
Under review as a conference paper at ICLR 2021

COORDINATED MULTI-AGENT EXPLORATION USING

SHARED GOALS

Anonymous authors
Paper under double-blind review

ABSTRACT

Exploration is critical for good results of deep reinforcement learning algorithms
and has attracted much attention. However, existing multi-agent deep reinforce-
ment learning algorithms still use mostly noise-based techniques. It was recog-
nized recently that noise-based exploration is suboptimal in multi-agent settings,
and exploration methods that consider agents’ cooperation have been developed.
However, existing methods suffer from a common challenge: agents struggle to
identify states that are worth exploring, and don’t coordinate their exploration ef-
forts toward those states. To address this shortcoming, in this paper, we proposed
coordinated multi-agent exploration (CMAE): agents share a common goal while
exploring. The goal is selected by a normalized entropy-based technique from
multiple projected state spaces. Then, agents are trained to reach the goal in a
coordinated manner. We demonstrated that our approach needs only 1% − 5%
of the environment steps to achieve similar or better returns than state-of-the-art
baselines on various sparse-reward tasks, including a sparse-reward version of the
Starcraft multi-agent challenge (SMAC).

1 INTRODUCTION

Cooperative multi-agent reinforcement learning (MARL) is an increasingly important field. Indeed,
many real-world problems are naturally modeled using MARL techniques. For instance, tasks from
areas as diverse as robot fleet coordination (Swamy et al., 2020; Hüttenrauch et al., 2019) and au-
tonomous traffic control (Bazzan, 2008; Sunehag et al., 2018) fit MARL formulations.

To address MARL problems, early work followed the independent single-agent reinforcement learn-
ing paradigm (Tampuu et al., 2015; Tan, 1993; Matignon et al., 2012). However, more recently,
specifically tailored techniques such as monotonic value function factorization (QMIX) (Rashid
et al., 2018), multi-agent deep deterministic policy gradient (MADDPG) (Lowe et al., 2017), and
counterfactual multi-agent policy gradients (COMA) (Foerster et al., 2018) have been developed.
Those methods excel in a multi-agent setting because they address the non-stationary issue of
MARL and develop communication protocols between agents. Despite those advances and the
resulting reported performance improvements, a common issue remained: all of the aforementioned
methods use exploration techniques from classical algorithms. Specifically, these methods employ
noise-based exploration, i.e., the exploration policy is a noisy version of the actor policy. For in-
stance, Lowe et al. (2017) add Ornstein-Uhlenbeck (OU) (Uhlenbeck & Ornstein, 1930) noise or
Gaussian noise to the actor policy. Foerster et al. (2016); Rashid et al. (2018); Yang et al. (2018);
Foerster et al. (2017) use variants of ǫ-greedy exploration, where a random suboptimal action is
selected with probability ǫ.

It was recognized recently that use of classical exploration techniques is sub-optimal in a multi-agent
reinforcement learning setting. Specifically, Mahajan et al. (2019) show that QMIX with ǫ-greedy
exploration results in slow exploration and sub-optimality. Mahajan et al. (2019) improve explo-
ration by conditioning an agent’s behavior on a shared latent variable controlled by a hierarchical
policy. Even more recently, Wang et al. (2020) encourage coordinated exploration by considering
the influence of one agent’s behavior on other agents’ behaviors.

While all of the aforementioned exploration techniques for multi-agent reinforcement learning sig-
nificantly improve results, they suffer from a common challenge: agents struggle to identify states
that are worth exploring, and don’t coordinate their exploration efforts toward those states. To give

1

Under review as a conference paper at ICLR 2021

an example, consider a push-box task, where two agents need to jointly push a heavy box to a
specific location before observing a reward. In this situation, instead of exploring the environment
independently, agents need to coordinate pushing the box within the environment to find the specific
location.

To address this issue, we propose coordinated multi-agent exploration (CMAE), where multiple
agents share a common goal. We achieve this by first projecting the joint state space to multiple
subspaces. We develop a normalized entropy (Cover & Thomas., 1991)-based technique to select a
goal from the under-explored subspaces. Then, exploration policies are trained to reach the goals in
a coordinated manner.

To show that CMAE improves results, we evaluate our approach on various environments with
sparse-rewards from Wang et al. (2020), and the sparse-reward version of the Starcraft multi-agent
challenge (SMAC) (Samvelyan et al., 2019), which requires coordinated actions among agents over
extended time steps before observing a reward. The experimental results show that our approach
needs only 1% − 5% of environment steps to achieve similar or better average test episode returns
than current state-of-the-art baselines.

2 PRELIMINARIES

In this section, we define the multi-agent Markov decision process (MDP) in Sec. 2.1, and introduce
the multi-agent reinforcement learning setting in Sec. 2.2.

