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RL-based fine-tuning with verifiable rewards corresponds to a specific fine-tuning problem called1

Reinforced Fine-tuning (ReFT) [Luong et al., 2024, Shao et al., 2024, Liu et al., 2025], which applies2

specifically to math and programming reasoning domains. As opposed to RL from human feedback3

(RLHF), a heuristic reward model can be used to verify and score the sampled completions instead of4

learning the reward model from human preferences [Rafailov et al., 2023].5

Despite appealing performance gains, RL-based fine-tuning has a higher computational, and memory6

cost compared to supervised fine-tuning (SFT) Luong et al. [2024]. While ReFT circumvent the7

memory cost of storing a reward model, the computational cost of sampling multiple completions8

from a behavior model can be overwhelming [Kazemnejad et al., 2025, Shao et al., 2024]. This9

completion cost can add up significantly to the compute cost of updating the parameters of the target.10

Practitioners currently sample 8 CoT completions per problem von Werra et al. [2020], and the11

base setup consists in using as behavior model the same version of the target LLM [Luong et al.,12

2024, Shao et al., 2024]. Although scaling up the number of CoT completions can lower the bias13

in the target model updates, it also adds a significant compute overhead. Therefore, there is a need14

to explore if the efficiency of the behavior model used for roll-outs can be improved. A broader15

impact would be to facilitate the generation of more completions to further improve the reasoning16

performance of LLMs.17

Research question: Is it possible to improve the computational efficiency of ReFT without compro-18

mising the performance of the fine-tuned target LLM? We hypothesize that: i) given a target LLM to19

fine-tune, it is possible to perform roll-outs from a behavior model that has a lower computational20

cost than base formulations; ii) such low-cost roll-outs can be leveraged to update the target model21

with limited influence on performance.22

1 Problem definition23

Let X denote the space of possible prompts and Y denote the space of possible output sequences.24

Given a prompt xi ∈ X , an LLM encodes a generating policy πθ, which defines a conditional25

probability distribution over output sequences ŷi = (ŷi,1, . . . , ŷi,L) ∈ Y , where L is the number of26

tokens contained in the sequence. Let ŷi,<ℓ denote the tokens (ŷi,1, . . . , ŷi,ℓ−1) in a sequence ŷi.27

The probability of sampling sequence ŷi given a prompt xi is defined in an auto-regressive manner:28

πθ(ŷi|xi) = ΠL
ℓ=1πθ(ŷi,ℓ|xi, ŷi,<ℓ), where πθ(ŷi,ℓ|xi, ŷi,<ℓ) is the probability of outputting token29

ŷi,ℓ given the prompt xi and the previous tokens ŷi,<ℓ.30

Chain-of-thoughts and answers When applying LLMs to math reasoning, it is useful to distinguish31

chain-of-thought (CoT) sequences Ycot ⊂ Y from their value answers Yval ⊆ Ycot. The value is the32

exact solution to a math problem, while a CoT includes both the reasoning steps and the value. We33

assume access to a deterministic extraction function v : Ycot 7→ Yval that extracts values from CoTs.34

Goal Consider a pretrained LLM, e.g., an open-sourced checkpoint from Hugging Face [Wolf35

et al., 2020]. The objective is to fine-tune this LLM such as to maximize the performance on36
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reasoning benchmarks. Consider benchmark k, denoted Bk. Let (xi, y
k,val
i ) denote the i-th example37

in benchmark Bk, where xi is the prompt and yk,val
i is the target value answer. We compute the38

accuracy of the LLM answers v(ŷki ) on benchmark k as: ak = 1
|Bk|

∑|Bk|
i=1 1[v(ŷk

i )=yk,val
i ]. The goal39

is to maximize the overall performance, defined as a = 1
K

∑K
k=1 ak.40

1.1 Reinforced fine-tuning41

Let θref denote the parametrization of a pretrained LLM policy. Reinforced Fine-Tuning (ReFT)42

aims to further train πθref by leveraging reward feedback on a given dataset D, for S gradient steps43

contributing to Erft epochs. The dataset D = (xi, y
cot
i )

|D|
i=1 contains prompts describing math problems44

xi ∈ X and their associated CoT solutions ycot
i ∈ Ycot. Note that none of these math problems should45

be contained in the evaluation benchmarks.46

Warm-up with SFT Prior to performing ReFT, it is common practice to perform Esft epochs of47

supervised fine-tuning (SFT) on dataset D as a warm-up [Luong et al., 2024]. Let θsft denote the48

parametrization of the resulting LLM policy, which serves as the initialization for the ReFT step.49

