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Abstract

The Differentiable ARchiTecture Search (DARTS) has dominated the neural ar-
chitecture search community due to its search efficiency and simplicity. DARTS
leverages continuous relaxation to convert the intractable operation selection prob-
lem into a continuous magnitude optimization problem which can be easily handled
with gradient-descent, while it poses an additional challenge in measuring the op-
eration importance or selecting an architecture from the optimized magnitudes.
The vanilla DARTS assumes the optimized magnitudes reflect the importance
of operations, while more recent works find this naive assumption leads to poor
generalization and is without any theoretical guarantees. In this work, we leverage
influence functions, the functional derivatives of the loss function, to theoretically
reveal the operation selection part in DARTS and estimate the candidate operation
importance by approximating its influence on the supernet with Taylor expansions.
We show the operation strength is not only related to the magnitude but also second-
order information, leading to a fundamentally new criterion for operation selection
in DARTS, named Influential Magnitude. Empirical studies across different tasks
on several spaces show that vanilla DARTS and its variants can avoid most failures
by leveraging the proposed theory-driven operation selection criterion.

1 Introduction

Neural Architecture Search (NAS) has been successfully applied to automating the process of neural
network design for a broad of deep learning fields [35, 41, 48, 50]. However, the early NAS methods
are often heavily computational-expensive and require hundreds or even thousands GPU days [34].
To improve the efficiency for more practical applications, a lot of recent works are proposed based on
one-shot (also known as weight-sharing) paradigm [33] to improve the search efficiency significantly.
Differentiable ARchiTecture Search (DARTS) [27], as the most popular one-shot NAS method, has
dominated this area since its appearance. DARTS leverages continuous relaxation to convert the
intractable operation selection problem into a continuous magnitude optimization problem, which
can be gracefully solved by gradient-descent based on the bi-level optimization [8]. A discrete
architecture is then derived based on the optimized magnitudes through operation selection.

Although the continuous relaxation makes DARTS able to optimize the magnitudes with rigorous
theoretical formulation and guarantees [51] in the supernet training part, it poses an additional
challenge in selecting a discrete architecture from the optimized magnitudes that there is no existing
work can give a theoretical explanation. DARTS is based on the weight-sharing paradigm [33], which
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Figure 1: Pictorial depiction of discretization part in DARTS. There is a gap between the train-
from-the-scratch (or fine-tuned) weights θ̂∗ based on α̂ after discretization and the trained supernet
weights θ∗. This paper leverages influence functions to quantify the disparity between L(θ̂∗, α̂) and
L(θ∗, α̂) and show how weights θ changes with α. The discretization process can be the argmax
adopted by DARTS [27], the perturbation-based DARTS-PT [40], and so on.

assumes that the derived discrete architecture with the trained supernet weights can predict its train-
from-scratch performance. However, there is a gap between the two groups of weights, as depicted
in Figure 1. The vanilla DARTS assumes the optimized magnitudes can reflect the importance of
the candidate operations, while Wang et al. [40] empirically show that the operation magnitude does
not necessarily indicate how important the operation is in a trained supernet. For example, DARTS
prefers skip-connection [45] as its magnitude always dominates the remaining operations, while an
architecture with intensive skip-connections generally leads to poor performance. Accordingly, Wang
et al. [40] proposed a heuristic perturbation-based method, DARTS-PT, to measure each candidate
operation’s influence on the supernet by alternatively removing each one to calculate the supernet
performance drop. Despite DARTS-PT can partially relieve the failure of DARTS, we empirically
found that DARTS-PT still prefers skip-connection than other operations. One potential reason is that
skip-connection’s magnitude is much higher than other candidate operations, and directly removing
skip-connections usually greatly deteriorates the supernet performance. In addition, DARTS-PT lacks
theoretical explanations and guarantees. For example, the intuitive way to show the importance of a
candidate operation importance is the leave-one-out retraining [22], while which should fine-tune the
supernet to get the performance drop after removing every operation rather than directly measuring
the performance drop as DARTS-PT, since there also exists a gap between the two groups of weights,
as visualized in Figure 1. Section 3 also give an analysis on why perturbation-based method fails.

