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Abstract

Reinforcement learning from human feedback001
(RLHF) is a popular strategy for aligning large002
language models (LLMs) with desired behav-003
iors. Reward modeling is a crucial step in004
RLHF. However, collecting paired preference005
data for training reward models is often costly006
and time-consuming, especially for domain-007
specific preferences requiring expert annota-008
tion. To address this challenge, we propose009
the Domain knowledge merged Reward Model010
(DogeRM), a novel framework that integrates011
domain-specific knowledge into a general re-012
ward model by model merging. The experi-013
ments demonstrate that DogeRM enhances per-014
formance across different benchmarks and pro-015
vide a detailed analysis showcasing the effects016
of model merging, showing the great potential017
of facilitating model alignment.018

1 Introduction019

Modern large language models (LLMs), such as020

GPT-4 (Achiam et al., 2023) and Gemini (Team021

et al., 2023), showcase impressive capabilities022

across various tasks (Gao et al., 2023; Beeching023

et al., 2023), with aligning their behavior with hu-024

man preferences. Reinforcement learning from025

human feedback (RLHF) is a prominent technique026

for enhancing the alignment of desired behaviors in027

LLMs (Christiano et al., 2017; Ziegler et al., 2019;028

Ouyang et al., 2022). A key component of RLHF029

is its reward models (RMs), which assess entire030

sentences generated by policy models. The reward031

signals produced by these RMs are instrumental in032

adjusting the parameters of the policy models, thus033

directly impacting the policy models’ effectiveness.034

RMs are developed by training LLMs on035

paired preference data to simulate human judg-036

ment (Ouyang et al., 2022). This preference data037

consists of two responses to a given user input,038

accompanied by a human-assigned label indicat-039

ing which response is more preferred. However,040
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Figure 1: The framework of DogeRM, where we merge
the general RM with a domain-specific LM to create the
domain-specific RM.

gathering such preference data can be costly and 041

time-consuming due to the requirement of human 042

annotation (Stiennon et al., 2020a). This challenge 043

becomes more pronounced when handling domain- 044

specific preference data, as it necessitates expertise 045

from domain specialists. 046

Recent developments have demonstrated the ef- 047

fectiveness of model merging techniques in strategi- 048

cally integrating multiple domain-specific models 049

into a multi-domain model without requiring ad- 050

ditional training (Wortsman et al., 2022; Ilharco 051

et al., 2023). Furthermore, domain-specific SFT 052

data is relatively more accessible compared to pref- 053

erence data. Moreover, many high-quality domain- 054

specific models are available on open-source plat- 055

forms (Wolf et al., 2019), which can be directly 056

employed in the merging process. This brings us to 057

consider a novel approach: Is it possible to equip 058

reward models with domain knowledge through 059

merging with domain-specific language models? 060

In this work, we propose Domain knowledge 061

merged Reward Model (DogeRM), exploring the 062

potential of merging a reward model trained on 063
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a general open-sourced preference dataset with064

