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ABSTRACT

Dataset distillation (DD) is a newly emerging research area aiming at alleviating
the heavy computational load in training models on large datasets, as it tries to
distill a large dataset into a small and condensed one so that models trained on
the distilled dataset can perform comparably with those trained on the full dataset
in downstream tasks. Among the previous works in this area, there are three key
problems that hinder the performance and availability of the existing DD meth-
ods: high time complexity, high space complexity, and low info-compactness. In
this work, we simultaneously attempt to settle these three problems by moving
the DD processes from conventionally used pixel space to latent space. Encoded
by a pretrained generic autoencoder, latent codes in the latent space are naturally
info-compact representations of the original images in much smaller sizes. After
transferring three mainstream DD algorithms to latent space, we significantly re-
duce time and space consumption while achieving similar performance, allowing
us to distill high-resolution datasets or target at greater data ratio that previous
methods have failed. Besides, within the same storage budget, we can also quan-
titatively deliver more info-compact latent codes than pixel-level images, which
further boosts the performance of our methods.

1 INTRODUCTION

Due to the rapidly progressing compute capability of modern devices, people are building unprece-
dentedly large and data-hungry models. For instance, the state-of-the-art text-to-image generative
models, Stable Diffusions (Rombach et al., 2022), were pretrained on LAION-5B (Schuhmann et al.,
2022), which contains 5.85 billion text-image pairs. Although large models trained on large datasets
have achieved fascinating performance in many applications, they are still renowned for the high
demands on training time, computing devices, storage budgets, and electricity consumption.

In recent years, dataset distillation (DD) is a newly emerging research topic which tries to lower
the aforementioned demands. Inspired by knowledge distillation (Hinton et al., 2014; Bucila et al.,
2006; Ba & Caruana, 2014; Romero et al., 2015), DD aims at distilling a full dataset into a much
smaller set, so that in specific tasks the models trained on this distilled dataset are expected to
perform comparably to those trained on the full dataset. Some DD methods select a subset from the
full dataset according to certain rules (Feldman et al., 2013; Welling, 2009; Sener & Savarese, 2018;
Aljundi et al., 2019; Zhou et al., 2023), usually referred to as coreset selection. Wang et al. (2018)
has proposed a prototype method of optimization-based DD1 by solving a bi-level optimization
problem, which has started a new era in this area. By analyzing this prototype, we conclude the main
issues in DD into three problems. Problem 1: DD involves solving a computationally intensive bi-
level optimization problem in a nested-loop manner, which has high time complexity. Problem 2:
DD has to store the whole computation graph recording the optimization process of the network
before finally back-propagating the gradients all the way through the graph to update the distilled
dataset, making its space complexity high too. Problem 3: As we expect to remain a small data ratio
(size of distilled dataset/full dataset), the distilled dataset should be highly info-compact in order to
cover the information of the full dataset as much as possible. However, distilling dataset in the
original space (e.g. pixel space for image datasets) will inevitably condense high-frequency detailed
information into limited storage budget, which is usually unnecessary for downstream tasks.

1In the rest of this paper, dataset distillation methods exclusively refer to the optimization-based ones.
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Methods following the prototype of DD (Wang et al., 2018) have usually focused on one or two of
the three problems. For example, the three mainstream DD algorithms DC (Zhao & Bilen, 2021a),
DM (Zhao & Bilen, 2023) and MTT (Cazenavette et al., 2022) respectively use gradient matching,
feature matching and parameter matching to efficiently approximate the bi-level optimization of the
prototype, improving P1–P2 yet omitting P3. Some other works factorize the distilled dataset into
more info-compact components (Kim et al., 2022; Liu et al., 2022; Cazenavette et al., 2023) thus
alleviate P3. Nevertheless, since these methods still operate on pixel space using the DD algorithms
above, they even induce extra time and space consumption when transforming the components to
images and inversely back-propagating gradients from images to components and fail P1–P2. To the
best of our knowledge, no previous work has simultaneously settled all the three problems.

Within the field of image generation, another domain fraught with computational complexity, recent
breakthroughs in diffusion models (Ho et al., 2020; Song et al., 2021; Dhariwal & Nichol, 2021) have
pushed both the performance and the time & space consumption to a new level. Later on, Rombach
et al. (2022) have proposed latent diffusion models transferring the diffusing/denoising procedures
from pixel space to latent space with the help of a pretrained autoencoder, which largely accelerates
the training process while keeping the performance. Inspired by such design, we propose Latent
Dataset Distillation (LatentDD) which transfers the three mainstream DD algorithms DC, DM and
MTT to fully operate on latent codes encoded by the pretrained generic autoencoder provided in
latent diffusion models rather than on images, namely LatentDC, LatentDM and LatentMTT. An
overview of LatentDD is shown in Figure 1 (b) and (c). Since the latent codes have much smaller
size than pixel-level images, LatentDD takes significantly less time and space (both main memory
and GPU memory) to run DD algorithms, alleviating P1–P2. Such acceleration and space reduction
is only at the cost of marginal performance degradation, as the pretrained autoencoder can roughly
keep the distribution of the original images into the latent codes and thus solving DD in latent space
is approximately equivalent to that in pixel space (see Section 3.2). As for P3, the latent codes are
naturally info-compact representations of the original images since the autoencoder can reconstruct
the images from latent codes losing just the subtlest details. Besides, with a fixed data ratio (storage
budget) in DD tasks, we can quantitatively store much more latent codes than pixel-level images,
which boosts the performance of LatentDD.

