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RL-based fine-tuning with verifiable rewards corresponds to a specific fine-tuning problem called
Reinforced Fine-tuning (ReFT) [Luong et al.} 2024, [Shao et al., 2024 |Liu et al., 2025]], which applies
specifically to math and programming reasoning domains. As opposed to RL from human feedback
(RLHF), a heuristic reward model can be used to verify and score the sampled completions instead of
learning the reward model from human preferences [Rafailov et al.l 2023]].

Despite appealing performance gains, RL-based fine-tuning has a higher computational, and memory
cost compared to supervised fine-tuning (SFT) [Luong et al.| [2024]]. While ReFT circumvent the
memory cost of storing a reward model, the computational cost of sampling multiple completions
from a behavior model can be overwhelming [Kazemnejad et al.l [2025] |Shao et al.| |2024]]. This
completion cost can add up significantly to the compute cost of updating the parameters of the target.

Practitioners currently sample 8 CoT completions per problem von Werra et al.| [2020], and the
base setup consists in using as behavior model the same version of the target LLM [Luong et al.,
2024, |Shao et al., |2024]]. Although scaling up the number of CoT completions can lower the bias
in the target model updates, it also adds a significant compute overhead. Therefore, there is a need
to explore if the efficiency of the behavior model used for roll-outs can be improved. A broader
impact would be to facilitate the generation of more completions to further improve the reasoning
performance of LLMs.

Research question: Is it possible to improve the computational efficiency of ReFT without compro-
mising the performance of the fine-tuned target LLM? We hypothesize that: i) given a target LLM to
fine-tune, it is possible to perform roll-outs from a behavior model that has a lower computational
cost than base formulations; ii) such low-cost roll-outs can be leveraged to update the target model
with limited influence on performance.

1 Problem definition

Let X denote the space of possible prompts and ) denote the space of possible output sequences.
Given a prompt z; € &, an LLM encodes a generating policy 7y, which defines a conditional
probability distribution over output sequences §; = (9;.1, . .., %:,r.) € YV, where L is the number of
tokens contained in the sequence. Let §J; <, denote the tokens (¢; 1,...,%;¢—1) in a sequence ;.
The probability of sampling sequence g; given a prompt z; is defined in an auto-regressive manner:
7o (Gilzi) = T 7o (i e|zi, Gi,<0), where 7g(§s ¢|4, §i,<¢) is the probability of outputting token
i,¢ given the prompt z; and the previous tokens ¢; <.

Chain-of-thoughts and answers When applying LLMs to math reasoning, it is useful to distinguish
chain-of-thought (CoT) sequences )°* C Y from their value answers yval C yeot The value is the
exact solution to a math problem, while a CoT includes both the reasoning steps and the value. We
assume access to a deterministic extraction function v : J° — Y2 that extracts values from CoTs.

Goal Consider a pretrained LLM, e.g., an open-sourced checkpoint from Hugging Face [Wolf
et al., |2020]. The objective is to fine-tune this LLM such as to maximize the performance on
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reasoning benchmarks. Consider benchmark k&, denoted By. Let (x5, yf Val) denote the i-th example

in benchmark By, where z; is the prompt and yk M is the target value answer. We compute the
accuracy of the LLM answers v(¢¥) on benchmark k as: aj, = \Bu ZlBkl 1[ )=y The goal

is to maximize the overall performance, defined as a = & S 1 Q-

1.1 Reinforced fine-tuning

Let 6, denote the parametrization of a pretrained LLM policy. Reinforced Fine-Tuning (ReFT)
aims to further train 7y, by leveraging reward feedback on a given dataset D, for S gradient steps
contributing to Fg epochs. The dataset D = (x5, yf"t)‘lp‘1 contains prompts describing math problems
x; € X and their associated CoT solutions y°°t € Y. Note that none of these math problems should

be contained in the evaluation benchmarks.

Warm-up with SFT Prior to performing ReFT, it is common practice to perform Eg epochs of
supervised fine-tuning (SFT) on dataset D as a warm-up [Luong et al., [2024]]. Let 6 denote the
parametrization of the resulting LLM policy, which serves as the initialization for the ReFT step.

