much
smaller than the other two bounds. This experiment is conducted on CIFAR10 using CNN9; see details in
Sec. 5.

• our K values approach those in the CGF bound as γ1 approaches 0 and the prior std becomes large;

• near the region of the optimal prior std and γ1, our K is significantly smaller, explaining the improved
performance of our bound;

• our K is more stable with respect to γ1 than with respect to the prior standard deviation, especially
near the optimal parameter region, suggesting that choosing γ1 is easier. Therefore, we proposed
fixing γ1 in advance while optimizing over the prior variance λ during training. It turns out that the
same choice of γ1 works for a wide variety of architectures, as shown in the numerical section;

• when minimizing the PAC-Bayes bound in the form of 4, a large K results in a small γ, which
increases the penalty from the KL divergence term. This forces the posterior to remain close to the
prior, making it difficult to fit a given dataset effectively.

4.3 PAC-Bayes training based on the new bound

With the relaxed requirements on the loss function, the new bound offers a basis for establishing effective
optimization over both the posterior and the prior. We will first outline the training process, which focuses
on jointly optimizing the prior and posterior to avoid the complex hyper-parameter search over the prior as
Pérez-Ortiz et al. (2021), followed by a discussion of its theoretical guarantees. The procedure is similar to
the one in Dziugaite & Roy (2017), but has been adapted to align with our newly proposed bound.

We begin by parameterizing the posterior distribution as Qw, where w ∈ Rd represents the parameters of the
posterior. Next, we parameterize the prior as Pλ, where λ ∈ Rk. We operate under the assumption that the
prior has significantly fewer parameters than the posterior, that is, k ≪ d; the relevance of this assumption
will become apparent upon examining Theorem 4.15. For our PAC-Bayes training, we propose to optimize
over all three variables: w, γ, and λ:

(ŵ, γ̂, λ̂) = arg min
w,λ,γ∈[γ1,γ2]

LP AC(w, γ,λ, δ), (P)

where
LP AC(w, γ,λ, δ) = Eh∼Qwℓ(h;S) + 1

γm
(log 1

δ
+ KL(Qw||Pλ)) + γK(λ). (5)
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Please note that here K depends on the prior parameter λ, and we need to optimize it along with other
terms. The probability of failure δ should be fixed in advance.

4.4 Theoretical Analysis

Two important questions arise from the training framework based on equation 5.

1. Is there any theoretical guarantee to allow the training of the prior?

2. Does the momentum bound function K(λ) exhibit certain regularity as a function of λ to be accurately
estimated from discrete data?

This section addresses these two questions. First, we provide a PAC-Bayes bound that allows the prior to be
data-dependent. Then, we validate the Lipschitz continuity of K(λ) when the prior and posterior are both
set to Gaussian distributions.

4.4.1 PAC-Bayes bound for arbitrary distribution families

We first make the following assumptions, which will be shown to automatically satisfy by the special Gaussian
prior and posteriors.
Assumption 4.13 (Continuity of the KL divergence). Let Q be a family of posterior distributions, let
P = {Pλ,λ ∈ Λ ⊆ Rk} be a family of prior distributions parameterized by λ. We say the KL divergence
KL(Q||Pλ) is continuous with respect to λ over the posterior family, if there exists some non-decreasing
function η1(x) : R+ 7→ R+ with η1(0) = 0, such that |KL(Q||Pλ)−KL(Q||Pλ̃)| ≤ η1(∥λ− λ̃∥), for all pairs
λ, λ̃ ∈ Λ and for all Q ∈ Q.
Assumption 4.14 (Continuity of the K(λ)). Let Kmin(λ) be as defined in Definition 4.7. Assume it is
Lipschitz continuous with respect to the parameter λ of the prior in the sense that there exists a non-decreasing
function η2(x) : R+ 7→ R+ with η2(0) = 0 such that |Kmin(λ)−Kmin(λ̃)| ≤ η2(∥λ− λ̃∥), for all λ, λ̃ ∈ Λ.

These two assumptions are quite weak and can be satisfied by popular continuous distributions, such as the
exponential family.

We now provide an end-to-end theorem that guarantees the performance of the PAC-Bayes training based on
equation 5 for general priors and posteriors.
Theorem 4.15 (PAC-Bayes bound for unbounded losses and trainable priors). Assume the loss ℓ(h, zi) as
a random variable parametrized by model h satisfies Definition 4.7. Let Q be a family of posterior distribution
Q = {Qw,w ∈ Rd} , let P = {Pλ,λ ∈ Λ ⊆ Rk} be a family of prior distributions parameterized by λ. Let
n(ε) := N (Λ, ∥ · ∥, ε) be the covering number of the set of the prior parameters. Under Assumption 4.13 and
Assumption 4.14, the following inequality holds for the minimizer (ŵ, γ̂, λ̂) of equation P and any δ, ε > 0
with probability as least 1− ϵ with ϵ := (n(ε) + γ2−γ1

ε )δ:

Eh∼Qŵℓ(h;D) ≤ LP AC(ŵ, γ̂, λ̂, δ) + η, (6)

where η = Bε+ C · (η1(ε) + η2(ε)) + log(n(ε)+ γ2−γ1
2ε )

γ1m , and C and B are constants depending on γ1, γ2, m and
the upper bounds of the parameters in the prior and posterior.

The proof is available in Appendix A.2.

The theorem provides a generalization bound on the model learned as the minimizer of equation P with
data-dependent priors. This bound contains the PAC-Bayes loss LP AC along with an additional correction
term η, which is notably absent in the traditional PAC-Bayes bound with fixed priors. Given that (ŵ, γ̂, λ̂)
minimizes LP AC(·, ·, ·, δ), evaluating LP AC at its own minimizer ensures that the first term is small. If the
correction term is also small, then the test error remains low. In the next section, we will delve deeper into
the condition for this term to be small. Intuitively, selecting a small ε helps to maintain low values for the
first three terms in η. Although a smaller ε increases the n(ε) in the last term, this increase is moderated
because it is inside the logarithm and divided by the size of the dataset.
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4.4.2 Restricting to the Gaussian Families

For the LP AC objective to have a closed-form formula, we employ the Gaussian distribution family. For ease
of illustration, we introduce a new notation for the parametrization. Consider a model denoted as fθ, where
f represents the model architecture (e.g., a VGG net), and θ is the weight. In this context, fθ aligns with
the h discussed in earlier sections. Moving forward, we will use fθ to refer to the model instead of h.

We define the posterior distribution of the weights as a Gaussian distribution centered around the trainable
weight µ, with trainable variance σ., i.e., the posterior weight distribution is N (µ,diag(σ)), denoted by
Qµ,σ

1. The assumption of a diagonal covariance matrix implies the independence of the weights. We consider
two types of priors, both centered around the initial weight µ0 of the model (as suggested by Dziugaite &
Roy (2017)), but with different settings on the variance.

Scalar prior: we use a universal scalar to encode the variance of all the weights in the prior, i.e., the weight
distribution of Pλ is N (µ0, λId), where λ is a scalar. With this prior, the KL divergence KL(Qµ,σ||Pµ0,λ)
in equation P is:

1
2

[
−1⊤

d log(σ) + d(log(λ)− 1) + (∥σ∥1 + ∥µ− µ0∥2
2)

λ

]
. (7)

Layerwise prior: weights in the ith layer share a common variance λi, but different layers could have
different variances. By setting λ = (λ1, ....,λk) as the vector containing all the layerwise variances of a k-layer
neural network, the weight distribution of prior Pλ is N (µ0,BlockDiag(λ)), where BlockDiag(λ) is obtained
by diagonally stacking all λiIdi

into a d× d matrix, where di is the number of weights of the ith layer. The
KL divergence for layerwise prior is in Appendix A.3. For shallow networks, it is enough to use the scalar
prior; for deep neural networks and neural networks constructed from different types of layers, using the
layerwise prior is more sensible.

By plugging in the closed-form equation 7 for KL(Qµ,σ||Pµ0,λ) into the PAC-Bayes bound in Theorem 4.15,
we have the following corollary that justifies the usage of PAC-Bayes bound on large neural networks with
the trainable prior.
Corollary 4.16 (Validity of trainable Gaussian priors). Suppose the posterior and prior are Gaussian
distributions as defined above. Assume all parameters for the prior and posterior are bounded, i.e., we restrict
the model parameter µ, the posterior variance σ and the prior variance λ, all to be searched over bounded
sets, Θ := {µ ∈ Rd : ∥µ∥2 ≤

√
dM}, Σ := {σ ∈ Rd

+ : ∥σ∥1 ≤ dT}, Λ =: {λ ∈ [e−a, eb]k}, respectively, with
fixed M,T, a, b > 0. Then,

• Assumption 4.13 holds with η1(x) = L1x, where L1 = 1
2 max{d, ea(2

√
dM + dT )}

• Assumption 4.14 holds with η2(x) = L2x, where L2 = 1
γ2

1

(
2dM2e2a + d(a+b)

2

)
• With high probability, the PAC-Bayes bound for the minimizer of equation P has the form

Eθ∼Qµ̂,σ̂
ℓ(fθ;D) ≤ LP AC([µ̂, σ̂], γ̂, λ̂, δ) + η,

where η = k
γ1m

(
1 + log 2(CL+B)∆γ1m

k

)
, L = L1 + L2, ∆ := max{b+ a, 2(γ2 − γ1)}, C = 1

γ1m + γ2

B is a constant depending on γ1, δ,M, d, T , a, b, m2.

