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Abstract

Proteins are fundamental molecules performing diverse functions in living or-
ganisms. Protein engineering, the process of designing or modifying proteins to
enhance or create new functions, has therefore become a research focus in the fields
of biotechnology and medicine. A primary challenge in protein engineering is to
efficiently discover and design new proteins with desired functions. Traditional
approaches like directed evolution and rational design, though widely used, are
limited by high computational costs and restricted exploration of potential protein
structures. The recent success of generative models in efficiently synthesizing
high-quality data across various domains has inspired researchers to investigate
their potential applications in protein engineering. In this survey, we systematically
summarize recent works on generative models for protein engineering, with a par-
ticular focus on protein design. Specifically, we categorize three main frameworks
in existing generative protein design methods: sequence-based, structure-based,
and joint sequence-structure generation. Besides, we provide a detailed review of
representative generative models, including autoregressive models and diffusion
models, and their application in protein sequence prediction and structure genera-
tion. Finally, we pinpoint existing challenges and propose future directions, such as
leveraging large datasets, improving complex structure validation, and integrating
advanced modeling techniques.

1 Introduction

Proteins are fundamental molecules that perform a wide range of functions in living organisms,
exhibiting diverse structures and functionalities. They are involved in processes such as biological
catalysis, signal transduction, and structural support. Due to their crucial roles in catalysis and
functional regulation, protein engineering, the process of designing or modifying proteins to enhance
existing functions or create new ones, plays a vital role in biotechnology and medicine. For example,
in biotechnology, industrially engineered enzymes are widely used in detergents, enhancing their
stability under high temperature and alkaline conditions [42]. In the medical field, pembrolizumab
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(Keytruda) significantly improves treatment outcomes for various cancers by targeting the immune
checkpoint PD-1, effectively boosting patients’ immune responses [57, 63, 44]. Additionally, protein
engineering is used in developing new drugs, designing biomaterials, and environmental remedia-
tion [38]. However, a major challenge in protein engineering is efficiently discovering and designing
novel proteins with specific desired functions, namely protein design. Traditional approaches like
directed evolution and rational design have been instrumental in protein engineering [2, 74]. However,
these methods are often time-consuming, costly, and offer limited exploration of protein variants [74].
Directed evolution requires the construction and screening of large mutant libraries, while rational
design is constrained by our incomplete understanding of protein structure-function relationships.

Machine learning approaches, particularly deep learning, now enable efficient exploration of vast
biological data and accurate prediction of molecular properties [13]. Generative models, a subset
of deep learning, have proven highly effective in creating and evaluating novel protein sequences
in protein engineering [68]. By encoding the protein sequences into embedding space and training
with large-scale datasets of known protein sequences, these models can learn the complex sequence-
structure-function relationships efficiently. Once trained, the models can generate and preliminarily
screen vast numbers of candidate sequences, significantly accelerating the protein discovery pro-
cess [49, 68]. In addition, generative models can also capture subtle patterns that human experts
might overlook, offering new insights for protein design [40]. For instance, generative models incor-
porating AlphaFold2’s structural prediction techniques can leverage its ability to model long-range
dependencies in amino acid sequences, identifying complex interactions like hydrogen bonds and
hydrophobic effects, thereby enhancing the design of novel functional proteins [36, 90]. In summary,
generative models are revolutionizing the field of protein engineering, opening up new possibilities
for solving complex protein design challenges.

In this survey, we present a mind map that systematically categorizes and analyzes the problem
definitions and existing methods for protein design, providing a comprehensive overview. Our major
contributions are as follows:

• We present a systematic categorization of protein design approaches, focusing on three main
frameworks: sequence-based, structure-based, and joint sequence-structure generation in Sec-
tion 2.

• We provide a focused review of two primary types of generative models in Section 3: autoregres-
sive models and diffusion models, discussing their principles, architectures, and applications in
protein sequence prediction and structure generation.