Sample Generation via Behavior Policy Roll-outs Let πθ denote the running target LLM policy that50

is being fine-tuned, and initialized with θ = θsft. During ReFT, a behavior LLM policy ηχ is used to51

perform roll-outs to generate solutions. For each prompt x in dataset D, the behavior model samples52

G solutions, {ŷg ∼ ηχ(·|x)}Gg=1. The samples are scored using a reward function r : Yval×Yval → R53

that compares the extracted value answer v(ŷg) to the ground truth value associated to problem x,54

rg = r(v(ŷg), v(y
cot)), g = {1 . . . G}. The scored samples are then used to update the target policy55

πθ using a RL algorithm (e.g., GRPO, Shao et al. [2024]). The objective of the RL algorithm is to56

find parameters θ that maximize the expected reward.57

Importance sampling Learning a target policy using rewards obtained from a separate behavior58

policy, is off-policy RL. Off-policy RL algorithms typically rely on importance sampling to account59

for the distribution difference between behavior and target policies. More specifically, rewards are60

reweighted using the importance sampling ratio: hbase(ŷ, x;πθ, ηχ) =
πθ(ŷ|x)
ηχ(ŷ|x) =

∏L
ℓ=1

πθ(ŷℓ|x,ŷ<ℓ)
ηχ(ŷℓ|x,ŷ<ℓ)

.61

The importance sampling ratio can suffer high variance, especially when the behavior and target62

policies diverge [Xie et al., 2019], which can negatively affect training quality. Variance reduction63

techniques are often employed to stabilize training [Munos et al., 2016, Metelli et al., 2020].64

Current RL-fine-tuning configurations Most RL fine-tuning implementations [von Werra et al.,65

2020] and ReFT approaches [Luong et al., 2024] consider the behavior policy such that ηχ =66

πθold , where θold corresponds to the target policy parametrization from the previous gradient step.67

Consequently, the importance sampling ratio is computed between the behavior policy πθold and the68

target policy πθ. However, there is no architectural difference between πθ and πθold . This implies that69

the compute resources to generate samples from behavior policy is the same as the target policy.70

In this work, we explore the possiblity of generating samples from a behavior policy that has a lower71

inference cost, thus accelerating the inference with an increase in the off-policyness. Further, we72

bound the importance sampling ratio to reduce the variance in the updates for smooth training.73

2 The Nested-ReFT framework74

The Algorithm 1 summarizes the framework, with purple highlighting main differences with current75

ReFT. Though we experiment the framework with the popular GRPO algorithm [Shao et al., 2024],76

Nested-ReFT is agnostic to the RL algorithm and can be combined with every sampling based RL77

post-training techniques [Ahmadian et al., 2024, Ziegler et al., 2020].78

2.1 Rollouts based on nested models79

Consider the target model πθ to fine-tune using ReFT and a behavior model η. We instantiate nested80

models with layer skipping. Layer skipping consists in selecting a set of layers that are not used81

(skipped) during the forward pass, acting like a short-cut.82

Definition 1 (Set of transformer layers indices). The set of transformer layer indices in model η is83

noted Tη = {t0, t1, . . . , tN}, where |Tη| = N + 1 denotes the total number of transformer layers.84

2



Definition 2 (Set of valid layers indices). The set of valid layers indices Vη,b = Tη \85

{t0, · · · tb, tN−b, · · · , tN} contains transformer layers indices within a distance b from the borders.86