In summary, our work is the first to settle all the three problems in DD at the same time. It is also
worth mentioning that its fast and space-saving designs enable LatentDD to distill high-resolution
datasets. While most of the recent works have been dealing with toy datasets like CIFAR10/100
(Krizhevsky, 2009) while only a few latest ones trying higher resolution like 64 or 128, we roll
out our experiments on high-resolution settings starting from 256, and beyond. These challenging
experiments in Section 4 have manifested the superiority of LatentDD over previous works.

2 RELATED WORK

Before Wang et al. (2018), coreset selection (Feldman et al., 2013; Welling, 2009; Sener & Savarese,
2018; Toneva et al., 2019; Aljundi et al., 2019) was the primary solution for distilling datasets. Since
Wang et al. (2018) proposed the prototype of DD, follow-up works started to focus on optimization-
based dataset distillation, aiming at solving the three problems mentioned in Section 1. Besides the
brief introductions below, we also recommend some surveys (Sachdeva & McAuley, 2023; Geng
et al., 2023; Lei & Tao, 2023; Yu et al., 2023) for more details.

Gradient Matching Zhao & Bilen (2021a) proposed Dataset Condensation (DC), the first prac-
tically plausible DD algorithm which eliminated the clumsy bi-level optimization of the prototype.
DC used single-step gradient matching as a surrogate objective to bridge the parameter gap when
trained on real/synthetic datasets. Following DC, DSA (Zhao & Bilen, 2021b) attached Differen-
tiable Siamese Augmentation to DC framework. DCC/DSAC (Lee et al., 2022b) enhanced DC/DSA
with contrastive signal, matching gradient in an all-class manner instead of a class-wise one.

Feature Matching Zhao & Bilen (2023) proposed Distribution Matching (DM), which extracted
features from both real/synthetic images via randomly initialized network and matched their mean
values class-wisely. As another mainstream DD algorithm, DM largely accelerated DD process
by completely avoiding bi-level optimization. IDM (Zhao et al., 2023) improved DM with image
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Figure 1: An overview of DD and LatentDD. (a) Procedure of dataset distillation in pixel space,
where DD algorithms produce gradients to update synthetic images S. (b) Procedure of dataset dis-
tillation in latent space, where DD algorithms directly operate on latent codes and produce gradients
to update synthetic latent codes LS . (c) After distillation, networks trained on real training images
T and synthetic images S will be compared.

partitioning and trained feature extractors. Similar to DM, CAFE (Wang et al., 2022) also compared
the mean values of multi-layer features, yet equipped with an extra discrimination loss.

Parameter Matching Cazenavette et al. (2022) proposed the third DD algorithm Matching Train-
ing Trajectories (MTT). It reduced the accumulated parameter error in gradient matching methods by
matching model parameters after long-term training trajectories. After MTT, Li et al. (2023) pruned
hard-to-match parameters, FTD (Du et al., 2023) regularized flat trajectories during the buffer phase,
and TESLA (Cui et al., 2023) improved MTT by lowering its space complexity.

Optimization Besides designing DD algorithms, some other works attempted to enhance these al-
gorithms with optimization techniques, including kernel method (Nguyen et al., 2021a;b; Loo et al.,
2022; Zhou et al., 2022), label learning (Bohdal et al., 2020; Cui et al., 2023), model augmentation
(Zhang et al., 2023), clustering (Liu et al., 2023) and calibration (Zhu et al., 2023).

Factorization Factorization is another research direction orthogonal to designing DD algorithms.
It aims at factorizing distilled images into more info-compact components. Specific strategies in-
clude image partitioning (Kim et al., 2022; Zhao et al., 2023) and factorizing images into latent
codes + decoders (Liu et al., 2022; Deng & Russakovsky, 2022; Lee et al., 2022a; Cazenavette et al.,
2023). However, all these methods had to repeatedly restore the pixel-level images before sending
them into DD algorithms, and back-propagate the gradients from the images to the components,
resulting in heavy time & space overhead. On the contrary, as a factorization method, our LatentDD
instead directly operates in latent space, which largely reduces time & space consumption.

3 LATENT DATASET DISTILLATION

3.1 PROBLEM DEFINITION

Suppose we have a large dataset T = {(xi, yi)}|T |
i=1 to be distilled, which consists of real pairs of

datum xi ∈ Rd and class label yi ∈ {0, . . . , C − 1} where d is the dimension of the data and
C is the number of classes. The goal of dataset distillation is to seek a condensed small dataset
S = {(x̃i, ỹi)}|S|

i=1 including synthetic pairs of datum x̃i and label ỹi, and |S| ≪ |T |. Conven-
tionally the synthetic data follow the form of real data (i.e. x̃i ∈ Rd) and so are the labels (i.e.
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ỹi ∈ {0, . . . , C − 1}). However, there are also some previous works exploring more effective forms
of data via factorization, or labels via label learning, as long as the distilled dataset S does not exceed
a predefined storage budget.