In the bound, the term LP AC([µ̂, σ̂], γ̂, λ̂, δ) is inherently minimized as it evaluates the function LP AC(·, ·, ·, δ)
at its own minimizer. The overall bound remains low if the correction term η can be deemed insignificant.
The logarithm term in the definition of η grows very mildly with the dimension in general, so we can treat it
(almost) as a constant. Thus, η ∼ k

γ1m , from which we see that 1). η (and therefore the bound) would be
small if prior’s degree of freedom k is substantially less than the dataset size m; 2). This bound still achieves
the asymptotic rate of O(m−1/2) after optimizing over γ1. We note that even if the corollary assumes that
the parameters (i.e., mean and variance) of the Gaussian distribution are bounded, the random variable
itself is still unbounded, so the loss is still unbounded. The proof and more discussions can be found in
Appendix A.4.

1A clarification of the notation: we have defined several model-related notations h, w, θ, µ, and σ. To clarify, their relations
are h = fθ, θ ∼ Qµ,σ ≡ Qw, and w = [µ, σ]

2See Appendix A.4 for the explicit form of B.
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Algorithm 1 PAC-Bayes training (scalar prior)
Input: initial weight µ0 ∈ Rd, T1 = 500, λ1 = e−12, λ2 = e2, γ1 = 0.5, γ2 = 10. // T1, λ1, λ2, γ1, γ2 are
fixed in all experiments of Sec.5.
Output: trained weight µ̂, posterior noise level σ̂
µ← µ0, v← 1d · log( 1

d∥µ0∥1), b← log( 1
d∥µ0∥1)

Obtain K̂(λ) with Λ = [λ1, λ2] using equation 26 (Appendix Algorithm 2)
/*Stage 1*/
for epoch = 1 : T1 do

for sampling one batch s from S do
//Ensure non-negative variances
λ← exp(b), σ ← exp(v)
Pλ ← N (µ0;λId), Qµ,σ ← µ +N (0; diag(σ))
//Get the stochastic version of Eθ̃∼Qµ,σ

ℓ(fθ̃;S)
Draw one θ̃ ∼ Qµ,σ and evaluate ℓ(fθ̃;S)
Compute the KL divergence as equation 7
Compute γ as equation 8
Compute the loss function L as LP AC in equation P
//Update all parameters
b← b+ η ∂L

∂b , v← v + η ∂L
∂v , µ← µ + η ∂L

∂µ
end for

end for
//Fix the noise level from now on
σ̂ ← exp(v)
/*Stage 2*/ // Run this stage if the training not fully converged during Stage 1
while not converge do

for sampling one batch s from S do
//Noise injection
Draw one θ̃ ∼ Qµ̂,σ̂ and evaluate ℓ(fθ̃;S) as L̃,
//Update model parameters
µ← µ + η ∂L̃

∂µ
end for

end while
µ̂← µ

4.5 Training algorithm

Estimating Kmin(λ): In practice, the function Kmin(λ) must be estimated first. Since we showed in
Corollary 4.16 and Remark 4.6 that Kmin(λ) is Lipschtiz continuous and bounded, we can approximate it
using piecewise-linear functions. More explicitly, we use equation 3 and Monte Carlo Sampling to estimate
Kmin on some discrete grid of λ, then we interpolate Kmin(λ) using piecewise linear functions. More details
are in Appendix B.1.

Notably, since for each fixed λ ∈ Λ, the prior is independent of the training data, this procedure of estimating
Kmin(λ) can be carried out before training. Recall that after Remark 4.8, we discussed two ways to estimate
Kmin, using equation 3 or using its theoretical upper bound from Lemma 4.5. Figure 2 illustrates the advantage
of the former approach. Besides having a much smaller numerical value, estimating Kmin directly from
equation 3 also involves fewer constraints compared to using the upper bound, which requires a non-negative
loss with a bounded second-order moment.

Two-stage PAC-Bayes training: Algorithm 1 outlines the proposed PAC-Bayes training algorithm with
scalar prior. The version that uses the layerwise prior is detailed in Appendix B.2. Algorithm 1 contains two
stages. Stage 1 performs pure PAC-Bayes training, and Stage 2 is an optional Bayesian refinement stage that
is only activated when the first stage does not sufficiently reduce the training loss. For Stage 1, although

10
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Figure 2: Comparison of the upper bound max{K1,K2} for Kmin, as derived in Lemma 4.5 with the
data-driven estimate of Kmin obtained via equation 3 on CNN9 using the CIFAR10 dataset with the prior
parameterized as a Gaussian distribution centered at the Kaiming initialization.

there are several input parameters to be specified, one can use the same choice of values across very different
network architectures and datasets with minor modifications. Please see Appendix C.1 for more discussions.
When everything else in the PAC-Bayes loss is fixed, γ ∈ [γ1, γ2] has a closed-form solution,

γ∗ = min

max

γ1,

√
log 1

δ + KL(Qµ,σ||Pµ0,λ)
mKmin

 , γ2

 (8)

Therefore, we only need to perform gradient updates on the other three variables, µ,σ,λ.

The second stage of training: Gastpar et al. (2023); Nagarajan & Kolter (2019) showed that achieving
high accuracy on certain distributions precludes the possibility of getting a tight generalization bound in
overparameterized settings. This implies that it is less possible to use reasonable generalization bound to fully
train one overparameterized model on a particular dataset. It is also observed in our PAC-Bayes training
experiments that, oftentimes, minimizing the PAC-Bayes bound only (Stage 1) cannot make the training
accuracy reach 100%. If this happens3, we add a second stage to further increase the training accuracy.
Specifically, in Stage 2, we continue to update the model by minimizing only Eθ∼Qµ,σ̂

ℓ(fθ;S) over µ, and
keep all other variables (i.e., λ, σ) fixed to the solution found by Stage 1. This is essentially a stochastic
gradient descent with noise injection, the level of which has been learned from Stage 1. The two-stage training
is similar to the idea of the learning-rate scheduler (LRS). In LRS, the initial large learning rate introduces
an implicit bias that guides the solution path towards a flat region (Cohen et al., 2021; Barrett & Dherin,
2020), and the later lower learning rate ensures the convergence to a local minimizer in this region. Without
the large learning rate stage, it cannot reach the flat region; without the small learning rate stage, it cannot
converge to a local minimizer. For the two-stage PAC-Bayes training, Stage 1 (PAC-Bayes stage) guides
the solution to flat regions by minimizing the generalization bound, and Stage 2 is necessary for an actual
convergence to a local minimizer.

Regularizations in the PAC-Bayes training: By plugging the KL divergence equation 7 into P, we
can see that in the case of Gaussian priors and posteriors, the PAC-Bayes loss is nothing but the original
training loss augmented by a noise injection and a weight decay, except that strength of both of them are
automatically learned during training. More discussions are available in Appendix B.3.

Prediction: After training, we use the mean of the posterior as the trained model and perform deterministic
prediction on the test dataset. In Appendix B.4, we provide some mathematical intuition of why the
deterministic predictor is expected to perform even better than the Bayesian predictor.

3Note that there are cases when the second stage is not necessary, including but not limited to 1) the network is shallow 2)
the dataset is simple 3) a good prior is chosen. In these cases, the training accuracy can already reach 100% in Stage 1.
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5 Experiments

In this section, we demonstrate the efficacy of the proposed PAC-Bays training algorithm through extensive
numerical experiments. Specifically, we conduct comparisons between our algorithm and existing PAC-Bayes
training algorithms, as well as conventional training algorithms based on Empirical Risk Minimization (ERM).
Our approach yields competitive test accuracy in all settings and exhibits a high degree of robustness w.r.t.
the choice of hyperparameters.

Figure 3: Minimizing PAC-Bayes bounds based on sub-Gaussian, CGF and our proposed bound on CIFAR10
using CNN9. The test error of a randomly initialized model is shown as initial test error. Minimizing our
bound (ours) achieves a better test accuracy compared with optimizing the other two (sub-Gaussian and
CGF).

Comparison with different PAC-Bayes bounds and existing PAC-Bayes training algorithms:
We compared our PAC-Bayes training algorithm using the layerwise prior with baselines in Pérez-Ortiz
et al. (2021): quad (Rivasplata et al., 2019), lambda (Thiemann et al., 2017), classic (McAllester, 1999), and
bbb (Blundell et al., 2015) in the context of deep convolutional neural networks. The baseline PAC-Bayes
algorithms contain a variety of crucial hyperparameters, including variance of the prior (1e-2 to 5e-6), learning
rate (1e-3 to 1e-2), momentum (0.95, 0.99), dropout rate (0 to 0.3) in the training of the prior, and the KL
trade-off coefficient (1e-5 to 0.1) for bbb. These hyperparameters were chosen by grid search. The batch size
is 250 for all methods. Our findings, as detailed in Table 1, show that our algorithm outperforms the other
PAC-Bayes methods regarding test accuracy. It is important to note that all four baselines employed the
PAC-Bayes bound for bounded loss. Therefore, they need to convert unbounded loss into bounded loss for
training purposes. Various conversion methods were evaluated by Pérez-Ortiz et al. (2021), and the most
effective one was selected for producing the results presented.

To demonstrate the necessity of our newly proposed PAC-Bayes bound for unbounded loss, we compared
this new bound with two existing PAC-Bayes bounds for unbounded loss. One is based on the sub-Gaussian
assumption (Theorem 5.1 of Alquier (2021)), while the other (Theorem 9 of Rodríguez-Gálvez et al. (2023))
assumes the loss function is a bounded cumulant generating function (CGF). It is important to note that, as
of now, no training algorithms specifically leverage these PAC-Bayes bounds for unbounded loss. Therefore,
for a fair comparison, we conducted an experiment by replacing our PAC-Bayes bound with the other two
bounds and using the same two-stage training algorithm with the trainable layerwise prior.