Sample Generation via Behavior Policy Roll-outs Let 7y denote the running target LLM policy that
is being fine-tuned, and initialized with 6 = 6. During ReFT, a behavior LLM policy 7, is used to
perform roll-outs to generate solutions. For each prompt x in dataset D, the behavior model samples
G solutions, {g, ~ 1, (- |z)}§ 1- The samples are scored using a reward function 7 : Y3 x Y¥ — R
that compares the extracted value answer v(g,) to the ground truth value associated to problem z,
rg = 1(v(Yg), v(y*")), g = {1...G}. The scored samples are then used to update the target policy
7y using a RL algorithm (e.g., GRPO, |Shao et al.|[2024]). The objective of the RL algorithm is to
find parameters 6 that maximize the expected reward.

Importance sampling Learning a target policy using rewards obtained from a separate behavior
policy, is off-policy RL. Off-policy RL algorithms typically rely on importance sampling to account
for the distribution difference between behavior and target policies. More speciﬁcally, rewards are

reweighted using the importance sampling ratio: Aase (9, ; 79, 1y) = Zz (Zl‘f; = H(Z 1 %

The importance sampling ratio can suffer high variance, especially when the behavior and target
policies diverge [Xie et al.,2019], which can negatively affect training quality. Variance reduction
techniques are often employed to stabilize training [Munos et al., 2016l Metelli et al., [ 2020].

Current RL-fine-tuning configurations Most RL fine-tuning implementations [von Werra et al.,
2020] and ReFT approaches [Luong et al., [2024]] consider the behavior policy such that n, =
To,.» Where 6,14 corresponds to the target policy parametrization from the previous gradient step.
Consequently, the importance sampling ratio is computed between the behavior policy 7g,, and the
target policy mg. However, there is no architectural difference between 7y and my,,,. This implies that
the compute resources to generate samples from behavior policy is the same as the target policy.

In this work, we explore the possiblity of generating samples from a behavior policy that has a lower
inference cost, thus accelerating the inference with an increase in the off-policyness. Further, we
bound the importance sampling ratio to reduce the variance in the updates for smooth training.

2 The Nested-ReFT framework

The Algorithm [[|summarizes the framework, with purple highlighting main differences with current
ReFT. Though we experiment the framework with the popular GRPO algorithm [Shao et al., 2024],
Nested-ReFT is agnostic to the RL algorithm and can be combined with every sampling based RL
post-training techniques [Ahmadian et al.| [2024| |Ziegler et al., 2020]].

2.1 Rollouts based on nested models

Consider the target model 7y to fine-tune using ReFT and a behavior model 7). We instantiate nested
models with layer skipping. Layer skipping consists in selecting a set of layers that are not used
(skipped) during the forward pass, acting like a short-cut.

Definition 1 (Set of transformer layers indices). The set of transformer layer indices in model 7 is
noted T;, = {to,t1,...,tn}, where |T;)| = N + 1 denotes the total number of transformer layers.
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Definition 2 (Set of valid layers indices). The set of valid layers indices V,;, = T, \
{to, - tp,tn_p,- - ,tn} contains transformer layers indices within a distance b from the borders.
The set of invalid layer indices is noted V;, »

The set V,, ; points to layer indices that should not be skipped because they are too close to the inner
and outer ends of the model [Elhoushi et al.| 2024, [Fan et al., [2019]]. The inner and outer ends of
deep learning models critically contribute to the generation of the model [[van Aken et al.|[2019]]. The
total number of valid layers is |V}, ,,| = |T},| — 2.

Consider now a ratio of layers to skip %, which is set by the user. The total number of layers
min(1, ceil(|T;| - x)) ifz >0
{0 otherwise.
skip is a function of 7T}, and not V}, ;, to maintain the number of skipped layers proportional to the

original model size independently of b.

skipped, noted U, is U, = Note that the number of layers to

Definition 3 (Layer skipping module). Given a behavior model 7, a skipping ratio %, and a border
parameter b, a layer skipping module is a stochastic function f,; : 7 — [0, 1]|Tﬂ‘ that outputs a
binary vector o = f (), such that: 1) The number of indices flagged to be skipped is equal to U,

ie. Z;@o 0; = Uy, 2) The invalid indices are never flagged i.e. ZQO 0ilgey,,y = 0 Conditions
1) and 2) ensure that only valid layers are sampled. The U, skipped layers are sampled i.i.d. and
uniformly with probability 1/U,,.