The set of invalid layer indices is noted V̄η,b87

The set V̄η,b points to layer indices that should not be skipped because they are too close to the inner88

and outer ends of the model [Elhoushi et al., 2024, Fan et al., 2019]. The inner and outer ends of89

deep learning models critically contribute to the generation of the model [van Aken et al., 2019]. The90

total number of valid layers is |Vb,η| = |Tη| − 2b.91

Consider now a ratio of layers to skip x%, which is set by the user. The total number of layers92

skipped, noted Ux is Ux =

{
min(1, ceil(|Tη| · x)) if x > 0

0 otherwise.
Note that the number of layers to93

skip is a function of Tη and not Vη,b to maintain the number of skipped layers proportional to the94

original model size independently of b.95

Definition 3 (Layer skipping module). Given a behavior model η, a skipping ratio x%, and a border96

parameter b, a layer skipping module is a stochastic function fx,b : η → [0, 1]|Tη| that outputs a97

binary vector σ = fx,b(η), such that: 1) The number of indices flagged to be skipped is equal to Ux98

i.e.
∑Tη

i=0 σi = Ux, 2) The invalid indices are never flagged i.e.
∑Tη

i=0 σi1{i∈V̄b,η} = 0 Conditions99

1) and 2) ensure that only valid layers are sampled. The Ux skipped layers are sampled i.i.d. and100

uniformly with probability 1/Ux.101

Ensemble of nested models throughout training At a given gradient step s in the ReFT training102

of S steps, the behavior model is defined such that ηs = πθs−1 . This is aligned with prior works,103

where the behavior model corresponds to the old target model (commonly referred to as πθold ). The104

nested behavior model η′s is instantiated using fx,b(ηs). Throughout Nested-ReFT training, we105

obtain a stochastic ensemble of nested models Z = {η′s}Ss=1. Setting the ratio x = 0 and b = 0,106

Nested-ReFT reduces to classical ReFT: η′s = η = πθold .107

2.2 Mitigation of increased off-policyness108

We explore techniques to mitigate the notable high variance on the importance sampling ratio caused109

by high off-policyness. Specifically, we use simpler variations of the base importance sampling110

ratio, summarized as hm(·; ·), where m ∈ {base, 1, λ}: i) Base approach: The function is defined111

as the classical importance sampling ratio, corresponding to hbase(·, ·;πθs , η
′
s). This corresponds112

to the base importance sampling implementation [Shao et al., 2024]. ii) Practical approach: The113

function h1(·, ·;πθs , η
′
s) = 1. The motivation for this design choice is that the stochastic gradient114

descent is acknowledged as a powerful optimization protocol. iii) Retrace-λ approach The function115

hλ(·, ·;πθ, η
′
s) = λmin(1, hbase(·, ·;πθs , η

′
s)). This approach is theoretically motivated following116

intuitions from Munos et al. [2016].117

3 Experimental setup118

We focus on the math reasoning task using five evaluation benchmarks, namely AIME2024 [Li et al.,119

2024], AMC [Li et al., 2024], MATH500 [Hendrycks et al., 2021], Minerva [Lewkowycz et al., 2022],120

and Olympiad [He et al., 2024]. We consider two large language models Qwen2.5-Math-Instruct121

models [Yang et al., 2024] of sizes 1.5B and 7B. We consider three datasets for fine-tuning, namely122

SVAMP [Patel et al., 2021], GSM8k [Cobbe et al., 2021], and Math12k [Hendrycks et al., 2021].123

Instances of Nested-ReFT and baselines We consider instances of Nested-ReFT with a proportion124

of skipped layers x ∈ {5%, 10%, 15%}. Since both 1.5B and 7B LLMs have the same number of125

layers, their number of skipped layers is identical (see Appendix E). We consider off-policyness126

mitigation strategies using variance mitigation strategies on the importance sampling ratio hm, with127

m ∈ {base, 1, λ}. The case h1 is referred to as “practical” and hλ as “Retrace-λ”[Munos et al., 2016].128