• We discuss the challenges and opportunities in generative protein models, identifying open
problems and future research directions in Section 4, to pave the way for the next generation of
protein engineering.

2 Sequence, Structure, and Joint Generation

In this section, we categorize common generative tasks by input and output in the area of protein
engineering. For each task, we also summarize the major model architectures in solving different
tasks.

2.1 Sequence-based Protein Design

In sequence-based protein sequence generation tasks, the models learn the evolutionary relationship
of protein sequences directly from multidimensional amino-acid sequence space, with or without
functional or structural constraints. The goal is to generate new sequences that possess desired
properties while meeting the given constraints. Autoregressive transformer-based models [19, 47, 52,
22] have shown excellent performance in this task, capable of learning long-range dependencies and
complex sequence patterns.

Probabilistic graphical models (PGMs) represent the conditional probability distribution over random
variables. The structure of graphs provides efficiency through variable elimination. It has been
broadly applied in structure prediction and alignment tasks to predict the conditional probability of
the structure conditional on the given sequences [30]. Nevertheless, PGMs have also been used in
generating new protein sequences [70, 56].
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Figure 1: Generative models in protein design. Overview of autoregressive (left) and diffusion
(right) generative models in protein design. The central circle depicts core sequence-based and
structure-based design tasks.

2.2 Structure-based Protein Design

Another common task in protein engineering is to predict sequences from structural information
(Figure 2). Graph Neural Networks (GNN) is a common architecture on tasks with structural
information as input as it can perform both spatial and relational reasoning. GVP-GNN [33] can
be applied to any problem where the input domain is a structure of a single macromolecule or of
molecules bound to one another. Other approaches focus more on specific task domains. Recently
developed GPSFun [87] demonstrates how geometric GNNs can capture both sequence and structural
patterns from protein graphs to enable comprehensive function predictions ranging from binding
sites to gene ontologies and subcellular locations. Diffusion models [20, 89, 71] and PGMs[41] have
both been applied to “inpaint” missing protein sequence segments given known structures. Message-
Passing Neural Networks (MPNN) [17] and Transformers [81] have been applied to generating
full-sequence given structural input.

2.3 Sequence and Structure Co-generation

The co-generation of protein sequences and structures is crucial because it ensures their compatibility,
which is essential for both functional and structural correctness. By designing sequence-structure
data pairs as output, researchers can prevent mismatches that arise when changes in the sequence
lead to incompatible structures. This approach is especially important in fields like de novo protein
design and drug discovery, where precise control of structure and function is critical. Diffusion
models [62, 66, 77] and Graph Neural Networks (GNN) [31], and their combination [29] have been
adopted for solving this task.

3 Generative methods

3.1 Autoregressive models

3.1.1 Recurrent Neural Networks and Long Short-Term Memory

Autoregressive models (ARs) using Recurrent Neural Networks (RNNs) and Long Short-Term Mem-
ory (LSTMs) have shown great potential in protein sequence generation. Early RNNs demonstrate the
ability to capture long-range dependencies in sequences [4], but face issues with vanishing/exploding
gradients for long sequences [6]. To address this, Bidirectional RNNs (BRNNs) [59] are introduced,
improving contextual information capture by processing sequences bidirectionally [61], especially in
secondary structure prediction tasks. Deep RNN architectures, in which layers of RNNs are stacked
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Figure 2: The interplay between various elements in protein design algorithms. At its core,
proteins are depicted as amino acid chains that adopt three-dimensional configurations, where a
single low-energy structure can be distinguished from multiple possible conformations. Structural
regulation is represented as the modulation of protein function through chemical modifications.
Color-coded arrows represent different algorithmic approaches: blue for sequence-based, purple
for structure-based, and green for sequence and structure co-generation methods. This framework
outlines the present state and future directions of computational protein design algorithms.

for more abstract feature representation, achieve success in complex tasks like protein function
prediction [45]. The CRRNN model further combines CNNs, residual connections, and RNNs
for local feature extraction and sequence modeling, leading to state-of-the-art secondary structure
prediction [88].

