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ABSTRACT

Recently, diffusion models have achieved a great performance with a small dataset
of size n and a fast optimization process. Despite the impressive performance, the
estimation error suffers from the curse of dimensionality n~1/D where D is the
data dimension. Since images are usually a union of low-dimensional manifolds,
current works model the data as a union of linear subspaces with Gaussian latent and
achieve a 1/4/n bound. Though this modeling reflects the multi-manifold property
of data, the Gaussian latent can not capture the multi-modal property of the latent
manifold. To bridge this gap, we propose the mixture subspace of low-rank mixture
of Gaussian (MoLR-MoG) modeling, which models the target data as a union of K
linear subspaces, and each subspace admits a mixture of Gaussian latent (nj, modals
with dimension dy). With this modeling, the corresponding score function naturally
has a mixture of expert (MoE) structure, captures the multi-modal information, and
contains nonlinear properties since each expert is a nonlinear latent MoG score.
We first conduct real-world experiments to show that the generation results of
MoE-latent MoG NN are much better than the results of MoE-latent Gaussian
score. Furthermore, MoE-latent MoG NN achieves a comparable performance with
MoE-latent Unet with 10x parameters. These results indicate that the MoLR-MoG
modeling is reasonable and suitable for real-world data. After that, based on such

MoE-latent MoG score, we provide a R* \/ SE g \/ S ngdy/\/n estimation

error, which escapes the curse of dimensionality by using data structure. Finally,
we study the optimization process and prove the convergence guarantee under the
MoLR-MoG modeling. Combined with these results, under a setting close to real-
world data, this work explains why diffusion models only require a small training
sample and enjoy a fast optimization process to achieve a great performance.

1 INTRODUCTION

Recently, diffusion models have achieved impressive performance in many areas, such as 2D, 3D,
and video generation (Rombach et al., 2022} Ho et al., 2022; |Chen et al.|[2023a; Ma et al., [2024; [Liu
et al., 2024). Due to the score matching technique, diffusion models enjoy a more stable training
process and can achieve great performance with a small training dataset.

Despite the empirical success, the theoretical guarantee for the estimation and optimization error
of the score matching process is lacking. For estimation error, current results suffer from the curse
of dimensionality. More specifically, given training dataset {z*}"_ ; with 2° € RP, the estimation

error of the score function achieve the minimax n % /P results for (conditional) diffusion models
with deep ReLU NN and diffusion transformer, where s’ is the smoothness parameter of the score
function (Oko et al., 2023; [Hu et al., 2024b}a; |[Fu et al., 2024)). It is clear that this estimation error is
heavily influenced by the external dimension D, which can not explain why diffusion models can
generate great images with a small training dataset. Hence, a series of works studies estimation errors
under specific target data structures and reduces the curse of dimensionality. There are two notable
ways to model the target data: the multi-modal modeling and the low-dimensional modeling. For the
multi-modal modeling, as the real-world target data is usually multi-modal, some works study the
mixture of Gaussian (MOG) target data and improve the estimation error (Shah et al.; 2023} |Cui et al.,
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2023} |Chen et al.,[2024b). When we delve deeper into the images and text data, a key feature is that
the image and text data usually admit a low-dimensional structure (Pope et al.,[2021; Brown et al.,
2023; Kamkari et al.,|2024)). Hence, one notable way is to assume the data admits a low-dimensional
structure. More specifically, some works assume the data admits a linear subspace x = Az, where
A € RP*4 o convert data to the latent space and z € R? is a bounded support (Chen et al., 2023b;,
Yuan et al.;|2023; /Guo et al., [2024). Then, they reduce the estimation error to n=2/ 4 which removes
the dependence of D. However, as shown in|[Brown et al|(2023)) and [Kamkari et al.|(2024)), though
the image dataset admits low dimension, it is a union of manifolds instead of one manifold. Inspired
by this observation, [Wang et al.|(2024)) model the image data as a union of linear subspaces, assume
each subspace admits a low-dimensional Gaussian (mixture of low-rank Gaussians (MoLRG)), and
achieve a 1/4/n estimation error. Though the union of the linear subspace is closer to the real-world
image dataset, the latent Gaussian assumption is far away from the low-dimensional multi-modal
manifold [Brown et al.| (2023)). Hence, the following two natural questions remain open:

Can we propose a modeling that reflects the multi-manifold multi-modal property of real-world data?
Can we escape the curse of dimensionality and enjoy a fast convergence rate based on this modeling?

In this work, for the first time, we propose and analyze the mixture of low-rank mixture of Gaussian
(MoLR-MoG) distribution, which is more realistic than MoLRG since it captures the multi-modal
property of real-world distribution and has a nonlinear score function. Based on this modeling, we
first induce a MoE-latent nonlinear score function and conduct experiments to show that MoLR-MoG
modeling is closer to the real-world data. After that, we simultaneously analyze the estimation and
optimization error of diffusion models and explain why diffusion models achieve great performance.

1.1 OUR CONTRIBUTION

MoLR-MoG modeling and MoE Structure Nonlinear Score. We propose the MoLR-MoG
modeling for the target data, which captures the multi low-dimensional manifold and multi-modal
property of real-world data and naturally introduces the MoE-latent MoG score. Through the real-
world experiments, we show that with this score, diffusion models can generate images that is
comparable with the deep neural network MoE-latent Unet and only has 10x smaller parameters.
On the contrary, the MoE-latent Gaussian score induced by previous MoLRG modeling can only
generate blurry images, which indicates MoLR-MoG is a suitable modeling for the real-world data.

Take Advantage of MoLR-MoG to Escape the Curse of Dimensionality. For the estimation error,
we show that by taking advantage of the union of a low-dimensional linear subspace and the latent
MoG property, diffusion models escape the curse of dimensionality. More specifically, we achieve

the R* \/ SE g, \/ SE  ngdi/\/n estimation error, where R is the diameter of the target data, dy,

is the latent dimension and ny, is the number of the modal in the k-the subspace. This result clearly
shows the dependence on the number of linear subspaces, modal, and the latent dimensions R, dy,.

Strongly Convex Property and Convergence Guarantee. After directly analyzing the estimation
error, we study how to optimize the highly non-convex score-matching objective function. Facing
nonlinear latent MoG scores, we use the gradient descent (GD) algorithm to optimize the objective
function. To obtain the convergence guarantee, we take advantage of the closed form of nonlinear
MoG score and show that the landscape around the ground truth parameter is strongly convex. Then,
with a great initialization area, we prove the convergence guarantee when considering MoLR-MoG.

2 RELATED WORK

Estimation Error Analysis for Diffusion Models. As shown in Section[I} a series of works|Oko et al.
(2023) study the general target data with a deep NN and achieve the minimax n~"/D result. Then,
some works analyze the general target data with a 2-layer wide NN and achieve n~2/% estimation
error with exp (n) NN size (Li et al., {2023} [Han et al., 2024)). For the multi-modal modeling, some
works study MoG data and improve the estimation error (Shah et al.,[2023;|Cui et al., 2023 |Chen
et al., [2024b). Except for the MoG modeling, (Cole and Lu|(2024) assume data is close to Gaussian
and then prove the model escapes the curse of dimensionality. [Mei and Wu| (2023)) analyze Ising
models and prove that the term corresponds to n is 1/4/n. For the low-dimensional modeling, some
works assume the target data admits a linear subspace (Chen et al., 2023bj |Yuan et al., 2023)). (Chen
et al | (2023b) assume data admit a linear subspace = Az with z € R and achieve a n=2/%. As the
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image is a union of low-dimensional manifolds, Wang et al.| (2024) models the target data as a union
of linear subspaces with Gaussian latent and achieve 1/1/n estimation error for each subspace.

Optimization Analysis for Diffusion Models. Since the score is highly nonlinear (except for
Gaussian), only a few works analyze the optimization process, and most of them focus on the external
dimensional space (Bruno et al.} 2023} |Cui and Zdeboroval [2023; [Shah et al., 2023} (Chen et al.,
2024b; L1 et al.2023; Han et al.| 2024). Since the score function of MoG has a nonlinear closed-form,
a series of works design algorithms for diffusion models to learn the MoG (Bruno et al., 2023} |Cui
and Zdeborova, 2023} |Shah et al., 2023} |Chen et al., [2024b)). For the general target data, |L1 et al.
(2023)) and |Han et al.| (2024) adopt a wide 2-layer ReLLU NN to simplify the problem to a convex
optimization. However, as discussed above, their NN has exp (n) size. For the latent space, only
two works provide the optimization guarantee under the Gaussian latent (Yang et al.,|2024a; |Wang
et al.,|2024)). [Yang et al.[(2024a) assume target data adopts a linear subspace with Gaussian latent
and provide the closed-form minimizer. [Wang et al.|(2024) analyze the optimization process of each
linear subspace separately, which is also reduced to the optimization for the Gaussian.