With the distilled dataset S, we expect that models trained on it will achieve comparable performance
with those trained on the real dataset T in downstream tasks. Formally,

S∗ = argmin
S

∥LT (θS)− LT (θT )∥ subject to


θS = argmin

θ
LS(θ)

θT = argmin
θ

LT (θ)
, (1)

where θS and θT are models trained on S and T , and LS , LT are respectively a certain objective
(loss function) when evaluated on the two datasets. Since models trained on S are unlikely to
outperform those trained on T , we usually seek S∗ that performs the best:

S∗ = argmin
S

LT (θS) subject to θS = argmin
θ

LS(θ). (2)

3.2 FROM PIXEL TO LATENT SPACE

The prototype of DD straightforwardly solves Eq. (2) in a bi-level optimization manner, and later
three mainstream DD algorithms DC, DM and MTT have been proposed to efficiently solve Eq. (2)
by optimizing surrogate objectives. Primarily focusing on image classification, all the previous
works have distilled datasets in pixel space. When solving Eq. (2) with DD algorithms, data in
both T and S are in the form of the original pixel-level images (i.e. xi, x̃i ∈ R3×H×W , as three-
channel images with size (H,W )). Although some previous works have proposed factorization
methods which distill more info-compact components instead of images, they are still based on
DD algorithms in pixel space. As pixel-level images usually consist of low-frequency information,
which includes the contents that are truly necessary to downstream tasks like image classification,
and high-frequency information including fine and subtle details and even noises. Taking both parts
of information into account when running DD algorithms has brought considerable overhead in time
and space consumption, especially when distilling high-resolution datasets or aiming at a higher data
ratio. Also, with the useless high-frequency information occupying some of the storage budget, the
less info-compact synthetic images fail to reach better scores in classification tasks.

In this work, we attempt to transfer the DD algorithms to directly operate in latent space rather than
pixel space. Suppose we have an autoencoder {E(·),D(·)} pretrained on a large dataset to ensure
its generalization ability to encode and reconstruct any image with its encoder E(·) and decoder
D(·). Specifically, from a real image xi ∈ R3×H×W in T , the encoder can encode it into a latent
code li ∈ RC×H

f ×W
f as a C-channel feature map with a downsampling factor f , and the settings

of C and f ensure that the size of li is smaller than xi (i.e. C < 3 · f2). Then, from a latent code
li, the decoder can decode it into a reconstructed image x′

i ∈ R3×H×W back to the original size.
If the autoencoder is well trained, the reconstructed image x′

i should be roughly the same as the
original image xi, with acceptable minor loss of details and noises. In this way, the latent code
li can naturally serve as an info-compact representation of the original image xi since most of the
necessary information needed to reconstruct xi has been encoded into li. Therefore, if we can use
latent codes instead of images in DD algorithms, it will improve DD processes by simultaneously
alleviate the three problems mentioned in Section 1.

Rombach et al. (2022) has proposed latent diffusion models equipped with such a pretrained generic
autoencoder, which successfully transfer the time-consuming denoising processes to latent space.
In our LatentDD, we utilize this off-the-shelf autoencoder as a converter between images in pixel
space and latent codes in latent space. By default, this autoencoder is capable of encoding any
image with any resolution into a latent code with C = 4 channels and a downsampling factor f = 8.
For instance, an RGB image of resolution 512 × 512 will be encoded into a latent code of size
4 × 64 × 64. By these settings, a latent code is only 1/48 of the original image w.r.t. the number
of parameters, which is highly info-compact. Nevertheless, before transferring DD algorithms to
latent space, we still need to verify that this autoencoder will not break the original distribution of
the images, as keeping this distribution is critical to image classification tasks. In a preliminary
experiment, we randomly select 20 images from Bird, a subset of ImageNet (see Section 4.1 for
details), encode them into latent codes, and respectively show the Euclidean distance matrices of

4



Under review as a conference paper at ICLR 2024

0 5 10 15

0

5

10

15

0 250 500

0 5 10 15

0

5

10

15

0 50 100

Figure 2: The Euclidean distance matrices of 20 randomly
sampled images (left) from dataset Bird and their corre-
sponding latent codes (right).
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Figure 3: MSE gradient match-
ing loss of DC and LatentDC in
the first 150 iterations.

these images and latent codes in Figure 2. From the two heatmaps, we may conclude that the
latent codes approximately remain the distribution of the original images, as the relative distances
among these latent codes strongly correlate with those among the images. As a result, the learned
classification hyperplanes in latent space can correspond to the hyperplanes in pixel space, making
DD in latent space and pixel space approximately equivalent. Such equivalence is also empirically
validated by ablation study in Section 4.3, where distilling the same number of images/latent codes
renders similar performance. Based on Eq. (2), DD in latent space can be formally written as

L∗
S = argmin

LS

LLT (θLS ) subject to θLS = argmin
θ

LLS (θ), (3)

where LT = {(E(xi), yi)}|T |
i=1 and LS = {(l̃i, ỹi)}|S|

i=1 are respectively the set of real and synthetic
latent codes, and we remain ỹi ∈ {0, . . . , C − 1} as class labels. Before running LatentDD algo-
rithms, LT is precomputed and stored into the main memory for fast retrieval, and LS is initialized
with randomly selected real latent codes. After obtaining L∗

S via LatentDD, we can reconstruct the
synthetic image dataset as S∗ = {(D(l̃i), ỹi)}|S|

i=1 for downstream tasks, as depicted in Figure 1.