We also visualized the test accuracy when minimizing different PAC-Bayes bounds for unbounded loss in Stage
1. As shown in Figure 3, minimizing our PAC-Bayes bound can achieve better generalization performance.
As discussed in Remark 4.12, the K terms in the two baseline bounds for unbounded loss are much larger
compared to ours. This results in a smaller γ, which increases the coefficient of the KL divergence term and
forces the posterior to remain close to the prior rather than fitting the data effectively. The details of the two
baseline bounds are in Appendix C.2.

Comparison with ERM optimized by SGD/Adam with various regularizations: We tested our
PAC-Bayes training on CIFAR10 and CIFAR100 datasets with no data augmentation4 on various popular

4Result with data augmentation can be found in Appendix C.3
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Table 1: Test accuracy of convolution neural networks on CIFAR10. The test accuracy of baselines for
bounded loss is from Table 5 of Pérez-Ortiz et al. (2021), calculated as 1-the zero-one error of the deterministic
predictor. subG represents the sub-Gaussian bound. Our proposed PAC-Bayes training with a layerwise prior
(layer) achieves the best test accuracy across all models.

bounded unbounded
quad lambda classic bbb subG CGF layer

CNN9 78.63 79.39 78.33 83.49 78.53 78.35 85.46
CNN13 84.47 84.48 84.22 85.41 84.30 84.42 88.31
CNN15 85.31 85.51 85.20 85.95 84.98 85.13 87.55

Table 2: Test accuracy of CNNs on C10 (CIFAR10) and C100 (CIFAR100) with batch size 128. Our
PAC-Bayes training with scalar and layerwise prior are labeled scalar and layer. The best and second-best
test accuracies are highlighted and underlined. Our PAC-Bayes training can approximately match the best
performance of the baseline.

VGG13 VGG19 ResNet18 ResNet34 Dense121
C10 C100 C10 C100 C10 C100 C10 C100 C10 C100

SGD 90.2 66.9 90.2 64.5 89.9 64.0 90.0 70.3 91.8 74.0
Adam 88.5 63.7 89.0 58.8 87.5 61.6 87.9 59.5 91.2 70.0

AdamW 88.4 61.8 89.0 62.3 87.9 61.4 88.3 59.9 91.5 70.1
scalar 88.7 67.2 89.2 61.3 88.0 68.8 89.6 69.5 91.2 71.4
layer 89.7 67.1 90.5 62.3 89.3 68.9 90.9 69.9 91.5 72.2

deep neural networks, VGG13, VGG19 (Simonyan & Zisserman, 2014), ResNet18, ResNet34 (He et al.,
2016), and Dense121 (Huang et al., 2017) by comparing its performance with conventional empirical risk
minimization by SGD/Adam enhanced by various regularizations (which we call baselines). The training of
baselines involves a grid search for the best hyperparameters, including momentum for SGD (0.3 to 0.9),
learning rate (1e-3 to 0.2), weight decay (1e-4 to 1e-2), and noise injection (5e-4 to 1e-2). The batch size was
set to be 128. We reported the highest test accuracy obtained from this search as the baseline results. For all
convolutional neural networks, our method employed Adam with a fixed learning rate of 1e-4.

Since the CIFAR10 and CIFAR100 datasets do not have a published validation dataset, we used the test
dataset to find the best hyperparameters of baselines during the grid search, which might lead
to a slightly inflated performance for baselines. Nevertheless, as presented in Table 2, the test accuracy
of our method is still competitive. Please refer to Appendix C.4 for more details.

Evaluation on graph neural networks: To demonstrate the broad applicability of the proposed PAC-Bayes
training algorithm to different network architectures, we evaluated it on graph neural networks (GNNs).
Unlike CNNs, optimal GNN performance has been reported using the AdamW optimizer for ERM and
enabling dropout. To ensure the best baseline results, we conducted a hyperparameter search over learning
rate (1e-3 to 1e-2), weight decay (0 to 1e-2), noise injection (0 to 1e-2), and dropout (0 to 0.8) and reported
the highest test accuracy as the baseline result. For our method, we used Adam and fixed the learning rate
to be 1e-2 for all graph neural networks. We follow the convention for graph datasets by randomly assigning
20 nodes per class for training, 500 for validation, and the remaining for testing.

We tested four architectures GCN (Kipf & Welling, 2016), GAT (Veličković et al., 2017), SAGE (Hamilton
et al., 2017), and APPNP (Gasteiger et al., 2018) on 5 benchmark datasets CoraML, Citeseer, PubMed,
Cora and DBLP (Bojchevski & Günnemann, 2017). Since there are only two convolution layers for GNNs,
applying our algorithm with the scalar prior is sensible. For our PAC-Bayes training, we retained the dropout
layer in the GAT as is, since it differs from the conventional dropout and essentially drops the edges of the
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Table 3: Test accuracy of GNNs trained with AdamW versus our proposed method with scalar prior scalar.
The best test accuracies are highlighted. The performance of our training can almost match the best results
of the baseline obtained after carefully tuning hyperparameters.

CoraML Citeseer PubMed Cora DBLP

GCN AdamW 85.7±0.7 90.3±0.4 85.0±0.6 60.7±0.7 80.6±1.4
scalar 86.1±0.7 90.0±0.4 84.9±0.8 62.0±0.4 80.5±0.6

GAT AdamW 85.7±1.0 90.8±0.3 84.0±0.4 63.5±0.4 81.8±0.6
scalar 85.9±0.8 90.6±0.5 84.4±0.5 60.9±0.6 81.0±0.5

SAGE AdamW 85.7±0.5 90.5±0.5 83.5±0.4 60.6±0.5 80.7±0.6
scalar 86.5±0.5 90.0±0.5 84.4±0.6 61.2±0.2 79.9±0.5

APPNP AdamW 86.6±0.7 91.0±0.4 85.1±0.5 62.5±0.4 80.6±2.8
scalar 87.1±0.6 90.4±0.5 85.7±0.4 63.5±0.4 81.8±0.5

Table 4: The test accuracy for CNNs on CIFAR10 (C10) and CIFAR100 (C100) using a batch size of 2048.
Values in (·) indicate how much the results differ from using a batch size (128). Our PAC-Bayes training
with scalar and layerwise prior are labeled as scalar and layer. The most robust results w.r.t. the increase
of batch size are highlighted, indicating the elevated robustness of our method compared to the baseline
regarding batch sizes.

VGG13 ResNet18
C10 C100 C10 C100

SGD 87.7 (-2.5) 60.1 (-6.8) 85.4 (-4.5) 61.5 (-2.6)
Adam 90.7 (+2.2) 66.2 (+2.5) 87.7 (+0.2) 65.4 (+3.8)

AdamW 87.2 (-1.1) 61.0 (-0.8) 84.9 (-2.9) 58.9 (-2.5)
scalar 88.9 (+0.2) 66.0 (-1.2) 88.9 (+0.9) 68.7 (-0.1)
layer 89.4 (-0.3) 67.1 (0.0) 89.2 (-0.1) 69.3 (+0.3)

Table 5: Test accuracy of ResNet18 and VGG13 trained with different learning rates on CIFAR10. The best
test accuracies are highlighted. Our method is more robust to learning rate variations.

Model Method 3e-5 5e-5 1e-4 2e-4 3e-4 5e-4 1e-3

ResNet18 layer 88.4 88.8 89.3 88.6 88.3 89.2 87.3
Adam 66.6 73.9 81.2 85.3 86.4 87.0 87.5

VGG13 layer 88.6 88.9 89.7 89.6 89.6 89.5 88.7
Adam 84.3 84.8 85.8 87.4 87.9 88.3 88.5

input graph. Other architectures do not have this type of dropout; hence, our PAC-Bayes training for these
architectures does not include dropout.

Table 3 demonstrates that the performance of our algorithm closely approximates the best outcome of
the baseline. Appendix C.5 provides additional details and more results. Extra analysis on few-shot text
classification with transformers is in Appendix C.6.

Evaluation on the sensitivity of hyperparameters: In previous experiments, we selected specific batch
sizes and learning rates as the only two tunable hyperparameters of our algorithm, with all other parameters
remaining constant across all experiments. We further demonstrate that batch size and learning rate variations
do not significantly impact our final performance. This suggests a general robustness of our method to
hyperparameters, reducing the necessity for extensive tuning. More specifically, with a fixed learning rate 5e-4
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(a) PAC-Bayes and ERM training. (b) PAC-Bayes training. (c) ERM training.

Figure 4: Generalization gap (the difference between the training and the testing accuracy) in PAC-Bayes
training versus ERM training on ResNet18 and CIFAR10. The line y = x indicates the optimal, zero
generalization gap. PAC-Bayes training has a smaller generalization gap throughout the training process
(Fig. 4a) and remains stable despite changes in hyperparameters (Fig. 4b, unlike ERM training (Fig. 4c),
which is very unstable. The SGD baseline used in Fig. 4a is the one in Fig. 4c that achieved the best final
test accuracy. The discontinuity it has around the testing accuracy of 80%, is due to the activation of the
learning rate scheduler.

in our method, Table 4 shows that changing the batch size from 128 to a very large one, 2048, for VGG13
and ResNet18 does not significantly affect the performance of the PAC-Bayes training compared to ERM
with extensive tuning as before. Also, as shown by Table 5, our algorithm is more robust to learning rate
changes than ERM, which utilizes the optimal weight decay and noise injection settings from Table 2.