3 PRELIMINARIES

First, we introduce the basic knowledge and notation of diffusion models. Let py be the data
distribution. Given o ~ py € RP, the forward process is defined by:

da, = f(t)z dt + g(t) dB,,

where {B; }+¢[o,7] is a D-dimensional Brownian motion, f(t) is the coefficient of the drift term and
g(t) is the coefficient of the diffusion term. Let p; be the density function of the forward process.
After determining the forward process, the conditional distribution p;(x:|zo) has a closed-form

pt (2] 20) ZN(UCt;St$O7S?U?ID) )

where s; = exp (fot f(f)df) O = \/fot g2(&)/s%(£)d€. To generate samples from pg, diffusion

models reverse the given forward process and obtain the following reverse process (Song et al.| [2020):
dys = [f(t)ye — 9(t)*Vogpi(y:)] dt + g(t)dBy,  yo ~ po

where B, is a reverse-time Brownian motion. A conceptual way to approximate the score function is
to minimize the score matching (SM) objective function:

T
min Loy = / Ey g, ||V 1og ps (x4) — 59(zt,t)||§ dt, (D
sgENN 5

where NN is a given function class and § > 0 is the early stopping parameter to avoid a blow-up score.
Since the ground truth score V log p; is unknown, this objective function can not be calculated. To
avoid this problem, [Vincent| (201 1)) propose the denoised score matching (DSM) objective function:

. T
ming, enn £osM = [ Eazgrgo By a0 [V 10g 1 (24]20) — Se(xtat)Hg de.

As shown in|Vincent| (2011), the DSM and SM objective functions differ up to a constant independent
of optimized parameters, which indicates these objective functions have the same landscape.

3.1 MIXTURE OF LOW-RANK MIXTURE OF GAUSSIAN (MOLR-M0G) MODELING

This part shows our MoLR-MoG modeling, which reflects the low-dimensional (Gong et al.,|2019)
and multi-modal property (Brown et al.| 2023} [Kamkari et al., [2024)) of real-world data. More
specifically, we assume the data distribution lives near a union of K linear subspaces rather than
arbitrary manifolds. Concretely, for the k-th subspace of dimension dj, (represented by a orthonormal
basic matrix A}, € RP*dk with orthonormal columns for the k-th manifold), we place a ni-modal
MoG within that subspace:

ng

wy(z) = Zﬂk,l/\/(iﬂ; Ak AZEZ,ZAZT),
=1

where covariance EZJ = U,’C“JU,;‘I,I =1,...,n; with U,j,l € Rk xdn,1 (di,; < dj) and u,”;,l is the
mean of the [-th modal of the k-th subspace. As shown in (Brown et al.,|2023)), the different manifold
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has different dj, and we do not require that dy, is exactly the same for each manifold. Then, the target
distribution has the following form

K Tk
Z 1 Z
bo = k=1 K =1 7Tk,l-/\[<33§ AZNZJ’ Ag Z,IAZT) : @

From the universal approximation perspective, by placing enough components and choosing parame-

ters {71, 4% 1, X% 1 }» @ MoG can approximate any smooth density arbitrarily well, which is more

general than the Gaussian latent of [Yang et al.| (2024a)) and [Wang et al| (2024).

Nonlinear Mixture of Experts (MoE)-latent MoG score Let v+ = 5104 Ypiea =
stALUL UG AGT + 271 and Gpea(e) = o = sy — @iz ARUL UL T AT (@ = seni A7),

Under the MoLR-MoG modeling, the score function has the followmg form:

K ng
1 * * * Nk *T
Z e Z T N (2; Sty 1 Ak ARy 1,4 AL ) Ok 1,t,4()
Viogpi(w) = — 5 = Kl:11 i ’
D 7e 2 i N (@i e AL AfSx 0,4 ALT)
k=1"" I=1

This score function has a MoE structure, where each expert is the latent nonlinear MoG score. The
linear encoder Ay, first encodes images to the k-th manifold, and diffusion models run the denoising
process. After that, the linear decoder AT decodes the denoised latent to the full-dimensional i unages
Since the estimation error introduced by the linear encoder and decoder has the order Dd; /\/n
(Yang et al.l [2024a) and is not the dominant term, we assume the linear encoder and decoder are
perfectly learned and focus on the more difficult latent MoG diffusion part in this work. From the
empirical part, this operation is similar to using the pretrained stable diffusion VAE and only training
the diffusion models in the latent space. For the k-th low-dimensional manifold, the score function is

ng
) Z Tk, N(%"LD; Stuz,za 22,1,0 5k,l,t($LD)
Viogpes(a™P) = —— S0 : 3)

3
Vi
E Tea N (25 8¢5 1, Skt
=1

where 2P € R is a variable in the k th low-dimensional subspace, ¥y ; ; = U} k. lU + 721

LDy _ LD * T (LD x
and 0y, 1 (v77) = o7 — spup, — 2+'y2 Up Up (277 = sy ). Let

s,’;(xLD,t) = Vlogpt,k(xL ),s (xLD,t) = (si(mLD,t),sz(acLDj), e s}‘((xLDJ)) ,

where the parameters are 0* = {uj ;U }k=1,.. k. In this work, we want to learn the pa-
rameters of the ground truth score function. Hence, we construct a NN function class sy =
(s1(-y+),82(*y+), .., K (+,+)) according to the above closed-from of MoE-latent MoG score. Let
6 is the union of py,; and Uy, ;. Since we mainly focus on the estimation and optimization in the latent
subspace, we omit the superscript LD of the latent subspace when there is no ambiguity.

We note that this modeling

can capture the information Encoder Latent Subspace Decoder

of each low-dimensional man- 45 AT Rd’Rdl RO

ifold and the multi-modal :

property of each latent dis- \ %, m'

tribution. In the next sec- \ moe bx’”’”z
[R%

tion, through the real-world /

experiments, we show that the

llz/e[‘,?tgr-l;ft:fr:?(: rlr\n/lgg es (::(())rri ;1 z?rseg (a) MoLR-MoG Modeling (b) MoE-nonlinear MoG Score
with the MoE-latent Gaussian Figure 1: MoLR-MoG Modeling and Corresponding Nonlinear Score
score induced by MoLRG modeling and compatible with the results of the MoE-latent Unet. In
Section [5]and[6] we prove that by using the property of MoLR-MoG modeling, diffusion models can
escape the curse of dimensionality and enjoy a fast convergence rate.

*
1
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MNIST

CIFAR10

MoLR-Gaussian

Figure 2: Results of Different Modeling on Real-world Data.

Remark 3.1 (Comparison with MoLRG modeling). (2024) provide the first multi-subspace
modeling, which is an important and meaningful step. However, they assume a Gaussian latent with
0 mean, which can not capture the multi-modal property of real-world data. We also note that the

MoLR-MoG modeling can not be viewed as MoLRG with Zszl ng subspace since this modeling
assumes there are Zszl ng VAE, which is not reasonable in the real-world setting.

4 EXPERIMENTS FOR MOE-LATENT MOG SCORE

In this section, we conduct experiments using neural networks based on different modeling approaches
(MoLR-MoG, MoLRG) as well as a general U-Net architecture. The goal is to demonstrate that
MoLR-MoG provides a suitable modeling for real-world data, and that the MoE-latent MoG score is
sufficient to generate images with clear semantic content. Specifically, we first show that training
with MoLR-MoG yields significantly better results than the MoLRG model. Then, we show that the
MoE-latent MoG network achieves performance comparable to that of the MoLR-U-Net, while using
10x fewer parameters for MNIST, CIFAR-10, ImageNet 256. (Figure[2)

Following [Brown et al(2023), we train 10 VAEs for each number in the MNIST, which represents
our K low-dimensional manifold. In this part, we adopt nonlinear VAEs to achieve a good perfor-
mance in real-world datasets. However, we still note that a series of theoretical works adopt linear
subspaces, and our MoLR-MoG modeling with linear VAEs makes a step toward explaining the good
performance of diffusion models. After obtaining these 10 VAE, we train diffusion models with
different parametrized NNs. We adopt three different parameterizations: latent U-net, latent MoG
NN, and latent Gaussian NN. For the latent MoG, we adopt the form of Eq. 3] with nj, = 4, 8,40 in
MNIST, CIFAR-10, and ImageNet256 for k € [K]. For the latent Gaussian, we adopt the form of the
closed-form score 2024), which leads to a linear NN.

Discussion. From a qualitative perspective, as shown
in Figure 2} the generation results with MoLRG model-
ing are difficult to distinguish specific numbers. On the
contrary, the MoE-latent MoG can generate clean im-
ages comparable with the images generated by MoLR-
Unet, which means this modeling captures the multi-
modal property of each low-dimensional manifold. The
training loss curve (Figure [3)) shows that the loss of
MOoE-MoG NN is significantly smaller than the MoE- 3 4 € 50 100 130 14o
Gaussian and close to MoE-Uet, which indicates MoE- Epochs

MoG NN efficiently approximates the ground-truth Figure 3: Loss Curve for CIFAR-10
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score and supports our theoretical results. From a quantitative perspective, we calculate the CLIP
score for the parachute class of ImageNet with text prompts "a photo of parachute". The Clip score for
MoLR with Unet, MoG, and Gaussian NN is 0.304, 0.293, and 0.254, which indicates MoLR-MoG
achieves almost comparable text-to-image alignment with MoE-Unet. Furthermore, the MoLR-MoG
NN contains many fewer parameters compared to Unet since it uses the prior of latent MoG.