a language model fine-tuned on domain-specific065

datasets, such as math and coding. An illustration066

of DogeRM is presented in Figure 1. We evalu-067

ate DogeRM using RewardBench (Lambert et al.,068

2024), Auto-J Eval (Li et al., 2024) and Best-of-069

N sampling on GSM8K (Cobbe et al., 2021) and070

MBPP (Austin et al., 2021). Our results demon-071

strate that DogeRM improves performance and can072

be generalized to different model architectures. We073

also conduct a comprehensive analysis to demon-074

strate the impact of model merging.075

2 Related Work076

Reward Modeling RMs are crucial for aligning077

language models with human preferences, provid-078

ing proxy rewards as training signals for policy079

models. Previous work has employed RL algo-080

rithms with RMs to guide language models towards081

human preferences in various NLP tasks (Ziegler082

et al., 2020; Stiennon et al., 2020b; Wu et al.,083

2021; Nakano et al., 2022; Menick et al., 2022) and084

instruction-following (Ouyang et al., 2022; Rama-085

murthy et al., 2023). In RLHF literature, RMs eval-086

uate the quality of instructions and responses based087

on criteria like helpfulness and harmlessness (Bai088

et al., 2022) or more fine-grained objectives (Wu089

et al., 2023).090

Several open-source paired preference datasets091

are available for training RMs for RLHF, such as092

OpenAI Summarization (Stiennon et al., 2020b),093

HH-RLHF (Bai et al., 2022), SHP (Ethayarajh094

et al., 2022), Ultrafeedback (Cui et al., 2023), PKU-095

SafeRLHF (Ji et al., 2023), HelpSteer (Wang et al.,096

2023), Nectar (Zhu et al., 2023), and UltraInter-097

act (Yuan et al., 2024). However, most datasets098

are not domain-specific. To address this, our work099

focuses on merging RMs with domain-specific lan-100

guage models, aiming to equip RMs with domain101

knowledge.102

Model Merging Model merging integrates multi-103

ple task-specific models into a single unified model104

without additional training. A straightforward ap-105

proach involves averaging parameters from models106

fine-tuned from the same initial model (Wortsman107

et al., 2022). Another method employs weighted108

averaging of model parameters (Matena and Raffel,109

2022; Jin et al., 2023).110

Another innovative approach involves creating111

task vectors by subtracting the weights of a pre-112

trained model from those of the same model after113

fine-tuning for a specific task. This method show- 114

cases the flexibility and composability of these vec- 115

tors through arithmetic operations (Ilharco et al., 116

2023; Yadav et al., 2024; Huang et al., 2024). 117

Some recent work focused on model merging 118

to align with user preferences. They interpo- 119

lated model parameters fine-tuned on diverse re- 120

wards (Rame et al., 2024a; Jang et al., 2023; Wang 121

et al., 2024a), or merging RMs for combining dif- 122

ferent aspects of rewards (Rame et al., 2024b). 123

However, these approaches still require domain- 124

specific preference data to integrate domain knowl- 125

edge. Our work eliminates the requirement of 126

domain-specific preference data and focuses on in- 127

corporating domain-specific knowledge into RMs 128

through model merging. 129

3 Methodology 130

3.1 Reward Modeling 131

To train a reward model, we replace the decoding 132

layer of a transformer-based pre-trained language 133

model with a linear regression layer. This new layer 134

projects the logits from the final transformer layer 135

to a scalar, representing the reward of a given input. 136

Given an input prompt x, the chosen response yc, 137

and the rejected response yr, we use the following 138

loss function to optimize our reward model: 139

LRM = − log [σ(r(x, yc))− σ(r(x, yr))] (1) 140

where r(x, yc) is the reward of chosen response, 141

r(x, yr) is the reward of rejected response, and 142

σ(·) is the logistic function. 143

3.2 Model Merging 144

Our proposed method merges the parameters of 145

a supervised fine-tuned language model, denoted 146

as θSFT, with those of a reward model, θRM, both 147

initialized from the same pre-trained model θ. 148

We divide θSFT into three disjoint parts: 149

θSFT = {θSFT
emb, θ

SFT
trans, θ

SFT
dec } (2) 150

where θSFT
emb, θ

SFT
trans, θ

SFT
dec represent the embedding, 151

transformer, and decoding layers’ parameters, re- 152

spectively. 153

Similarly, we also divide θRM into three parts: 154

θRM = {θRM
emb, θ

RM
trans, θ

RM
reg } (3) 155

where θRM
emb, θ

RM
trans, θ

RM
reg denote the parameters for 156

the embedding, transformer, and regression layer, 157

respectively. 158

For embedding layer parameters, we apply a 159

weighted average to common token embeddings: 160

θMERGE
emb,ti = λ · θSFT

emb,ti + (1− λ) · θRM
emb,ti (4) 161
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Model

Reward Bench Auto-J Eval

Chat Chat-Hard Safety
Reasoning

Code Math Others
Code Math

LLaMA-2 RM 95.8 47.6 44.6 78.9 68.2 76.2 84.4 79.2

Ours (+ MetaMath) 95.8 44.5 43.5 85.7 79.6 79.8 87.5 79.3
Ours (+ MAmmoTH) 96.1 44.7 43.8 84.1 85.2 79.8 87.5 79.7

Ours (+ Code Model) 96.1 45.6 43.9 84.3 71.8 82.1 87.5 79.7

Table 1: Performance comparison on various benchmarks.