We also examine the change in the generalization gap across the training process Figure 4. Generalization gap
is defined to be the difference between the training and testing accuracy. Algorithms with better generalization
ability should yield a smaller generalization gap. The smallest possible gap is 0, which corresponds to the
line y = x in Figure 4. We observe in Figure 4a that our PAC-Bayes training, when compared to the ERM
with the optimal hyperparameter setting, has a smaller generalization gap (i.e., closer to the line y = x) over
the course of training, although the final test accuracies are similar. The generalization gap in Stage 1 is
extremely small, confirming the effectiveness of using the PAC-Bayes bound for achieving good generalization.
In addition, as we vary the choice of hyperparameters, PAC-Bayes training is much more stable Figure 4b
than ERM Figure 4c, indicating less need for hyperparameter tuning. Furthermore, Fig. 4 suggests future
directions for improving the PAC-Bayes training. Since Stage 1 yields the best generalization gap, we should
focus on developing numerically tighter PAC-Bayes bounds to prolong Stage 1. Alternatively, we can aim to
improve the heuristic algorithm in Stage 2 to minimize the increase in the generalization gap during this
stage.

Please refer to Appendix C.7 for extra experimental studies.

6 Conclusion and Discussion

In this paper, we demonstrated the great practical potential of PAC-Bayes training by proposing a numerically
tighter PAC-Bayes bound and applying it to train deep neural networks. The proposed framework significantly
improved the performance of PAC-Bayes training, making it nearly match the best results of ERM. We hope
this result inspires researchers in the field to further explore the practical implications of PAC-Bayes theory
and make these bounds more useful in practice.
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Appendix

A Proofs

A.1 Proofs of Theorem 4.9

Theorem A.1. Given a prior Pλ parametrized by λ ∈ Λ over the hypothesis set H. Fix λ ∈ Λ, δ ∈ (0, 1) and
γ ∈ [γ1, γ2]. For any choice of i.i.d m-sized training dataset S according to D, and all posterior distributions
Q over H, we have

Eh∼Qℓ(h;D) ≤ Eh∼Qℓ(h;S) + 1
γm

(log 1
δ

+ KL(Q||Pλ)) + γK(λ) (9)

holds with probability at least 1− δ when ℓ(h, ·) satisfies Definition 4.7 with bound K(λ).

Proof. Firstly, in the bounded interval γ ∈ [γ1, γ2], we bound the difference of the expected loss over the
posterior distribution evaluated on the training dataset S and D with the KL divergence between the posterior
distribution Q and prior distribution Pλ evaluated over a hypothesis space H.

For γ ∈ [γ1, γ2],

ES∼D[exp (γm(Eh∼Qℓ(h;D) − Eh∼Qℓ(h;S))−KL(Q||Pλ))]

=ES∼D[exp (γm(Eh∼Qℓ(h;D)− Eh∼Qℓ(h;S))− Eh∼Q log dQ
dPλ

(h))] (10)

≤ES∼DEh∼Q[exp (γm(ℓ(h;D)− ℓ(h;S))− log dQ
dPλ

(h))] (11)

=Eh∼Pλ
ES∼D[exp(γm(ℓ(h;D)− ℓ(h;S)))], (12)

where dQ/dP denotes the Radon-Nikodym derivative.

In equation 10, we use KL(Q||Pλ) = Eh∼Q log dQ
dPλ

(h). From equation 10 to equation 11, Jensen’s inequality
is used over the convex exponential function. Since this argument holds for any Q, we have

sup
Q∈Q

ES∼D[exp (γm(Eh∼Qℓ(h;D) − Eh∼Qℓ(h;S))−KL(Q||Pλ))] ≤ Eh∼Pλ
ES∼D[exp(γm(ℓ(h;D)− ℓ(h;S)))]

(13)

Let X = ℓ(h;D)− ℓ(h;S), then X is centered with E[X] = 0. Then, by Definition 4.7,

∃K(λ), Eh∼Pλ
ES∼D[exp (γmX)] ≤ exp (mγ2K(λ)). (14)

Using Markov’s inequality, equation 15 holds with probability at least 1− δ.

exp (γmX) ≤ exp (mγ2K(λ))
δ

. (15)

Combining equation 13 and equation 15, the following inequality holds with probability at least 1− δ.

sup
Q∈Q

exp (γm(Eh∼Qℓ(h;D)− Eh∼Qℓ(h;S))−KL(Q||Pλ)) ≤ exp (mγ2K(λ))
δ

⇒γm(Eh∼Qℓ(h;D)− Eh∼Qℓ(h;S))−KL(Q||Pλ) ≤ log 1
δ

+mγ2K(λ),∀Q

⇒Eh∼Qℓ(h;D) ≤ Eh∼Qℓ(h;S) + 1
γm

(log 1
δ

+ KL(Q||Pλ)) + γK(λ), ∀Q. (16)

The bound 16 is exactly the statement of the Theorem.
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A.2 Proof of Theorem 4.15

Theorem A.2. Let n(ε) := N (Λ, ∥ · ∥, ε) be the covering number of the set of the prior parameters. Under
Assumption 4.13 and Assumption 4.14, the following inequality holds for the minimizer (γ̂, ŵ, λ̂) of upper
bound in equation 9 with probability as least 1− ϵ:

Eh∼Qŵℓ(h;D) ≤ Eh∼Qŵℓ(h;S) + 1
γ̂m

[
log

n(ε) + γ2−γ1
ε

ϵ
+ KL(Qŵ||Pλ̂)

]
+ γ̂K(λ̂) + η

= LP AC(w, γ̂, λ̂, δ) + η (17)

holds for any ϵ, ε > 0, where η = Bε + C(η1(ε) + η2(ε)) + log(n(ε)+ γ2−γ1
ε )

γ1m , with C = 1
γ1m + γ2, and

B := supλ∈Λ
1

mγ2
1
(KL(Qŵ||Pλ) + log 1

δ ) +K(λ).

Proof: In this proof, we extend our PAC-Bayes bound with data-independent priors to data-dependent
ones that accommodate the error when the prior distribution is parameterized and optimized over a finite set
of parameters P = {Pλ,λ ∈ Λ ⊆ Rk} with a much smaller dimension than the model itself. Let T(Λ, ∥ · ∥, ε)
be an ε-cover of the set Λ, which states that for any λ ∈ Λ, there exists a λ̃ ∈ T(Λ, ∥ · ∥, ε) , such that
||λ− λ̃|| ≤ ε.

Now we select the posterior distribution as Qŵ, parameterized by ŵ ∈ Rd. Assuming the prior P is
parameterized by λ ∈ Rk (k ≪ d).

Then the PAC-Bayes bound 9 holds already for any (ŵ, γ,λ), with fixed λ ∈ Λ and γ ∈ [γ1, γ2], i.e.,

Eh∼Qŵℓ(h;D) ≤ Eh∼Qŵℓ(h;S) + 1
γm

(log 1
δ

+ KL(Qŵ||Pλ)) + γK(λ) (18)

with probability over 1− δ.

Now, for the collection of λs in the ε-net T(Λ, ∥ · ∥, ε), by the union bound, the PAC-Bayes bound uniformly
holds on the ε-net with probability at least 1− |T|δ = 1− n(ε)δ. For an arbitrary λ ∈ Λ, its distance to the
ε-net is at most ε. Then under Assumption 4.13 and Assumption 4.14, we have:

min
λ̃∈T
|KL(Q||Pλ)−KL(Q||Pλ̃)| ≤ η1(∥λ− λ̃∥) ≤ η1(ε),

and
min
λ̃∈T
|K(λ)−K(λ̃)| ≤ η2(∥λ− λ̃∥) ≤ η2(ε).

Similarly, for γ, a ε-net on its range γ1 ≤ γ ≤ γ2 is the uniform grid with a grid separation ε, so the net
contains γ2−γ1

ε points. By the union bound, requiring the PAC-Bayes bound to uniformly hold for all the
γ within this ε-net induces an extra probability of failure of γ2−γ1

ε δ. So, the total probability of failure is
n(ε)δ + γ2−γ1

ε δ.

For an arbitrary γ ∈ Γ, and Γ := {γ ∈ [γ1, γ2]}, its distance to the ε-net T′ is at most ε, we have:

min
γ̃∈T′
|LP AC(ŵ, γ,λ, δ)− LP AC(ŵ, γ̃,λ, δ)| = 1

m

(
KL(Qŵ||Pλ) + log 1

δ

) ∣∣∣∣ 1
γ
− 1
γ̃

∣∣∣∣ + |γ − γ̃|K(λ)

=
(

1
mγγ̃

(KL(Qŵ||Pλ) + log 1
δ

) +K(λ)
)
|γ − γ̃|

≤
(

1
mγ2

1
(KL(Qŵ||Pλ) + log 1

δ
) +K(λ)

)
ε

≤ Bε,

where B := supλ∈Λ
1

mγ2
1

(KL(Qŵ||Pλ) + log 1
δ ) +K(λ), clearly, B is a constant depending on the range of the

parameters.
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With the three inequalities above, we can control the PAC-Bayes loss at the given λ and γ as follows:

min
λ̃∈T,γ̃∈T′

|LP AC(ŵ, γ,λ, δ)− LP AC(ŵ, γ̃, λ̃, δ)|

≤ min
γ̃∈T′
|LP AC(ŵ, γ,λ, δ)− LP AC(ŵ, γ̃,λ, δ)|+ min

λ̃∈T
|LP AC(ŵ, γ̃,λ, δ)− LP AC(ŵ, γ̃, λ̃, δ)|

≤ Bε+ 1
γ̃m

η1(ε) + γ̃η2(ε)

≤ Bε+ 1
γ1m

η1(ε) + γ2η2(ε)

≤ Bε+ C(η1(ε) + η2(ε))

where C = 1
γ1

+ γ2 and γ1 ≤ γ ≤ γ2. Since this inequality holds for any λ ∈ Λ and γ ∈ Γ, it certainly holds
for the optima λ̂ and γ̂. Combining this with equation 18, we have

Eh∼Qŵℓ(h;D) ≤ LP AC(ŵ, γ̂, λ̂, δ) +Bε+ C(η1(ε) + η2(ε)),

where B := supλ∈Λ
1

mγ2
1
(KL(Qŵ||Pλ) + log 1

δ ) +K(λ).