This paper focuses on filling the gap of theoretical explanations for the discrete operation selection part
in DARTS. Instead of considering a heuristic approach to measure the operation importance [27, 40],
this paper first rigorously shows how the architecture parameters discretization poses an influence
on the supernet weights in DARTS, and estimates the supernet performance drop accordingly. Our
method is motivated by influence function [22], which is originally designed to understand the effect
of removing an individual training point, while we leverage Taylor’s approximation to interpret the
supernet performance drop when removing a candidate operation. In this way, we show the operation
strength is not only related to the magnitude but also second-order information, and we accordingly
design a new criterion for the operation selection in DARTS, called Influential Magnitude (IM).
Then, to avoid calculating the inverse of the Hessian matrix with respect to the model weights,
we further utilize the Neumann series [29] and Sherman-Morrison formula [37] to approximate
the Inverse-Hessian-Vector Products (IHVPs), making the proposed method applicable to DARTS.
Finally, we verify the effectiveness of our method on several NAS benchmark datasets and the
common DARTS search space. To summarize, we make the following contributions:

• This paper deepens our understanding of the operation selection in DARTS. We reformulate
the operation selection in DARTS by approximating its influence on the supernet with Taylor
expansions, which can thus gracefully interpret how the validation performance changes
when selecting different operations without any additional fine-tuning.
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• We theoretically reveal the operation strength is not only related to the magnitude but also the
second-order information, and accordingly derive a fundamentally new criterion to measure
the operation sensitivity, which we call Influential Magnitude (IM), for architecture
selection in DARTS. Further, to make the proposed criterion practical, we devise several
methods to estimate the Inverse-Hessian-Vector Products (IHVPs) in calculating the second-
order information.

• Extensive experiments verify the effectiveness of the proposed criterion, which significantly
improves the performance of vanilla DARTS and other baselines on the NAS benchmark
datasets and the common DARTS search space. We show DARTS is still a strong NAS
baseline when considering a more reasonable and theory-driven operation strength metric.

2 Preliminaries: DARTS and Influence Function

Typically, NAS focuses on finding a cell structure that is represented as a directed acyclic graph
(DAG) with N nodes and E edges affiliated with operations, which is a discrete and hard-to-optimize
problem. To enable the gradient-descent for architecture search, DARTS [27] leverages softmax as
the continuous relaxation function to transform the architecture search into a continuous magnitude
optimization problem:

αo =
exp(ᾱo)∑

o′∈O exp(ᾱo′)
,

where O contains all candidate operations and DARTS is to optimize the magnitude αo, which can
be formulated as a bi-level optimization problem [8]:

min
α

Lval(θ
∗(α), α)

s.t. θ∗(α) = argminθ Ltrain(θ, α),
(1)

where α is the continuous architecture representation and θ is the supernet weights. The nested
formulation in DARTS is the same as the gradient-based hyperparameter optimization with bi-level
optimization, which has been validated in a broad applications [13, 31, 32]. After the bi-level
optimization, DARTS usually considers heuristic methods to derive the final architecture, where the
most popular one is to select the operations with the highest magnitudes, α̂ = argmax(α). Despite its
simplicity, more recent works [7, 40, 45, 47–49, 52] found that DARTS could hardly find satisfactory
architectures.

Different from the majority of existing works that attribute the failure of DARTS to its magnitude
optimization part, which is under a rigorous theoretical formulation [51], we revisit DARTS from
the perspective of the architecture selection and try to reveal this part with theoretical explanations,
where we aim to identify the operation that will contribute most to the supernet performance, through
the lens of influence functions [22] to mathematically model the architecture selection process instead
of heuristics.

The influence function [18] is a classic technique from robust statistics that reveals how model
parameters change as we upweight or perturb a specific training sample, which has been applied in
explaining a lot of modern machine learning applications [2, 22, 30, 53]. More specifically, given a
model with parameters θ∗ after trained on a full training set D, influence function aims to study the
change of parameters θ̂∗ − θ∗ when retraining the model parameters to θ̂∗ after deleting a specific
training point z, that D̂ = D − z. Rather than retraining the model for every removed point, Koh and
Liang [22] estimated the influence by upweighting the data point with some small ϵ. With leveraging
the Taylor expansions, the influence on the model parameters can be estimated as:

I(z, θ) = dθ̂∗

dϵ
= −H−1

θ∗ ∇θL(z, θ∗), (2)

and its influence on the loss function of a test point ztest is accordingly calculated as:

I(z,L) = dL(ztest, θ̂
∗)

dϵ
= −∇θL(ztest, θ

∗)⊤H−1
θ∗ ∇θL(z, θ∗). (3)

The detailed derivation of the two influence functions can be found in [22]. Based on Eq.(2) and (3),
we can now approximate the validation performance drop when removing a training point z from the
training set without conducting the time-consuming retraining.
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The original work of influence functions for modern machine learning [22], which is also called
as first-order influence functions, only considers a very small change on θ∗ as it only changes one
training point, so the first-order Taylor expansion is satisfied to calculate the influence. However,
upweighting a group of data points may lead to a large change on θ∗ [4, 5], which violates the small
perturbation assumption of the first-order influence functions. To make the the influence function
capture the model parameter change more precisely, Basu et al. [4] extended influence functions
using second-order approximations under the assumption that the third-order derivatives of the loss
function at optimum is small. For the quadratic loss, the third-order derivatives of the loss are zero or
very small, and Basu et al. [4] empirically verified that the this assumption also approximately held
for the classification problem with cross-entropy loss function.

Different from existing works that analyze the effects on model parameters of removing data points,
this paper creatively adapts influence functions to estimate the importance of candidate operations
on a trained supernet in differentiable architecture search. We also follow the assumption in [4] that
neglect the third-order and higher derivatives of the loss, and analyze the operation selection part,
which is an additional process after bi-level supernet training in DARTS, through the lens of influence
function in the following sections.

3 Interpret Operation Selection through Influence Functions

This section aims to understand how the model parameters θ (a.k.a. the supernet weights in DARTS)
would change when we derive the discrete architecture from the optimized continuous operation
magnitudes, a.k.a. architecture selection. In this paper, our analysis only focuses on this architecture
selection part after the bi-level supernet training process is finished. To be more clearly, we first
define the optimized operation magnitudes by DARTS as α with the optimized supernet weights θ∗,
and the validation loss is L(θ∗, α) for simplicity. Then, we define the architecture parameters change
to α̂ after discretization, and the corresponding ground-truth supernet weights and validation loss
are defined as θ̂∗ and L(θ̂∗, α̂), respectively. Rather than deleting a single data point that only brings
small changes on the model parameters [22], the change of architecture parameters can lead to a
considerable change on θ, so we leverage the second-order approximation [4] to reveal the supernet
weights change. With second-order Taylor expansion on θ̂∗ for L(θ̂∗, α̂), we have:

∆L = L(θ̂∗, α̂)− L(θ∗, α) ≈ L(θ∗, α̂) + ∆θT
∂L(θ∗, α̂)

∂θ
+ 1/2∆θT

∂2L(θ∗, α̂)
∂θ∂θ

∆θ − L(θ∗, α), (4)

where ∆θ = θ̂∗ − θ∗, and L is the validation loss function in Eq.(1). For example, when we
only remove one candidate operation as DARTS-PT [40] to measure the operation importance, the
influence of this discretization brings to θ is ∆θ, and the true validation loss change should be
L(θ̂∗, α̂) − L(θ∗, α) as stated in Eq.(4) rather than L(θ∗, α̂) − L(θ∗, α) used by DARTS-PT. As
shown in Eq.(4), we need to calculate ∆θ to get ∆L after we change the α to α̂, while we try to avoid
the time-consuming retraining process through leveraging influence functions [22] to estimating θ̂∗.
Based on the implicit function theorem [29, 51], the validation loss change after discretizing α to α̂
can be approximated as the following theorem.