where ti is a common token to both models, θemb,ti162

is the corresponding embedding, and λ are weights163

for SFT parameters ranging from 0 to 1.164

As for the unshared tokens, we directly use the165

embedding from their corresponding source model.166

θMERGE
emb,ti =

{
θSFT

emb,ti If ti is unique to SFT model
θRM

emb,ti If ti is unique to RM
(5)167

For the transformer layers, we perform a168

weighted average directly since both models are169

initialized from the same pre-trained model:170

θMERGE
trans = λ · θSFT

trans + (1− λ) · θRM
trans (6)171

Finally, we derive the merged reward model172

θMERGE by combining θMERGE
emb , θMERGE

trans , and the173

reward model’s regression layer θRM
reg :174

θMERGE = {θMERGE
emb , θMERGE

trans , θRM
reg } (7)175

4 Experiments176

4.1 Experimental Setup177

Reward Model To fine-tune the backbone of our178

reward model, we utilize the 10k SFT split from179

Alpacafarm (Dubois et al., 2023). For reward mod-180

eling, we employ the UltraFeedback (Cui et al.,181

2023). The details of training and these datasets182

are presented in Appendix A and C, respectively.183

Domain-Specific SFT For the math LLMs, we184

adopt the open-source models, MetaMath-7B (Yu185

et al., 2024) and MAmmoTH-7B (Yue et al.,186

2024a), both of which are fine-tuned from LLaMA-187

2-7B. For code generation LLM, since we could188

not find open-source models with detailed training189

information, we use OSS-Instruct and Magicoder-190

Evol-Instruct (Wei et al., 2024) to fine-tune191

LLaMA-2-7B ourselves. We refer to this model as192

the Code Model in the following sections. The de-193

tails of code fine-tuning datasets and math models194

are presented in Appendix C and D, respectively.195

4.2 Evaluation 196

We evaluate the reward models using two bench- 197

marks, RewardBench (Lambert et al., 2024) and 198

Auto-J Eval (Li et al., 2024). These benchmarks 199

provide paired instruction-completion data, with 200

the preferred completion annotated as chosen and 201

the other as rejected, using accuracy as the evalua- 202

tion metric. We use the core set of RewardBench, 203

focusing primarily on the reasoning category to 204

evaluate the model’s abilities in code and mathe- 205

matical reasoning. For Auto-J Eval, we use pair- 206

wise testing data and categorize the dataset into 207

three categories: code, math, and others, following 208

Yuan et al. 2024. Additionally, to further test our 209

reward model’s effectiveness in enhancing model 210

performance through reranking, we conduct best- 211

of-N sampling on zero-shot prompted responses 212

from llama-2-7B-chat for GSM8K (Cobbe et al., 213

2021) and MBPP (Austin et al., 2021). We present 214

results using a weight factor of λ = 0.35 for the 215

main findings, with an analysis of the impact of 216

λ detailed in section 4.4 and results for different 217

values of λ presented in Appendix F. 218

4.3 Results 219

RM Benchmarks The main results RM bench- 220

mark are shown in Table 1. Merging the LLaMA- 221

2 RM with MetaMath-7B (Yu et al., 2024) and 222

MAmmoTH-7B (Yue et al., 2024a) improves math 223

performance on RewardBench by 11.4% and 17%, 224

respectively, and coding performance by 5.2% and 225

5.8%, respectively. Similar enhancements are seen 226

on Auto-J Eval, with gains in both math and cod- 227

ing. Merging our LLaMA-2 RM with the Code 228

Model further improves coding performance on 229

RewardBench and Auto-J Eval by 5.4% and 6%, re- 230

spectively, along with noticeable improvements in 231

math performance on both benchmarks. Although 232

our methods improve the reasoning domain, per- 233

formance in other domains did not significantly 234

degrade. 235
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(a) + MetaMath/MAmmoTH
on GSM8K.

(b) + Code Model on MBPP.

Figure 2: Best-of-N results. Merging with domain-
specific models improves reranking accuracy. Topline:
Pass@N, the probability of obtaining at least one correct
solution out of N responses. Baseline: LLaMA-2 RM.

Best-of-N Sampling Figure 2 shows the re-236

sults, with accuracy improvements on GSM8K237

and MBPP. At the best-of-16 setting, merging with238

math models improves GSM8K by 5%, and merg-239

ing with the Code Model enhances MBPP by 1.4%.240

4.4 Analysis241

Effect of Weight Factor λ To further investigate242

how the weight factor λ affects our method’s per-243

formance, we test various values of λ ranging from244

0 to 1 in increments of 0.05, observing the per-245

formance changes across these values on Reward-246

Bench. Figure 3 shows that performance degrades247

when λ is large. We suggest setting λ between 0.2248

and 0.5 to achieve better results.249

Reward Differences We delve deeper into how250

model merging affects the output of reward mod-251

els by examining the value of the reward signals252

corresponding to chosen and rejected prompts in253

RewardBench. Figure 3 illustrates the distribu-254

tion before and after merging. In the math subset,255

we notice that the difference in reward scores be-256

tween the chosen and rejected prompts initially257

increases and then decreases as λ varies from 0258

to 1. Conversely, in the code subset, this differ-259

ence consistently decreases. We hypothesize that260

this discrepancy arises because the original reward261

model inherently excels in the code subset.262

Generalizability To test the adaptability of263

DogeRM to different model architectures, we use264

an open-source Mistral-based (Jiang et al., 2023)265

RM (Ray2333, 2024) merging with Misrtral-based266

MAmmoTH2-7B-Plus (Yue et al., 2024b). Details267

of these models are presented in Appendix D. The268

results for λ = 0.35 in reasoning domains on RM269

benchmarks and best-of-N sampling on GSM8K,270

(a) + MAmmoTH on Reward-
Bench math subset.