Ensemble of nested models throughout training At a given gradient step s in the ReFT training
of S steps, the behavior model is defined such that , = mg,_,. This is aligned with prior works,
where the behavior model corresponds to the old target model (commonly referred to as 7y, ). The
nested behavior model 7/ is instantiated using f; ;(ns). Throughout Nested-ReFT training, we
obtain a stochastic ensemble of nested models Z = {n.}5_,. Setting the ratio z = 0 and b = 0,
Nested-ReFT reduces to classical ReFT: n)), = n = my

old *

2.2 Mitigation of increased off-policyness

We explore techniques to mitigate the notable high variance on the importance sampling ratio caused
by high off-policyness. Specifically, we use simpler variations of the base importance sampling
ratio, summarized as ., (; -), where m € {base, 1, A}: i) Base approach: The function is defined
as the classical importance sampling ratio, corresponding to Apase (-, -; 7o, , 7%). This corresponds
to the base importance sampling implementation [Shao et al.,|2024]. ii) Practical approach: The
function hy (-, +;mg,,n,) = 1. The motivation for this design choice is that the stochastic gradient
descent is acknowledged as a powerful optimization protocol. iii) Retrace-\ approach The function
ha(cy 5 mo,ms) = Amin(1, Apase (-, -3 T, ,m5)). This approach is theoretically motivated following
intuitions from [Munos et al. [2016]).

3 Experimental setup

We focus on the math reasoning task using five evaluation benchmarks, namely AIME2024 [Li et al.,
2024[, AMC [Li et al., 2024], MATH500 [Hendrycks et al.,[2021]], Minerva [Lewkowycz et al., 2022],
and Olympiad [He et al.,|2024]]. We consider two large language models Qwen2.5-Math-Instruct
models [[Yang et al.|[2024] of sizes 1.5B and 7B. We consider three datasets for fine-tuning, namely
SVAMP [Patel et al.| 2021]], GSM8k [Cobbe et al., [2021]], and Math12k [Hendrycks et al.,|2021].

Instances of Nested-ReFT and baselines We consider instances of Nested-ReFT with a proportion
of skipped layers « € {5%, 10%, 15%}. Since both 1.5B and 7B LLMs have the same number of
layers, their number of skipped layers is identical (see Appendix [E). We consider off-policyness
mitigation strategies using variance mitigation strategies on the importance sampling ratio h,,,, with
m € {base, 1, A}. The case h; is referred to as “practical” and h as “Retrace-\"[Munos et al.| 2016].
The border parameter is set to b = 1, implying that only the first and last layers of the models are never
skipped. For a given model, a baseline to any instance of Nested-ReFT corresponds to the model
fine-tuned with Nested-ReFT at ratio z = 0%, border b = 0 and mitigation method m = base. This
instance corresponds to the model fine-tuned with ReFT using the base off-policyness and importance
sampling formulation from existing works [Shao et al., 2024} Luong et al.| 2024]. To our knowledge,
there is no prior work that could fit as a fair baseline in the proposed new framework.
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Figure 1: Fine-tuning results across benchmarks. Red annotations indicate the smallest value; Green
indicate the largest.

Performance metrics and delta to the baseline To characterize reasoning performance at test-time,
we report the average accuracy on the 5 math benchmarks [Liu et al., 2025]. To characterize compute
efficiency gains at train-time, we report the token speed (total number of tokens processed divided
by total runtime), and the total run time (expressed in seconds). We characterize Nested-ReFT
run instances using the relative delta (A) to the baseline, which is defined for any metric z as

A(z) =100 - m, where the absolute delta is Ayps(2) = (2 — Zbaseline)-

Zbaseline

3.1 Empirical Results

The setup comprises 12 distinct instances of Nested-ReFT per model, and 1 baseline. The experiment
includes 2 models x 3 datasets x (12 4 1) instances = 78 experimental configurations. The results
are displayed in Figures and [Ic] For A Accuracy (%) and A Tok/sec (%) the goal is to
maximize the metric. For A Runtime (%), the goal is to minimize the metric. Table references the
absolute performance deltas.