2.1 MULTI-AGENT MARKOV DECISION PROCESS

We model a cooperative multi-agent system as a multi-agent Markov decision process (MDP). An
n-agent MDP is defined by a tuple G = (S,A, T ,R,Z,O, n, γ,H). S is the global state space of
the environment. A is the action space. At each time step t, each agent’s policy πi, i ∈ {1, . . . , n},
selects an action ati ∈ A. All selected actions form a joint action a

t ∈ An. The transition function
T maps the current state st and the joint action a

t to the next state st+1, i.e., T : S ×An → S . All
agents receive a collective reward rt ∈ R according to the reward function R : S × An → R. The

goal of all agents’ policies is to maximize the collective expected return
∑H

t=0
γtrt, where γ ∈ [0, 1]

is the discount factor, H is the horizon, and rt is the collective reward obtained at timestep t. Each
agent i observes local observation oti ∈ Z according to the observation function O : S → Z . Note,
observations usually reveal partial information about the global state. For instance, suppose the
global state contains the location of agents, while the local observation of an agent may only contain
the location of other agents within a limited distance. All agents’ local observations form a joint
observation, denoted by o

t.

A global state space S is the product of component spaces Vi, i.e., S =
∏M

i=1
Vi, where Vi ⊆

R (Samvelyan et al., 2019; Lowe et al., 2017; Rashid et al., 2018; Foerster et al., 2018; Mahajan et al.,
2019). We refer to Vi as a ‘state component.’ The set of all component spaces of a product space
is referred to as the component set. For instance, the component set of S is {Vi|i ∈ {1, . . . ,M}}.
Each entity, e.g., agents, objects, etc., in the environment are described by a set of state compo-
nents. We refer to a set of state components that is associated with an entity in the environment
as an ‘entity set.’ For instance, in a 2-agent push-box environment, where two agents can only

collaboratively push a box to a goal location, we have the global state space S =
∏6

i=1
Vi, where

{V1, V2}, {V3, V4}, {V5, V6} represent the location of agent one, agent two, and the box, separately.
Consequently, {V1, V2}, {V3, V4}, {V5, V6} are three entity sets.

2.2 MULTI-AGENT REINFORCEMENT LEARNING

In this paper, we follow the standard centralized training and decentralized execution (CTDE)
paradigm (Lowe et al., 2017; Rashid et al., 2018; Foerster et al., 2018; Mahajan et al., 2019). That
is, at training time, the learning algorithm has access to all agents’ local observations, actions, and
the global state. At execution time, i.e., at test time, each individual agent’s policy only has access
to its own local observation.

The proposed CMAE is applicable to off-policy MARL methods (e.g., Rashid et al., 2018; Lowe
et al., 2017; Sunehag et al., 2018; Matignon et al., 2012). In off-policy MARL, exploration poli-

2

Under review as a conference paper at ICLR 2021

Algorithm 1: Training with Coordinated Multi-Agent Exploration (CMAE)

Initialize exploration policies {µi}
n
i=1, target policies {πi}

n
i=1, counters {ck}

K
k=1

;
Initialize the environment and replay buffer D;
Initialize α = 1;
for episode = 1 . . .M do

Reset the environment, and observe global states st and observations ot = (ot1 . . . o
t
n);

for t = 1 . . . T do

UpdateCounter({ck}
K
k=1

, st, ot) ;

Select actions at using a mixture of exploration and target policies αµi + (1− α)πi,
α decreases linearly to 0;

Apply a
t to the environment;

Observe rewards rt, state st+1, and local observations ot+1;

Add transition tuple {st,ot,a, st+1,ot+1, rt} to D;
TrainTarget({πi}

n
i=1, D);

end

TrainExp({µi}
n
i=1, {ck}

K
k=1

, D);

end

cies µi, i ∈ {1, . . . , n} are responsible for collecting data from the environment. The data in
the form of transition tuple (st,ot,at, st+1,ot+1) is stored in a replay memory D, i.e., D =
{(st,ot,at, st+1,ot+1)}t. The target policies are trained using transition tuples from the replay
memory.

3 COORDINATED MULTI-AGENT EXPLORATION (CMAE)

In the following we first present an overview of CMAE before we discuss the method more formally.

Overview: The goal is to train the target policies {πi}i∈{1,...,n} of n agents to maximize the en-
vironment episode return. Classical off-policy algorithms (Lowe et al., 2017; Rashid et al., 2018)
typically use a noisy version of the target policies πi as the exploration policies µi, i.e., to collect
data actions are selected based on exploration policies µi. In contrast, in CMAE, we propose to train
the exploration policies by training with a modified reward. Specifically, target polices are trained
to maximize the usual external episode return. In contrast, exploration policies are trained to collect
data from subspaces that haven’t been well explored. We find this strategy to significantly improve
training of target policies in the multi-agent reinforcement learning setting because this strategy can
encourage multiple agents to jointly explore configurations of the state space.