Discussion on Expert-Specific VAE. As shown in the score of MoLR-MoG, different from latent
diffusion models with a single VAE, there are ' VAESs to encode the input to the corresponding
manifold. We note that this operation is important for MoLR-MoG with small MoG experts. As
shown in Figure ] with a unified VAE, the unified latent is complex, and a MoG expert can not
learn a meaningful image with the target class. Hence, with a unified VAE, latent diffusion models
require a large latent Unet. However, with an expert-specific VAE (for example, we fine-tune the
pretrained VAE with the parachute class dataset), the latent manifold becomes simple, and latent
MoG experts are enough to generate clear models, which also supports our theoretical modeling.
We note that these experiments aim to show that
the MoLR-MoG modeling is reasonable instead of
achieving the SOTA performance. It is possible to
achieve great performance with a small-sized NN
using MoLR-MoG modeling in the application. For
large-scale datasets without labels, we can use a
clustering algorithm to divide the data into different
clusters. Then, we can train a VAE encoder, de-
coder, and latent MoG score for each cluster. For
the VAE training, we do not require training the
VAE from a sketch. We can LoRA fine-tune a VAE
pretrained on large-scale datasets (for example, DC- 7

AE (Chen et al, 2024a)) for our ImageNet experi- w/ Unified VAE

ments) for each expert, which shares a pretrained  Figure 4: MoLR-MoG with Different VAE
VAE backbone and has a smaller model size. When

generating images, we activate different VAE LoRA according to the clustering weight, which
matches the spirit of MoE. We leave it as an interesting future work.

5 ESCAPE THE CURSE OF DIMENSIONALITY WITH MOLR-MOG MODELING

This section shows that diffusion models can escape the curse of dimensionality by using MoLR-MoG
properties. Before introducing our results, we first introduce the assumption on the target data.

Assumption 5.1. For z ~ po, we have that [[z2 < R.

The bounded-support assumption is widely used in theoretical works (Chen et al.} 2022} [Yang et al.,
[2024ab) and is naturally satisfied by image datasets. For a latent MoG, each component concentrates
almost all mass within a few standard deviations of its mean, so by taking the most component means
and variances, one can choose R large enough that ||z |2 < R holds with high probability.

Since Moe-latent MoG score has a closed-form, we only need to learn the parameters (i, ; and Uy, ;
at a fixed time ¢. As a result, we consider the estimation error at a fixed time ¢. Let £(0;x,t) =

H59 x,t) — s*(z, 1) H , be the per-sample squared error at time ¢. In this part, we study the estimation
error with a limited training dataset {z;}7_;:

|£(6) ~ Z.(6)

To obtain the estimation error, we first provide the Lipschitz constant for sg and the loss function by
fully using the property of MoLR-MoG modeling and MoE-latent MoG score.

Lemma 5.2. [Lipschitz Continuity] Let L,, and Ly, be the Lipschitz constant w.r.t. sg. With
MoLR-MoG modeling and Assumption[5.1] there is a constant

L< \/z: K (L2, +L2,) = O ((Eflenk)%cw)

with £,(0) = S50 0(0: 21, 1) .
n

such that for any 0, ¢’, Hse z,t) — ser(z, 1) H2 < L6 — €¢|s, where Cy, = R*‘_S;B)u B,

H]l{az)(”,uk,lHQ. For sy and s*, we have that 2||sg(z,t) — s*(z,t)|l2 < 2(R + s;B,.) /7% =
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Then, we obtain the Lipschitz constant L' = L; L for the whole loss function. With this Lipschitz
property, the next step is to argue that fitting the network on n samples generalizes to the true
population loss. We do so by controlling the Rademacher complexity of the loss class and then using
a Bernstein concentration argument to obtain the following theorem.

Theorem 5.3. Denote by E,L(H) the empirical loss on n i.i.d. samples and by L(0) its population
counterpart. Then there exist constants C1, Co such that with probability at least 1 — 6, for all § € ©,

~ R+5 B EK n
|£(9)7ﬁn(9)‘ < O<Cl( t m Ek 1nkdk \/W)

where Cy = max||0; — 0;|2, C2 = olog?2, 0% = sup Var[¢(6; X, t)].
0c6 6co

This result removes the exponential dependence on D with the number of latent subspace K, the
latent dimension dy, and the number of modalities nj, at each linear subspace, which reflects the key
feature of the real-world data and escape the curse of dimensionality. The remaining question is why
diffusion models enjoy a fast and stable optimization process. In the next part, we show that with
MoLR-MoG modeling, the objective function is locally strongly convex and answer this question.

6 STRONGLY CONVEX PROPERTY AND CONVERGENCE GUARANTEE

In this part, by using the property of MoLR-MoG modeling, we derive explicit expressions for the
Jacobian and Hessian of the objective function for 2-modal MoG latent and general MoG latent.
Then, we establish conditions under which the resulting score-matching loss is locally strongly convex
for each setting. Finally, we provide the convergence guarantee for the optimization.

6.1 2-MODAL LATENT MOG HESSIAN ANALYSIS AND OPTIMIZATION

In this section, we show that, under sufficient cluster separation, the Hessian matrix near 6* simplifies
to a block-diagonal form, yielding local strong convexity, which derives a linear convergence rate.
As discussed in Section[3.1] following the real-world setting, we consider the optimization dynamic
in the k-th latent subspace. While our modeling contains K encoders and decoders, facing an input
image x, we can first determine which cluster image « belongs to, and then use the corresponding Ay
to encode it into the corresponding latent space. Then, we only use data belonging to k clustering
to train the k-th latent MoG score. This operation matches our experimental settings, and [Wang
et al.| (2024) also adopts this operation. When considering the optimization problem, to simplify the
calculation of the Hessian matrix, we set dj,; = 1.

Similar to|Shah et al.| (2023])), we start from a latent 2-modal MoG with the same covariance matrix

Yy and py 4 = py, Hy o = —, Which leads to the following score:
Vliogpi(x) = _ L aNlassuhs X3) Oi(z) & 3N (o~ Xi) ule) “4)
’ o SN (@3 sepr, D) + 5 (@ — s, Zk) ’

where e (z) = x—sypuf — 2+72 UrUT (2 —sipy), and 6), (z) = 2+ 85— 2+72 UpUr T (z+sip}).
Before providing the convergence guarantee, we make an assumption on the 2-MoG latent distribution.
Assumption 6.1. [Separation within a cluster] Within each cluster k, the two symmetric peaks are

well separated in the sense that ||s.z; — (—sepe)|| > Aintra, for some Ajpgra > v;. Consequently,
if a sample z is drawn from the “+” peak then its responsibility under the “—” peak satisfies

LN (@5 —seut, %) 2 2
P (r) = 2 ) ks 'k = Ofe Pinra/ 27)) <« 1,
(@) N (5 s, B) + %N(% =Sty X3) ( )

[T

and symmetrically r; (z) < 1 when « is drawn from the peak.

1
2
+
k
The above assumption means that the separation of the two modals is sufficient. For each symmetric
sub-peak, if the distance between them is relatively small, we can view them as having a mean of 0.
Since they are the same distribution (¢ = 0 and ¥ = U,U,’ J -+ ~21), they are the same regardless

of how they mix, which indicates that we can assume r,j ~ lorr, =~ 1. Moreover, in practice, if
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raw data do not exhibit such clear gaps, one can always apply a simple linear embedding to magnify
inter-mean distances relative to noise, thereby enforcing the same hard-assignment regime.

Since the ground truth score function has a closed-form under the MoLLR-MoG modeling, we focus
on the score matching objective function Lg;(6) instead of Lpgy(#) and abbreviate Lgy(6) as
L(0). We note that Lgn(6) and Lpsym(0) are equivalent up to a constant independent of 6, which
indicates the optimization landscape is the same. Furthermore, when considering the convergence
guarantee under a 2-layer wide ReLU NN, [Li et al.|(2023)) also adopt score matching objective Lgy
instead of Lpgnm. Though calculating the bound of Jacobian J}/ (x) = 9, se, J]f(r) and the Hessian
matrix w.r.t. £, we provide the local strongly convexity parameters for the objective function.

Lemma 6.2. [Local Strong Convexity] Combining Lemmawith continuity of V2L, there exist
o > 0 and neighborhood U of 0* such that V2L(0) = al,V0 € ©.IfVx € R¥% r}(z) = 1 or

) (x) = 1 are strictly satisfied,

52 AU 1)) + 1013 2113 — ||UkH2||Nk||2\/8(Uljﬂk))2 + 1Tk 3] 2113
(s7 +18)% 2

o = min

Theorem 6.3. [Local Linear Convergence] Under Assumptions[5.1|and[6.1] if we take 1, = n =
2/(n+ L"), and k = L' |, then there exists a neighborhood U of 0* such that

lot — 67l < (551) " 10 = 072,

where m is the number of gradient descent iterations.

This result gives a lower bound on the convergence rate near 8*. Due to its strongly convex property,
the convergence rate is fast, which explains the fast and stable optimization process.

Proof Overview. Assumption [6.T]justifies the Jacobian simplification (Lemma [C.2)), which in turn
yields the Hessian block structure (Lemma|C.4). By Schur complement, this result gives local strong
convexity (Lemmal6.2). Combining with the Lipschitz constant, we finish the proof.

6.2 GENERAL MOG LATENT HESSIAN ANALYSIS AND OPTIMIZATION

We now extend our analysis to the case where each subspace k carries an asymmetric Gaussian
mixture (Equation[3)). As before, we first state the key separation assumption and show that on each
subspace, the individual Gaussian distributions in the mixture of Gaussian are highly separated from
each other. Then, we simplify the Hessian and prove local convexity. Finally, we conclude a linear
convergence rate based on the strongly convex and smooth property.