Theorem 1 Suppose that DARTS obtains the optimized architecture parameter α with supernet
weights θ∗ after supernet training, α changes to α̂ when conducting architecture discretization, and
the train-from-scratch validation loss for α̂ is L(θ̂∗, α̂). If the third and higher derivatives of the loss

function L at optimum is zero or sufficiently small [4], and with ∂L(θ̂∗,α̂)
∂θ = 0, we have

∆L = L(θ̂∗, α̂)− L(θ∗, α) ≈ L(θ∗, α̂)− L(θ∗, α)− 1/2
∂L(θ∗, α̂)

∂θ

T
∂2L(θ∗, α̂)

∂θ∂θ

−1
∂L(θ∗, α̂)

∂θ
. (5)

Theorem 1 states that we can estimate the train-from-scratch validation performance of α̂ without any
retraining. During the discretization process, we can apply the argmax on all edges by one-shot that
α̂ = argmax(α), or only discretize one edge in each step, or remove one candidate operation from
one edge as DARTS-PT [40] which can be formulated as the first part of Eq.(5), L(θ∗, α̂)−L(θ∗, α).
We prefer an iterative discretization process that only applies a small change on α as DARTS-PT,
since our theoretical analysis in the next corollary will show that the error bound of our approximation
is related to ∆α = α̂− α. Before our analysis, we give the following common assumptions, which
are also considered in several recent bi-level optimization problems [9, 15–17, 51].
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Assumption 1 For any θ and α, L(·, α) and L(θ, ·) are Lipschitz continuous with Cf > 0 and
CL > 0, respectively.

Assumption 2 L(θ, α) is twice differentiable with constant CH and is λ-strongly convex with θ
around θ∗(α).

Assumption 3
∥∥∇2

θαL
∥∥ is bounded with constant Ca > 0.

Corollary 1 Based on the Assumption 1-3, we could bound the error between the approximated
validation loss L(θ̂∗, α̂) = ∆L + L(θ∗, α) and the ground-truth L̃(θ̂∗, α̂) in DARTS with E =∥∥∥L(θ̂∗, α̂)− L̃(θ̂∗, α̂)

∥∥∥ ⩽ K3

6 max
∣∣∣∂L3

∂θ3

∣∣∣, where K = CL

λ ∥∆α∥+ CHC2
a

2σ2
minλ

∥∆α∥2 + o(∥∆α∥2).

Compared with the argmax used in DARTS, we prefer the perturbation-based discretization method
[40] as which only remove one operation at each step, since the above Corollary 1 show that error
bound of the approximated validation loss L(θ̂∗, α̂) increase with the magnitude of the change of α.

4 Influential Magnitude for Operation Selection in DARTS
Section 3 provides an iterative solution to measure the operation importance based Eq. (5) through
individually removing each operation, while which needs to repeat n times (the number of all
candidate operations for all edges in the supernet work). More important, since removing one
operation poses a considerable change on α (αi → 0), the approximation error produced by Eq.(5)
is non-negligible which may affects the accuracy as stated by Corollary 1. So, a more practical
solution to illustrate the importance of each operation is to estimate how the validation performance
will change after posing an infinitesimal change on α, a.k.a. operation sensitivity. In this section,
we aim to investigate the operation importance through the lens of sensitivity [24]. Different from
Section 3 that removes one operation (αi → 0), this section only changes the αi with an infinitesimal
εi, which means that we can now conduct first-order Taylor expansion on α for L(θ̂∗, α̂). Further
with second-order Taylor expansion on θ and assuming the local optimal ∂L(θ∗,α)

∂θ = 0, we have:

∆L = L(θ̂∗, α̂)− L(θ∗, α) ≈ 1/2∆θT
∂2L(θ∗, α)

∂θ∂θ
∆θ +∆αT ∂L(θ̂∗, α)

∂α
. (6)

Similar to Eq.(4), it is intractable to directly calculate ∆θ, while we can leverage implicit function
theorem to approximate it. Theorem 2 presents how the validation performance changes after we
pose an infinitesimal change on α.

Theorem 2 Suppose that DARTS obtains the optimized architecture parameter α with supernet
weights θ∗ after supernet training, and we pose an infinitesimal change on α. Based on implicit
function theorem and under the assumption that the third and higher derivatives of the loss function
at optimum is zero or sufficiently small [4], the change of validation loss can be estimated as:

∆L = L(θ̂∗, α̂)− L(θ∗, α) ≈ −1/2∆αT ∂2L(θ∗, α)
∂α∂θ

H−1 ∂
2L(θ∗, α)
∂θ∂α

∗∆α, (7)

where H = ∂2L(θ∗,α)
∂θ∂θ is the Hessian matrix.