As some previous works (Liu et al., 2022; Kim et al., 2022; Deng & Russakovsky, 2022) focusing
on factorization have proved, the fixed data ratio will severely confine the performance on down-
stream image classification tasks if we stick to delivering distilled datasets as pixel-level images
within a limited storage budget. These works instead deliver info-compact components such as low-
resolution ‘thumbnails’ or a combination of latent codes and decoders within the storage budget,
which can be resized or decoded into more images than the same budget can directly store. Our
LatentDD has followed this idea of storing info-compact components, as we deliver n · 3f2/C la-
tent codes rather than n pixel-level images. It is also worth mentioning that, previous works of
latent codes + decoders also train their decoders along with the latent codes during DD processes,
thus their decoders can only be exclusively used on specific datasets (or even specific classes of these
datasets) and specific resolutions. So they have to store the decoders as a part of the distilled datasets
to be delivered. On the contrary, since our pretrained autoencoder is generic for any image and any
resolution, and is also publicly available online, it only takes O(1) space to store the decoder when
we distill N datasets instead of O(N) as in previous works. Hence our decoder will averagely take
negligible space if we distill many datasets and may be excluded from the storage budget like an
unparameterized resizing operation that can be applied to any image.

3.3 LATENT DATASET DISTILLATION ALGORITHMS

Dataset Condensation (DC), Distribution Matching (DM) and Matching Training Trajectories
(MTT) are three mainstream DD algorithms, which solve the DD problem in Eq. (2) with surro-
gate objectives of gradient matching, feature matching and parameter matching respectively. We
show how to seamlessly transfer these algorithms to latent space as below.
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3.3.1 LATENTDC

DC (Zhao & Bilen, 2021a) is designed based on the observation that, if the model θS trained on
distilled dataset S has similar parameters with θT trained on real dataset T , it will be certain to
perform comparably when evaluated on test set. Such resembling parameters can be achieved by
matching the gradients of network parameters ∇θ induced by training the same model θt (at timestep
t) on S and T . Formally,

S∗ = argmin
S

Eθ0∼Pθ0
[

T−1∑
t=0

D(∇θLS(θt),∇θLT (θt))] subject to θt+1 ← θt − η∇θLS(θt), (4)

where DC randomly initializes network parameters θ0 and repeatedly matches the two groups of
gradients with a cosine-like gradient matching loss D(·, ·) along the T -step training process of θt on
synthetic dataset S and classification criterion L (usually a cross-entropy loss).

To run DC in latent space instead of pixel space, the most essential modification is that we have
to replace the network θ operating on pixel-level images with a new network θ̃ operating on latent
codes. Since the latent codes l ∈ RC×H

f ×W
f still remain a 2D spatial structure just as images, com-

monly used convolutional architectures are also applicable to them if only we accordingly change
the channel numbers and feature map sizes. Besides, as the size of l is much smaller than images,
we can use shallower networks with fewer layers as θ̃. For instance, while distilling image datasets
of resolution 256 conventionally uses ConvNetD6 with depth 6, we apply ConvNetD3 as θ̃ when
f = 8 and ConvNetD4 when f = 4, just as dealing with images of the corresponding resolution
(refer to Section 4.1 for details). Being able to reduce the size of networks used in DD is one of the
main reasons that our latent version of DD algorithms takes much less time and space to run. With
θ̃, our LatentDC can be formulated as

L∗
S = argmin

LS

Eθ̃0∼P
θ̃0

[

T−1∑
t=0

D(∇θ̃L
LS (θ̃t),∇θ̃L

LT (θ̃t))] subject to θ̃t+1 ← θ̃t − η∇θ̃L
LT (θ̃t), (5)

where we follow Kim et al. (2022) to (1) update θ̃ using real latent codes LT instead of synthetic
LS as the gradients will quickly vanish if trained on the latter and (2) use an MSE-like gradient
matching loss for D(·, ·) which better fits training on real datasets. In Figure 3, we illustrate the
gradient matching losses of both DC and LatentDC in the first 150 iterations when distilling Bird
into one image/latent code per class (see Section 4.3), where the loss of LatentDC decreases slightly
faster, and more steadily than its counterpart in pixel space.