Assumption 6.4. [Highly Separated Gaussian] Consider the Gaussian mixture

Tt N (@5 fke,1, Xt

ng
pr(x) =) maN(@; pe, r)s Tk \T) 2= '
(z)=> ( ) (@) o i N (s iy Besi)

=1

There exist constants ¢ < 1 and § < 1 such that when z ~ p; we have

Pr (Ell6{1,...,nk}withrk’l(x)21—5) > 1-04.

TPk

Justification. With MoLR-MoG modeling, after adding diffusion noise of scale ~;, each point
2 remains within O(+y;) of the subspace’s moment-matched center fix. Concretely, the subspace
structure (or a preliminary projection onto principal components) ensures ||z — x| < A = Cvy,
with high probability, for some moderate constant C. Hence, any third-order Taylor term o ||z — fi |3
is O(v}), which vanishes compared to the leading Hessian scale O(+7). In the following corollary,
we further show the approximation effect of equivalent Gaussians.

Corollary 6.5. Assume that ||y ; — iy, ;ll2 < 6, [|[Ug, — Uy Sll2 < eand ||z — pgll2 < A. We have

log p(x) —log p(x)|]2 = O(e + 6A + A%)
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Remark 6.6 (Separated Gaussian simplification). For simplicity of description, we assume the
individual Gaussian distributions in the mixture of Gaussians are highly separated. Actually, if there
are nj, Gaussians that are not separated from each other, we can employ clustering techniques to
transform them into nj; mutually independent Gaussian distributions. The error caused by such an
operation can be calculated using corollary[6.5] The core intuition is that the modals should not have
much influence on each other. Hence, we can also use the idea of recursion to first cluster the general
MoG into a 2-modal MoG latent. Then, we can use the analysis of Section[6.1| with Assumption [6.1]

Then, similar to the above section, we also calculate the Hessian matrix and show the local strong
convex parameters. Finally, we provide the convergence guarantee for general MoLR-MoG modeling.

Lemma 6.7. [Eigenvalues of the Hessian] Assume Assumption[6.4) the Hessian at the k-th subspace
is convex on a neighborhood of 0*. If Vx € R, r,;" (z) = 1 or —1 are strictly satisfied, we have

2
Tk lSt
Amin (H, =g
) = G
and Ain(Hy, U, ;) has the following form:
(Wk7l4(Uzzsz,z))2 + Uk 130113 — IIUk,z||2Huk,z||2\/8(U,Luk,z))2 + IIUkJII%IIukJII%) /2

Lemma 6.8. [Local Strong Convexity] Assume Assumption in a neighborhood of 0%, V2 L(0) =
I, > 0,0 € ©. IfVz € R¥*, 31 € [ng],r1(x) = 1 are strictly satisfied, o' = min{\1, A2},

4
s Cr1Y o _
where Ay = minj—1 . n, (5%%5)2 JAg =ming—12, . n, = )\min(HUk,lUk,L)'

Thus, even without symmetry, equivalent Gaussians and sufficient subspace separation recover the
same local convexity and linear convergence guarantees as in the asymmetric case. Similar to
Theorem[6.3] under Assumption[6.4] we can obtain a convergence guarantee.

Remark 6.9 (Previous MoG Learning through Score Matching). [Shah et al.| (2023)) and [Chen et al.
consider MoG data and analyze the optimization process of diffusion models at the full
space. However, these works aim to design a specific algorithm to learn the MoG distribution instead
of using a standard optimization algorithm. On the contrary, by using the MoLR-MoG property to
calculate the Hessian matrix, we adopt the GD algorithm and obtain the convergence guarantee.
Remark 6.10 (Initialization). Since the multi-modal GMM latent leads to a highly non-convex
landscape, Theorem [6.3]and the corresponding asymmetric variant require the initialization to be
around 6* to guarantee local strong convexity and obtain a local convergence guarantee. As the
MoLR-MoG is the first step to model the multi low-dimensional and multi-modal property, we leave
the analysis of the global convergence guarantee as an interesting future work.

6.3 ANALYSIS WITHOUT HIGHLY SEPARATED CONDITION

In this part, we extend our analysis to latent MoG with overlap, which is closer to the real-world
datasets. We define the pairwise overlap factor ; ;(x) between components 4 and j at the k-th
manifold

&ij(@) & rp(a)ry ().
and the maximum expected overlap for the manifold as: €qyerap = max; » i B~ py (€ (x)].

Without the high-separation assumption, our analysis proceeds in two steps. With the overlap factor
€overlap,» WE first examine the block-diagonal Hessian, deriving a refined lower bound «. Second,
we analyze the full Hessian by treating off-diagonal interference as a perturbation bounded by the
overlap factor. Applying Weyl’s Inequality, we prove that the global matrix remains positive definite
provided the perturbation (introduced by the overlap) is smaller than the effective diagonal curvature
«, thus guaranteeing linear convergence.

Lemma 6.11 (Minimum Curvature for 2-Mode Mixture). Consider a mixture of two Gaussian
components. Let €yyeriqp = SUD, TZ'(T)T; (x) denote the maximum pointwise overlap factor. The
minimum eigenvalue of the ideal Hessian matrix, denoted as o_y04e, 1S bounded below by:

Q2 mode é (1 - 460\'(’}‘1{1})) min (/\min (Huk, s )-, /\min (HUk Uy )) )
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and

!/
/\min(H) Z Q2-mode — C Er)vprlap > 0 )

where C” is defined in[E-1.3l

Lemma 6.12 (Minimum Curvature for Multi-Modal). Let e/%" = > 41 El&j.1(2)] represent the total
probability mass leaking from the l-th component due to overlap. The minimum eigenvalue of the
block-diagonal Hessian, denoted as cuiri-modal, 1S determined by the component with the minimum
effective mass:

QMulti-Modal 2 ,G{inin } [(kal o GZT;‘I) min ()‘min<HH;,._mk,7)a >\min(HUk,JUk.z))] )
ooy

and

Amin(]—]) Z A Multi-Modal — C- €overlap »

where C'is defined mm

For the Hessian to remain positive definite, the intrinsic weight of every cluster must exceed its total
confusion with other clusters (i.e., Ty ; > F’,‘f)_’;’/for all l).

7 CONCLUSION

In this work, we provide a mixture of low-rank mixture of Gaussian (MoLR-MoG) modeling for
target data, which reflects the low-dimensional and multi-modal property of real-world data. Through
the real-world experiments, we first show that the MoLR-MoG is a suitable modeling for the real-
world data. Then, we analyze the estimation error and optimization process under the MoLR-MoG
modeling and explain why diffusion models can achieve great performance with a small training
dataset and a fast optimization process.

For the estimation error, we show that with the MoLR-MoG modeling, the estimation error is

R* \/ oK \/ YE  ngdi/y/n, which means diffusion models can take fully use of the multi

subspace, low-dimensional and multi-modal information to escape the curse of dimensionality. For
the optimization process, we conducted a detailed analysis of the score-matching loss landscape.
By formulating the exact score in both symmetric and asymmetric mixture settings, we derived
explicit expressions for the parameter Jacobians and identified the dominant components under
standard separation assumptions. Then, we prove that the population loss becomes strongly convex
in a neighborhood of the ground truth score function, by estimating the Hessian and presenting
lower bounds on both its minimal eigenvalue and the convergence rate. Then, we provide the local
convergence guarantee for the score matching objective function, which explains the fast and stable
training process of diffusion models.

Future work and limitation. Though we have extended the situation to multi-manifold MoG, how
to extend the analysis to more general non-Gaussian sub-manifolds (e.g. heavy-tailed or multi-modal
beyond second moments) by higher-order moment matching is still unknown. Meanwhile, we wish
to design optimization algorithms or network architectures that explicitly leverage the block-diagonal
Hessian structure for faster training. For example, we can perform a natural-gradient step separately
in each block with a block-diagonal Hessian with decomposed data, which will accelerate the
optimization process.

Ethics statement. Our work aims to deepen the understanding of the modeling of diffusion models
and explain the success of diffusion models from a theoretical perspective. The MoLR-MoG modeling
has the potential to achieve a great performance with fewer parameters. Hence, this work can be
viewed as an important step in understanding diffusion models, and the societal impact is similar to
general generative models (Mirsky and Leel 2021).

Reproducibility statement. The detail and description of the real-world experiments are provided
in Appendix [} We detail the model, hyperparameters and data.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

As this work mainly focus on the new modeling of diffusion models from a theoretical perspective,
large language models were only used for minor language editing to check grammar. All ideas, new
modelings, experiments, theoretical guarantee, discussion and writing decisions were made entirely
by the authors.

B SCORE FUNCTION ERROR ESTIMATION

B.1 CALCULATE V log p;(x) AND DECOMPOSITION

Consider the k-th subspace

pri(z Zﬂ'kl-j\/ (Hret, Biet)

=1

where Zk,l = S%Uk,lU]Il + %52[.