Impact of off-policy roll-outs on performance On Table [2] for 1.5B checkpoints, the mean absolute
performance delta for best case Nested-ReFT is higher than for the worst case, indicating that the
magnitude of the performance gains achieved with Nested-ReFT is bigger than the magnitude of
the performance drops. However, on 7B checkpoints, the mean absolute performance delta for gains
is smaller than that of the drops. In both cases, the worst and best performances imply at most
+2.6 points variation from the baseline performance. These results showcasing minor performance
fluctuations corroborate the hypothesis that off-policy generations using Nested-ReFT have limited
influence on the performance on reasoning benchmarks. Importantly, we highlight that some instances
of Nested-ReFT yield performance improvements over the baseline while involving the generation
of samples on a smaller model.

Effectiveness of the off-policyness mitigation strategy We consider 3 off-polyciness mitigation
strategies, namely Base, Practical and Retrace-\. We observe that Retrace-\ displays the
most stable performance across all models, fine-tuning datasets, and skipping ratios. Over the three
datasets and two models (i.e. 6 configurations), the Base strategy achieves 1/6 best case count, 3/6
worst case count and 2/6 neutral count. The Practical strategy achieves 3/6 best case performance,
3/6 worst case, and 1/6 neutral count. This indicates that although Practical achieves peak
performance, it is also unstable across configurations. The Retrace-\ strategy achieves 2/6 best
case, 0/6 worst case and 4/6 neutral. These results indicate that Retrace-\ offers overall more
stable performance compared to the Base and Practical mitigation strategies.

Compute efficiency gains from off-policy roll-outs Following the theoretical analysis on the
complexity, the efficiency gains translate into linear trends on the total runtime, and on the token
generation speed. This trend is observed in all the settings covered (see Figures [Tb] [Ic| and [Ta)).
Specifically, the efficiency gain on both metrics increases linearly with the ratio 2% of skipped layers.
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A Related Works

B Related works

Nested-ReFT is connected to the literature on speculative decoding [Xia et al.,|2024], as the idea
of using smaller nested models exists in that literature [Elhoushi et al., 2024, [Zhang et al., 2024,
Xia et al.} [2025]]. The main difference is that nesting was explored to accelerate inference at test
time, while we instantiate nesting at train time. We will see in the theoretical analysis and empirical
evaluation that transposing the nesting idea at train time brings a set of new unique challenges.
Note that the proposed technique employs a depth wise nesting approach (layer skipping), but other
width-wise nesting techniques of transformer layers exist as well Narasimhan et al.|[2025]]. This work
also differs from Roux et al.[[2025]] where off-policyness is formulated as the collection of positive
and negative samples to improve learning performance. In contrast, we aim to find a cost effective
behavior policy while maintaining stability affected by the degree of off-policyness.

Parameter efficient fine-tuning (PEFT) Parameter efficient fine-tuning [Fu et al., 2023} Ding
et al.| |2023| consists in adapting only a subset of parameters. Low-rank (LoRA) adaptation [Hu
et al.,|2021]] and its variants [Liu et al., 2024} |Hayou et al., | 2024] optimize training efficiency through
the number of flops. Similarly, linear probing consists in optimizing the fine-tuning efficiency by
restricting the parameter updates to the last layer of the LLM [Tomihari and Sato|[2024]. The proposed
work is orthogonal to PEFT because we improve compute efficiency while all the parameters of the
target LLM are updated.
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Reinforcement learning for LLMs |Luong et al.|[2024], Kool et al.|[2019], Schulman et al.|[2017]
propose frameworks but the limitation of the proposed frameworks is compute and memory cost.
Dropping the reward model as in DPO [Rafailov et al.| [2023]] and KTO [Ethayarajh et al.| [2024]
can mitigate the memory overhead. However, in the specific problem of ReFT the reward model
is a heuristic function, and the computational overhead is due to the behavior policy generating
completions. To our knowledge, there is no work that aims to improve this completion generation
cost in ReFT. More broadly in reinforcement fine-tuning (e.g. RLHF Bai et al.| [2022]]) efficiency is
addressed from a data selection perspective Zhou et al.|[2025]], Shi et al.|[2025]] while the proposed
framework addresses algorithmic variations for improved completion generation efficiency.