Based on DC, Zhao & Bilen (2021b) add Differentiable Siamese Augmentation (DSA) during both
training and evaluation stages, which has become a standard technique in following DC-based
works. However, according to our preliminary experiments, only two transformations (crop, cutout)
used in DSA can also be applied to latent codes, while the others (color, scale, rotate, flip) on latent
codes will unexpectedly affect the quality of the decoded images. Hence, during the training stage
in Eq. (5) we do not apply DSA, but still augmenting the pixel-level images decoded from latent
codes in the evaluation stage (see Appendix A.2). Such strategy is also adopted by LatentDM and
LatentMTT. We suppose that designing a set of feasible transformations for augmenting latent codes
is another topic worth researching on, yet we leave this part for future work.

3.3.2 LATENTDM

Unlike the other two algorithms DC and MTT, DM (Zhao & Bilen, 2023) is designed aiming at
totally eliminate the computationally intensive bi-level optimization. It updates the distilled dataset
S so that the empirical estimate of maximum mean discrepancy (MMD) is minimized between each
class of S and T :

S∗ = argmin
S

Eθ∼Pθ
[

∑
c∈{0,...,C−1}

∥ 1

|Tc|
∑
xi∈Tc

ϕθ(xi)−
1

|Sc|
∑

x̃i∈Sc

ϕθ(x̃i)∥2], (6)

where Tc, Sc are the subsets of class c, and ϕθ is an embedding function based on randomly initial-
ized networks θ. Similar to LatentDC, we can also transfer DM to LatentDM by using embedding
networks θ̃ of proper architecture:

L∗
S = argmin

LS

Eθ̃∼Pθ̃
[

∑
c∈{0,...,C−1}

∥ 1

|LTc |
∑

li∈LTc

ϕθ̃(li)−
1

|LSc |
∑

l̃i∈LSc

ϕθ̃(l̃i)∥
2], (7)
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where the embedding function ϕθ̃ now extracts embeddings from latent codes rather than images.

3.3.3 LATENTMTT

MTT (Cazenavette et al., 2022) is designed to alleviate the issue of the accumulated parameter error
caused by the difference between gradients ∇θLS(θt) and ∇θLT (θt) in Eq. (4) of DC. Starting
from the same network θTt that has been trained on the real dataset T for t steps, it matches the
parameters of two networks θSt+N and θTt+M respectively after a student trajectory which trains on
S for N steps and an expert trajectory which trains on T for M steps:

S∗ = argmin
S

Et∈{0,...,T+}

[
∥θSt+N − θTt+M∥22
∥θTt − θTt+M∥22

]
, (8)

where the starting step t is sampled within the limit of a maximum starting step T+ since the later
part of the a training trajectory is less informative. By matching parameters through multi-step tra-
jectories instead of single-step gradients, MTT generally outperforms DC at the expense of greater
time and space consumption. Just as in LatentDC and LatentDM, we can modify MTT into La-
tentMTT by moving both the expert and the student trajectories into the latent space:

L∗
S = argmin

LS

Et∈{0,...,T+}

[
∥θ̃LS

t+N − θ̃LT
t+M∥22

∥θ̃LT
t − θ̃LT

t+M∥22

]
, (9)

where we also pre-buffer the expert trajectories in latent space for faster run-time matching, similar
to MTT in pixel space.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets To fully illustrate the capability of our LatentDD methods, we conduct experiments on
high-resolution datasets starting from 256, which is higher than the maximum resolution of almost
all the previous works. Specifically, we take five subsets of ImageNet (Deng et al., 2009), namely
Bird (ImageSquawk), Fruit (ImageFruit), Woof (ImageWoof), Cat (ImageMeow) and Nette (Ima-
geNette), where Woof and Nette are online resources2 and the other three comes from Cazenavette
et al. (2022). Our experiments cover different settings of DD aiming at image classification as the
downstream task, including resolution 256 or 512, and image per class (IPC) 1 or 10.

Baselines We include previous state-of-the-art methods based on each of the three mainstream DD
algorithms DC, DM and MTT. For DC, we include DSA (Zhao & Bilen, 2021b) with augmentation,
IDC (Kim et al., 2022) which partitions images and GLaD DC (Cazenavette et al., 2023) based on
GAN prior. For DM, we include the original DM (Zhao & Bilen, 2023) and GLaD DM Cazenavette
et al. (2023). Finally for MTT, we include MTT (Cazenavette et al., 2022), GLaD MTT (Cazenavette
et al., 2023) and FTD (Du et al., 2023) with flattened expert trajectories.

Choice of Autoencoder Although we may use any autoencoder that remains the distribution of the
original images among the latent codes, we practically choose the one as a part of Stable Diffusion
v1.43 as the pretrained generic autoencoder. This autoencoder is capable of encoding any image
with a downsampling factor f = 8. Though this autoencoder can encode images of any resolution,
it was originally trained on resolution 512 and we have observed that more details will be lost in
the reconstructed images if used on lower resolution (refer to Appendix B.1). Therefore, we also
propose a preprocessing procedure, in which we first upsample the original pixel-level dataset T by a
factor of two, and then encode the resized dataset into latent codes LT , resulting in a downsampling
factor f = 4. Before evaluation, we also follow a postprocessing procedure where we downsample
the decoded images by a factor of two, restoring the synthetic dataset S at the original resolution. By
default, we apply these procedures of f = 4 in the experiments below unless otherwise specified.