LSTMs [23] address long-range dependency issues by introducing gating mechanisms, enabling
improved modeling of complex sequence patterns [64]. Bidirectional LSTMs (BiLSTMs) enhance
performance further by processing sequences in both directions [76, 59]. DeepANIS, combining BiL-
STM and Transformer networks, significantly improves antibody paratope prediction [91]. Despite
advances, challenges remain in computational efficiency and interpretability [36], suggesting future
research should focus on integrating sequential models with other advanced techniques to improve
prediction accuracy and protein biology understanding. Key characteristics and noteworthy facts
about RNN and LSTM models are summarized in Table 1.

3.1.2 Transformers and Pretrained Language Models

The Transformer architecture [72] has proven its value as an effective approach in protein science and
engineering. The self-attention mechanism learns the pairwise interactions between all positions in the
sequence. Stacking multiple self-attention layers results in learning multi-residual interactions [75].
The positional encoding captures the sequential information. Since the release of the Transformer
architecture, researchers have been actively utilizing it in various protein-related tasks. A collection
of notable information on Transformers-based autoregressive models in protein design is provided
in Table 1. Wu et al. [82] mapped signal peptide generation to a machine translation problem.
Pre-training on large text corpora has shown promise in large language models on generating human
text; the pre-training strategy adapts well to the area of protein generation. Rao et al. [55] show that
self-supervised pre-training improves overall performance across tasks such as remote homology
detection and stability landscape prediction.

Pre-training has proven to be effective in protein generation tasks in either supervised or unsupervised
settings. Transformer-based models such as ProtGPT2 [19], pre-trained on 50M unannotated protein
sequences, and ProGen2 [47], pre-trained on 280M sequences with metadata tags, are capable
of generating sequences in line with natural proteins. Furthermore, ProGen2 [47] also supports
controlled generation based on tags representing protein family, biological process, and molecular
function. ZymCTRL [51] specifically addresses the problem of artificial enzyme generation. Trained
on more than 36 million enzyme sequences from the BRENDA database, ZymCTRL [51] can
generate enzyme sequences with user-specified catalytic functions.
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Table 1: Summary of autoregressive models by architecture, input-output relations, and func-
tional properties. The functional properties column distinguishes whether the model can generate a
protein with a specific function. ‘Struct.’ denotes ‘structure’, ‘Seq.’ denotes ‘sequence’.

Model type Method Input Output Functional
properties

RNN
Deep RNN (2017) [45] Protein Seq. Secondary Struct. No
CRRNN (2018) [88] Protein Seq. Structural class No

LSTM DeepANIS (2021) [91] Protein Seq. PPI sites Yes (antimicrobial)

Transformer

ProtGPT2 (2022) [19] Prompt/conditioning Protein Seq. Yes (task-specific)
ZymCTRL (2022) [51] Enzyme properties Enzyme Seq. Yes (enzymatic)
ProteinSGM (2022) [41] Seq./conditions Protein Struct. No
OmegaFold (2022) [81] Protein Seq. Protein 3D Struct. No
ProtSEED (2022) [62] Protein Seq. Protein Struct. Yes (task-specific)
ProGen2 (2023) [47] Conditioning tags Protein Seq. Yes (task-specific)

GNN

GVP-GNN (2020) [33] 3D protein Struct. Anything No
EquiBind (2022) [67] Protein & ligand Struct. Binding pose Yes (binding)
ProteinMPNN (2022) [17] Backbone Struct. Protein Seq. No
RefineGNN (2022) [31] Iterative antibody Seq. Optimized Seq. Yes (binding)
Abode (2023) [73] Antigen & initial antibody Optimized antibody Yes (antibody)

3.1.3 Graph Neural Networks

Message passing is a computationally efficient solution for identifying direct interactions from residue
positions in protein sequences, as traditional correlation methods would require pairwise calculations.
[79] Message Passing Graph Neural Networks (GNNs) is a natural way to learn representations
of proteins, as each protein is a polymer of amino acids. Typically, each residue in a protein is
represented as a node in a graph, and the neighborhood of a node is the set of neighboring nodes in the
protein structure. The node features and edge features can be used to capture spatial and residue-level
information. Combined with an autoregressive decoder, GNNs have been used in the tasks of protein
sequence design [29, 17], antibody structure design [31, 73, 37].