The border parameter is set to b = 1, implying that only the first and last layers of the models are never129

skipped. For a given model, a baseline to any instance of Nested-ReFT corresponds to the model130

fine-tuned with Nested-ReFT at ratio x = 0%, border b = 0 and mitigation method m = base. This131

instance corresponds to the model fine-tuned with ReFT using the base off-policyness and importance132

sampling formulation from existing works [Shao et al., 2024, Luong et al., 2024]. To our knowledge,133

there is no prior work that could fit as a fair baseline in the proposed new framework.134
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(c) Math12k

Baseline Base Practical Retrace-λ

Figure 1: Fine-tuning results across benchmarks. Red annotations indicate the smallest value; Green
indicate the largest.

Performance metrics and delta to the baseline To characterize reasoning performance at test-time,135

we report the average accuracy on the 5 math benchmarks [Liu et al., 2025]. To characterize compute136

efficiency gains at train-time, we report the token speed (total number of tokens processed divided137

by total runtime), and the total run time (expressed in seconds). We characterize Nested-ReFT138

run instances using the relative delta (∆) to the baseline, which is defined for any metric z as139

∆(z) = 100 · (z−zbaseline)
zbaseline

, where the absolute delta is ∆abs(z) = (z − zbaseline).140

3.1 Empirical Results141

The setup comprises 12 distinct instances of Nested-ReFT per model, and 1 baseline. The experiment142

includes 2 models × 3 datasets × (12 + 1) instances = 78 experimental configurations. The results143

are displayed in Figures 1a, 1b, and 1c. For ∆ Accuracy (%) and ∆ Tok/sec (%) the goal is to144

maximize the metric. For ∆ Runtime (%), the goal is to minimize the metric. Table 2 references the145

absolute performance deltas.146

Impact of off-policy roll-outs on performance On Table 2, for 1.5B checkpoints, the mean absolute147

performance delta for best case Nested-ReFT is higher than for the worst case, indicating that the148

magnitude of the performance gains achieved with Nested-ReFT is bigger than the magnitude of149

the performance drops. However, on 7B checkpoints, the mean absolute performance delta for gains150

is smaller than that of the drops. In both cases, the worst and best performances imply at most151

±2.6 points variation from the baseline performance. These results showcasing minor performance152

fluctuations corroborate the hypothesis that off-policy generations using Nested-ReFT have limited153

influence on the performance on reasoning benchmarks. Importantly, we highlight that some instances154

of Nested-ReFT yield performance improvements over the baseline while involving the generation155

of samples on a smaller model.156

Effectiveness of the off-policyness mitigation strategy We consider 3 off-polyciness mitigation157

strategies, namely Base, Practical and Retrace-λ. We observe that Retrace-λ displays the158

most stable performance across all models, fine-tuning datasets, and skipping ratios. Over the three159

datasets and two models (i.e. 6 configurations), the Base strategy achieves 1/6 best case count, 3/6160

worst case count and 2/6 neutral count. The Practical strategy achieves 3/6 best case performance,161

3/6 worst case, and 1/6 neutral count. This indicates that although Practical achieves peak162

performance, it is also unstable across configurations. The Retrace-λ strategy achieves 2/6 best163

case, 0/6 worst case and 4/6 neutral. These results indicate that Retrace-λ offers overall more164

stable performance compared to the Base and Practical mitigation strategies.165

Compute efficiency gains from off-policy roll-outs Following the theoretical analysis on the166

complexity, the efficiency gains translate into linear trends on the total runtime, and on the token167

generation speed. This trend is observed in all the settings covered (see Figures 1b, 1c and 1a).168

Specifically, the efficiency gain on both metrics increases linearly with the ratio x% of skipped layers.169
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A Related Works295

B Related works296

Nested-ReFT is connected to the literature on speculative decoding [Xia et al., 2024], as the idea297

of using smaller nested models exists in that literature [Elhoushi et al., 2024, Zhang et al., 2024,298