Now taking ϵ := (n(ε) + γ2−γ1
ε )δ to be the previously calculated probability of failure, we get, with probability

1− ϵ, it holds that

Eh∼Qŵℓ(h;D) ≤ Eh∼Qŵℓ(h;S) + 1
γ̂m

[
log

n(ε) + γ2−γ1
ε

ϵ
+ KL(Qŵ||Pλ̂)

]
+ γ̂K(λ̂) +Bε+ C(η1(ε) + η2(ε))

≤ LP AC(ŵ, γ̂, λ̂, δ) + η (19)

and the proof is completed.

A.3 KL divergence of the Gaussian prior and posterior

For a k-layer network, the prior is written as Pµ0,λ, where µ0 is the random initialized model parameter
and λ ∈ Rk

+ is the vector containing the variance for each layer. The set of all such priors is denoted by
P := {Pµ0,λ,λ ∈ Λ ⊆ Rk,µ0 ∈ Θ}. In the PAC-Bayes training, we select the posterior distribution to be
centered around the trained model parameterized by µ, with independent anisotropic variance. Specifically,
for a network with d trainable parameters, the posterior is Qµ,σ := N (µ,diag(σ)), where µ (the current
model) is the mean and σ ∈ Rd

+ is the vector containing the variance for each trainable parameter. The set
of all posteriors is Q := {Qµ,σ,σ ∈ Σ,µ ∈ Θ}, and the KL divergence between all such prior and posterior in
P and Q is:

KL(Qµ,σ||Pµ0,λ) = 1
2

k∑
i=1

[
−1⊤

di
log(σi) + di(log(λi)− 1) + ∥σi∥1 + ∥(µ− µ0)i∥2

2)
λi

]
, (20)

where σi, (µ− µ0)i are vectors denoting the variances and weights for the i-th layer, respectively, and λi is
the scalar variance for the i-th layer. di = dim(σi), and 1di denotes an all-ones vector of length di

5.

Scalar prior is a special case of the layerwise prior by setting all entries of λ to be equal, for which the KL
divergence reduces to

KL(Qµ,σ||Pµ0,λ) = 1
2

[
−1⊤

d log(σ) + d(log(λ)− 1) + 1
λ

(∥σ∥1 + ∥µ− µ0∥2
2)

]
. (21)

5Note that with a little ambiguity, the λi here has a different meaning from that in equation 26 and Algorithm 2, here λi

means the ith element in λ, whereas in equation 26 and Algorithm 2, λi means the ith element in the discrete set.

21



Under review as submission to TMLR

A.4 Proof of Corollary 4.16

Recall for the training, we proposed to optimize over all four variables: µ, γ, σ, and λ.

(µ̂, σ̂, γ̂, λ̂) = arg min
µ,λ,σ,

γ∈[γ1,γ2]

Eθ∼Qµ,σℓ(fθ;S) + 1
γm

(log 1
δ

+ KL(Qµ,σ||Pµ0,λ)) + γK(λ)︸ ︷︷ ︸
≡LP AC([µ,σ],γ,λ,δ)

. (22)

Corollary A.3. Assume all parameters for the prior and posterior are bounded, i.e., we restrict the
model parameter µ, the posterior variance σ and the prior variance λ, and the exponential moment K(λ)
all to be searched over bounded sets, Θ := {µ ∈ Rd : ∥µ∥2 ≤

√
dM}, Σ := {σ ∈ Rd

+ : ∥σ∥1 ≤ dT},
Λ =: {λ ∈ [e−a, eb]k}, Γ := {γ ∈ [γ1, γ2]}, respectively, with fixed M,T, a, b > 0. Then,

• Assumption 4.13 holds with η1(x) = L1x, where L1 = 1
2 max{d, ea(2

√
dM + dT )}

• Assumption 4.14 holds with η2(x) = L2x, where L2 = 1
γ2

1

(
2dM2e2a + d(a+b)

2

)

• With high probability, the PAC-Bayes bound for the minimizer of equation P has the form

Eθ∼Qµ̂,σ̂
ℓ(fθ;D) ≤ LP AC([µ̂, σ̂], γ̂, λ̂, δ) + η,

where η = k
γ1m

(
1 + log 2(CL+B)∆γ1m

k

)
, L = L1 + L2, ∆ := max{b + a, 2(γ2 − γ1)}, B =

supλ∈Λ
1

mγ2
1
(KL(Qµ̂,σ̂||Pµ0,λ) + log 1

δ ) +K(λ), and C = 1
γ1m + γ2.

Proof: We first prove the two assumptions are satisfied by the Gaussian family with bounded parameter
spaces. To prove Assumption 4.13 is satisfied, let vi = log 1/λi, i = 1, ..., k and perform a change of variable
from λi to vi. The weight of prior for the ith layer now becomes N (µ0, e

−viIdi
)), where di is the number of

trainable parameters in the ith layer. It is straightforward to compute

∂KL(Qµ,σ||P̃µ0,v)
∂vi

= 1
2[−di + evi(∥σi∥1 + ∥µi − µ0,i∥2

2)],

where σi, µi, µ0,i are the blocks of σ, µ, µ0, containing the parameters associated with the ith layer,
respectively. Now, given the assumptions on the boundedness of the parameters, we have:

∥∇vKL(Qµ,σ||P̃µ0,v)∥2 ≤ ∥∇vKL(Qµ,σ||P̃µ0,v)∥1 ≤
1
2 max{d, ea(2

√
dM + dT )} ≡ L1(d,M, T, a), (23)

where we used the assumption ∥σ∥1 ≤ dT and ∥µ0∥2, ∥µ∥2 ≤
√
dM .

Equation 23 says L1(d,M, T, a) is a valid Lipschitz bound on the KL divergence and therefore Assumption
4.13 is satisfied by setting η1(x) = L1(d,M, T, a)x.
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Next, we prove Assumption 4.14 is satisfied. We use Kmin(λ) defined in Definition 4.7 as the K(λ) in the
PAC-Bayes training, and verify that it makes Assumption 4.14 hold.

|Kmin(λ1)−Kmin(λ2)|

=
∣∣∣∣∣ sup
γ∈[γ1,γ2]

1
γ2 log(Eθ∼Pµ0,λ1

Ez∼D[exp (γℓ(fθ; z))])− sup
γ∈[γ1,γ2]

1
γ2 log(Eθ∼Pµ0,λ2

Ez∼D[exp (γℓ(fθ; z))])
∣∣∣∣∣

≤ sup
γ∈[γ1,γ2]

1
γ2

∣∣log(Eθ∼Pµ0,λ1
Ez∼D[exp (γℓ(fθ; z))])− log(Eθ∼Pµ0,λ2

Ez∼D[exp (γℓ(fθ; z))])
∣∣

= sup
γ∈[γ1,γ2]

1
γ2

∣∣∣∣log(Eθ∼Pµ0,λ2
Ez∼D[exp (γℓ(fθ; z))]pµ0,λ1(θ)

pµ0,λ2(θ) )− log(Eθ∼Pµ0,λ2
Ez∼D[exp (γℓ(fθ; z))])

∣∣∣∣
≤ sup

γ∈[γ1,γ2]

1
γ2 sup

θ∈Θ

∣∣∣∣log pµ0,λ1(θ)
pµ0,λ2(θ)

∣∣∣∣
≤ 1
γ2

1
sup
h∈H

∣∣∣∣log pµ0,λ1(θ)
pµ0,λ2(θ)

∣∣∣∣
≤ 1
γ2

1

(
2dM2e2a + d(a+ b)

2

)
∥λ1 − λ2∥2,

where the first inequality used the property of the supremum, the pµ0,λ1(θ), pµ0,λ2(θ) in the fourth line
denote the probability density function of Gaussian with mean µ0 and variance parametrized by λ1, λ2 (i.e.,
λ1,i, λ2,i are the variances for the ith layer), the second inequality use the fact that if X(h) is a non-negative
function of h and Y (h) is a bounded function of h, then

|Eh(X(h)Y (h))| ≤ (sup
h∈H
|Y (h)|) · EhX(h).

The last inequality used the formula of the Gaussian density

p(x;µ,Σ) = 1
(2π)d/2|Σ|1/2 exp

(
−1

2(x− µ)T Σ−1(x− µ)
)

and the boundedness of the parameters. Therefore, Assumption 4.14 is satisfied by setting η2(x) =
L2(d,M, γ1, a)x, where L2(d,M, γ1, a) = 1

γ2
1

(
2dM2e2a + d(a+b)

2

)
.