From Theorem 2, we can observe the relationship between ∆L and ∆α. To be more specifically,
when we only consider an infinitesimal change on α, that ∆α = ε · 1 where 1 is a column vector
with all ones and ε is an infinitesimal scalar, the sensitivity of α can be defined as:

∆L
∆α

= −1/2 · ε · 1T
∂2L(θ∗, α)

∂α∂θ
H−1 ∂

2L(θ∗, α)
∂θ∂α

. (8)

Accordingly, we propose an Influential Magnitude to quantify the operation importance through the
lens of sensitivity:

Definition 1 Influential Magnitude (IM): Suppose DARTS obtains the optimized magnitude α
with supernet weights θ∗ after supernet training, the operation sensitivity can be defined as IM =

−1T ∂2L(θ∗,α)
∂α∂θ H−1 ∂2L(θ∗,α)

∂θ∂α .

Definition 1 shows we can replace the magnitude α with the operation sensitivity IM in the operation
selection for DARTS, whose i-th value represents the importance of i-th candidate operation.
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5 Practical Calculation on Operation Influence
For a large neural network, it is impractical to calculate the second-order information, e.g., the
Hessian matrix H , let alone the inverse of Hessian. Generally, the core challenge in calculation of
Eq.(5) and Eq.(7) is the Inverse-Hessian Vector Products (IHVPs), H−1v [14, 22, 37]. As to the term
of ∂2L(θ∗,α)

∂θ∂α , we follow DARTS [27] to utilize the finite difference approximation for the practical
calculation. The first technique for IHVPs is the conjugate gradient (CG) which converts the matrix
inverse problem into an optimization problem with δ-optimal solution. However, the standard CG
can be slow with a large dataset as it needs to go through the whole training points in each step [1].
The original paper [22] using influence function for modern machine learning problem leverages
the Neumann series to approximate the inverse, that H−1 =

∑∞
k=0(I −H)k, with only consider

the first t terms to approximate H−1. However, there is a strict condition in the Neumann series
approximation that ∥I −H∥ ≤ 1, which can not be guaranteed in the practical implementation.
Differently, we consider that H−1 = γ(γH)−1 = γ

∑∞
k=0(I − γH)k, where γ is a small enough

value. The following lemma gives our Neumann series based implementation for IHVPs.

Lemma 1 With small enough γ, and assuming L is λ-strongly convex at optimum, H−1v can be
formulated as: H−1v = γ

∑K
k=0 [I − γH]

k
V0 = V0 + V1 + ... + VK , where H = ∂2L(θ∗,α)

∂θ∂θ ,
V0 = γv, and V1 = γ(I − γH)V0, ..., VK = γ(I − γH)VK−1.

In the practical implementation, it is still hard to make sure L is λ-strongly convex and not easy
to select an appropriate γ. The work [5] empirically showed that the stochastic Neumann series
estimation for IHVP is somehow erroneous, especially when the network is deep. As we know, the
true Fisher information matrix converges to the Hessian matrix with the training loss approaches
to zero. However, it is usually infeasible to calculate the exact Hessian or Fisher matrix in a large
neural network. A practical approximation is called as empirical Fisher, which has been verified to
be effective in variety of applications [3, 19]. In addition, an important advantage from empirical
Fisher is that it allows to approximate the inverse of the Hessian based on the Sherman-Morrison
formula. Although the empirical Fisher can not exactly match the true Fisher and there are several
active researches on its applicability [23, 38], empirical Fisher is significantly more computationally-
efficient, which obtains a good trade-off between the approximation and practical efficiency [37].
Apart from Neumann series, we also consider Sherman-Morrison formula [14, 37] (A+ uvT )−1 =

A−1−A−1uvTA−1

1+vTA−1u to calculate IHVPs. With empirical Fisher F = 1
n

∑n
j=1 ∇θLj(∇θLj)

T replacing
true Fisher F̂ = ∇θf(∇θf)

T , IHVPs can be calculated as following.