For other implementation details including hyperparameter settings and the training/evaluation pro-
tocols, please refer to Appendix A.

2https://github.com/fastai/imagenette
3https://huggingface.co/CompVis/stable-diffusion-v-1-4-original
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Table 1: Quantitative results of dataset distillation experiments on ImageNet subsets. LatentDD
algorithms follow the setting of f = 4, where LPC = 12 × IPC. The mean classification accuracy
among five times of evaluations is reported. The results marked as a hyphen - indicate that the
methods have run out of 24GB GPU memory during the experiments.

Algo. Method
Res. 256 Res. 512

IPC 1 IPC 10 IPC 1
Bird Fruit Woof Cat Nette Bird Fruit Bird Fruit

DC

DSA 30.52 20.28 22.12 22.20 34.40 45.52 30.48 25.44 16.40
IDC 36.28 24.60 25.64 27.68 48.16 64.28 39.68 28.68 20.12
GLaD DC 30.32 19.56 21.84 22.24 34.44 46.04 32.60 25.80 16.72
LatentDC 46.72 30.12 28.96 38.08 55.92 80.44 51.60 47.52 29.68

DM
DM 27.64 19.48 20.04 21.16 32.08 41.56 28.12 28.28 19.72
GLaD DM 28.84 21.28 21.28 20.52 32.40 - - 29.32 20.68
LatentDM 47.08 30.68 28.00 36.28 56.08 77.20 47.76 46.20 30.60

MTT

MTT 35.80 21.08 24.92 24.16 40.52 - - - -
GLaD MTT 32.20 20.48 23.00 21.44 31.84 - - - -
FTD 35.96 21.76 26.32 26.60 40.96 - - - -
LatentMTT 52.86 37.82 39.84 41.42 62.86 78.44 52.46 52.44 36.20

Table 2: Time and space (main memory) consumption during the dataset building, buffering and
training processes of LatentDD and the baselines, evaluated on a single NVIDIA RTX 4090. A
hyphen - indicates that the method has run out of 24GB GPU memory during the experiment.

Algo. Method Bird 256 Bird 512
IPC 1 IPC 10 IPC 1

Build Dataset 2min / 26.1GB 2min / 94.6GB
Build Latent Dataset 10min / 5.0GB 52min / 9.9GB

DC

DSA 6h 34min 30h 27min 25h 17min
IDC 32h 36min 40h 26min 46h 50min
GLaD DC 15h 15min 119h 20min 30h 51min
LatentDC 1h 59min 3h 18min 3h 21min

DM
DM 10min 14min 51min
GLaD DM 55min - 2h 15min
LatentDM 1min 2min 1min

MTT

Buffer 16h 20min 48h 50min
FTD Buffer 24h 00min 92h 30min
Latent Buffer 50min 3h 10min
MTT 7h 03min - -
GLaD MTT 11h 48min - -
FTD 7h 17min - -
LatentMTT 2h 14min 4h 16min 2h 38min

4.2 LATENTDD VS. BASELINES

The quantitative results of the comparisons between LatentDD algorithms and baseline methods are
shown in Table 1, where the distilled datasets are evaluated on ConvNets whose depths correspond
to image resolutions (see Appendix A). In these experiments, our LatentDD algorithms follow the
setting of f = 4, hence we deliver 12 latents per class (LPC) within the same storage of 1 IPC,
and accordingly 120 LPC within 10 IPC. As our LatentDD methods deliver highly info-compact la-
tent codes, they are able to significantly outperform previous works which deliver less info-compact
low-resolution thumbnails (IDC) or full-size images (other baselines). In this way, our LatentDD
has successfully settled the info-compactness problem (P3) mentioned in Section 1. Additionally,
we will show cross-architecture results and depict some distilled samples with three LatentDD al-
gorithms in Appendix B.

Besides, we also list the running time and main memory consumption of the above experiments in
Table 2. Tough LatentDD methods spend more time on building the datasets into main memory

8
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Table 3: Quantitative results of dataset
distillation where both IPC and LPC are
set to 1 or 10.

Method Bird 256
IPC/LPC 1 IPC/LPC 10

DSA 30.52 45.52
LatentDC 29.68 45.56
DM 27.64 41.56
LatentDM 26.64 45.00
MTT 35.80 -
LatentMTT 33.60 46.88

Table 4: Quantitative results of dataset distillation where
LatentDD methods are compared between f = 4 and
f = 8.

Method f
Res. 256 IPC 1 Res. 512 IPC 1
Bird Fruit Bird Fruit

LatentDC 4 46.72 30.12 47.52 29.68
8 67.28 38.08 69.46 37.22

LatentDM 4 47.08 30.68 46.20 30.60
8 67.40 37.60 68.22 37.20

LatentMTT 4 52.86 37.82 52.44 36.20
8 66.42 45.28 69.20 42.84

since they pre-encode the real datasets into latent codes, the buffering processes of LatentMTT and
the training processes of all latent methods have been largely accelerated due to the smaller sizes
of both the latent codes and the networks. The time spent on decoding latent codes into images is
negligible since it only takes a few seconds once before evaluation. As for the space consumption, it
is much more efficient to store latent codes into main memory than images when building datasets,
and the low run-time GPU memory costs also allow LatentDD methods to run on higher resolution
or greater data ratio. In conclusion, our LatentDD methods have settled the problems of high time
& space complexity (P1–P2) in Section 1 as well.