(b) + Code Model on Reward-
Bench code subset.

(c) + MAmmoTH on Reward-
Bench math subset.

(d) + Code Model on Reward-
Bench code subset.

Figure 3: The impact of different value of λ on Re-
wardBench math and code subsets. (a)(b): Accuracy;
(c)(d): Reward difference between chosen and rejected
prompts.

Model Reward Bench Auto-J Eval Best-of-16

Code Math Code Math GSM8K

Mistral RM 93.5 55.0 88.1 87.5 44.2
+ MAmmoTH2-Plus 92.6 85.0 88.1 90.6 46.6

Table 2: Performance of Mistral-based models on var-
ious benchmarks and best-of-16 results. Our methods
show improvements across RM benchmarks and in best-
of-16 sampling on GSM8K.

with N=16, are presented in Table 2. Our method 271

improves math performance by 30% on Reward- 272

Bench and 3% on Auto-J Eval. Additionally, we en- 273

hance reranking performance on GSM8K by 2.4%. 274

These results demonstrate the adaptability of our 275

methods to different model architectures. The re- 276

sults for different λ are presented in Appendix F. 277

5 Conclusion 278

In this work, we introduce a novel approach, 279

DogeRM, which integrates domain knowledge into 280

RM by merging it with the SFT model. We demon- 281

strate that DogeRM enhances performance on math 282

and coding benchmarks and can be generalized to 283

different architectures. A series of analyses show 284

that DogeRM effectively affects the reward signal 285

corresponding to chosen and rejected prompts. 286
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Limitations287

There are several limitations in our work: (1) We288

only tested our framework in the math and coding289

domains; other domains such as medicine, finance,290

and law have not been explored. (2) Our method291

was tested exclusively on 7B models, and we have292

not evaluated its performance on models of larger293

or smaller sizes. (3) While our framework is com-294

patible with various merging techniques, such as295

TIES-Merge (Yadav et al., 2024), we did not inves-296

tigate the actual effects of these different methods.297

Ethics Statement298

While our method effectively equips reward mod-299

els with domain knowledge, it does not eliminate300

the inherent biases within these models. Further in-301

vestigation is needed to explore the impact of these302

inherited biases in the original reward models.303
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A Training Details 705

We use V100 GPUs for training models. We spent 706

2 hours training the backbone of our LLaMA-2 707

RM, 8 hours training our LLaMA-2 RM, and 12 708

hours training our Code Model. Since V100 did not 709

support bf16, we adopted mixed precision training 710

(fp16) for both SFT and Reward Modeling. 711

A.1 Supervised Fine-Tuning (SFT) 712

We use LlamaFactory (Zheng et al., 2024) for su- 713

pervised fine-tuning (SFT). For fine-tuning the 714

backbone of our LLaMA-2 RM, we use Alpaca- 715

farm (Dubois et al., 2023) with a learning rate of 716

1e-5 and a batch size of 128. For code generation, 717

we follow a training procedure similar to Wei et al. 718

(2024). First, we use OSS-Instruct to fine-tune 719

LLaMA-2-7B (Touvron et al., 2023) for 2 epochs. 720

Then, we continuously fine-tune the model with 721

Magicoder-Evol-Instruct for 1 epoch. The learning 722

rate for both stages is 1e-5, and the effective batch 723

size is 128. 724
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A.2 Reward Modeling725

For reward modeling, we modify the sample code726

provided by TRL (von Werra et al., 2020). We727

trained the backbone model described in the previ-728

ous section on UltraFeedback (Cui et al., 2023) for729

1 epoch, using a learning rate of 1e-5 and a batch730

size of 32.731

B Prompt Template732

For LLaMA-2 based models, we use the same733

prompt template as LLaMA-2-Chat model, as734

shown below:735

<s>[INST] <<SYS>>
{System Prompt}
<</SYS>>

{Instruction} [/INST] {Response}<\s>

736

We use this template for both SFT and re-737

ward modeling. For Mistral-based models, the738

prompt template is modified by removing the sys-739

tem prompt part:740

<s>[INST] {Instruction} [/INST] {Response}<\s>

741

The default system prompt we used in SFT and742

reward modeling aligns with the original system743

prompt for LLaMA-2-Chat model:744

You are a helpful, respectful and honest assistant. Always
answer as helpfully as possible, while being safe. Your
answers should not include any harmful, unethical, racist,
sexist, toxic, dangerous, or illegal content.