We know that
1 s7
2_1:(1— ¢ UklU )
kT2 247 k.l
52
Vp (@ QZWMN e 1 Xkt) (I -3 UklUkl) (@ — pwa)
st +7

which indicates

n S?
Vper(z) 1 Do TN (e, Xiet) (I - WUk,zU;L)(CC - Mk,z)

Vio =2 Tk
gpek(z) = pin(@) A Yo TN (e, Xe)

We want to learn the parameters of the score function:
sp(z,t) = Vlogpy i (),
where the parameters are {u; ,, Uy}, k=1,..., K.
And
s (z,t) = (s7(z, 1), 85(x, 1), ..., 85 (2, 1))

Define
R(si) = E [||sk(z, ) — sp(x, 0[], Z sk (2, ti) — si (i, t3) ]|

We have the following decomposition:

R(3,5.) = Bu(s,5.) = R(3,5.) — R(sp) + R(s}) — R(sk00) + Bn(sk0-) — RBn(3,5,)
—_—

n

Estimation Approximation optimization
‘We can also obtain that
K
s) =Y R(sk)
k=1

Since Estimation and Approximation reflect the fitting ability of the network, we analyze the first
term first. Then, in the next section, we analyze the optimization dynamic.

13
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B.2 ESTIMATION
First, we show that f and loss function are Lipschitz. We will first prove that sy, is Lipschitz for VE,
then we can know that s is Lipschitz.

Lemma B.1. [Lipschitz Continuity] Let L,, and Ly, be the Lipschitz constant w.r.t. sg. With
MoLR-MoG modeling and Assumption[5.1] there is a constant

L <2 m(L3, + 13,) = 0 () Cu)

such that for any 6, ¢’, (z,t) — sgr(x,t) ||2 < L|o—¢

t
HllcalXHMk’l”Z For sg and s*, we have that 2||sg(z,t) — s*(z,t)||2 < 2(R + s:B,,)/7¢ = L.

(R+5:B,
9, Where C,, = +S;7)Sf B, =

Proof. Since we analyze the estimation error at a fixed time ¢, we ignore subscript ¢ for Xy, ; ¢, Wy ¢,
wy ¢ and dy, ; » and define by
Sk = s;Ur Uy + 721
wy(x) = 3% 7 N (@5 Seir1s Bkt)
1

Wg,1 = Mﬂk,l/\/(fﬁstﬂl@bzk’l)
52
5k,l(55) =T+ Sk, — 2+’y Uszkl( + Stpn,1) -

Assume that ||Uy ;||2 < By, ||pk,ill2 < By, max{By,B,} = C, and ||z||s < R forVz € X.

For X, ;, we know that
1
Skt = UkaU; 971 = %1 = Anin(Skt) 277 = 155112 < 2
t

Osk,0(x,t)

Osp,0(x,t)
k Uk 1

To obtain the first L in this lemma, we need to bound ‘

and ‘
2

2.

The bound of ‘ %:?t) H2 For the latent score of the k-th subspace, we have that
1 Xk )
(1) = - St D)
A/t w ()
n ow T 00 owy (x ng
Osea(r,t) 1 Sy (gt (e) + 25 (@) )wp () — S (51w (2)01,(x)
Ok, % ( ) ’
n Owy,; (x 06,1 (x ow n
e | Sl a0 Rty ] N el S GG
Oty ~ F wy(z) , wj ()
To bound this term, we separately show that
(1)wg () has a lower bound.
0 00
(2)wg,i(x), dki(x), ugﬂl (x)’ k() have upper bounds.
k
Owy (w) 6 ( ) an OOy, l(ac) wy, l(x) Owy (x) Enk wy, l( )5k l(x)
3) O R == D ’ [P L : have upper bounds.
2 2 2

(1) wg(x) has a lower bound.

wy(x) = X% 7 N (@5 Sefik,1, Xk, ), which is continuous.

14
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Since continuous function has maximum and minimum in a closed internal and ||z||2 < R, we can
assume that wy (x) > my.,. And for any x, wg(z) > 0, so m,, > 0 holds.

(2) w1 (x), g (), Mg’#lim), %”:m have upper bounds.

We already know that continuous function has maximum and minimum in a closed internal and
[|z]l2 < R. Thus, we can assume that wy(z) < M,,, . We also have that

_n _1
w () < My, < Xm0 (2m) 72 | S |2
For the second term, we have that

57 52
opi(z)=x—s 55Uk Uy (v — s I— t U U T — 8 ,
ket () it = Ui i thk1) = ( T4 7 Uk kl)( thk,1)

whose Ly norm is bounded by

s
‘ (I - UklUk z) (© — s¢fin,1)

< lzllz + lsepnallz < R+ 5By, -

Pty 2
Then, for the thlrd term, we know that
&Sk l(ac) S? T 2
— =5+ 5——=5Up U, = — I - Uk lU .
b, T R s7 n A
For the last term, we have we have the following expression
owy 1 (x s _
%(l) = —5/\/(93; S¢fk,l Zk,l)zk}(gc — S¢fik) -

For term ||Z,;}(x — Stlik,1)||2, we have that

IS5 (@ = sep)ll2 < IS5 ll2ll = sepnill2 = ,ng <3 (R+H5tukz|| )5

which indicates

8wk l 1 1
H 3 < s N (@5 sppie, Bet) =5 (R4 | sepintll2) < seN (@5 sepip, Br) — (R + 508),)
“kl 2 Vi Vi
3wk 1
H 3 < B s N (@ s pinet, Biet) —5 (R4 5¢By).
Bt o Vi
dwy, (x) ny 9k (=) Bwy, (x) n
3) 8:“ () , aE azéklx)ww(z) ) v Z;lu:;)l(x)ék 1) have upper bounds.
2 2 " 2
For the first two term,
dwk(:c)é 1(z)
8ukl o S%(R—’-StB )
Wk Vi
2
and
ny 00k, (x)
Haékl(m) = Constant < s; T wi () < s¢
O |l - wy () -

For the third term, we know that

Gl s w1 (@) 01 () siwd ()25 (R + 5,B,)

§2
Ok, 7 _ St (R
< = < (R+5B,).
w}(z) 2 w} () R A
Combined with the above three, we obtain the bound for ’ %}Ef” :
; 2
n Owp OOy, Owyg (x n
H sno(w,t)|| _ 1 (|| S Tgei + T )oka(x) ) (57w ()3 (x))
Opry |y — 2 wy, () w(z)
2 2
52 s2(R+ s:B,,)?
< L(R+ sBy)? +o ot 5(R+s:B,) = O(W).
Vi ’Yt Vi
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The bound of ‘ %}Ei’ﬂ H . Now we compute the part about Uy, ;. Through some simple algebra,
: 2
we know that
DI 9701«,1(1)5 00y 1 () _ Owg(@) (e 5
Osuo(z,t) 1 Z%(Tau, Owa(@) + g P wka(@))wi() — Tp o (5 wia (2)dk,(2))
OUk, 7 wi(z) '
Then, we have the following inequality
n, (Ow T 00y, Owy (x
Osea(r,t) 1 S (o (e) + 2wy y(w))wi () — SGED (S wi i (2)0 ()
Uk, Vi w(z)
n 19] a4 Owy (x ng
H Osno(wst)| . 1 (|| B CoREE ea(@) + T Puna@)) | T+ (S (@) (@)
ks |y~ 7 w () wi ()
2 2
Similar with ’ %}Ef’w , we need to provide:
' 2
(1) The upper bound of 7 w’“ L and gg’;’)ll ,
2?j1<8‘;5;jf,j’)5m< )+ 2w (2) 3 (S, w1 ()00 ()
(2) The upper bound of T on @) and )
2 2
(1) The upper bound of 3 dw’” and ggi‘fl.
For the first term, we have the following form
Owy,1 _ ﬂkzaN(x; Stk Dkl
aUk’l ’ aUk
1 3 B
= 257 N (5 50ttt Sa0) (B (@ = sepnn) (@ = sepined) " St — S )| Uk -
Then, we know that
Owg,; o (R+sllprall2)® 1
=\ < 2m N (@5 sepue g, Bip)sg (——————— + —
H Ukl bt Bt )33 7 2
R+sB,)> 1
< 2mp N (5 sepge 1, Em)ﬁ(% +—)-
"t Vi
For the second term, we have that
(%k l(x) St2 T T
: =-2 U, (x—s k_lI-i-Uk’liL’—S k,l s
5t = 2y Ol = sk )T+ Vol = suma) ")
which indicates
0,1 () 57
. 2 R+ ||s <2(R+|s
22| <2y (e uale) < 200+ sl
2R+ 5,B,) .
o, (Tl 5y 1 () + 295 D w1 (2) O ) (578, w1 (), 1 ()
(2) The upper bound of || ——— 27! k;k(m) Pkt ™ and ||kt }(;)l o
2 2
E;L:kl(awk’l(z)(sk,( )_|_ ka,l(x)) R+sB 3 1
Uk, Uk, < S?(( ; /L) + 72) + 2(R+ StBu)
w(x) Vi Vi
2

We also have

Owy (x n
o Ciho@da@) | (R4 s | 1
wk(a:) ) Tt ’Yt2
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0sp.0(z,1t) 9 <(R+stBu)2 1 > 9 ((R+stB 21

S < s (e — ) 2R+ 5 By) 87 | —— -+ — ) (R+5:B,)
H Uiy |, = 7 v B 7 2 o

=0 ((R + Stfu)35%> '
Tt
Therefore, sg j, is Ly-lipshiz, where
1(R+ s,B,)3s?
Ly < nk(Ll%k,l + L%]k.l) =0 <n’5 ’y—flt :

Furthermore, we know that

K
Is0(2) = s0(v)l, = (Z

1
. 2\ K _ . k
sg,i(z) — Se,z'(y(l)))H ) < (Z Lif| (a2 — y@|3)% < ZL?HI —Yll2-
=1 =1

Thus,

After obtaining the Lipschitz constant for sy, we bound the gap between sy and s*:

2
n . 2 T 2 St T
1 Xk T N (25 Sefuk1, 57 U,:ZU,’;Z +771) (Jc — Stfble] — 3124:%2 Ui Uk (x — stuk,l))

Viog pix(z) = —
k(@) v? S TN (s sepet, stUR U T+ 42T

With the following bound

2
S
& = sepny — 5——5Up UL (@ = sppng)ll2 < R+ 1By,
sty

we have that
1 1
[Viogps(x)l < (R4 5:B,) and 1o @)l <~ (R+ B,
t t
which indicates

2
llsk,0(x) — Viog per(z)l|2 < ?(R +s:B,,).
i

Hence, we obtain that
Ly <2||sp9(x) — Viogpyi(x)||2 = O(R+ 5¢B,,) .
[ |

Lemma B.2. [Rademacher Complexity] Let F = {£(0;-,-): 8 € ©} and suppose © has diameter
Ro. Then the empirical Rademacher complexity satisfies

R (F) = O(L’\/g).