4.3 ABLATION STUDIES

We transfer the distillation processes from pixel space to latent space based on the fact that DD in
latent space is approximately equivalent to that in pixel space. Along with the theoretical analysis
in Section 3.2, we also empirically verify such equivalence by comparing LatentDD methods under
the same IPC/LPC rather than the same storage budget. As the results shown in Table 3, LatentDD
still achieves comparable performance with the DD algorithms in pixel space. These results also
match Figure 3 where LatentDC can converge to a similar level of gradient matching loss to DC.

In Table 4, we additionally provide quantitative results of LatentDD methods with downsampling
factor f = 8, where LPC = 48 × IPC. As the number of latent codes has further increased within
the same storage budget, LatentDD methods reach even higher scores. However, as we have men-
tioned in Section 4.1 that the autoencoder is originally pretrained on resolution 512, encoding and
reconstructing images with overly low resolution and a large downsampling factor f may induce
too much loss of information that they may alter the distribution of the original images and finally
counterweight the benefits brought by the quantity of latent codes (see examples and further analysis
in Appendix B.1). For instance, while reaching a mean accuracy of 44.38 when running LatentDC
with f = 4 on Bird at low resolution 64 and IPC 1, which is a comparable result at resolution 256
(46.72) or 512 (47.52) in Table 4, we have observed a remarkable drop from 67.28/69.46 to 48.68
with f = 8. In practical applications, it is essential to emphasize the need for maintaining this
balance according to the characteristics of specific datasets.

5 CONCLUSIONS

In this work, we propose a new idea of transferring the dataset distillation (DD) processes from
conventionally used pixel space to a more efficient latent space. Such transfer aims at three main
problems commonly seen in the area of DD: P1: high time complexity; P2: high space complex-
ity; and P3: low info-compactness, which have not been simultaneously settled in previous works.
Practically, we propose LatentDD methods based on the three mainstream DD algorithms in pixel
space by utilizing the latent codes encoded with a pretrained generic autoencoder as natural info-
compact representations of pixel-level images. Experimental results have validated that LatentDD
methods can not only largely reduce time and space consumption and enable these methods on
higher resolution or data ratio, but also significantly boost the performance in DD tasks by deliver-
ing quantitatively more info-compact latent codes than pixel-level images within the same storage
budget.

9
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REPRODUCIBILITY STATEMENT

In order to reproduce the results reported in this work, please follow the experimental settings in-
troduced in Section 4.1 in the main paper and Appendix A in the appendices. Besides, the source
codes of our LatentDD methods have been attached as supplementary material as well.
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APPENDIX

A IMPLEMENTATION DETAIL

When running our LatentDD algorithms, we generally follow the default settings of the previous
works. Besides, we fix some settings across the baselines and our methods to ensure that the com-
parisons are as fair as possible. In this section of appendices, we will introduce basic settings to
reproduce the experimental results.

A.1 HYPERPARAMETERS

The hyperparameters under different experimental settings are listed in Table 5 below, except for
other hyperparameters that have been introduced in our main paper or by previous works. Base
learning rate can be seen as the learning rate per latent code, as the cross-entropy loss L will be
averaged among the latent codes. Hence the real learning rate updating the latent codes is set to

learning rate = base learning rate × LPC. (10)

Note that these settings are just used to produce the results reported in this work, they are not
guaranteed to be the optimized settings to render the best performance.

Table 5: Hyperparameter settings of the experiments on LatentDD algorithms. A hyphen - indicates
that the hyperparameter is not applicable to this algorithm.

Res. IPC f
Hyperparameter LatentDC LatentDM LatentMTT

iteration 1000 1000 5000
max starting epoch - - 5

256

1

4

outer loop / expert epoch M 10 - 1
inner loop / student step N 50 - 40

base learning rate 0.05 0.5 50
batch size 64 64 64

ConvNet depth (train / eval) 4 / 6

8

outer loop / expert epoch M 10 - 1
inner loop / student step N 50 - 60

base learning rate 0.05 0.1 1
batch size 64 64 64

ConvNet depth (train / eval) 3 / 6

10 4

outer loop / expert epoch M 10 - 1
inner loop / student step N 50 - 80

base learning rate 0.05 0.5 10
batch size 64 64 64

ConvNet depth (train / eval) 4 / 6

512 1

4

outer loop / expert epoch M 10 - 1
inner loop / student step N 50 - 40

base learning rate 0.25 0.5 500
batch size 32 32 32

ConvNet depth (train / eval) 5 / 7

8

outer loop / expert epoch M 10 - 1
inner loop / student step N 50 - 60

base learning rate 0.05 0.1 20
batch size 16 16 16

ConvNet depth (train / eval) 4 / 7

A.2 TRAINING/EVALUATION PROTOCOL

Following previous works, we adopt ConvNet (Gidaris & Komodakis, 2018) as the network architec-
ture primarily used in the experiments. We set the depth of the ConvNet according to the resolution
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Figure 4: The reconstructed images (encoded from the original images and decoded back by the
autoencoder) at different resolutions from 32 to 512.