Let L(d,M, T, γ1, a) = L1(d,M, T, a) + L2(d,M, γ1, a). Then we can apply Theorem 4.15, to get with
probability 1− ϵ,

Eθ∼Qµ̂,σ̂
ℓ(fθ;D)

≤ Eθ∼Qµ̂,σ̂
ℓ(fθ;S) + 1

γ̂m

[
log

n(ε) + γ2−γ1
2ε

ϵ
+ KL(Qµ̂,σ̂||Pµ0,λ̂)

]
+ γ̂Kmin(λ̂)+

(CL(d,M, T, γ1, a)) +B)ε.

(24)

Here, we used η1(x) = L1x and η2(x) = L2x. Note that for the set [−b, a]k, the covering number n(ε) =
N ([−b, a]k, | · |, ε) is

(
b+a
2ε

)k, and the covering number γ2−γ1
2ε for γ ∈ [γ1, γ2].

We introduce a new variable ρ > 0, letting ε = ρ
2(CL(d,M,T,γ1,a)+B) and inserting it into equation equation 24,

we obtain with probability 1− ϵ:

Eθ∼Qµ̂,σ̂
ℓ(fθ;D)

≤ Eθ∼Qµ̂,σ̂
ℓ(fθ;S) + 1

γ̂m

[
log 1

ϵ
+ KL(Qµ̂,σ̂||Pµ0,λ̂)

]
+ γ̂Kmin(λ̂) + ρ+ k

γ1m
log 2(CL(d,M, T, γ1, a) +B)∆

ρ
.
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where ∆ := max{b+ a, 2(γ2 − γ1)}.

Optimizing over ρ, we obtain:

Eθ∼Qµ̂,σ̂
ℓ(fθ;D)

≤ Eθ∼Qµ̂,σ̂
ℓ(fθ;S) + 1

γ̂m

[
log 1

ϵ
+ KL(Qµ̂,σ̂||Pµ0,λ̂)

]
+ γ̂Kmin(λ̂) + k

γ1m

(
1 + log 2(CL(d,M, T, γ1, a) +B)∆γ1m

k

)
= LP AC([µ̂, σ̂], γ̂, λ̂, δ) + k

γ1m

(
1 + log 2(CL(d,M, T, γ1, a) +B)∆γ1m

k

)
.

Hence we have

Eθ∼Qµ̂,σ̂
ℓ(fθ;D) ≤ LP AC([µ̂, σ̂], γ̂, λ̂, δ) + η,

where η = max
(

1
γ1m (1 + log(2(CL(d,M, T, γ1, a) +B)(γ2 − γ1)γ1m)), k

γ1m

(
1 + log 2(CL(d,M,T,γ1,a)+B)∆γ1m

k

))
.

Remark A.4. In defining the boundedness of the domain Θ of µ in Corollary 4.16, we used
√
dM as the

bound. Here, the factor
√
d (where d denotes the dimension of h) is used to encapsulate the idea that if on

average, the components of the weight are bounded by M , then the ℓ2 norm would naturally be bounded by√
dM . The same idea applies to the definition of Σ.

Remark A.5. Due to the above remark, M , T , a, b can be treated as dimension-independent constants that
do not grow with the network size d. As a result, the constants L1, L2, L in Corollary 4.16, are dominated
by d, and L1, L2, L = O(d). This then implies the logarithm term in η scales as O(log d), which grows very
mildly with the size. Therefore, Corollary 4.16 can be used as the generalization guarantee for large neural
networks.

B Algorithm Details

B.1 Algorithms to estimate K(λ)

In this section, we explain the algorithm to compute K(λ). In previous literature, the moment bound K or
its analog term in the PAC-Bayes bounds was often assumed to be a constant. One of our contributions is to
allow K to vary with the variance λ of the prior, so if a small prior variance is found by PAC-Bayes training,
then the corresponding K would also be small. We perform linear interpolation to approximate the function
Kmin(λ) defined in (2) of the main text. When λ is 1D, We first compute Kmin(λ) on a finite grid of the
domain of λ, by solving equation 25 below. With the computed function values on the grid {Kmin(λi)}i , we
can construct a piecewise linear function as the approximation of Kmin(λ).

Kmin(λi) = arg min
K>0

K

s.t. exp (γ2K) ≥ 1
nm

n∑
l=1

m∑
j=1

exp(γ(ℓ(fθl
;S)− ℓ(fθl

; zj))),

∀ γ ∈ [γ1, γ2], θl ∼ N (µ0, λi), λmin ≤ λi ≤ λmax

(25)

where θl ∼ Pµ0,λi
, l = 1, ..., n, are samples from the prior distribution and are fixed when solving equation 25

for Kmin(λi). equation 25 is the discrete version of the formula (2) in the main text. This optimization
problem is 1-dimensional, and the function in the constraint is monotonic in K, so it can be solved efficiently
by the bisection method.
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When extending this procedure to high dimension, where λ is a k-dimension vector, we need to set up a grid
for the domain of λ in k-dimensional space and estimate Kmin on each grid point, which is time-consuming
when k is large. To address this issue, we propose to use the following approximation:

K̂(max(λi)) = arg min
K>0

K

s.t. exp (γ2K) ≥ 1
nm

n∑
l=1

m∑
j=1

exp(γ(ℓ(fθl
;S)− ℓ(fθl

; zj))),

∀ γ ∈ [γ1, γ2], θl ∼ N (µ0,max(λi)), λmin ≤ max(λi) ≤ λmax, i = 1, ..., s

(26)

where λi is a random sample from the domain Λ of λ. Since each λi is k-dimensional, max(λi) represents
the maximum of the k coordinates.

The idea of this formulation 26 is as follows, we use the 1D function K̂(max(λi)) as a surrogate function of
the original k-dimension function Kmin(λ) (i.e. Kmin(λ) ≤ K̂(max(λi))). Then estimating this 1D surrogate
function is easy by using the bisection method. This procedure will certainly overestimate the true Kmin(λ)
but since the surrogate function is also a valid exponential moment bound, it is safe to be used as a replacement
for the K(λ) in our PAC-Bayes bound for training. In practice, we tried to use mean(λi) to replace max(λi)
to mitigate the over-estimation, but the final performance stays the same. The details of the whole procedure
are presented in Algorithm 2.

Algorithm 2 Compute K(λ) given a set of query priors
Input: γ1 and γ2, sampling time s of prior variances, the initial neural network weight θ0, the training
dataset S = {zi}m

i=1, model sampling time n = 10
Output: the piece-wise linear interpolation K̃(λ) for Kmin(λ)
Draw s random samples for the prior variances V = {λi ∈ Λ ⊆ Rk, i = 1, ..., s}
Set up a discrete grid Γ for the interval [γ1, γ2] of γ.
for λi ∈ V do

for l = 1 : n do
Sampling weights from the Gaussian distribution θl ∼ N (µ0,λi)
Use θl, Γ and S to compute one term in the sum in equation 26

end for
Solve K̂(max(λi)) using equation 26

end for
Fit a piece-wise linear function K̃(λ) to the data {(λi, K̂(max(λi))}s

i=1

B.2 PAC-Bayes Training with layerwise prior

Similar to Algorithm 1, our PAC-Bayes training with a layerwise prior is stated here in Algorithm 3.

B.3 Regularizations in PAC-Bayes bound

Only noise injection and weight decay are essential from our derived PAC-Bayes bound. Since many factors in
normal training, such as mini-batch and dropout, enhance generalization by some sort of noise injection, it is
unsurprising that they can be substituted by the well-calibrated noise injection in PAC-Bayes training. Like
most commonly used implicit regularizations (large lr, momentum, small batch size), dropout and batch-norm
are also known to penalize the loss function’s sharpness indirectly. Wei et al. (2020) studies that dropout
introduces an explicit regularization that penalizes sharpness and an implicit regularization that is analogous
to the effect of stochasticity in small mini-batch stochastic gradient descent. Similarly, it is well-studied
that batch-norm Luo et al. (2018) allows the use of a large learning rate by reducing the variance in the
layer batches, and large allowable learning rates regularize sharpness through the edge of stability Cohen
et al. (2020). As shown in the equation below, the first term (noise-injection) in our PAC-Bayes bound
explicitly penalizes the Trace of the Hessian of the loss, which directly relates to sharpness and is quite similar
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Algorithm 3 PAC-Bayes training (layerwise prior)
Input: initial weight µ0 ∈ Rd, the number of layers k, T1, λ1 = e−12, λ2 = e2, γ1 = 0.5, γ2 = 10, //
T1, λ1, λ2, γ1, γ2 can be fixed in all experiments of Sec5.
Output: trained model µ̂, posterior noise level σ̂
θ ← µ0, v← 1d · log( 1

d

∑d
i=1 |µ0,i|), b← 1k · log( 1

d

∑d
i=1 |µ0,i|) // Initialization

Obtain the estimated K̃(λ̄) with Λ = [λ1, λ2]k using equation 26 and Appendix B.1
// Stage 1
for epoch = 1 : T1 do

for sampling one batch s from S do
λ← exp(b), σ ← exp(v) // Ensure non-negative variances
Construct the covariance of Pµ̂0,λ from λ // Setting the variance of the weights in layer-i all to the
scalar λ(i)
Draw one θ̃ ∼ Qµ,σ and evaluate ℓ(fθ̃;S), // Stochastic version of Eθ̃∼Qµ,σ

ℓ(fθ̃;S)
Compute the KL-divergence as equation 20
Compute γ as equation 8
Compute the loss function L as LP AC in equation P
b← b + η ∂L

∂b , v← v + η ∂L
∂v , µ← µ + η ∂L

∂µ // Update all parameters
end for

end for
σ̂ ← exp(v) // Fix the noise level from now on
// Stage 2
while not converge do

for sampling one batch s from S do
Draw one sample θ̃ ∼ Qµ̂,σ̂ and evaluate ℓ(fθ̃;S) as L̃, // Noise injection
µ← µ + η ∂L̃

∂µ // Update model parameters
end for

end while
µ̂← µ

to the regularization effect of batch-norm and dropout. During training, suppose the current posterior is
Qµ̂,σ̂ = N (µ̂,diag(σ̂)), then the training loss expectation over the posterior is:

Eθ∼Qµ̂,σ̂
ℓ(fθ;D) = E∆θ∼Q0,σ̂

ℓ(fθ̂+∆θ;D)

≈ ℓ(fθ̂,D) + E∆θ∼Q0,σ̂
(ℓ(fθ̂;D)∆θ + 1

2∆θ⊤∇2ℓ(fθ̂;D)∆θ)

= ℓ(f̂θ;D) + 1
2Tr(diag(σ̂)∇2ℓ(fθ̂;D)).