C Algorithm

Algorithm 1 Nested-ReFT

Require: Target model my (LLM), Dataset D, reward function R(x,y), skip ratio z € (0,1),
SFT epochs Eg, RFT gradient steps .S, border parameter b, choice of stabilization method
him (s, <), m € {base, 1, A}
Step 1: Supervised Fine-Tuning (SFT)
for e = 1 to Es; do

Train 7 on (z, y°°*) ~ D using cross-entropy loss
end for

Step 2: Reinforced Fine-Tuning (ReFT)
for s = 1to S do
Sample batch of prompts
Setns = ma,_,
Sample skip set with f, .. (7s)
10:  Deactivate layers in 75 using f, . (1) to get 77,
11:  Generate G samples for each x in batch using 7
12:  Score samples using reward model
13:  Compute stabilization h,,(n’, 7p)
14:  Update mp_ with rewards and h,, (7., mg_) using RL objective
15:  Setmy, , = m,
16: end for
17: return my

PRDIN R

°

D Analysis of Nested-ReFT

D.1 Theoretical speed-up

Consider a behavior model 7 that contains 7}, identical transformer layers. Each layer has a computa-
tional complexity that can be expressed as:

Clayer =0 (L2d + Ld2) )

where L is the generated sequence length and d is the hidden dimension (i.e., width) of the layer
[Vaswani et al.,[2017]).

Property 1 (Complexity with Layer Skipping). Given a model n with T, transformer layers, if we
skip Uy, layers, the computational complexity of a nested model 1’ is:

Cp = O (T, — Uz) % Crayer) -

The complexity of the inference or the forward-pass of 7 is reduced proportionally to the number
of skipped layers U, through the skip ratio #%. Assuming fixed generation length L and hidden
dimension d, the layer skipping achieves a linear complexity improvement.
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D.2 Unbiased Convergence on the bounded off-policy

In reinforcement learning, we seek to optimize a policy 7y using gradient-based updates. However,
direct sampling from 7y is not always feasible, so we employ a behavior model 7 for an off-policy
update.

Unlike game RL environments [[Brockman et al.,[2016] where the states are independent from the
policies, tasks like language generation involve generating the next token conditioned on a prompt
and all the previous tokens. Therefore, the action is the prediction of the next token y, and the state is
s¢ = (,9<¢). Inducing exploration is non-trivial as it requires preserving the structural consistency
of the state.

Hence, we opt for an ensemble of nested behavior policies Z = {m}lZ\ to generate off-policy
updates of 7, where | Z| = S in Nested-ReFT. To estimate the policy gradient, we use importance
sampling with the weight h{_..(ve, s¢; 7, 1}). The behavior policy is selected uniformly from Z,
leading to an ensemble-weighted obJectlve Defining the mean behavior policy over the ensemble Z
as:

|Z]
z(Jelse) = Z[ 2 Zm (Jelse), )]

the expected objective can be rewritten in terms of 7z, ensuring stable updates as long as the
importance weights remain bounded.

Suppose, we are interested in the policy gradient updates using advantage (A?’V’ﬂ) (referred to A™
for brevity) estimation based on discounted A-returns. Then, the advantage estimation for the target
policy () is estimated as:

Aﬂ-(87 y) = Qﬂ(s’y) - Vﬂ(s>

To estimate the policy gradient update we compute the derivative of the expected advantage objective

(J):

J = max Er [A7] @
VJ = VE,[A"] 5
L
L ~
=V Z AW(SLZQE)'F(QASZ).M (5)
=0 7:(Je|s¢)
=V EL: A™ (s, ge).n{@ﬂsl).w ©
oo T s
L
=V Z A"T(Sfalgf) . 7];(2}['5[) . héase(gg‘Sg;ﬂ'7ng) (7)
=0
Then, the objective for a nj € Z can be re-written as,
J = max ]E [hbase . An:]
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Theorem 1. (Convergence of Policy Gradient with Ensemble Behavior Policies) Let,

1. The importance weights h% .. (9¢|s¢) are bounded,

2. The learning rate sequence over gradient steps s, o, satisfies y . os = coand ) a? < oo,
and

3. The behavior policy ensemble Z ensures sufficient exploration.

With these assumptions, the policy gradient update using an ensemble of behavior policies converges
to an optimum off-policy update from the expected advantage function weighted by the mean behavior

policy Nz.
Proof. The goal is to show that the using an ensemble of behavior policies for off-policy updates
converges to the mean policy of the set, and the variance of the updates is controlled by a bounded

measure on the importance ratio.