Both Ingraham et al. and Dauparas et al. focused on generating the desired sequence that folds to a
desired structure. Ingraham et al. [29] considered a graph of the k nearest neighbors with invariant
and locally informative edge features. The model has an encoder-decoder architecture and uses
self-attention as the aggregation method. Following the graph design of Ingraham et al., Dauparas
et al. [17] discovered that additional backbone noise and higher inference temperature can improve
the sequence recovery rate and the robustness of generated sequences, showing that techniques that
facilitate language generation also have a positive influence on sequence generation.

Antibodies are one of the proteins that protect the body from harmful substances. These Y-shaped
proteins recognize antigens through their complementarity-determining regions (CDRs), which
consist of short peptide sequences. Jin et al. [31] modeled the CDR design of antibodies as a graph
generation problem. Their proposed RefineGNN [31] autoregressively predicts the next residue
based on the node embedding of the last generated residue. Verma et al. [73] tackled the task of
designing antibodies that target specific antigens. It models the antibody-antigen complex as a 3-D
heterogeneous graph and generates antibody sequences by solving a system of ordinary differential
equations (ODEs) describing the continuous evolution of node states. Notable information on
GNN-based autoregressive models is summarized in Table 1.

3.2 Diffusion models

3.2.1 Geometry in protein structure: euclidean v.s. geometric

In the field of protein structure generation, the development of diffusion models has undergone
a paradigm shift from Euclidean to geometric approaches, reflecting a deep understanding of the
intrinsic properties of protein structures and a qualitative leap in modeling capabilities [85]. The
comparison between these two types of methods is provided in Table 2. Euclidean diffusion models
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simplify protein structures as point sets in Euclidean space, describing the generation process through
the following stochastic differential equation (SDE):

dx = [f(x, t)− g(t)2∇ log pt(x)]dt+ g(t)dB (1)

where f(x, t) is the drift term, g(t) is the diffusion coefficient, and B represents the Brownian
motion [65]. This approach was applied in early works such as ProteinSGM [41], achieving initial
protein backbone generation by modeling full-atom representations, including side chains. Although
conventional data types such as images and videos are typically represented in Euclidean space,
certain domains like robotics, geosciences, and protein modeling often deal with data inherently
defined on Riemannian manifolds [12]. Recognizing this, geometric diffusion models leverage
manifold-based representations to capture the intrinsic geometric properties of protein structures
more accurately. These models extend the generative process to a manifold M , allowing for a more
nuanced approach:

dx = [f(x, t)− 1

2
g(t)2gradM log pt(x)]dt+ g(t)dBM (2)

where gradM and dBM represent the gradient and Brownian motion on the manifold, respectively [18].
This approach naturally maintains SE(3) invariance and can more effectively represent internal
coordinate constraints such as angles and dihedral angles.

In implementation, geometric models typically use geodesic random walks (GRW) for sampling,
which requires operating in the tangent space of the manifold and then projecting the results back onto
the manifold [35]. The development of manifold diffusion methods has undergone a series of improve-
ments. RGSM systematically extended the score matching to Riemannian manifolds [10]. PNDM
proposed pseudo-numerical methods to ensure that the samples remain in the target manifold [43].
RDM generalized continuous-time diffusion models to arbitrary Riemannian manifolds [26].