The second regularization term (weight decay) in the bound additionally ensures that the minimizer found
is close to initialization. Although the relation of this regularizer to sharpness is not very clear, empirical
results suggest that weight decay may have a separate regularization effect from sharpness. In brief, we state
that the effect of sharpness regularization from dropout and batch norm can also be well emulated by noise
injection with the additional effect of weight decay.

B.4 Deterministic Prediction

Recall that for any µ ∈ Rd and σ ∈ Rd
+, we used Qµ,σ to denote the multivariate normal distribition with

mean µ and covariance matrix diag(σ). If we rewrite the left-hand side of the PAC-Bayes bound by Taylor
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expansion, we have:
Eθ∼Qµ̂,σ̂

ℓ(fθ;D) = E∆θ∼Q0,σ̂
ℓ(fθ̂+∆θ;D)

≈ ℓ(fθ̂,D) + E∆θ∼Q0,σ̂
(∇ℓ(fθ̂;D)T ∆θ + 1

2∆θ⊤∇2ℓ(fθ̂;D)∆θ)

= ℓ(fθ̂;D) + 1
2Tr(diag(σ̂)∇2ℓ(fθ̂;D)) ≥ ℓ(fθ̂;D).

(27)

Recall here µ̂ and σ̂ are the minimizers of the PAC-Bayes loss, obtained by solving the optimization problem
equation P. Equation equation 27 states that the deterministic predictor has a smaller prediction error than
the Bayesian predictor. However, note that the last inequality in equation 27 is derived under the assumption
that the term ∇2ℓ(fθ̂;D) is positive-semidefinite. This is a reasonable assumption as µ̂ is the local minimizer
of the PAC-Bayes loss, and the PAC-Bayes loss is close to the population loss when the number of samples is
large. Nevertheless, since this property only approximately holds, the presented argument can only serve as
an intuition that shows the potential benefits of using the deterministic predictor.

C Extended Experimental Details

We conducted experiments using eight A5000 GPUs with four AMD EPYC 7543 32-core Processors. To
speed up the training process for posterior and prior variance, we utilized a warmup method that involved
updating the noise level in the posterior of each layer as a scalar for the first 50 epochs and then proceeding
with normal updates after the warmup period. This method only affects the convergence speed, not the
generalization, and it was only used for large models in image classification.

C.1 Parameter Settings

Recall that the exponential momentum bound K(λ) is estimated over a range [γ1, γ2] of γ as per Definition 4.7.
It means that we need the inequality

Eh∼Pλ
E[exp (γ(E[X(h)]−X(h)))] ≤ exp (γ2K(λ))

to hold for any γ in this range. One needs to be a little cautious when choosing the upper bound γ2, because
if it is too large, then the empirical estimate of Eh∼Pλ

E[exp (γ(E[X(h)]−X(h)))] would have too large of a
variance. Therefore, we recommended γ2 to be set to no more than 10 or 20. The choice of γ1 also does not
seem to be very crucial, so we have fixed it to 0.5 throughout.

For large datasets (like in MNIST or CIFAR10), m is large. Then, according to Theorem 4.15, we can set
the range M,T, a, b of the trainable parameters to be very large with only a little increase of the bound (as
M,T, a, b are inside the logarithm), and then during training, the parameters would not exceed these bounds
even if we don’t clip them. Hence, no clipping is needed for very large networks or with small networks with
proper initializations. But when the dataset size m is small, or the initialization is not good enough, then the
correction term could be large, and clipping will be needed.

The clipping is also needed from the usual numerical stability point of view. As λ is in the denominator of
the KL-divergence, it cannot be too close to 0. Because of this, in the numerical experiments on GNN and
CNN13/CNN15, we clip the domain of λ at a lower bound of 0.1 and 5e− 3, respectively. For the VGG and
Resnet experiments, the clipping λ is optional.

C.2 Baseline PAC-Bayes bounds for unbounded loss functions

We compared two baseline PAC-Bayes bounds when training CNNs with our layerwise PAC-Bayes bound.
The bounds are expressed in our notation. Consider a neural network model denoted as fθ, where f represents
the network’s architecture, and θ is the weight.

• sub-Gaussian (Theorem 5.1 of Alquier (2021)):

Eθ∼Qℓ(fθ;D) ≤ Eθ∼Qℓ(fθ;S) + 1
mγ

(
log 1

δ
+ KL(Q||P)

)
+Ksubγ, (28)
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where Ksub is the variance factor by assuming the loss function ℓ is sub-Gaussian as defined below:

Eθ∼PES∼D exp [γ(ℓ(fθ;S)− ℓ(fθ;D))] ≤ exp (γ2Ksub),∀γ ∈ R.

In the experiment to generate Figure 1, we restricted γ to [−1, 1]. Otherwise, if we use γ ∈ R,
the sub-Gaussian bound would be too large to calculate, resulting in a NaN value. Therefore, the
reported Ksub in Figure 1 may be underestimated.

• CGF (Theorem 9 of Rodríguez-Gálvez et al. (2023)):

Eθ∼Qℓ(fθ;D) ≤ Eθ∼Qℓ(fθ;S) + 1
γ

(
1
m

(log 1
δ

+ KL(Q||P)) + ψ(γ)
)
, (29)

where ψ(γ) is a convex and continuously differentiable function defined on [0, b) for some b ∈ R+ such
that ψ(0) = ψ′(0) = 0 and Eθ∼PES∼D[exp(γ(ℓ(fθ;D) − ℓ(fθ;S)))] ≤ exp (ψ(γ)) for all γ ∈ [0, b).
There is no specific form of ψ(γ) provided in the original paper, but in order to achieve the normal√
m convergence rate of the PAC-Bayes bound, we need at least set ψ(γ) = KCGF γ

α (α ≥ 2). Among
these, using α = 2 gives the smallest K, so we used α = 2 for the comparison in Figure 1 and 3.

C.3 Compatibility with Data Augmentation

We didn’t include data augmentation in the experiments in the main text. Because with data augmentation,
there is no rigorous way of choosing the sample size m that appears in the PAC-Bayes bound. More specifically,
for the PAC-Bayes bound to be valid, the training data has to be i.i.d. samples from some underlying
distribution. However, most data augmentation techniques would break the i.i.d. assumption. As a result, if
we have 10 times more samples after augmentation, the new information they bring in would be much less
than those from 10 times i.i.d. samples. In this case, how to determine the effective sample size m to be used
in the PAC-Bayes bound is a problem.

Since knowing whether a training method can work well with data augmentation is important, we carried
out the PAC-Bayes training with an ad-hoc choice of m, that is, we set m to be the size of the augmented
data. We compared the grid-search result of SGD and Adam versus PAC-Bayes training on CIFAR10 with
ResNet18. The augmentation is achieved by random flipping and random cropping. The data augmentation
increased the size of the training sample by 128 times. The test accuracy for SGD is 95.2%, it is 94.3%
for Adam, it is 94.4% for AdamW, and it is 94.3% for PAC-Bayes training with the layerwise prior. In
contrast, the test accuracy without data augmentation is lower than 90% for all methods. It suggests that
data augmentation does not conflict with the PAC-Bayes training in practice.

C.4 Model analysis

We examined the learning process of PAC-Bayes training by analyzing the posterior variance σ for different
layers in models trained by Algorithm 3. Typically, batch norm layers have smaller σ values than convolution
layers. Additionally, shadow convolution and the last few layers have smaller σ values than the middle layers.
We also found that skip-connections in ResNet18 have smaller σ values than nearby layers, suggesting that
important layers with a greater impact on the output have smaller σ values.

In Stage 1, the training loss is higher than the testing loss, which means the adopted PAC-Bayes bound is
able to bound the generalization error throughout the PAC-Bayes training stage. Additionally, we observed
that the final value of K is usually very close to the minimum of the sampled function values. The average
value of σ experienced a rapid update during the initial 50 warmup epochs but later progressed slowly until
Stage 2. The details can be found in Figure 9 and 10. Based on the figures, shadow convolution, and the last
few layers have smaller σ values than the middle layers for all models. We also found that skip-connections in
ResNet18 and ResNet34 have smaller σ values than nearby layers on both datasets, suggesting that important
layers with a greater impact on the output have smaller σ values.