Please ensure that your responses are socially unbiased
and positive in nature. If a question does not make any
sense, or is not factually coherent, explain why instead
of answering something not correct. If you don’t know the
answer to a question, please don’t share false information.

745

The system prompt used in prompting LLaMA-746

2-7B-Chat for Best-of-N sampling on GSM8K is:747

You are a math problem solver. Please think step by step and
demonstrate your calculation steps. After your reasoning
steps, you should generate the answer by following the for-
mat starting with 'The answer is'

748

The system prompt used in prompting LLaMA-749

2-7B-Chat for Best-of-N sampling on MBPP is:750

Write Python code to solve the task.

751

C Dataset Details752

Alpacafarm (Dubois et al., 2023) The Al-753

pacafarm dataset consists of 52k instructions as754

well as response generated by text-davinci-003 755

model (OpenAI, 2023) from the original Alpaca 756

dataset (Taori et al., 2023). Alpacafarm splits the 757

datasets into 10k ’sft’ subset for instruction fine- 758

tuning, 10k ’pref’ subset for preference learning, 759

20k ’unlabeled subset for training such as PPO, and 760

2k ’val’ subset for validation. We only utilize the 761

10k ’sft’ subset for fine-tuning the backbone of our 762

reward model. 763

UltraFeedback (Cui et al., 2023) This dataset 764

consists of 64k prompts from sources including 765

UltraChat (Ding et al., 2023), ShareGPT (Chiang 766

et al., 2023), Evol-Instruct (Xu et al., 2024), Truth- 767

fulQA (Lin et al., 2022), FalseQA (Hu et al., 2023), 768

and FLAN (Longpre et al., 2023). The responses 769

are generated by a pool of different LLMs. The 770

preferences are generated by GPT-4 (Achiam et al., 771

2023). In our experiment, we use a cleaned version 772

of UltraFeedback1 (Bartolome et al., 2023), which 773

removes TruthfulQA contamination and uses the 774

average of the preference ratings. 775

OSS-Instruct & Magicoder Evol-Instruct (Wei 776

et al., 2024) OSS-Instruct consists of 75k 777

synthesized data collected by prompting Chat- 778

GPT (Achiam et al., 2023) to generate a coding 779

problem and solution based on a seed code snip- 780

pet from an open-sourced platform. The Magi- 781

coder Evol-Instruct dataset, based on the work 782

in (Luo et al., 2023), uses an open-source imple- 783

mentation (theblackcat102, 2023) that has been fur- 784

ther decontaminated, resulting in 110k data points 785

for fine-tuning. Both OSS-Instruct and Magicoder 786

Evol-Instruct are used to fine-tune the Code Model 787

for merging. 788

RewardBench (Lambert et al., 2024) Reward- 789

Bench is a benchmark designed to evaluate re- 790

ward models (RMs). The datasets are categorized 791

into core sets and prior sets. The prior sets con- 792

sist of testing sets from open-sourced preference 793

dataset such as OpenAI Summarization (Stiennon 794

et al., 2020b), Anthropic Helpful split (Bai et al., 795

2022), Anthropic HHH subset (Askell et al., 2021), 796

and Stanford Human Preference (SHP) (Ethayarajh 797

et al., 2022). 798

We utilize the core sets for evaluation, which 799

include four categories: chat, chat-hard, rea- 800

soning, and safety. The chat category collects 801

data from AlpacaEval (Li et al., 2023) and MT 802

1https://huggingface.co/datasets/argilla/
ultrafeedback-binarized-preferences-cleaned
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Bench (Zheng et al., 2023) to assess RMs’ basic803