In addition to manifold-based methods, some researchers have explored graph-based geometric
methods such as Graph GDP and NVDiff [27, 15]. These methods use graph structures to represent
the geometric relationships of proteins, effectively capturing spatial relationships between atoms
or residues. Methods like FrameDiff [86] and RFdiffusion [78] have achieved high-quality protein
backbone generation through SE(3) diffusion. These models not only improve the quality of generated
structures but also enhance their applicability in various downstream applications. For example,
RFdiffusion [78] has demonstrated significant advantages in complex tasks such as motif-scaffolding
and binder design through pre-training strategies and conditional generation techniques.

The transition from Euclidean to geometric diffusion models has enhanced protein structure modeling
by incorporating intrinsic geometric properties [78]. This paradigm shift, demonstrated through
manifold-based and graph-based methods, enables precise structural control while respecting physical
constraints.

3.2.2 Transformations of protein structure: equivariance v.s. non-equivariant

In protein structures, since the function and properties of protein molecules do not depend on
their specific position or orientation in three-dimensional space, it is crucial to ensure that the
model is equivariant to geometric transformations such as rotations and translations [58, 8]. This
guarantees that the model maintains physical consistency and robustness when dealing with protein
structures. Equivariance refers to the property of a model or function where, when the input
undergoes a certain transformation, the output changes in a corresponding manner, thereby preserving
the fundamental structure and relationships within the data [39, 16]. In the field of molecular
modeling, this concept implies that when a molecule rotates or translates, its properties - such as
electron density or interatomic forces - should transform accordingly, while maintaining their essential
characteristics [5, 60].

From a formal perspective, a function F : X → Y is deemed equivariant with respect to a set of
transformations G (rotations and translations on the original structure) if it satisfies the following
condition:

F ◦ Tg(x) = Sg ◦ F(x) (3)

where Tg and Sg denote transformations corresponding to an element g ∈ G, operating on the
vector spaces X and Y respectively. Protein structure design focuses on the SE(3) group, which
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encompasses rotations and translations in 3D space. This ensures that the model’s predictions remain
invariant under these transformations, preserving key structural properties [83].

This characteristic has driven significant breakthroughs in diffusion models, enabling more accurate
modeling of structural transformations and enhancing the capacity to reconstruct original data with
greater fidelity during the reverse diffusion process [24]. The core idea of traditional diffusion models
is to gradually add noise to the data through a forward process and then learn a reverse process to
recover the data from the noise. The forward process is defined as a Markov chain, where the data
at each time step xt is obtained through a Gaussian distribution q(xt|xt−1), and the reverse process
denoises the data using a parameterized reverse transition kernel pθ(xt−1|xt). The key equations of
traditional diffusion models are as follows:

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1) pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I) (4)

Anand and Achim’s equivariant diffusion model [1] extends the traditional diffusion models frame-
work to address the challenges of rotational and translational symmetry in protein structures. The
model introduces Spherical Linear Interpolation (SLERP) to handle rotational variables, allowing the
diffusion process to proceed stably in rotationally symmetric spaces. The specific equation is:

qit = SLERP(qi0, q
i
T , αt) (5)

The model also integrates Invariant Point Attention (IPA) to maintain rotational and translational
invariance and adopts Frame Aligned Point Error (FAPE) as the loss function to accurately address
errors in rotational diffusion. These enhancements significantly improve the model’s efficiency and
precision in generating physically plausible protein structures. Later, researchers have made various
improvements to the isovariant diffusion model. In July 2023, Watson et al. [78] developed RFdiffu-
sion, demonstrating advantages in motif-scaffolding and binder design through conditional generation
techniques. Following this, Bose et al. [11] introduced the SE(3)-stochastic flow matching method,
improving computational efficiency and generation quality. FrameDiff [84] enhanced computational
efficiency through geometric methods, and EigenFold [34] captured global structural features via
diffusion in the protein eigenmode space. Equivariant diffusion models have made significant impacts
in practical applications. The recently proposed DiffLinker [28], an E(3)-equivariant 3D conditional
diffusion model, designs complete molecules from disconnected fragments, enhancing the efficiency
and success of fragment-based drug discovery (FBDD) while producing drug-like molecules with
high binding affinities.