Xia et al., 2025]. The main difference is that nesting was explored to accelerate inference at test299

time, while we instantiate nesting at train time. We will see in the theoretical analysis and empirical300

evaluation that transposing the nesting idea at train time brings a set of new unique challenges.301

Note that the proposed technique employs a depth wise nesting approach (layer skipping), but other302

width-wise nesting techniques of transformer layers exist as well Narasimhan et al. [2025]. This work303

also differs from Roux et al. [2025] where off-policyness is formulated as the collection of positive304

and negative samples to improve learning performance. In contrast, we aim to find a cost effective305

behavior policy while maintaining stability affected by the degree of off-policyness.306

Parameter efficient fine-tuning (PEFT) Parameter efficient fine-tuning [Fu et al., 2023, Ding307

et al., 2023] consists in adapting only a subset of parameters. Low-rank (LoRA) adaptation [Hu308

et al., 2021] and its variants [Liu et al., 2024, Hayou et al., 2024] optimize training efficiency through309

the number of flops. Similarly, linear probing consists in optimizing the fine-tuning efficiency by310

restricting the parameter updates to the last layer of the LLM Tomihari and Sato [2024]. The proposed311

work is orthogonal to PEFT because we improve compute efficiency while all the parameters of the312

target LLM are updated.313
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Reinforcement learning for LLMs Luong et al. [2024], Kool et al. [2019], Schulman et al. [2017]314

propose frameworks but the limitation of the proposed frameworks is compute and memory cost.315

Dropping the reward model as in DPO Rafailov et al. [2023] and KTO Ethayarajh et al. [2024]316

can mitigate the memory overhead. However, in the specific problem of ReFT the reward model317

is a heuristic function, and the computational overhead is due to the behavior policy generating318

completions. To our knowledge, there is no work that aims to improve this completion generation319

cost in ReFT. More broadly in reinforcement fine-tuning (e.g. RLHF Bai et al. [2022]) efficiency is320

addressed from a data selection perspective Zhou et al. [2025], Shi et al. [2025] while the proposed321

framework addresses algorithmic variations for improved completion generation efficiency.322

C Algorithm323

Algorithm 1 Nested-ReFT

Require: Target model πθ (LLM), Dataset D, reward function R(x, y), skip ratio x ∈ (0, 1),
SFT epochs Esft, RFT gradient steps S, border parameter b, choice of stabilization method
hm(·, ·),m ∈ {base, 1, λ}

1: Step 1: Supervised Fine-Tuning (SFT)
2: for e = 1 to Esft do
3: Train πθ on (x, ycot) ∼ D using cross-entropy loss
4: end for
5: Step 2: Reinforced Fine-Tuning (ReFT)
6: for s = 1 to S do
7: Sample batch of prompts
8: Set ηs = πθs−1

9: Sample skip set with fb,x(ηs)
10: Deactivate layers in ηs using fb,x(ηs) to get η′s
11: Generate G samples for each x in batch using η′s
12: Score samples using reward model
13: Compute stabilization hm(η′, πθ)
14: Update πθs with rewards and hm(η′s, πθs) using RL objective
15: Set πθs−1 = πθs
16: end for
17: return πθS

D Analysis of Nested-ReFT324

D.1 Theoretical speed-up325

Consider a behavior model η that contains Tη identical transformer layers. Each layer has a computa-
tional complexity that can be expressed as:

Clayer = O
(
L2d+ Ld2

)
,

where L is the generated sequence length and d is the hidden dimension (i.e., width) of the layer326

[Vaswani et al., 2017].327

Property 1 (Complexity with Layer Skipping). Given a model η with Tη transformer layers, if we
skip Ux layers, the computational complexity of a nested model η′ is:

Cη′ = O ((Tη − Ux)× Clayer) .