ability to discern correct responses in open-ended804

dialogue. Chat-Hard incorporates data from MT805

Bench (Zheng et al., 2023) with similar ratings and806

LLMBar (Zeng et al., 2024) data designed to chal-807

lenge LLM-based judges. The reasoning category808

includes math data selected from PRM800K (Light-809

man et al., 2024), where the prompt is the reference810

answer and the rejected prompt is a wrong solution811

generated by GPT-4 (Achiam et al., 2023). The812

coding data utilizes HumanEvalPack (Muennighoff813

et al., 2024), augmenting HumanEval (Chen et al.,814

2021) across six programming languages, with the815

prompt being the reference solution and the re-816

jected prompt being buggy solutions. Safety cate-817

gory comprises data from XSTest (Röttger et al.,818

2024), Do-Not-Answer (Wang et al., 2024b), and819

an in-development refusals dataset at AI2, aiming820

to accurately test models’ ability to refuse danger-821

ous content and avoid incorrect refusals triggered822

by similar words.823

Auto-J Eval (Li et al., 2024) Auto-J Eval’s pair-824

wise testing set includes examples from various825

sources: OpenAI Summarization (Stiennon et al.,826

2020a), WebGPT (Nakano et al., 2022), Stanford827

SHP (Ethayarajh et al., 2022), Synthetic GPT-828

J (Havrilla, 2023), and PKU-SafeAlignment (Ji829

et al., 2023). GPT-4 (Achiam et al., 2023) serves830

as the annotator. The dataset consists of categories831

including Summarization, Exam Questions, Code,832

Creative Writing, Functional Writing, Rewriting,833

General Communication, and NLP Tasks. We ex-834

clude the tied examples and re-group the data into835

Code, Math (extract from Exam Questions cate-836

gory), and Others, following Yuan et al. 2024.837

GSM8K (Cobbe et al., 2021) This dataset con-838

sists of 8.5K grade school-level math problems.839

We use the prompt from the testing set to perform840

Best-of-N sampling in a zero-shot manner.841

MBPP (Austin et al., 2021) This dataset con-842

sists of 1,000 crowd-sourced Python programming843

problems, which are entry-level problems covering844

standard libraries, programming, and so on. We845

use the testing set to perform Best-of-N sampling846

in a zero-shot manner.847

D Open-Source Model Details848

MetaMath (Yu et al., 2024) We use the849

LLaMA-2-7B based model fine-tuned by the au-850

thors for merging. The MetaMath-7B mod-851

els are trained on the MetaMathQA dataset, 852

which the authors curated by bootstrapping prob- 853

lems from GSM8K (Cobbe et al., 2021) and 854

MATH (Hendrycks et al., 2021). 855

MAmmoTH (Yue et al., 2024a) We merge our 856

RM with the MAmmoTH-7B model, a LLaMA- 857

2-7B based model fine-tuned on the MathInstruct 858

dataset. This dataset combines a diverse range of 859

math problems and hybrid rationales curated by the 860

author. 861

Mistral-RM (Ray2333, 2024) We utilize a 862

Mistral-based reward model trained on a variety of 863

preference datasets to test our framework’s adapt- 864

ability. This reward model is initialized from 865

Mistral-7B-Instruct-v0.2. Detailed informa- 866

tion about the training setup can be found in the 867

author’s blog2. 868

MAmmoTH2-Plus (Yue et al., 2024b) To test 869

the adaptability of our framework across different 870

model architectures, we use the MAmmoTH2-7B- 871

Plus and merge it with the Mistral RM. This model 872

is fine-tuned from the MAmmoTH2-7B, which 873

is fine-tuned from Mistral-7B-Instruct-v0.2, 874

on public instruction tuning datasets to further en- 875

hance performance. 876

E Case Study 877

We conducted a case study on the predictions of 878

the reward model. We examined the changes in 879

chosen/rejected prompt rewards on the coding sub- 880

set of RewardBench before and after merging the 881

reward models. We identified that the problems ini- 882

tially predicted incorrectly but corrected after merg- 883

ing can be categorized into math, string operations, 884

and bit operations. Of the four problems correctly 885

predicted before merging but incorrectly predicted 886

after merging, two were related to list/sorting op- 887

erations, while the others involved mathematical 888

operations such as modular arithmetic and deriva- 889

tives. 890

E.1 Passed Case after Merging (Math) 891

Instruction 892

Write a Python function ‘max_fill(grid, 893

capacity): 894

import math‘ to solve the following 895

problem: 896

You are given a rectangular grid of wells. 897

2https://www.notion.so/
Reward-Modeling-for-RLHF-abe03f9afdac42b9a5bee746844518d0
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Each row represents a single well,898