However, these equivariant models still face challenges in protein structure generation, particularly
in maintaining protein chirality. Some non-equivariant models have shown superior performance in
addressing this issue. The comparison between equivariant methods and non-equivariant methods is
provided in Table 2. While equivariant models preserve rotational and translational symmetry, they
often also exhibit reflectional symmetry, which can violate protein chirality, leading to biologically
implausible conformations. To solve this problem, Wu et al. introduced FoldingDiff [80] in 2024.
FoldingDiff [80] achieves translation and rotation invariance by representing protein backbones as
sequences of internal angles, thus inherently embedding geometric invariance without relying on
complex equivariant architectures. This approach allows a standard Transformer-based diffusion
model to iteratively denoise random angles into protein structures, capturing protein chirality and
generating diverse, designable structures. FoldingDiff [80] represents a significant advancement
in computational protein design by achieving effective modeling without the need for explicit
equivariance constraints.

4 Future direction

4.1 Challenges

Validation and evaluation. Despite advances in generative models, validating the quality and
functionality of generated protein sequences remains a significant challenge. This difficulty arises in
part from the diverse functional requirements of proteins in different biological and industrial contexts.
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Table 2: Comparison of four types of diffusion models in protein design. The table compares
two types of space-based diffusion methods, Euclidean and Geometric, as well as two types of
symmetry-based diffusion methods, Equivariant and Non-equivariant, in the context of protein
design.

Concept Method Description Advantages Disadvantages

Euclidean

Anand Achim (2022) [1] Operating in
Euclidean space

using 3D coordinates
or distance matrices

High computational
efficiency, suitable

for rapidly processing
large-scale datasets

Struggles to
capture complex

geometric
structures

ProtDiff (2022) [71]
NVDiff (2022) [15]

Geometric

RGSM (2022) [10] Leveraging geometric
properties like internal

angles and local
coordinate systems to

generate and transform
3D structures

Effectively captures
complex geometric

structures, enhancing
representation
of molecular
interactions

Computationally
intensive,
requiring

substantial
resources for
large datasets

Graph GDP (2022) [27]
RFdiffusion (2023) [78]
FrameDiff (2023) [86]
DiffLinker (2024) [28]
FoldingDiff (2024) [80]

Equivariant

Anand Achim (2022) [1] Leveraging SE(3)
principles to ensure

3D structures maintain
symmetry under

rotations and
translations

Ideal for tasks
needing symmetry

and invariance,
enhancing reliability

in interaction
modeling

Higher
complexity,

requiring
advanced

mathematical
frameworks

ProtDiff (2022) [71]
FrameDiff (2023) [86]

RFdiffusion (2023) [78]
DiffLinker (2024) [28]

Non-equivariant

RGSM (2022) [10] Using alternative
representations to
ensure structural
validity without

equivariant networks

Flexible representation
methods enhance
structural validity,

allowing for diverse
modeling approaches

May lack
robustness to

transformations,
potentially
affecting

performance

NVDiff (2022) [15]
Graph GDP (2022) [27]
FoldingDiff (2024) [80]

For example, proteins optimized for therapeutic use often have distinct requirements compared to
those in industrial catalysis, complicating universal definitions. As a result, protein functionality
should be evaluated by how well it meets application-specific criteria rather than using a universal
benchmark [48]. Ruffolo et al. emphasized the need for stronger evaluation criteria to standardize the
measurement of protein properties such as stability, solubility, and efficiency in different fields [32].
In addition, wet lab experiments are often necessary to assess basic properties such as stability and
expression, as well as design-based properties such as affinity and specificity [92]. This requirement
for experimental validation hinders the rapid optimization of the model.