Proof. Let function class F = {sg(x) : 0 = ({{ptk,i, UkJ}l”:"l}kK:l) € O}, where ;. ; € R4, Uy €
Rd

We know that the number of parameters

p = Bgznn(d + d) = 255 ndy.

17



Under review as a conference paper at ICLR 2026

And the covering number of the parameter space is

C p
Neol- < (£)
If f is L-lipschitz, we know that

€
V@l,eg S @, ||f91 - f92HL2(p) S L||91 — 92“2 and VG, 39]‘, St”@ — 0j||2 S E

= [lfo = fo,llL.y < L0 —b5]2 < e
Thus, assume that ||#; — 6|2 < C; for any 6,,0; € ©
C
Mo, ) < (P
€ ChL
= N(7:0, - 1l2) < ( -

€

)P
€ C1L C1L € C1L
= N6 F o) <NCE 0,010 < (CEp < (OB, tog NS 7. - lag) < ploa(DE

We also know that diam/(F) < L diam(©) = C; L, with Dudley integral, we have

192 diam(F)
Ra(F) < f V10 N (e, |+ [l )de
Cﬁ
6./mp p
< \/ﬁ i po Vtexp(—t)d o C,L =0(Cy \/;)

We take the squared loss function.

Ru(L) < LRy (F) = 0(01LZL\/§).
|

Theorem 5.3. Denote by En(O) the empirical loss on n i.i.d. samples and by L(0) its population
counterpart. Then there exist constants C1, Cg such that with probability at least 1 — 6, for all 0 € O,

1£(0) = £4(0)] < O(cl (B + 5:By) \/ﬂ\/m M@)

where C1 = maxHé) — 0|2, Co = alog? o2 = sup Var[((0; X, t)]
0co

Proof. Since
LiRn(F) = 0(01L1L\/§).
We have
A = sup|L(0) — L(0)| = 0(clLlL\/§)

0co

= E[A] = 0(01/:[/:\/5).

By Bernstein inequality,let 0% = supV ar[l(X; 0)],we know that
0cO
Pr(sup|L(0) — L(0)| > E[A] + €) < 2exp( ne’ ) < 2exp( ”62)
— € xp(— xp(— ).
geg - - P 2(02 + LiLCye/3)" — Pl7352

Let 2 exp(— ) < 0, we can obtain that

Pr(gggm(@) = L(9)] > ClLLl\/ng 02\/@) )

18




Under review as a conference paper at ICLR 2026

B.3 APPROXIMATION

Since our network can represent V log p(x) strictly, we have

Approximation Error = 0

C 2-MODE M0G OPTIMIZATION

C.1 SETTING
In this section, we analyze

1 2rrapraT 2 s? —
sN(@;sepn,si UL UR  +: 1) w*Stﬂk*WUkUk (z—s¢pr)

( ) Vp: k(l') 1 + 3N (z3—sepr,s; UL UL T +421) (IJFSth*%UﬁU%T(WFSth))
Viogpip(z) = ——~- = —— )
’ Pek () VP SN (@5 sepue, sSEUFUET +21) + SN (w5 —sepn, sEUFUET +471)

which can be reduced to

Vlogpsk(z) = 1 g N (550, Bg) 07, (x) + 3N (25 =50k, T ()
t,k -2
" SN (@5 sepr, ) + 5 (@3 —sepue, Bie)

; (&)

2 2
where e (z) = x—stuk—S%‘:—‘V?U;U,’f(a:—stuk),and 8 (x) = x+stuk—sgi—*ﬁU;‘UgT(I+stu;€).

C.2 OPTIMIZATION

Assumption C.1. [Separation within a cluster] Within each cluster k, the two symmetric peaks are
well separated in the sense that ||s.uf — (—sif)|| > Aingra, for some Ajpgra > v;. Consequently,
if a sample x is drawn from the “+” peak then its responsibility under the “—” peak satisfies
7‘_(33) _ %N(LL‘, _StM;;’ZZ)
’ SN (s, B5) + 5 N (@5 —semy, 3)

= Oe Bt/ @D < 1,

and symmetrically ;" (z) < 1 when x is drawn from the “—” peak.

In the following discussion, we assume that © € k-th manifold, which means that w;(z) = 0 if i # k.
Lemma C.2. [Jacobian Simplification] Under Assumption in a neighborhood of 0* the first
derivatives simplify to their “self-cluster” terms: J}'(x) = 0,80 ~ s:(I — aPy)/v} and

252

JV(x) %
H N T

(i @)UY (+seun) I+ (a+seun) Uy )+ (2) (U (2= sepne) I+Uk (z=se00) 7)) -

Proof.
w; (z wi (= ! (x — e (x wy, (z — ’
L P D 57 )+ L e () + 25 D o () + 2 o ()RS wn () Sy 2L (wy (2)8) () 4wy ()en ()
P wi ()
., 85, o dw,, (x) ow} (x)
| wp (2) 2w () 2] T 0e) + T (o)
Y wg(x) Y w (x)
TermA
Owg _
) S (e (2)0 (x) + wi ek (@)
Y wi (@)
TermB

We will now prove that term B can be ignored compared to term A under our assumptions.

19
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For term B, we have

Ll . Ow, (z ow; (x
%(wk (z)0),(x) + wy ex(z)) - #’E)(y( )+ k( ) ex ()

Yiwi () viwy(z )
1 Owg(z), _ , + owy, () , ow (z)
= w;, ()0, (x) +w, (x z)) — wg(z)(———=6,.(x) + T
e (T () (a) i ()en(e)) = (o) g ) + T )
1 owi(x) _, owy, (z) owy, (x) _ . Owi(x)
= or.(x) + wi(z x) —w; k or.(x) — k T
s (T i ()3 (a) + S Dt () — et () 2 ) — i (o) 5 e o)
1 ow _ dwy | ,
= w w z) — 0. (x
vfwi(x)<8ﬂk k o r ) (ex() k()
2 owf _ dwy n ( s? )
=- Fawr — ) (14 7 30
Vfw;%(l’)(aﬂk T o w) \IF + Kk ) St
 eurwrsite (14 00T ) o = O o)
*ngi(x)tkkk St+7kk HE = 'Y? tIIHE|2 2).
And for term A, we have
— 96, (x Oer (x
wy, (z) au(k) 4w ( ) 82(;6) :O<St||uk|2|w+—w|)
Vi we () ook TR
Thus,
O (sillae o121 4o 4o
Vi :O<rk2’rk+wk”x”2> :O(rkrkw:HxH?) N
( el |2|w ,:|) Velrg =l Vi
Thus, Jf & = (rf (1) 262 + 1 (2) 258)) = — 24 (v () — 1 () (1— - UkUk>
We will analyze J now.
o _ _ 1 CHPa@r e @+ el @) e () ()= 25 g (2134 )+ (2
¥ ’Yf w,%(x)
_ 1 St )+ el @)
v w(z)
ow; (z ow (z wi (x _
4 Do)+ SRae) | SR @) +uife(s)
wi () wi(z) '
By calculating, we have
O (x >+ D ep(x) 29Dk (wy (2)04(x) + wi ()
_ 1 dwy, (z) o, dwyt (x) dwy () ,
= 27 (o) (T 8 0) + L (o) = T i @) 2) + v e (o)
1 ow, () , 8w,j(gc) Owy ()
= oy (s e ke + P e ) — ST i @)61) + s (2)
1 8w;r _ Ow, |
2 3
=_ [N(:c ot £) M () = N (@5 —sypn, $) M~ ()| U (I = a U
3
= O(rjry, ).

.
(58 + %)

20
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where Mt (z) = Sz — spup)(z — sepr) ' 87 — DL M~ (2) = S Yo + sgup)(z +

2
Ty-1 -1, _ s
Sipg) X=Xt a= e

‘We also know that

9y (x — Oeg (x
S (% P (@) + 25wl (@) el 5l
K - O 2 2 - O 2 2
Zkzlwk(x) s7 + 57+ v

3
O(rr, ——at—s
e rermn)

3 o
(k)

W(G(JJ)(UJ@ + sepr)] + (4 ser) Uy ) +rif () (U (2 = sepr) I+ Ug(@ — sppr) 1))
|

Before we provide the simplification of Hessian, we first prove that for a,b € R® M = a'bl, +
ba" , MM is positive-definite if and only if bTa # 0. At the same time, we provide the minimum
eigenvalue of M M T, which will be used later.