Alg. 1 summarizes this approach. At each step, a mixture of the exploration policies {µi}
n
i=1 and

target policies {πi}
n
i=1 are used to select actions. The resulting experience tuple is then stored in a

replay memory D. The target policies are trained directly using the data within the replay memory
D at each step. Note that the exploration policies will only be updated at the end of each episode
using a reshaped reward that encourages exploration polices to explore under-explored subspaces in
a collaborative manner.

In the following we will provide details about how we propose to train the exploration policies.

3.1 TRAINING OF EXPLORATION POLICIES

To train the exploration policies µi, i ∈ {1, . . . , n} we use a modified reward r̂. This modified
reward specifies the goal of the exploration. For example, in the two-agent push-box task, we specify
a specific joint location of both agents and the box as a goal. Note, the agents will ignore all external
rewards and only see positive reward when the goal, i.e., the specified position is reached. The
reward for the goal is set to b while the rewards for all other situations are zero.

To find the goal situation we use K counters ck, k ∈ {1, . . . ,K}. A counter ck operates on a
low-dimensional subspace Sk of the state space S , i.e., Sk ⊆ S . Occurrence of every configuration
sk ∈ Sk within the low-dimensional subspace will be recorded using the current replay buffer D.

3

Under review as a conference paper at ICLR 2021

Algorithm 2: Train Exploration Policies (TrainExp)

Input: exploration policies {µi}
n
i=1, counters {ck}

K
k=1

, replay buffer D;
Initialize bonus b;
Compute normalized entropy η(k) of subspace k based on associated counter ck;
k∗ = argmink η(k);

Sample a batch B = {si}
M
i=1 from D;

g = argmins∈B ck∗(projk∗(s));
for {st,ot,a, st+1,ot+1, rt} ∈ D do

if st == g then

rt = b;
else

rt = 0;
end

Update {µi}
n
i=1 by {st,ot,a, st+1,ot+1, rt}

end

Let projk be the projection from global state space to the subspace k. Formally, we obtain

ck(sk) =
∑

s∈D

✶[projk(s) = sk],

where ✶[·] is the indicator function (1 if argument is true; 0 otherwise) and projk(s) denotes the
restriction of state s ∈ S to subspace Sk. Note that we are successively incrementing the counts,
i.e., the counters ck are not recomputed from scratch every time we train the exploration policies.

We subsequently normalize the counters ck(sk) into a probability distribution pk(sk) =
ck(sk)/

∑

ŝk∈Sk
ck(ŝk) which is then used to compute a normalized entropy ηk = H/Hmax =

−(
∑

s∈Sk
pk(s) log pk(s))/ log(|Sk|). We select the subspace k∗ with the smallest normalized en-

tropy. From this subspace we choose the joint goal state g by first sampling a batch of states B from
the replay buffer. From those states we select in a second step the state with the smallest count as the
goal state g, i.e., g = argmins∈B ck∗(s). Sampling of states is performed in order to avoid selecting
unreachable states as a goal, i.e., we encourage to explore states that we have seen rarely but at least
once.

Given the goal state g, we train the exploration policies µi using the replay buffer D modified by a
revised reward r̂ = b if sk∗ = g. Note, r̂ = 0 otherwise. Consequently, the exploration policies µi

focus exclusively on achieving the desired goal g. This strategy is summarized in Alg. 2.

As an alternative to the aforementioned subspace selection method, one could use probabilistic
subspace selection, where the probability of a subspace being chosen is inversely proportional to its
normalized entropy. The two different subspace selection approaches result in different exploration
behaviors. Specifically, the probabilistic subspace selection will encourage exploration policies to
explore more subspaces while the smallest normalized entropy method focuses on the most under-
explored subspace.

3.2 SELECTING SUBSPACES

Which K subspaces do we choose? As discussed in Sec. 2.1, we assume the global state space
S to be composed out of a set of M component spaces Vi. The number of possible subspaces is
equivalent to the size of the powerset, i.e., 2M . This is clearly intractable.

To address this, we select a subset of subspaces in levels. In each level l, we consider l entities jointly.
Recall, that entities are agents, objects, etc., that are represented within the state space S . Suppose
the global state space has N entity sets A1, . . . , AN . In level l ≤ N , a subspace’s component set is
the union of l distinct entity sets. Formally, let DE be a component set of a subspace in level l, we
have

DE =
⋃

i∈E

Ai, ∀E ∈

(

{1, . . . , N}

l

)

,

4

Under review as a conference paper at ICLR 2021

where
(

{1,...,N}
l

)

represents the set of all l-combinations of {1, . . . , N}.

Note that there are many equivalent component sets in a level, if agents are homogeneous, i.e., if
agents have identical action and observation space and are controlled by the same policy.