The complexity of the inference or the forward-pass of η′ is reduced proportionally to the number328

of skipped layers Ux through the skip ratio x%. Assuming fixed generation length L and hidden329

dimension d, the layer skipping achieves a linear complexity improvement.330
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D.2 Unbiased Convergence on the bounded off-policy331

In reinforcement learning, we seek to optimize a policy πθ using gradient-based updates. However,332

direct sampling from πθ is not always feasible, so we employ a behavior model η for an off-policy333

update.334

Unlike game RL environments [Brockman et al., 2016] where the states are independent from the335

policies, tasks like language generation involve generating the next token conditioned on a prompt336

and all the previous tokens. Therefore, the action is the prediction of the next token yℓ and the state is337

sℓ = (x, ŷ<ℓ). Inducing exploration is non-trivial as it requires preserving the structural consistency338

of the state.339

Hence, we opt for an ensemble of nested behavior policies Z = {η′i}
|Z|
i=1 to generate off-policy340

updates of πθ, where |Z| = S in Nested-ReFT. To estimate the policy gradient, we use importance341

sampling with the weight hi
base(yℓ, sℓ;π, η

′
i). The behavior policy is selected uniformly from Z ,342

leading to an ensemble-weighted objective. Defining the mean behavior policy over the ensemble Z343

as:344

η̄Z(ŷℓ|sℓ) =
1

|Z|

|Z|∑
i=1

η′i(ŷℓ|sℓ), (1)

the expected objective can be rewritten in terms of η̄Z , ensuring stable updates as long as the345

importance weights remain bounded.346

Suppose, we are interested in the policy gradient updates using advantage (Aλ,γ,π
ℓ ) (referred to Aπ347

for brevity) estimation based on discounted λ-returns. Then, the advantage estimation for the target348

policy (π) is estimated as:349

Aπ(s, y) = Qπ(s, y)− V π(s)

To estimate the policy gradient update we compute the derivative of the expected advantage objective350

(J ):351

J = max Eπ [A
π] (2)

∇J = ∇Eπ[A
π] (3)

= ∇
L∑

ℓ=0

Aπ(sℓ, ŷℓ) · π(ŷℓ|sℓ) (4)

= ∇
L∑

ℓ=0

Aπ(sℓ, ŷℓ) · π(ŷℓ|sℓ) ·
η′i(ŷℓ|sℓ)
η′i(ŷℓ|sℓ)

(5)

= ∇
L∑

ℓ=0

Aπ(sℓ, ŷℓ) · η′i(ŷℓ|sℓ) ·
π(ŷℓ|sℓ)
η′i(ŷℓ|sℓ)

(6)

= ∇
L∑

ℓ=0

Aπ(sℓ, ŷℓ) · η′i(ŷℓ|sℓ) · hi
base(ŷℓ|sℓ;π, η′i) (7)

Then, the objective for a η′i ∈ Z can be re-written as,352

J = max Eη′
i
[hi

base ·Aη′
i ]
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Theorem 1. (Convergence of Policy Gradient with Ensemble Behavior Policies) Let,353

1. The importance weights hi
base(ŷℓ|sℓ) are bounded,354

2. The learning rate sequence over gradient steps s, αs satisfies
∑

s αs = ∞ and
∑

s α
2
s < ∞,355

and356

3. The behavior policy ensemble Z ensures sufficient exploration.357

With these assumptions, the policy gradient update using an ensemble of behavior policies converges358

to an optimum off-policy update from the expected advantage function weighted by the mean behavior359

policy η̄Z .360

Proof. The goal is to show that the using an ensemble of behavior policies for off-policy updates361

converges to the mean policy of the set, and the variance of the updates is controlled by a bounded362

measure on the importance ratio.363

Step 1: Unbiasedness of the Gradient Estimate We start by rewriting the objective:364

J Z = maxEη′
i∼Z [h

i
base ·Aηi ]. (8)

Since the behavior policy is selected uniformly at random, we can express this expectation as:365

Eη′
i∼Z [h

i
base ·Aη′

i ] =

|Z|∑
i=1

pi · Eη′
i
[hi

base ·Aη′
i ], (9)

where pi = 1
|Z| . Substituting the definition of wi, we get:366

|Z|∑
i=1

Eη′
i

[
hi
base

|Z|
Aη′

i

]
. (10)