Lemma 2 When assume the empirical Fisher can approximate the Fisher matrix, and H is the Hes-
sian matrix ∂2L(θ∗,α)

∂θ∂θ in the optimal point, the IHVPs H−1v can be formulated as: H−1v = F−1
n v =

F−1
n−1v − rn rnT v

N+∇θLn
T rn

= η−1v −
∑n

j=1 rj
rjT v

N+∇θLj
T rj

, where L = ℓ + ηR(θ) that ℓ is a cross-

entropy loss and R is the regularization term, Fn = 1
n

∑n
j=1 ∇θLj∇θLT

j is the empirical Fisher, and

rj = F−1
j−1∇θLj which can be recurrently calculated through rj = η−1∇θLj −

∑j−1
i=1 ri

riT∇θLj

N+∇θLi
T ri

.

6 Experiments

Table 1: Test accuracy (%) on NAS-Bench-201.
Method CIFAR-10 CIFAR-100 ImageNet-16-120

Random 86.61±13.46 60.83±12.58 33.13±9.66
DARTS 54.30±0.00 15.61±0.00 16.32±0.00
DARTS-PT 89.63±0.19 62.35±2.14 36.51±2.13

DARTS-IF 91.84±0.84 67.94±1.23 42.50±3.30
DARTS-IM 93.61±0.23 71.31±0.40 44.98±0.36

Full comparison with SOTAs is in Appendix D. We default use
Sherman-Morrison for DARTS-IM in this experiment.

In Section 3 and 4, we have theoretically
interpreted the operation selection through
individually measuring each operation’s
influence on supernet, and accordingly
devised an Influential Magnitude (IM)
to replace the commonly-used magnitude
α for architecture selection. In this sec-
tion, we conduct a series of experiments
to analyze whether our proposed method
leads to better and more stable results in
differentiable architecture search settings.
We consider two NAS benchmark dataset
search space, NAS-Bench-201 [12] and
NAS-Bench-1shot1 [46], and the most popular DARTS search space [27]. We verified the effec-
tiveness of the proposed theory-driven method compared with two heuristic methods, argmax and
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perturbation-based selection, and show that the proposed Influential Magnitude can be applied to
DARTS and its variants with greatly enhancing the performance.

6.1 Reproducible Comparison on Benchmark Datasets

To empirically verify the effectiveness of our method, we first run a series of experiments on the two
NAS benchmark datasets, NAS-Bench-201 and NAS-Bench-1shot1. To make our results reproducible,
we only replace the selection part in DARTS with IM and keep the remaining part identical.

Table 1 summarizes the statistical comparison results on NAS-Bench-201 with different random
seeds, where DARTS-IF, as described in Section 3, follows DARTS-PT that individually removes
operation to measure the supernet performance drop, while DARTS-IM, as described in Section 4,
calculates the operation sensitivity (influential magnitude) to replace the original magnitude. The
Random baseline is to randomly select architectures without considering α or θ, and DARTS and
DARTS-PT leverage the argmax and perturbation-based heuristic selection, respectively. As shown,
our DARTS-IF and DARTS-IM both significantly outperform the random baseline and the two
heuristic baselines, where DARTS-IM achieves near-optimal results, a 94.29%, 72.67%, and 45.93%
test accuracy on CIFAR-10, CIFAR-100, and ImageNet, respectively, in a single run (DARTS-IM
with Sherman-Morrison approximation and N = 20 under random seed 0).

1 10 20 30 40
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(a) Neumann series.
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87

88

89

90

91

92

93

94

95

96
Sherman-Morrison with different N

(b) Sherman-Morrison formula.

Figure 2: Ablation study on N under two approximation
methods, where x-axis is N and y-axis represents test accuracy
on CIFAR-10. The computational complexity increases with
the square of N for Sherman-Morrison formula, and we set
the maximal N = 40.

From the searched architectures in
NAS-Bench-201, we found that
DARTS selects skip-connection for
all edges as its magnitude usually
outweighs other candidate opera-
tions. The results of DARTS in NAS-
Bench-201, which are even poorer
than the random baseline, also sug-
gest that the magnitudes could hardly
reflect the operation importance. Al-
though DARTS-PT can partially re-
lieve this issue by selecting one or
two more convolutional operations,
it still prefers skip-connections (se-
lects 3 skip-connections for 6 edges)
where directly removing them still
significantly affects the performance.
On the contrary, our DARTS-IF and DARTS-IM can find valid architectures with more convolutional
operations (with only one skip-connection). Results in Table 1 verified the effectiveness of our influ-
ence functions based selection methods, which outperform baselines by large margins. DARTS-IF
is similar to DARTS-PT while with an additional term to approximate the fine-tuned performance
and the results that DARTS-IF outperforms DARTS-PT verified the effectiveness of the influence
function explanation.