Step 1: Unbiasedness of the Gradient Estimate We start by rewriting the objective:

JZ = max Ejnz [hl

base

CA™). ®)

Since the behavior policy is selected uniformly at random, we can express this expectation as:

|Z]
EnéNZ[ base : Zp ]E base Am]’ (9)

where p? = % Substituting the definition of w?, we get:

|Z]

Z E,, { base A7; ] (10)

Rewriting as a sum over the sequence steps:

IZ] L

S Baae - A (s0.5) m(yés‘) (11)

i=1 £=0

By using the definition of the mean behavior policy, the equation simplifies to

T
ZOAﬁZ(Snﬁt) Nz (Je]st)- (12)

t=0

Since 7z is the expectation over the behavior policies, the modified objective to update the target
policy (7) with an ensemble of behavior policies Z is unbiased.

Step 2: Bounded Variance The importance sampling ratio influences the policy gradient update:

Var (Bhage - A7) (13)

Since hbase is the ratio between the log-probabilities of both policies, the variance depends on how
different i)} is from 7. Approaches like TB()), Retrace()), Off-policy Q()) have explored the variance
minimization through bounding the off-policyness of the behavior policy [Munos et al., 2016|. The

scale ¢ can be bounded with h¢, or hY. The assumption that h} _ is bounded ensures that:

Var(hi

base

) <c¢< 0. (14)

10



376

377

378

379

380

382
383
384
385
386
387
388
389
390

391
392
393
394
395

396

397

398
399
400
401
402
403
404

406
407

This ensures learning stability.

E Architecture detail

Model N | W | Skipped layers at ratio x
5% | 10% 15%

Qwen2.5-1.5B | 28 | 1536 | 1 3 4

Qwen2.5-7B |28 3584 | 1 3 4

Table 1: Skipped layers for various ratios  on Qwen2.5-Math-Instruct. L = # of layers, W = hidden
layer width.

F Experiment details

Training generation details We consider E; = 2 epochs for the SFT warm-up stage, similarly to
[Luong et al.,|2024]). The £ parameter of GRPO is set to 0, implying no KL penalty is used, following
emerging evidence that the extra compute brought by the reference model is optional [Roux et al.,
2025]). The batch size is set to 16 for all models sizes, using gradient accumulation. We consider
S = 99 gradient steps for ReFT, this corresponds to E = 1, Fy = 0.11, and E = 0.07 for
SVAMP, GSM8k and Math12k datasets, respectively. Fractions of epoch imply that a proportional
subset of the shuffled dataset D is used for fine-tuning. This allows for fair cross-dataset and model
comparisons. The prompts are formatted using a Qwen-chat template commonly used by practitioners
[Liu et al.,2025]]. For the behavior model, we set the minimum and maximum length of the generated
completions to to 256 tokens. This implies that all the completions have equal length. For training,
all the other parameters follow the default from GRPO TRL library [von Werra et al., 2020].

Evaluation generation details For evaluation, we use a math reasoning benchmark composed of 5
datasets [Liu et al.,[2025].The temperature is set to 0.6, the top-p to 0.95 and the maximum number
of tokens to 32k. We perform pass@K with K = 1, implying the model generates 1 response per
problem. This corresponds to a strict setup as the model is only given one single chance to answer
correctly.

G Additional results

H Discussion

Our controlled experiments show that it is possible to train smoothly, even when the degree of
off-policyness increases. The influence on performance of Nested-ReFT has limited impact on
performance. These results are achieved for fixed size generation for the behavior model. However,
an increasing number of LLMs can produce adaptive responses, either short for simple problems or
long for complex problems. The interaction between generating completion off-policy through layer
skipping and its influence on the completion length is on open research problem. Furthermore, the
nesting strategy (e.g. layer skipping) may have non uniform interaction effects on the generation
length depending on the dataset and model scale. This suggests that increasing off-policyness with
a learned strategy rather than a heuristic based approach based on layer skipping may handle the
interactions more effectively.
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Model Instance SVAMP GSM8k Mathl12k A
158 Best +0.008 +0.015 +0.026 0.016
’ Worst —0.016 —-0.006 —0.005 0.009
Best +0.022  +0.010 —0.003 0.009
Worst —0.070 -0.017 —-0.022 0.036
Table 2: Best and worst observed deltas per dataset and model size. A, is the mean absolute change
to baseline.
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