and each 1 in a row represents a single899

unit of water.900

Each well has a corresponding bucket that901

can be used to extract water from it,902

and all buckets have the same capacity.903

Your task is to use the buckets to empty904

the wells.905

Output the number of times you need to906

lower the buckets.907

Example 1:908

Input:909

grid : [[0,0,1,0], [0,1,0,0], [1,1,1,1]]910

bucket_capacity: 1911

Output: 6912

Example 2:913

Input:914

grid : [[0,0,1,1], [0,0,0,0], [1,1,1,1],915

[0,1,1,1]]916

bucket_capacity : 2917

Output: 5918

Example 3:919

Input:920

grid: [[0,0,0], [0,0,0]]921

bucket_capacity : 5922

Output: 0923

Constraints:924

all wells have the same length925

1 <= grid.length <= 10ˆ2926

1 <= grid[:,1].length <= 10ˆ2927

grid[i][j] -> 0 | 1928

1 <= capacity <= 10929

Chosen Response930

return sum([math.ceil(sum(arr)/capacity)931

for arr in grid])932

Rejected Response933

return sum([math.floor(sum(arr)/capacity)934

for arr in grid])935

E.2 Passed Case after Merging (String)936

Instruction937

Write a Python function938

‘concatenate(strings: List[str]) ->939

str‘ to solve the following problem:940

Concatenate list of strings into a single941

string942

>>> concatenate([])943

’’944

>>> concatenate([’a’, ’b’, ’c’])945

’abc’946

Chosen Response 947

return ’’.join(strings) 948

Rejected Response 949

return ’ ’.join(strings) 950

E.3 Passed Case after Merging (Bit 951

Operation) 952

Instruction 953

Write a Python function ‘string_xor(a: 954

str, b: str) -> str‘ to solve the 955

following problem: 956

Input are two strings a and b consisting 957

only of 1s and 0s. 958

Perform binary XOR on these inputs and 959

return result also as a string. 960

>>> string_xor(’010’, ’110’) 961

’100’ 962

Chosen Response 963

def xor(i, j): 964

if i == j: 965

return '0' 966

else: 967

return '1' 968

969

return ''.join(xor(x, y) for x, y in 970

zip(a, b)) 971

Rejected Response 972

def xor(i, j): 973

if i == j: 974

return '1' 975

else: 976

return '0' 977

978

return ''.join(xor(x, y) for x, y in 979

zip(a, b)) 980

E.4 Failed Case after Merging (List/Sorting) 981

Instruction 982

Write a Python function 983

‘sort_array(array)‘ to solve the 984

following problem: 985

Given an array of non-negative integers, 986

return a copy of the given array after 987

sorting, 988

you will sort the given array in ascending 989

order if the sum( first index value, last 990

index value) is odd, 991

or sort it in descending order if the 992

sum( first index value, last index value) 993

is even. 994
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Note:995

don’t change the given array.996

Examples:997

sort_array([]) => []998

sort_array([5]) => [5]999

sort_array([2, 4, 3, 0, 1, 5]) => [0, 1,1000

2, 3, 4, 5]1001

sort_array([2, 4, 3, 0, 1, 5, 6]) => [6,1002

5, 4, 3, 2, 1, 0]1003

Chosen Response1004

return [] if len(array) ==1005

0 else sorted(array, reverse=1006

(array[0]+array[-1]) % 2 == 0)1007

Rejected Response1008

return [] if len(array) ==1009

0 else sorted(array, reverse=1010

(array[0]+array[-1]) % 2 != 0)1011

E.5 Failed Case after Merging (Math)1012

Instruction1013

Write a Python function ‘derivative(xs:1014

list)‘ to solve the following problem:1015

xs represent coefficients of a1016

polynomial.1017

xs[0] + xs[1] * x + xs[2] * xˆ2 + ....1018

Return derivative of this polynomial in1019

the same form.1020

>>> derivative([3, 1, 2, 4, 5])1021

[1, 4, 12, 20]1022

>>> derivative([1, 2, 3])1023

[2, 6]1024

Chosen Response1025

return [(i * x) for i, x in1026

enumerate(xs)][1:]1027

Rejected Response1028

return [(i * x) for i, x in enumerate(xs)]1029

F Full Results1030

Full results with different values of λ on Best-of-N1031

sampling and RM benchmarks are presented here.1032

F.1 Best-of-N1033

Figure 4 and 5 demonstrate the results of Best-of-N1034

sampling on GSM8K when merging our LLaMA-1035

2 RM with MetaMath-7B (Yu et al., 2024) and1036

MAmmoTH-7B (Yue et al., 2024a), respectively.1037

DogeRM shows consistent improvement across dif-1038

ferent models being merged.1039

Figure 6 shows the result of Best-of-N sampling1040

on MBPP when merging our LLaMA-2 RM with1041

the Code Model. DogeRM improves the rerank- 1042