To see this, consider the two-agent push-box task again. The state space S is composed of the com-
ponent set {V1, V2, V3, V4, V5, V6}, with three entity sets {V1, V2}, {V3, V4}, {V5, V6} representing
the location of agent one, agent two, and the box. Suppose the two agents are homogeneous. The
component sets {V1, V2, V5, V6} and {V3, V4, V5, V6} are equivalent, because both of them consider
the locations of one agent and the box jointly. Since the agents are homogeneous, it is irrelevant
which agent is considered. Assigning different counters to equivalent subspaces will encourage an
exploration policy to visit states that are visited by fellow homogeneous agents. This results in less
efficient exploration. Therefore, equivalent subspaces share one common counter. The subspace Sk

a counter ck is associated with is defined by Sk =
∏

Vi∈DEk

Vi, where Ek is a component set of

subspace k.

In addition, we also consider level 0, where the component set of each subspace has only one ele-
ment. Empirically, we found that level 0 subspace leads to very efficient exploration in some tasks.

Note that this strategy of selecting subspaces is relatively simple still and does not scale well. We
defer development of more complex selection strategies to future work. Here we are primarily
interested in studying the efficacy of training an exploration strategy with such rewards, which we
study in the next section.

4 EXPERIMENTAL RESULTS

We evaluate the proposed CMAE approach on two challenging environments: 1) the sparse-reward
cooperative task from Wang et al. (2020); 2) the sparse-reward version of the Starcraft multi-agent
challenge (SMAC) (Samvelyan et al., 2019). In both environments, agents need to coordinate their
behavior over extended periods of time to obtain a reward.

Environments: We first consider the following four tasks on the sparse-reward environments pro-
vided by Wang et al. (2020):

• Pass: Two agents operate within two rooms of a 30× 30 grid. There is one switch in each
room, the rooms are separated by a door and agents start in the same room. The door will
open only when one of the switches is occupied. The agents see collective positive reward
and the episode terminates only when both agents changed to the other room. The task is
considered solved if both agents are in the right room.

• Secret-room: Secret-room extends Pass. There are two agents and four rooms. One large
room on the left and three small rooms on the right. There is one door between each small
room and the large room. The switch in the large room controls all three doors. The switch
in each small room only controls the rooms door. The agents need to navigate to one of the
three small rooms, i.e. target room, to receive positive reward. The grid size is 25 × 25.
The task is considered solved if both agents are in the target room.

• Push-box: There are two agents and one box in a 15×15 grid. Agents need to push the box
to the wall to receive positive reward. The box is heavy, so both agents need to push the
box in the same direction at the same time to move the box. The task is considered solved
if the box is pushed to the wall.

• Island: Two agents, nine treasures, and a wolf operate in a 10× 10 grid. Agents get a col-
lective reward of 10 for collecting a treasure and a collective reward of 300 when crushing
the wolf. The wolf and agents have maximum energy of eight and five respectively. The
energy will decrease by one when being attacked. Therefore, one agent cannot crush the
wolf. The agents need to collaborate to complete the task. The task is considered solved if
the wolf is killed.

We also consider four tasks in SMAC (Samvelyan et al., 2019):

• 3m-dense: There are three marines in each team. Agents need to collaboratively eliminate
the three marines on the other team. An agent sees a reward of +1 when it causes damage

5

Under review as a conference paper at ICLR 2021

0 1 2 3
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Pass
Ours
IDQ+RND
IDQ+ -greedy
EDIT
EITI

0.0 0.5 1.0 1.5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Secret Room
Ours
IDQ+RND
IDQ+ -greedy
EDIT
EITI

0.0 0.5 1.0 1.5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Push Box
Ours
IDQ+RND
IDQ+ -greedy
EDIT
EITI

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

Island
Ours
IDQ+RND
IDQ+ -greedy
EDIT
EITI

Figure 1: Results on Pass, Secret room, Push-box, and Island environment.

Method (target success rate) Ours EITI EDTI IDQ IDQ + RND

Pass (80%) 2.61M±0.10M 384M±1.2M 381M±2.8M > 500M > 500M
Secret-Room (80%) 0.71M±0.05M 448M±10.0M 382M±9.4M > 500M > 500M
Push-Box (10%) 0.52M±0.04M 307M±2.3M 160M±12.1M > 500M > 500M
Push-Box (80%) 0.68M±0.02M 307M±3.9M 160M±8.2M > 500M > 500M
Island (20%) 7.50M±0.12M 480M±5.2M 322M±1.4M > 500M > 500M
Island (50%) 13.9M±0.21M > 500M > 500M > 500M > 500M

Table 1: Environment steps required to achieve the indicated target success rate on Pass, Secret
Room, Push-Box, and Island environments.

to an enemy’s health. A reward of −1 is received when its health decreases. All the rewards
are collective. A reward of +200 is obtained when all enemies are eliminated.