Rewriting as a sum over the sequence steps:367

|Z|∑
i=1

L∑
ℓ=0

hi
base ·Aη′

i(sℓ, ŷℓ) ·
η′i(ŷℓ|sℓ)

|Z|
. (11)

By using the definition of the mean behavior policy, the equation simplifies to368

T∑
t=0

c ·Aη̄Z (st, ŷt) · η̄Z(ŷt|st). (12)

Since η̄Z is the expectation over the behavior policies, the modified objective to update the target369

policy (π) with an ensemble of behavior policies Z is unbiased.370

Step 2: Bounded Variance The importance sampling ratio influences the policy gradient update:371

Var
(
hi
base ·Aη′

i

)
. (13)

Since hi
base is the ratio between the log-probabilities of both policies, the variance depends on how372

different η′i is from π. Approaches like TB(λ), Retrace(λ), Off-policy Q(λ) have explored the variance373

minimization through bounding the off-policyness of the behavior policy [Munos et al., 2016]. The374

scale c can be bounded with hi
1, or hi

λ. The assumption that hi
base is bounded ensures that:375

Var(hi
base) ≤ c < ∞. (14)
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This ensures learning stability.376

377

E Architecture detail378

Model N W Skipped layers at ratio x
5% 10% 15%

Qwen2.5-1.5B 28 1536 1 3 4
Qwen2.5-7B 28 3584 1 3 4

Table 1: Skipped layers for various ratios x on Qwen2.5-Math-Instruct. L = # of layers, W = hidden
layer width.

F Experiment details379

Training generation details We consider Esft = 2 epochs for the SFT warm-up stage, similarly to380

[Luong et al., 2024]. The β parameter of GRPO is set to 0, implying no KL penalty is used, following381

emerging evidence that the extra compute brought by the reference model is optional [Roux et al.,382

2025]. The batch size is set to 16 for all models sizes, using gradient accumulation. We consider383

S = 99 gradient steps for ReFT, this corresponds to Erft = 1, Erft = 0.11, and Erft = 0.07 for384

SVAMP, GSM8k and Math12k datasets, respectively. Fractions of epoch imply that a proportional385

subset of the shuffled dataset D is used for fine-tuning. This allows for fair cross-dataset and model386

comparisons. The prompts are formatted using a Qwen-chat template commonly used by practitioners387

[Liu et al., 2025]. For the behavior model, we set the minimum and maximum length of the generated388

completions to to 256 tokens. This implies that all the completions have equal length. For training,389

all the other parameters follow the default from GRPO TRL library [von Werra et al., 2020].390

Evaluation generation details For evaluation, we use a math reasoning benchmark composed of 5391

datasets [Liu et al., 2025].The temperature is set to 0.6, the top-p to 0.95 and the maximum number392

of tokens to 32k. We perform pass@K with K = 1, implying the model generates 1 response per393

problem. This corresponds to a strict setup as the model is only given one single chance to answer394

correctly.395

G Additional results396

H Discussion397

Our controlled experiments show that it is possible to train smoothly, even when the degree of398

off-policyness increases. The influence on performance of Nested-ReFT has limited impact on399

performance. These results are achieved for fixed size generation for the behavior model. However,400

an increasing number of LLMs can produce adaptive responses, either short for simple problems or401

long for complex problems. The interaction between generating completion off-policy through layer402

skipping and its influence on the completion length is on open research problem. Furthermore, the403

nesting strategy (e.g. layer skipping) may have non uniform interaction effects on the generation404

length depending on the dataset and model scale. This suggests that increasing off-policyness with405

a learned strategy rather than a heuristic based approach based on layer skipping may handle the406

interactions more effectively.407
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Model Instance SVAMP GSM8k Math12k ∆abs

1.5B Best +0.008 +0.015 +0.026 0.016
Worst −0.016 −0.006 −0.005 0.009

7B Best +0.022 +0.010 −0.003 0.009
Worst −0.070 −0.017 −0.022 0.036

Table 2: Best and worst observed deltas per dataset and model size. ∆abs is the mean absolute change
to baseline.
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