Table 2: Best test error (%) on NAS-Bench-1shot1.
Method Space1 Space2 Space3

DARTS 6.17±0.09 6.30±0.00 6.80±0.00
DARTS-PT 6.25±0.05 6.28±0.06 6.69±0.21
DARTS-IM 6.10±0.24 6.53±0.05 6.20±0.00

PC-DARTS 6.37±0.05 6.30±0.00 6.50±0.00
PC-DARTS-PT 6.14±0.08 6.37±0.12 6.38±0.09
PC-DARTS-IM 5.90±0.24 6.20±0.22 6.10±0.08

As discussed in Section 5, we can leverage dif-
ferent methods to approximate the IHVPs in
our IM, and Figure 2 also analyzes different
approximation methods along with the number
of batches N . As demonstrated, increasing N
can help the Sherman-Morrison approximation
to more accurately catch the operation impor-
tance and we empirically find that N = 30 is
enough in the NAS-Bench-201 dataset. How-
ever, we also observe Neumann approximation
is not stable which even obtains worse results
with increasing number of batches, showing it is somehow erroneous in estimating IHVPs.

The NAS-Bench-1shot1 is another popular NAS benchmark dataset to analyze differentiable NAS
methods, which is built based on the NAS-Bench-101 [44], through dividing all architectures in
NAS-Bench-101 into three different unified cell-based search spaces to enable differentiable NAS
methods to be directly applied. NAS-Bench-1shot1 contains 6240, 29160, and 363648 architectures
in three spaces, respectively, where Space3 is much more complicated than the remaining two spaces.
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In NAS-Bench-1shot1, we tracked the searched architecture in every epoch under different operation
selection paradigms. We considered two popular supernet training baselines, DARTS and PC-DARTS,
and Table 2 summarised the best-searched architectures during the supernet training in different
sub-search spaces in NAS-Bench-1shot1. As demonstrated, our IM can enhance the performance
of DARTS and its variant PC-DARTS in different search spaces of NAS-Bench-1shot1, showing
that our influence magnitude (IM) can find more competitive architectures than the default argmax,
especially in the more complicated space. Compared with the perturbation strategy (PT), our IM is
more effective to measure the operation sensitivity with obtaining 5 better results in 6 cases.

6.2 Reproducible Comparison on DARTS Search Space

Table 3: Search results on DARTS space.

Method CIFAR-10 Test Error (%) ImageNet
Single Multi* Best

DARTS 2.76±0.09 3.02±0.45 26.9 / 8.7
PC-DARTS 2.57±0.07 2.92±0.26 25.1 / 7.8

DARTS-PT 2.61±0.08 2.89±0.31 26.1 / 8.2
DARTS-IM 2.50±0.10 2.70±0.18 25.0 / 7.6

∗ We run the architecture search with multiple times, and
average the different derived architecture’s test error.

The DARTS search space is the most
commonly-used space to evaluate the NAS
methods, while most SOTAs only report the
performance of their best searched architec-
tures without analyzing the search statistics.
To encourage reproducibility, we train the
supernet with the same random seeds, and
the trained supernet is utilized to derive the
architecture under different operation selec-
tion strategies. The comparison results are
provided in Table 3, from which we can see
that, compared with the argmax baseline,
the architectures searched by our Influential
Magnitude obtain better performance on CIFAR-10 and ImageNet than DARTS and its variant
PC-DARTS, and DARTS-PT on ImageNet, implying our method is more stable to find valid and
competitive architectures. We also plot the searched architecture examples with different selection
methods in the DARTS space in the supplemental material. Although DARTS, PC-DARTS and
DARTS-PT can find satisfying architecture after multiple runs, we found the argmax is hard to con-
sistently obtain stable results. In addition, different from the perturbation-based operation selection
which needs to fine-tune the supernet after the discretization of each edge that costs 0.4 additional
GPU day for DARTS, our influential magnitude is calculated by one time which only costs hundred
seconds, making our method is much more efficient.

6.3 Discussion on the Robustness of Search
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Figure 3: Searched architectures on different search spaces.