• 8m-dense: Similar to 3m-dense, but with eight marines on each team.
• 3m-sparse: Similar to 3m-dense, but the reward is sparse. Agents only see reward +1 when

all enemies are crushed.
• 8m-sparse: Similar to 3m-sparse, but with eight marines on each team.

Experimental Setup:

For the grid world task, we combine CMAE with Q-learning. For Pass, Secret-room, and Push-
box, the Q value function is represented via a table. For Island we use a DQN (Mnih et al., 2013;
2015). The Q-function is parameterized by a three-layer perceptron (MLP) with 64 hidden units per
layer and ReLU activation function. We compare CMAE with exploration via information-theoretic
influence (EITI) and exploration via decision-theoretic influence (EDTI) (Wang et al., 2020), which
are state-of-the-art algorithms on the four tasks. EITI and EDTI (Wang et al., 2020) results are
obtained using the official code. For a more complete comparison, we also show the results of
independent Q-learning (IDQ) with ǫ-greedy and independent Q-learning with popular single agent
exploration techniques, such as random network distillation (Burda et al., 2019).

For the SMAC tasks, we combine CMAE with the official code for QMIX (Rashid et al., 2018). We
compare with MAVEN (Mahajan et al., 2019), QMIX (Rashid et al., 2018), QTRAN (Son et al.,
2019), and VDN (Sunehag et al., 2018). All of the aforementioned methods reported impressive
performance on the dense-reward version of SMAC. To our best knowledge, CMAE is the first to
report results on the sparse-reward version of any SMAC tasks.

For all the experiments, we consider level 0 to level 3 subspaces. Please see the Appendix for more
details.

Evaluation Protocol: To assess efficacy of CMAE we use the following evaluation procedure: we
test the target policies in an independent test environment every 400k environment steps during the
training. Each test consists of ten testing episodes. We repeat all experiments using three runs with
different seeds.

Results: We first compare CMAE with EITI and EDTI on Pass, Secret Room, Push-Box, and Island.
The results are summarized in Fig. 1, where test task success rate versus number of environment
steps is shown. We observe CMAE to achieve a 100% success rate on Pass, Secret Room, and
Push-Box within 2M environment steps. In contrast, EITI and EDTI (Wang et al., 2020) need more
than 300M steps to achieve an 80% success rate (Tab. 1). In Island, CMAE achieves a success rate

6

Under review as a conference paper at ICLR 2021

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

3m Sparse
Ours
QMIX
VDN
QTRAN
MAVEN

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

8m Sparse

Ours
QMIX
VDN
QTRAN
MAVEN

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

3m Dense

Ours
QMIX
VDN
QTRAN
MAVEN

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

8m Dense

Ours
QMIX
VDN
QTRAN
MAVEN

Figure 2: Results on SMAC: 3m-sparse, 8m-sparse, 3m-dense, 8m-dense environment.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Environment Steps 1e6

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 E
nt

ro
py

Push Box Subspace Efficiency

a1_x
a1_y
box_x
box_y
a1_xy

box_xy
a1_xy + a2_xy
a1_xy + box_xy
a1_xy + a2_xy + box_xy

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment Steps 1e6

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 E
nt

ro
py

Pass Subspace Efficiency

a1_x
a1_y
door_open
a1_xy

a1 + a2_xy
a1_xy + door_open
a1_xy + a2_xy + door_open

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment Steps 1e7

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 E
nt

ro
py

Island Subspace Efficiency
a1_x
a1_y
a1_health
wolf_x
wolf_y
wolf_health
a1_xy_health
wolf_xy_health
a1_xy_health
+ a2_xy_health
a1_xy_health
+ wolf_xy_health
a1_xy_health
+ a2_xy_health
+ wolf_xy_health

Figure 3: Normalized entropy of different levels l on Push-box, Pass, and Island environments.

(capture rate) above 50% within 20M environment steps (Fig. 1). In contrast, EITI and EDTI need
more than 480M and 322M steps to achieve a 20% success rate (Tab. 1). The main reasons that EITI
and EDTI need much more environment steps: they require a large number of samples to estimate
the influence of one agent’s behavior on other agents’ between each update. Specifically, EITI and
EDTI need 64,000 environment steps between each update, which makes them less sample efficient.
IDQ with ǫ-greedy and IDQ with RND does not achieve any success in those tasks.

On SMAC, we compare CMAE with MAVEN (Mahajan et al., 2019), QMIX (Rashid et al., 2018),
QTRAN (Son et al., 2019), and VDN (Sunehag et al., 2018). The results are summarized in Fig. 2.
In sparse-reward tasks, MAVEN, QMIX, QTRAN, and VDN have at most 2% winning rate. In
contrast, CMAE achieves a win rate higher than 80%. Recently, Taiga et al. (2020) point out that
many existing exploration strategies excel in challenging sparse-reward tasks but fail in simple tasks
that can be solved by using classical methods such as ǫ-greedy. To ensure CMAE doesn’t fail
in simpler tasks, we run experiments on dense-reward SMAC tasks. As shown in Fig. 2, CMAE
achieves similar performance to state-of-the-art baselines in simpler dense-reward SMAC tasks.