Lemma C.3. Let a,b € R" and M = a'bl,, +ba'. MM is positive-definite if and only if
b'a #0.

Moreover,

4(a"b)? + [|all3[1Bl13 — llall2llbll2+/8(aTb) + lalIZ]BlI3

Proof. Let M = a'bl,, +ba’, c = a'b. We know that Vo € R”,
" MM" e =(M"z)" (M x)
= ||MTz|3 > 0.
Thus, MM " is semi-positive definite.
We can also have that
1
M| =|a"bl, +ba"| = "I, + ~ba"| = 2c" >0,
c
where ¢" = 0 if and only if b"a = 0.
The last equation holds because

I, +uw'|=140"u

Thus,
We can further get the eigenvalues of MM .

MMT| >0, MMT is positive definite.

Expanding gives the convenient representation
MM" =(a"b)’I, +a"b(ba” +ab") +a'abb’. (6)
Yz e R, ifx a=0and 2" b= 0, we have:
MM "z = (a'b)?z.

Thus, (a'b)? is an eigenvalue of M, and its eigenspace contains the orthogonal complement of
span{a, b}.If a and b are linearly independent then dim(span{a,b}) = 2, so the multiplicity of the
eigenvalue o? is at least n — 2.
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To find the remaining eigenvalues we restrict M to the subspace S := span{a, b}. Assume first that
a and b are linearly independent so that S is two-dimensional.

Using equation@ we can compute tr(M M "), which is
tr(MMT) =tr((a"0)*I, +a"b(ba” +ab") +a’abb’)
=n(a"b)” +2(a’b)” + [|a]3]blI3
= (n+2)(a"0)* + [la]l3[1b]3-
The second equation holds because of tr(zy ") = tr(y z) =y z.
We set the other two eigenvalues are y; and po.Thus
tr(MM") =5\ = (n—=2)(a"b)? + p1 + p2 = (n+2)(a’b)* + [lall3]0]3,
and

(MM T =T A = (@76 P paps = 4(a )™,

So w1 and po are the two solutions of

% — (4(aTb)2 + ||aH§||ng) T+ 4(aTb)4 =0. @)

Solving equation[7] we have

4(a"b) + [|al3|[b]13 £ [lall2][bll2/8(aT0)2 + [lali3][b]3
; :

Now we obtain all eigenvalues.Moreover, we can calculate the minimum of eigenvalues.

M1, 2 =

4(a"b) + [lal31blI3 — llallz[Ib]l2/8(aTb) + [al3]Ib[3
: :

Amin(MM ") = po =

Lemma C.4. [Eigenvalues of the Hessian blocks] Under the same conditions, H is convex. If
Vo € R 7 (z) = 1 orry (x) = 1 are strictly satisfied, the eigenvalues of the Hessian at 9* are

2
5t

— "t and
222"

Amin(Huwk) =

AU 1))” + U N3N 13 — HUk”2HMkH2\/8(UI;FMIc>)2 + 1 U135l 113

)\min(HUkUk-) = 2

Proof. We first state the convexity of the loss function near the true value 6*.
Let 0 = 6* + Ad
so(x,t) = sg- (x,) + (Voso(, t)]g-) T [A6] + O(||A]3).

L(0) = Eqrep, (o) [(s0(2,1) — Viogpy(x)) " (so(w,t) — Vlog p(x))]
= Earop, (o) [(s0+ (,1) + (Voso(x, t)]o+) T[A0] + O([|AG]J35) — Vlog pi(x)) "
(so- (1) + (Vasa(,t)]g+) T[A] + O(| AG|]3) — Viog pi())]
= Earop, (o) [(Voso (@, 1)]o+) T[A0]) T (Vs (x, t)]o- [A6])] + O(|AG]]3)
= (A0) " Earp, () [(Voso (@, 1)o+) (Voso (2, 1) |o-) T] A
2 (A0)THAS.
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82L(6)

We then analyze the convexity of By, () [(Vose(x, t)]o«)(Vose(x, t)]g) ] 2 H. We can divide
H into 4 parts: H,,,,, Hyy, H,u and Hyy,, where Hyy, = (H,u) |

Let J]l;|9 = gZi lg.

H =Eyrop () [(Vosa(x,t)]o-) (Voso(x, t)|o+) ]
= Eorpy (o) [Jo+ (1) Jos (2, 1) .
Term H,,,

We will show that H,,, ,,, is a-convex, where a: > 0.

Huk/tk = EmNpt(m) [JI/:JIQLT]

82 _ 52
H#k#k ~ Eprt(w) [J/’f‘];]f—r] ~ T%Ezwptu)[(r:(x) — T (I))Q](I - ﬁUkUJ)z

Let P, = UkU,;r,Oé =

St
<2 2
si+i’

(I —aPy)(I —aPy)" = (I —aPy)? =1—2aP, +a*P? = (I — aPy)%

We then prove that A,,in, (I — aPy)?) = (521?72 )2.

First, we calculate the eigenvalue of P.
P?=P=)\ =1\ =0.

Then we take subspace Col(P) = {v ;v = Pz, x € RP} corresponding to \;, and subspace
Ker(P) = {v;Pv =0, z € RP} corresponding to \s.
If w € Col(P), Pw = w:

(I-aPw=(1-a)w

(I —aP)*w=(1-a)’w

=\ =(1-a)

If w e Ker(P), Pw=0:

(I—-aPw=w
(I —aP)*w=w
=N\, =1.

Hy, = E[JJQL(JIQL)T]

2
St

N

2
Therefore, Apin (I — aPy)?) = ( al ) .Hence, we have

537

2 2
CLS S
) > t ~ t

(T (P

where ¢i, = Ezwt(m)[(rl—:(“f) —rg (@)’ = L

HrHE
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Term Hy, v,
-EI-UICU)C ~ Eert(I) [JSJST]

45}
~ ﬁExwpp(w)[(Ulj(x +spp) ]+ (@ + s) U (UL (@ + som) T + (2 + son) Uy ) ']
Ve (8§ + 1)
45}
=~ (STUL el Ul + 53 U (iU + Unpal) + prUy Uil + M (2),)
Ve (st +%)
where M () is semi-positive for E, ., 2)[z] = 0.
Using lemma|[C.3] we can take a = Uy, and b = p, and obtain that

Hy, v, is positive definite and

AU 1)) + 103113 — IIUkHzllukllz\/S(Uz;ruk))2 + U131l 2£]13
5 :

Amin(Huu,) =

Term H,, y, and Term Hy, ,,

: —gT
Since Hyypy, = H,,, 17,

, we just analyze H,,, 7, . We want to analyze the Hessian block
— U B\ T
Hyv,, = Eanp, [Jk () (Ji (z)) ] )
and show that under symmetric assumptions, this cross-term is zero.

The first-order derivative with respect to p is approximately:

2
St _ s
JHz) ~ =22 (rf () — i (2) (I — aUU,) a= 1t
Fw) =5 ()~ ric @) J) P
The first-order derivative with respect to Uy, is approximately:
1 [ _, [ 06(x) Oey(x)
U\ s k + k
T @)~ i) g+ @) |
with ) ,
Do (z) t Oey(x) S3
=— U =-2 Uk(x — .
U Fypzosle ). p Ty g Ok sun)

combining terms:
(@) = C - U [ry, (@) (@ + sep) + 7 (@) (@ — sepr)]

2
where €' = — = 3 Assume that the underlying component distribution py () is symmetric:

SH G )
Pk(x) = pk(—$)7

and the weights satisfy:

Then we have:

(a) J}/(x) is an odd function:

T (=) = = =5 (i (=) =, (=2))(I — aUxUy)

I
!
=
s
N—
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(b) JY (z) is an odd function:

Iy (—x) = CUy [7';:( ) (=@ + sepg) + 1y (—x) (- x—st,uk)]
=C U [rf () (—x + supw) + 1 (@) (=2 — sype)]
= —CUy [r}, (z)(x + sepr) + i (2) (@ — sepn)]
= —J (x).

Now compute:

Hyv, = / JY (&) (TE @) pi(e) de.

Using symmetry:

- / TV (—2) (T ()T prl(—) di = / (—JY (@) (~TE @) pile) de = Hyp,.
Thus,
Hy, = B U = B [ (rf () — 1 ()1 =
prUx — Lx~pgara [YE YK — Lx~paata ’yf(s%-l—"/?) k k +

(i @)UY (@ + sepn) ] + Ur(@ + sepre) ") + 138 (@) (U (2 = sep) T + U (SC = seur) )]

UkUk)

Ay = By, (w7

)\HUU = E$~Pdata [(’U’TJI]})Q]

)\H“U - Eaprdata[(u—r‘];’f)(u—r‘]g)} < \/ )\le )\H;LU'

H— Hﬂkuk Huk Uk
Hltk Uy HUk' Uy
. If we can prove that H,,, ,,, — Hy, ., H @ v, H Jk 1, 18 positive-definite, then H is positive-definite
for Schur’s Theorem.

Analyze H

T2/\H /\H 82
A > e >\ ke TURUR (] p2) ) >(1—r))—2t _ >0.
H ZAS Z AHyy g AHUkUk ( ) Hyppy = ( )(5% +7§)2
r = u HﬂkUk <1.
llull= 1|\v U /uTHpp - v Hyopv] —
r=1ifand only if u" J§ = cv" Jf;, ¢ # 0, which is almost impossible to happen.