The robustness has been a critical
concern in the differentiable archi-
tecture search community since Zela
et al. [45] observed a performance
collapse that DARTS tends to yield
degenerate architectures, which es-
pecially prefers the skip-connections
with the search progressing. Similar
to DARTS-PT, we also focus on the
operation selection part to explain the
failure of DARTS. Figure 3 presents
several architectures by DARTS with
our IM on different search spaces.
Apart from NAS-Bench-201, we also
consider several tool search spaces
(S1-S4) proposed by [45], which are
specifically designed to verify the ro-
bustness of differentiable NAS meth-
ods. As shown in Figure 3, DARTS-IM can find more meaningful architectures in different spaces.
For example, DARTS fails dramatically in most spaces that only selects skip-connection for all
edges, while DARTS-IM can find architecture with 5 convolutions in NAS-Bench-201, and 6 and 8
convolutions in S1 and S2.
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6.4 Discussion at Non-Convergence
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Figure 4: Track the architectures during search on NAS-
Bench-201 with Sherman-Morrison under different N .

As discussed in Section 4, our influ-
ential magnitude is derived when θ
is in the optimum, with leveraging
different methods to approximate the
IHVPs. In this subsection, we an-
alyze whether the proposed influen-
tial magnitude is still effective to find
important operations when θ is not
in the optimum. Figure 4 tracked
the performance of searched architec-
ture in each epoch during the search
with Sherman-Morrison formula. As
shown, our influential magnitude IM
is still effective when θ is not in
the optimum, while which is getting
more stable with the supernet training. Specifically, as shown in Figure 4 (a) and (b), our IM with the
different N are both effective, implying that our method is sufficiently informative for the operation
selection even under different approximation noises.

More interesting, our DARTS-IM under Sherman-Morrison formula with N=1 in Figure 4 means
that we simply approximate the inverse H−1 = η−1

(
I − η−1 ∇θL∇θL⊤

1+η−1∇θL⊤∇θL

)
∝ Ĥ−1, that Ĥ−1

is a diagonal matrix that Ĥii = (∇θiL∇θiL), which is also called the diagonal approximation of the
inverse Hessian. As shown, with roughly approximated second-order information, Eq. (7) also help
DARTS-IM to find more important operations compared with existing heuristic methods.

6.5 Discussion on the Limitations in Practice

Although our influential magnitude provides a theory-driven and concise solution for the operation
selection in DARTS, we consider several assumptions and approximations for the practical imple-
mentation. For example, Basu et al. [4, 5] pointed out that the second-order influence values still
underestimated the true group influence values in the deep neural networks, while they also observed
the correlation marginally improves with the number of parameters in a group and the second-order
influence function generally outperforms the first-order. Fortunately, this paper considers the whole
parameters in the supernet, which helps the second-order influence function reach its potential.

The approximation of IHVPs requires the conditions that the Hessian matrix is positive definite
[29] or the empirical Fisher can replace the true Fisher matrix [14], and the supernet weight θ∗ is a
global minimum of the empirical risk, while which in practice, are hard to hold. In the calculation
of v ∗ ∂2L

∂α∂θ this paper also follows DARTS that considers the finite difference approximation for
practical calculation. These approximations and assumptions may bring errors for the practical
calculation, while empirical results verified that our influential magnitude is sufficiently informative
for the operation selection in DARTS.

7 Conclusion and Future Work

This paper focuses on the operation selection, which is an essential part while with less attention in
the differentiable architecture search. Rather than considering heuristics, this paper introduces the
influence functions to theoretically reveal the candidate operation’s importance through approximating
its influence on the supernet. By leveraging the Taylor’s approximation, we gracefully interpret how
the validation performance changes during the discretization in DARTS and show that the operation
strength is not only related to the magnitude but also the second-order information, where an influential
magnitude is accordingly devised for the architecture selection. We based our framework on DARTS
and extensive experimental results verified the proposed influential magnitude can be practically used
in operation selection to avoid failures in differentiable architecture search. Developing more accurate
influential magnitude for architecture search or leveraging the training dynamics [20] to reveal the
operation influence in the early of training and also extending influential magnitude to other bi-level
optimization problems[21, 28, 29], e.g., network pruning [28], are among directions for future work.
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