To investigate which subspaces CMAE selects, we plot the normalized entropy of different sub-
spaces in Fig. 3. In the Push-Box task, CMAE mostly chooses the boxes location to explore. In the
Island task, CMAE mostly explores the health of the wolf. For the Pass task, instead of exploring
subspaces, CMAE explores the full global space.

We also compare the exploration behavior of CMAE to ǫ-greedy using the Secret room environment.
As shown in Fig. 4, early during training, both CMAE and ǫ-greedy explore only locations in the left
room. However, after 1.5M steps, CMAE agents are able to frequently visit the right three rooms
while ǫ-greedy still mostly visits the left room.

Following the reviewers’ suggestions, we also consider a shared count-based bonus on the group
observations as a baseline. We study Q-learning with this shared count-based bonus on the group
observations for the Secret-room and Push-box tasks. The shared count method achieves a 5.1% ±
1.3% and 2.2% ± 1.1% success rate on Secret-room and Push-box respectively. In contrast, our
approach can achieve a 100% ± 0.1% success rate in both tasks. The training curves are shown
in Fig. 5. The count-based bonus method is sub-optimal because group observation is not necessarily
the most efficient subspace to explore. This demonstrates the effectiveness of our subspace selection
mechanism.

In addition, to demonstrate CMAE is applicable to a wide variety of challenging tasks. We conduct
experiments on the SMAC 6h vs 8z-dense (super hard) and 6h vs 8z-sparse (super hard) tasks,
where the opponent agents’ AI are set to the ‘super hard’ level. In 6h vs 8z-dense (super hard),
an agent sees a reward of +1 when it causes damage to an enemy’s health. A reward of −1 is
received when its health decreases. In 6h vs 8z-sparse (super hard), an agent can only see non-zero

7

Under review as a conference paper at ICLR 2021

Ours

𝜺-greedy

Agent 1 Agent 2 Agent 1 Agent 2

300K env. steps 1.5M env. steps

Figure 4: Visitation map of Ours (CMAE) and baseline on the Secret-Room environment.

0.0 0.5 1.0 1.5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Secret Room
Ours
Shared count

0.0 0.5 1.0 1.5
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Push Box
Ours
Shared count

Figure 5: Results of our approach and shared count baseline on Secret-room and Push-box.

reward when an opponent is eliminated or a teammate is eliminated. We compare our approach to
MAVEN Mahajan et al. (2019), which reports the state-of-the-art results on this task. All approaches
are trained for 8M steps. In 6h vs 8z-sparse (super hard), CMAE achieves a 45.6% ± 3.2% win
rate while MAVEN achieves a 4.3% ± 0.9% win rate. In 6h vs 8z-dense (super hard), CMAE and
MAVEN achieve a 60.9% ± 1.3% and 61.2% ± 2.3% success rate respectively. This illustrates
that dense reward environments tend to be easier than sparse ones. The training curves are shown
in Fig. 6.

5 RELATED WORK

We discuss recently developed methods for exploration in reinforcement learning, multi-agent rein-
forcement learning and concurrent reinforcement learning subsequently.

Exploration for Reinforcement Learning: A wide variety of exploration techniques for deep rein-
forcement learning have been studied, deviating from classical noise-based methods. Generalization
of count-based approaches, which give near-optimal results in tabular reinforcement learning, to en-
vironments with continuous state spaces have been proposed. For instance, Bellemare et al. (2016)
propose a density model to measure the agent’s uncertainty. Pseudo-counts are derived from the
density model which give rise to an exploration bonus encouraging assessment of rarely visited
states. Inspired by Bellemare et al. (2016), Ostrovski et al. (2017) discussed a neural density model,
to estimate the pseudo count, and Tang et al. (2017) use a hash function to estimate the count.

Besides count-based approaches, meta-policy gradient Xu et al. (2018) uses the actor policy’s im-
provement as the reward to train an exploration policy. The resulting exploration policy differs from
the actor policy, and enables more global exploration. Stadie et al. (2016) propose an exploration
strategy based on assigning an exploration bonus from a concurrently learned environment model.
Lee et al. (2020) cast exploration as a state marginal matching (SMM) problem and aim to learn

8

Under review as a conference paper at ICLR 2021

0.0 0.2 0.4 0.6 0.8
Environment Steps 1e7

0.0

0.1

0.2

0.3

0.4

0.5

Su
cc

es
s R

at
e

6h8z sparse
Ours
MAVEN

0.0 0.2 0.4 0.6 0.8
Environment Steps 1e7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc

es
s R

at
e

6h8z dense
Ours
MAVEN

Figure 6: Results of our approach and MAVEN on 6h vs 8z-sparse (super hard) and 6h vs 8z-dense
(super hard).

a policy for which the state marginal distribution matches a uniform distribution. Other related
works on exploration include curiosity-driven exploration Pathak et al. (2017), diversity-driven ex-
ploration Hong et al. (2018), GEP-PG Colas et al. (2018), EX2 Fu et al. (2017), and bootstrap
DQN Osband et al. (2016). In contrast to our approach, all the techniques mentioned above target
single-agent deep reinforcement learning.