Scarcity of labeled data. Another major challenge in protein modeling is the scarcity of labeled
data, particularly for proteins with verified functions. This hinders the development of models that
can reliably predict functionality. Acquiring such labeled data is resource intensive and requires
significant time, especially when experimental validation is necessary [25, 9, 7]. Many recent studies
have highlighted this challenge. Wang et al. emphasized the use of generative models to leverage large
amounts of unlabeled data alongside smaller labeled datasets [25], while other researchers explored
semi-supervised and self-supervised learning techniques that further enhance model performance
by minimizing the need for extensive labeled data [9]. In conclusion, while obtaining labeled data
remains a bottleneck, utilizing semi-supervised learning methods and relying on the abundance of
unlabeled protein sequences offers a promising way to mitigate this challenge.

Complexity and applicability. Current protein generative models are struggling with more complex
and applicable tasks. At the intermolecular level, despite the breakthrough in single-chain structure
prediction achieved by AlphaFold2, Mardikoraem et al. observed that current models still struggle to
accurately capture spatial orientations and interactions between chains in multi-chain complexes [36,
50]. Pandy et al. further emphasized this challenge in the context of predicting G-protein-coupled
receptor complexes [53]. At the intramolecular level, the complexity introduced by post-translational
modifications has drawn considerable attention from researchers. For instance, Chai exhibits high
sensitivity to protein modifications, with alterations in modified residues often leading to substantial
changes in predicted structures [69]. This aligns with the findings of Madani et al. and Jing et al.,
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who highlighted the limitations of current approaches in handling protein diversity [48, 32]. These
limitations hinder the design of proteins with precise, tailored functions for advanced applications in
medicine, biotechnology, and materials science.

4.2 Opportunities

Leveraging large-scale datasets and pre-trained models. The availability of large datasets, such
as the Profluent Atlas with 18 billion protein sequences, offers great opportunities for protein language
models (PLM) to improve predictive accuracy and explore de novo protein design. This resource is
10 times larger than AlphaFold’s database and enables models to learn complex sequence-structure
relationships, thus accelerating advancements in protein design [48, 54]. Such large datasets create
an environment where PLMs can identify intricate relationships between sequence and structure,
enabling more precise functional predictions. This opportunity is supported by the scaling of
generative models in biological research, where PLMs like ProGen2 [47] and others have been shown
to generate novel proteins that function just as well as natural proteins optimized by evolution [47].

Integration of advanced techniques. There is significant potential in combining different genera-
tive frameworks and methodologies to enhance protein design. Exploring hybrid generative modeling
approaches beyond either autoregressive or diffusion models, such as Diffusion Forcing [14], might
leads to new paradigm for protein generative modeling. Additionaly, integrating reinforcement
learning with PLMs for controllable design shows promise as demonstrated by the success of RL
in task-directed tuning of LLMs like ChatGPT [3, 46]. Moreover, implementing a cyclical training
process with experimental feedback could be beneficial [21]. This iterative approach underscores
the importance of using experimental results to continuously refine model training. Such a strategy
could potentially lead to more accurate and functional protein designs, bridging the gap between
computational predictions and experimental results.

5 Conclusion

This survey has highlighted key advances in generative models for protein engineering, focusing on
sequence-based, structure-based, and joint sequence-structure generation. Autoregressive models like
RNNs, LSTMs, and Transformers have shown promise in capturing complex sequence patterns, while
GNNs and diffusion models have excelled in structure generation and co-generation. Despite these
successes, challenges remain, including functional validation, scarcity of labeled data, and limitations
in handling complex structures like multi-chain complexes and post-translational modifications.
Looking forward, we have identified opportunities in leveraging large datasets like the Profluent
Atlas and integrating advanced techniques such as reinforcement learning and hybrid modeling.
The combination of generative models with experimental feedback has also shown potential to
enhance precision in protein design. Continued research in these areas has opened new pathways for
breakthroughs in biotechnology, enabling the creation of novel functional proteins.
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