Table 6: Quantitative results of dataset distillation experiments on ImageNet subsets, evaluated on
cross-architecture networks (ResNet18, VGG11 and AlexNet). LatentDD algorithms follow the
setting of f = 4, where LPC = 12 × IPC. The mean classification accuracy among five times of
evaluations is reported.

Algo. Method Bird 256 IPC 1
ConvNet ResNet18 VGG11 AlexNet

DC

DSA 30.52 14.84 20.68 24.24
IDC 36.28 40.24 30.20 32.24
GLaD DC 30.32 23.20 22.08 19.44
LatentDC 46.72 56.00 49.32 37.56

DM
DM 27.64 13.44 17.40 23.64
GLaD DM 28.84 26.24 18.24 19.08
LatentDM 47.08 56.00 47.56 37.12

MTT

MTT 35.80 18.72 22.36 20.84
GLaD MTT 32.20 39.56 23.28 19.80
FTD 35.96 19.28 21.96 23.92
LatentMTT 52.86 57.76 52.96 39.64

of the latent codes (during training stage) or pixel-level images (during evaluation stage), refer to
Table 5 for details. The learning rate updating the network parameters in both stages is set to 0.01.

As explained in Section 3.3.1, we do not apply Differentiable Siamese Augmentation (DSA) during
the training processes because many augmenting transformations designed for pixel-level images
do not fit for latent codes. However, we use DSA in the evaluation processes in pixel space. Fol-
lowing Kim et al. (2022), we additionally replace cutout with CutMix (Yun et al., 2019), which is a
calibration technique to alleviate the over-confident issue of the models trained on limited data.

B ADDITIONAL RESULTS

In this section of appendices, we illustrate some additional experimental results that have not been
shown in the main paper due to the limitation on paper length. These results include preliminary
analysis of the autodencoder in Appendix B.1, the performance of LatentDD methods when eval-
uated on cross-architecture networks in Appendix B.2, and some image samples decoded from the
distilled latent codes in Appendix B.3.
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B.1 ANALYSIS OF AUTOENCODER

In Figure 4 we show some examples of reconstructing original images at different resolutions with
the autoencoder used in LatentDD. Although the autoencoder can be applied to a variety of resolu-
tions, we observe that the lower the resolution is, the more details will be lost in the reconstruction.
Therefore, the experiments in our paper are mainly rolled out with f = 4 where we adopt the
upsample-encode-LatentDD-decode-downsample procedure for a generalized applicability on var-
ious resolutions, though in high-resolution scenarios f = 8 may produce better results due to the
greater quantity of latent codes.

B.2 CROSS-ARCHITECTURE PERFORMANCE

One of the goals of dataset distillation is that we expect the distilled datasets can achieve good per-
formance on any network architecture, so that these distilled datasets can be utilized on downstream
tasks such as neural architecture search (Such et al., 2020). In Table 6, we demonstrate the uniformly
good performance of LatentDD algorithms on some cross-architecture networks. As all the base-
lines are trained on the same architecture used for evaluation (e.g. ConvNetD6 for resolution 256),
they are more or less overfitted to the specific architecture as a trend of performance drop can be ob-
served when evaluated on other architectures. On the contrary, our LatentDD methods are relatively
robust to architecture changes. It is also worth mentioning that the results of LatentDD methods on
ConvNet in Table 6 (and also Tables 1, 3 and 4 in the main paper) are already cross-architecture to
some extent, since the depths of the ConvNets used for training and evaluation are different.

B.3 QUALITATIVE RESULTS

For a more comprehensive illustration of the experimental results, we depict some image samples
decoded from the distilled latent codes on the ImageNet subset Bird (with classes peacock, flamingo,
macaw, pelican, king penguin, bald eagle, toucan, ostrich, black swan, cockatoo) by LatentDC,
LatentDM and LatentMTT in Figures 5 and 6.
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Figure 5: The images decoded from the distilled latent codes on Bird, resolution 256, IPC 1, by
LatentDC (up) and LatentDM (bottom) with f = 4.
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Figure 6: The images decoded from the distilled latent codes on Bird, resolution 256, IPC 1, by
LatentMTT with f = 4.

17


	Introduction
	Related Work
	Latent Dataset Distillation
	Problem Definition
	From Pixel to Latent Space
	Latent Dataset Distillation Algorithms
	LatentDC
	LatentDM
	LatentMTT


	Experiments
	Experimental Settings
	LatentDD vs. Baselines
	Ablation Studies

	Conclusions
	Implementation Detail
	Hyperparameters
	Training/Evaluation Protocol

	Additional Results
	Analysis of Autoencoder
	Cross-architecture Performance
	Qualitative Results