Multi-agent Reinforcement Learning: MADDPG Lowe et al. (2017) uses a central critic that
considers other agents’ action policies to handle the non-stationary environment issues in the multi-
agent setting. DIAL Foerster et al. (2016) uses an end-to-end differentiable architecture that allows
agents to learn to communicate. Jiang & Lu (2018) propose an attentional communication model
that learns when communication is helpful for a cooperative setting. Foerster et al. (2017) add a
‘fingerprint’ to each transition tuple in the replay memory to track the age of the transition tuple
and stabilize training. In ‘Self-Other-Modeling’ (SOM) Raileanu et al. (2018) an agent uses its own
policy to predict others agents’ behavior and states.

While inter-agent communication Lowe et al. (2017); Jiang & Lu (2018); Foerster et al. (2016);
Rashid et al. (2018); Omidshafiei et al. (2017); Jain et al. (2019) has been considered, for exploration,
multi-agent approaches rely on classical noise-based exploration. As discussed in Sec. 1, a noise-
based approach prevents the agents from sharing their understanding of the environment. A team
of cooperative agents with a noise-based exploration policy can only explore local regions that are
close to their individual actor policy, which contrasts the approach from the proposed method.

Recently, approaches that consider coordinated exploration have been proposed. Multi-agent varia-
tional exploration (MAVEN) (Mahajan et al., 2019) introduces a latent space for hierarchical control.
Agents condition their behavior on the latent variable to perform committed exploration. Influenced-
based exploration (Wang et al., 2020) captures the influence of one agent’s behavior on others.
Agents are encouraged to visit ‘interaction points’ that will change other agents’ behaviour.

Concurrent Reinforcement Learning: Dimakopoulou & Roy (2018) study coordinated explo-
ration in concurrent reinforcement learning, maintaining an environment model and extending pos-
terior sampling such that agents explore in a coordinated fashion. Parisotto et al. (2019) proposed
concurrent meta reinforcement learning (CMRL) which permits a set of parallel agents to communi-
cate with each other and find efficient exploration strategies. The concurrent setting fundamentally
differs from the multi-agent setting of our approach. In a concurrent setting, agents operate in differ-
ent instances of an environment, i.e., one agent’s action has no effect on the observation and rewards
received by other agents. In contrast, in the multi-agent setting, agents use the same instance of an
environment. An agent’s action changes observations and rewards observed by other agents.

6 CONCLUSION

We propose coordinated multi-agent exploration (CMAE). It defines shared goals and learns coor-
dinated exploration policies. We studied subspace selection which helps to find a goal for efficient
exploration. Empirically, we demonstrate that CMAE increases exploration efficiency significantly.
Compared to state-of-the-art baselines, CMAE needs only 1 − 5% of the data to achieve similar or
better results on various sparse-reward tasks. We hope this is a first step toward efficient coordinated
MARL exploration. Going forward we will study more complicated subspace selection techniques
and scale to more agents.

9

Under review as a conference paper at ICLR 2021

REFERENCES

Ana L. C. Bazzan. Opportunities for multiagent systems and multiagent reinforcement learning in
traffic control. In Proc. AAMAS, 2008.

Marc G. Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi
Munos. Unifying count-based exploration and intrinsic motivation. In Proc. NeurIPS, 2016.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In Proc. ICLR, 2019.

Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. GEP-PG: Decoupling exploration and
exploitation in deep reinforcement learning algorithms. In Proc. ICML, 2018.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley-Interscience, 1991.

Maria Dimakopoulou and Benjamin Van Roy. Coordinated exploration in concurrent reinforcement
learning. In Proc. ICML, 2018.

Jakob Foerster, Nantas Nardelli, Gregory Farquhar, Triantafyllos Afouras, Philip H. S. Torr, Push-
meet Kohli, and Shimon Whiteson. Stabilising experience replay for deep multi-agent reinforce-
ment learning. In Proc. ICML, 2017.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In Proc. AAAI, 2018.

Jakob N. Foerster, Yannis M. Assael, Nando de Freitas, and Shimon Whiteson. Learning to com-
municate with deep multi-agent reinforcement learning. In Proc. ICML, 2016.

Justin Fu, John D. Co-Reyes, and Sergey Levine. Ex2: Exploration with exemplar models for deep
reinforcement learning. In Proc. NeurIPS, 2017.