Computational cost: In PAC-Bayes training, we have four parameters µ,λ,σ, γ. Among these variables, γ
can be computed on the fly or whenever needed, so there is no need to store them. We need to store µ,λ,σ,
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where σ has the same size as µ and the size of λ is the same as the number of layers which is much smaller.
Hence the total storage is approximately doubled. Likewise, when computing the gradient for µ,λ,σ, the
cost of automatic differentiation in each iteration is also approximately doubled. In the inference stage, the
complexity is the same as in conventional training.

Effect of two stages: We have tested the effect of the two stages. Without the first stage, the algorithm
cannot automatically learn the noise level and weight decay to be used in the second stage. If the first stage is
there but too short (10 epochs for example), then the final performance of VGG13 on CIFAR100 will reduce
to 64.0% . Without Stage 2, the final performance is not as good as reported either. The test accuracy of
models like VGG13 and ResNet18 on CIFAR10 would be 10% lower as in Figure 9 and 10.

C.5 Node classification by GNNs

We test the PAC-Bayes training algorithm on the following popular GNN models, tuning the learning rate
(1e−3, 5e−3, 1e−2), weight decay (0, 1e−4, 1e−3, 1e−2), noise injection (0, 1e−3, 5e−3, 1e−2), and dropout
(0, 0.4, 0.8). The number of filters per layer is 32 in GCN (Kipf & Welling, 2016) and SAGE (Hamilton et al.,
2017). For GAT (Veličković et al., 2017), the number of filters is 8 per layer, the number of heads is 8, and
the dropout rate of the attention coefficient is 0.6. Fpr APPNP (Gasteiger et al., 2018), the number of filters
is 32, K = 10 and α = 0.1. We set the number of layers to 2, achieving the best baseline performance. A
ReLU activation and a dropout layer are added between the convolution layers for baseline training only.
Since GNNs are faster to train than convolutional neural networks, we tested all possible combinations of
the above parameters for the baseline, conducting 144 searches per model on one dataset. We use Adam
as the optimizer with the learning rate as 1e−2 for all models using both training and validation nodes for
PAC-Bayes training.

We also did a separate experiment using both training and validation nodes for training. For baselines, we
need first to train the model to detect the best hyperparameters as before and then train the model again
on the combined data. Our PAC-Bayes training can also match the best generalization of baselines in this
setting.

All results are visualized in Figure 5-8. The AdamW+val and scalar+val record the performances of the
baseline and the PAC-Bayes training, respectively, with both training and validation datasets for training.
We can see that test accuracy after adding validation nodes increased significantly for both methods but still,
the results of our algorithm match the best test accuracy of baselines. Our proposed PAC-Bayes training with
the scalar prior is better than most of the settings during searching and achieved comparable test accuracy
when adding validation nodes to training.

C.6 Few-shot text classification with transformers

The proposed method is also observed to work on transformer networks. We conducted experiments on two
text classification tasks of the GLUE benchmark as shown in Table 6. SST is the sentiment analysis task,
whose performance is evaluated as the classification accuracy. Sentiment analysis is the process of analyzing
the sentiment of a given text to determine if the emotional tone of the text is positive, negative, or neutral.
QNLI (Question-answering Natural Language Inference) focuses on determining the logical relationship
between a given question and a corresponding sentence. The objective of QNLI is to determine whether the
sentence contradicts, entails, or is neutral with respect to the question.

We use classification accuracy as the evaluation metric. The baseline method uses grid search over the
hyper-parameter choices of the learning rate (1e−1, 1e−2, 1e−3), batch size (2, 8, 16, 32, 80), dropout ratio
(0, 0.5), optimization algorithms (SGD, AdamW), noise injection (0, 1e−5, 1e−4, 1e−3, 1e−2, 1e−1), and
weight decay (0, 1e−1, 1e−2, 1e−3, 1e−4). The learning rate and batch size of our method are set to 1e−3
and 100 (i.e., full-batch), respectively. In this task, the number of training samples is small (80). As a result,
the preset γ2 = 10 is a bit large and thus prevents the model from achieving the best performance with
PAC-Bayes training.

We adopt BERT (Devlin et al., 2018) as our backbone and added one fully connected layer as the classification
layer. Only the added classification layer is trainable, and the pre-trained model is frozen without gradient
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update. To simulate a few-shot learning scenario, we randomly sample 100 instances from the original training
set and take the whole development set to evaluate the classification performance. We split the training set
into 5 splits, taking one split as the validation data and the rest as the training set. Each experiment was
conducted five times, and we report the average performance. We used the PAC-Bayes training with the
scalar prior in this experiment. According to Table 6, our method is competitive to the baseline method on
the SST task, and the performance gap is only 0.4 points. On the QNLI task, our method outperforms the
baseline by a large margin, and the variance of our proposed method is less than that of the baseline method.

Table 6: Test accuracy on the development sets of 2 GLUE benchmarks.

SST QNLI
baseline 72.9±0.99 62.6±0.10
scalar 72.5±0.99 64.2±0.02

C.7 Additional experiments stability

We conducted extra experiments to showcase the robustness of the proposed PAC-Bayes training algorithm.
Specifically, we tested the effect of different learning rates on ResNet18 and VGG13 models trained with
layerwise prior. Learning rate has long been known as an important impact factor of the generalization for
baseline training. Within the stability range of gradient descent, the larger the learning rate is, the better the
generalization has been observed (Lewkowycz et al., 2020). In contrast, the generalization of the PAC-Bayes
trained model is less sensitive to the learning rate. We do observe that due to the newly introduced noise
parameters, the stability of the optimization gets worse, which in turn requires a lower learning rate to
achieve stable training. But as long as the stability is guaranteed by setting the learning rate low enough,
our results, as Table 7, indicated that the test accuracy remained stable across various learning rates for
VGG13 and Resnet18. The dash in the table means that the learning rate for that particular setting is too
large to maintain the training stability. For learning rates below 1e−4, we trained the model in Stage 1 for
more epochs (700) to fully update the prior and posterior variance.

We also demonstrate that the warmup iterations (as discussed at the beginning of this section) do not affect
generalization. As shown in Table 9, the test accuracy is insensitive to different numbers of warmup iterations.
Furthermore, additional evaluations of the effects of batch size (Table 10), optimizer (Tables 11), and γ1 and
γ2 (Table 12)

Table 7: Test accuracy of ResNet18 trained with different learning rates.

lr 3e−5 5e−5 1e−4 2e−4 3e−4 5e−4
CIFAR10 88.4 88.8 89.3 88.6 88.3 89.2
CIFAR100 69.2 69.0 68.9 69.1 69.1 69.6

Table 8: Test accuracy of VGG13 trained with different learning rates.

lr 3e−5 5e−5 1e−4 2e−4 3e−4 5e−4
CIFAR10 88.6 88.9 89.7 89.6 89.6 89.5
CIFAR100 67.7 68.0 67.1 - - -
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Table 9: Test accuracy of ResNet18 trained with warmup epochs of σ.

10 20 50 80 100 150
CIFAR10 88.5 88.5 89.3 89.5 89.5 88.9
CIFAR100 69.4 69.6 68.9 69.1 69.0 68.1

Table 10: Test accuracy of VGG13 with different batch sizes.

Batch Size 128 256 1024 2048 2500
Test Acc 89.7 89.7 88.7 89.4 88.3

Table 11: Test accuracy of ResNet18 using SGD: Effects of different momentum values (with learning rate
1× 10−3) and different learning rates (with momentum 0.9).

Momentum Learning Rate
0.3 0.6 0.9 1× 10−4 3× 10−4 1× 10−3

Test Acc 88.6 88.8 89.2 88.3 88.8 89.2

Table 12: Test accuracy of ResNet18 with different settings for γ1 (with γ2 = 20) and γ2 (with γ1 = 0.1).

γ1 γ2

0.1 0.5 1.0 10 15 20
Test Acc 88.8 89.3 88.8 89.3 89.4 89.4
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(a) CoraML (b) Citeseer (c) CoraFull

(d) DBLP (e) DBLP

Figure 5: Test accuracy of GCN. The first and third quartiles construct the interval over the ten random
splits. {+val} denotes the performance with both training and validation datasets for training.
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(a) CoraML (b) Citeseer (c) CoraFull

(d) DBLP (e) DBLP

Figure 6: Test accuracy of SAGE. The first and third quartiles construct the interval over the ten random
splits. {+val} denotes the performance with both training and validation datasets for training.
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(a) CoraML (b) Citeseer (c) CoraFull

(d) DBLP (e) DBLP

Figure 7: Test accuracy of GAT. The first and third quartiles construct the interval over the ten random
splits. {+val} denotes the performance with both training and validation datasets for training.
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(a) CoraML (b) Citeseer (c) CoraFull

(d) DBLP (e) DBLP

Figure 8: Test accuracy of APPNP. The first and third quartiles construct the interval over the ten random
splits. {+val} denotes the performance with both training and validation datasets for training.

(a) mean(σ) of batch-norm layers. (b) mean(σ) of convolution layers. (c) mean(σ) in training.

(d) Function K̃(λ̄). (e) Training and testing process.

Figure 9: Training details of ResNet18 on CIFAR10. The red star denotes the final K.
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(a) mean(σ) of batch-norm layers. (b) mean(σ) of convolution layers. (c) mean(σ) in training.

(d) Function K̃(λ̄). (e) Training and testing process.

Figure 10: Training details of VGG13 on CIFAR10. The red star denotes the final K.
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