ing accuracy, indicating that our method can be 1043

generalized to different tasks. 1044

Finally, Figure 7 shows the results when 1045

merging the Mistral RM (Ray2333, 2024) 1046

with MAmmoTH2-7B-Plus (Yue et al., 2024b). 1047

DogeRM improves the reranking accuracy at an 1048

N=16 setting by 2.88%, indicating that our method 1049

can be generalized to different model architectures. 1050

F.2 RewardBench 1051

Figure 8 and 9 shows the results on different cat- 1052

egories. We further split the reasoning category 1053

into math and coding. Merging LLaMA-2 RM 1054

with math models shows consistent improvement 1055

in both Math and Coding. The performance drop 1056

in chat-hard and safety categories can be observed. 1057

Figure 10 shows the result of merging LLaMA-2 1058

RM with the Code Model. We observe improve- 1059

ments in both the Math and Coding, with a per- 1060

formance drop in both the chat-hard and safety 1061

categories. 1062

Finally, Figure 11 shows the result of merging 1063

Mistral RM with MAmmoTH2-7B-Plus. We im- 1064

prove accuracy on the math subset by 30%, while 1065

the improvement on the coding subset is minor, 1066

likely because the original RM already achieved 1067

high accuracy on this subset. An improvement in 1068

the chat-hard category can also be observed, con- 1069

trary to previous cases, but a performance degrada- 1070

tion in the safety category is found. 1071

We believe that the performance degradation in 1072

safety aligns with observations from Yuan et al. 1073

2024, which indicate that removing safety data 1074

from the RM training set improves reasoning per- 1075

formance, suggesting that modeling safety may 1076

hurt reasoning. As for the chat-hard category, we 1077

did not observe consistent performance degradation 1078

across all combinations. A deeper investigation 1079

into this is left for future work. Despite these is- 1080

sues, our method can effectively equip the LLaMA- 1081

2 RM with domain-specific knowledge, a finding 1082

that holds across different domains as well as dif- 1083

ferent model architectures. 1084

F.3 Auto-J Eval 1085

The results of merging LLaMA-2 RM with math 1086

models are presented in Figure 12 and 13, showing 1087

improvements in both the Code and Math subsets. 1088

A similar observation can be found in Figure 14, 1089

which shows the result of merging LLaMA-2 RM 1090

with the Code Model, and Figure 15, which shows 1091

12



the result of merging Mistral RM with MAmmoTH-1092

2-7B-Plus. These results support the conclusion1093

that DogeRM can equip RMs with domain-specific1094

knowledge.1095
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(a) Best-of-2 (b) Best-of-4 (c) Best-of-8 (d) Best-of-16

Figure 4: Full results of LLaMA-2 RM + MetaMath on GSM8K.

(a) Best-of-2 (b) Best-of-4 (c) Best-of-8 (d) Best-of-16

Figure 5: Full results of LLaMA-2 RM + MAmmoTH on GSM8K.

(a) Best-of-2 (b) Best-of-4 (c) Best-of-8 (d) Best-of-16

Figure 6: Full results of LLaMA-2 RM + Code Model on MBPP.

(a) Best-of-2 (b) Best-of-4 (c) Best-of-8 (d) Best-of-16

Figure 7: Full results of Mistral RM + MAmmoTH2-Plus on GSM8K.
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(a) Chat (b) Chat-Hard (c) Safety

(d) Code (e) Math

Figure 8: Full results of LLaMA-2 RM + MetaMath on Reward Bench.

(a) Chat (b) Chat-Hard (c) Safety

(d) Code (e) Math

Figure 9: Full results of LLaMA-2 RM + MAmmoTH on Reward Bench.
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(a) Chat (b) Chat-Hard (c) Safety

(d) Code (e) Math

Figure 10: Full results of LLaMA-2 RM + Code Model on Reward Bench.

(a) Chat (b) Chat-Hard (c) Safety

(d) Code (e) Math

Figure 11: Full results of Mistral RM + MAmmoTH2-Plus on Reward Bench.
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(a) Code (b) Math (c) Others

Figure 12: Full results of LLaMA-2 RM + MetaMath on Auto-J Eval.

(a) Code (b) Math (c) Others

Figure 13: Full results of LLaMA-2 RM + MAmmoTH on Auto-J Eval.

(a) Code (b) Math (c) Others

Figure 14: Full results of LLaMA-2 RM + Code Model on Auto-J Eval.

(a) Code (b) Math (c) Others

Figure 15: Full results of Mistral RM + MAmmoTH2-Plus on Auto-J Eval.
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