Zhang-Wei Hong, Tzu-Yun Shann, Shih-Yang Su, Yi-Hsiang Chang, and Chun-Yi Lee. Diversity-
driven exploration strategy for deep reinforcement learning. In Proc. NeurIPS, 2018.

Maximilian Hüttenrauch, Adrian Šošić, and Gerhard Neumann. Deep reinforcement learning for
swarm systems. JMLR, 2019.

Unnat Jain, Luca Weihs, Eric Kolve, Mohammad Rastegari, Svetlana Lazebnik, Ali Farhadi, Alexan-
der Schwing, and Aniruddha Kembhavi. Two body problem: Collaborative visual task comple-
tion. In Proc. CVPR, 2019.

Jiechuan Jiang and Zongqing Lu. Learning attentional communication for multi-agent cooperation.
In Proc. NeurIPS, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proc. ICLR,
2015.

Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Eric Xing, Sergey Levine, and Ruslan Salakhut-
dinov. Efficient exploration via state marginal matching. In arXiv., 2020.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
critic for mixed cooperative-competitive environments. In Proc. NeurIPS, 2017.

Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. MAVEN: multi-agent
variational exploration. In Proc. NeurIPS, 2019.

Laetitia Matignon, Guillaume j. Laurent, and Nadine Le fort piat. Independent reinforcement learn-
ers in cooperative markov games: a survey regarding coordination problems. The Knowledge
Engineering Review,, 2012.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. In NeurIPS Deep
Learning Workshop, 2013.

10

Under review as a conference paper at ICLR 2021

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 2015.

Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P. How, and John Vian. Deep
decentralized multi-task multi-agent reinforcement learning under partial observability. In Proc.
ICML, 2017.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. In Proc. NeurIPS, 2016.

Georg Ostrovski, Marc G. Bellemare, Aaron van den Oord, and Remi Munos. Count-based explo-
ration with neural density models. In Proc. ICML, 2017.

Emilio Parisotto, Soham Ghosh, Sai Bhargav Yalamanchi, Varsha Chinnaobireddy, Yuhuai Wu, and
Ruslan Salakhutdinov. Concurrent meta reinforcement learning. In arXiv., 2019.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In Proc. NeurIPS, 2017.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In Proc. ICML, 2017.

Roberta Raileanu, Emily Denton, Arthur Szlam, and Rob Fergus. Modeling others using oneself in
multi-agent reinforcement learning. In Proc. ICML, 2018.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Farquhar, Jakob Foer-
ster, and Shimon Whiteson. QMIX: monotonic value function factorisation for deep multi-agent
reinforcement learning. In Proc. ICML, 2018.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas
Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philip H. S. Torr, Jakob Foerster, and Shimon White-
son. The starcraft multi-agent challenge. In arxiv., 2019.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Hostallero, and Yung Yi. Qtran: Learning to
factorize with transformation for cooperative multi-agent reinforcement learning. In Proc. ICML,
2019.

Bradly C. Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models. In Proc. ICLR, 2016.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl Tuyls, and Thore Graepel. Value-
decomposition networks for cooperative multi-agent learning based on team reward. In Proc.
AAMAS, 2018.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
2018.

Gokul Swamy, Siddharth Reddy, Sergey Levine, and Anca D. Dragan. Scaled autonomy: Enabling
human operators to control robot fleets. In Proc. ICRA, 2020.

Adrien Ali Taiga, William Fedus, Marlos C. Machado, Aaron Courville, and Marc G. Bellemare.
On bonus based exploration methods in the arcade learning environment. In Proc. ICLR, 2020.

Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus, Juhan Aru, Jaan
Aru, and Raul Vicente. Multiagent cooperation and competition with deep reinforcement learning.
In arxiv., 2015.

Ming Tan. Multiagent reinforcement learning independent vs cooperative agents. In Proc. ICML,
1993.

11

Under review as a conference paper at ICLR 2021

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John Schulman,
Filip De Turck, and Pieter Abbeel. Exploration: A study of count-based exploration for deep
reinforcement learning. In Proc. NeurIPS, 2017.

George E. Uhlenbeck and Leonard S. Ornstein. On the theory of the brownian motion. Physical
Review, 1930.

Tonghan Wang, Jianhao Wang, Yi Wu, and Chongjie Zhang. Influence-based multi-agent explo-
ration. In Proc. ICLR, 2020.

Tianbing Xu, Qiang Liu, Liang Zhao, and Jian Peng. Learning to explore via meta-policy gradient.
In Proc. ICML, 2018.

Yaodong Yang, Rui Luo, Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang. Mean field multi-
agent reinforcement learning. In Proc. ICML, 2018.

12

	Introduction
	Preliminaries
	Multi-agent Markov Decision Process
	Multi-agent Reinforcement Learning

	Coordinated Multi-Agent Exploration (CMAE)
	Training of Exploration Policies
	Selecting Subspaces

	Experimental Results
	Related Work
	Conclusion