More specially, if we assume that Vo € R% ,r: =1lorr, =1,for

25} + - ;
W(Tk (z) =7y (@) (1 — I

H,uk,Uk = EINPd,a,f,a, [Jlg(‘]lg)—r] = EINPdam[ 2
(ris (@)UY (@ + sppr) T+ Up(x + seu) 1) + 7 (2)(U) (= sppn) I+ Uy, (l’ —sip) )]

UkUl;r)

283 2
= Ezw s e (17 -, U U, )
Mo 30 s (@)~ (@) (1= 20,
(ri, (@)UY (2 + sppr) T+ Up(x + sppn) ") +7if (2 )(UJ(I — sepe) ] + Ur(x — ser) 1))
253 s7
=E,~ — 7t (11— Tz — NI — T
x N(StHk,Zk)[,yzl(S% +%52) ( S% “l"Yt UkUk > + (Uk (x Stﬂk) + Uk(x St:uk) ))]
= 0.
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We have r = 0,

s? AU p))* + 1013 | |13 — ||UkH2||Mk||2\/8(U1IHk))2 + ||Uk||%||ﬂk||§}
(st +17)? 2 '

a = min{

Utill now, We have shown that H is a-convex and L-lipschiz, where o = (1 — r2)\ H,, ., - And we
can know that L(#) is exponentially convergent.

Theorem C.5. Ifwe take 1, = 1 = nJ%L and k = £, then
K—1\"
0t — 0|, < 0© — 6% |,.
o=l < (557 10 07l

D K-MODE M0OG OPTIMIZATION

D.1 SETTING

In this section, we analyze

Vp E\T
Viog pyp(x) = ti()
Pek(T)
2
1 2 e N (s st pn, st,:’lU,jI +~21) (33 — Stfbll — éfiifv?U,:lU,:T(x - stphl))
Vi S N (5 sk, 57U US T+ 2T .

D.2 OPTIMIZATION

Assumption D.1. [Highly Separated Gaussian] Consider the Gaussian mixture

S T N (5 g1, Xkt)

E k.l § Mkl Ykl
Pr(T) = 7rlc,lN T3 kel 2k 1) TE1(T) 1= : ’ ’ .
) =1 ( ) (@) i T N (5 iy L)

There exist constants ¢ < 1 and § < 1 such that when z ~ p;, we have

Pr (EllG{l,...,nk}withrw(x)2175) > 1-0.

I~Pk

We assume that the gap between the subspaces is large, and the gap within the subspace is relatively
small, and the equivalent Gaussian is used to replace the whole subspace.

Ui = Usjll2 < eand ||z — || < A. We have

| log p(z) — log p(x)l2 = O(e + 5A + A?)

Corollary D.2. Assume that ||uj, ; — Bk j |2 <4,

Proof. For k-th subspace, wy(x) = X" 7 JN (25 S¢fuk,1, Xk 1), We take
Wi(z) = N (3 fig, S)-
where
Eg, [7] = fir. = B, [v] = S/ Tk 18ep
Covg, () = Covy, (z) = El(z — i) (z — fin) '] = T2 ma 1 (S + 87 ik — 57 0k,00,)
= B) = X% (Sh + 87 kg — Stk R)-

We next show the order of the estimation under the condition that || ; — pijll2 < 9, [|[Ug: —
Uk,jll2 < eand ||z — fig]]2 < A.Using Taylor’s Theorem and take o = [ij, we can obtain that

log p(x) = log p(o) + (z — w0) " Vlog (o) + %(m — x0) ' V?logp(z0)(x — w0) + O(||z — o*)

log p(z) = log f(x0) + (x — x0) " Vlog p(xo) + %(w — z0) " VZlog (x0)(x — x0) + O(||z — zol|*).
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~ S T N (203 ki, Dt
log p(zo) — log p(xo) = log == N(xo('uok =) )

n 1 1, o 1 _
= log (El—klﬂ'k,lw eXP(—i(M — k) " S (— Mk,l))) t3 log |2k

. 1 1 -
= log El:’“lm,lﬁ(l—i—O((ﬁ)) + —log |Xk|
|Ek,l|2 2

DAk
= log E?:’“lﬁk,lik T +O(52)
X2

L
=0 <27j1m€71( |zk| - - 1) +0(5%).

| k,z\2
|| log p(x0) — log p(z0) |2 = O(e + 62).

Vlogp(xo) — Viog p(xo) = Viog X% mi i N (5 fuke,is Xiot) |
S N (205 ikt Se) (S5 (B — i)
p(l’o) '

[V 1og p(xo) — Vlog p(xo)l2 = O(9).

V2 logp(zo) — V*log p(z0) = Veplao) V(o) Vp(a:o))T ~ V2p(xo)

p(xo) p(zo) " p(x0) p(wo)
_ (Vp(z0)  VZp(x0),  Vp(z0) VP(mO))T
p(7o) p(70) p(xo) " plxo) ~

IV*log p(o) — V?log p(xo)|2 = O(e* + 6%).
Thus, || log p(x) — log p(z)||2 = O(e + 6A + A3?). [ ]

Lemma D.3. [Eigenvalues of the Hessian] Assume Assumption|0.4} the Hessian at the k-th subspace
is convex on a neighborhood of 0*. If V. € R%, r,if (z) = 1 or —1 are strictly satisfied, we have

2
Wk,lst

)\min(HMk,Lle,z) = W’

and Ain(Hy, v, ;) has the following form:

(Rt UL a0 + 103t = WO la a2/ SO p1,0))2 + U3 al13) /2.

Proof. According to the previous conclusion, we only need to calculate J,, and Jy . With these
assumptions and simplifications, similar to the symmetry case, we will prove that J;', and J, ,g’ ; have
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dominant terms.

Jﬁl(w)
1 Osg(x,t)
VP Ok
n Owp, 00y wy (x ne
1 X ( EZ;‘,’”) Or(z) + %&wwk,l(xw wi(x) — %k()l)zlilwk,l(x)(sk,l(x)
v wi (@)
n, Ow T n. 00k 1 (x owy, ng.
_ 1 DM aZ’,i,(l)‘Sk,l(x) DM 6IILLFL)wk,l(x) _ ;;U;f,ff)zzilwk,l(x)ék,l(x)
Vi wy,(z) wy,(z) wj ()

Let’s go ahead and do the calculation.

Uk Bwk,L(z)(Sk’Kx) (awk(x))E;l:klwk’l(xygk)l(x) Qw1 (w)

1=1" Our,; Okl Ok 1 <
5 _ = . (5 - 6
e e wi(a) Ol = 0
- 00k 1 (x
S, T ()

2
St ng St T
~ =Xk Tk,l(it) <I - 7Ukle ) .
wi () v = st M
N (@5 g, =
where 7 () = M—mjf)
2K N (235.5,)

Therefore, we can obtain that

ne Owg i (x Owy (x n
IR | B @) s
wi () wi (o) e
ng 96k,1(x)
St ()
|2k 2 = O(s:).
w(x)

where § < [pk,i — pijll2 < 1.

Thus, we have

0sg St 52
J T)= —R —5Trp1\T (I—tUklUT .
k,l( ) a#k,l 71&2 ) ( ) S% + %2 NAE'N!
Hﬂk,l#k,l = Ezp, [Jll;,l(x) J]l:,l(l')—r]
57 2 ; T ; T\T
=—EK Tki\T - UkJU - UkJU .
i Bl U g Unilea) U= g Vi)

For a given z, since we focus on the equivalent Gaussian distribution for each cluster,we have

Hukuk ~ dia’g(E[Ti,l]Huk,luk,l’ ]E[r/%,Q}HHkJHkJ’ ) ]E[r]%,nk]Hﬂk,nka,nk )

We first show that E[r} ;|H,, ., , is positive-definite, then we will further show that H,,,,, is
positive-definite.
For Hy, ,u,.,» we know that
)‘min(Hﬂk,Luk,L) = Ck,l)‘min(‘]ll;,l(‘]llél)—r)
= k1A min((I — aPy)?)

_ ChUYE
(st +77)%
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where
2 2
St 2 5t
Ck,l = TE[TICJ] N Tkl g
t Ve

We know that for a block matrix A = diag(A1, Aa, ..., Ag),

A(A) = Ul A (A)).
Therefore,

4
Ck,17,
Amin (Hpgpy) = l,{I,l‘l‘nnk m
Thus, we take
A _ Ckny ’Y?

e = (707

Similar to previous situation ,because

95,1 (x) dwy, ()

|| i ( Lo w1 () (wi () —( Gl VS E Wi ()81 (%) ||
wi () 2
— 0.
zn:kl (%a]zf,i(y;‘) k.1 ()
l——e 2

we can obtain that
n. sO0w T 901 1 (x Owy (x n
1 22 ( a’ii,i,(l L5j.0(x) + wia(x) a’});(,l))wk(ﬂf) —( aUkk(,l))El:klwk,l(m)isk,l(x)

JU (z) = —=
i o3 wi(z)
Nk 001 (x

1 Ez:ﬁwk,l(x)%(‘l)
%2 wy(z)
1 sf T T

~ 7 P 5 Tk,1(7) [Uk,l(x*#k,l) + (= pr) Ugad|.
t

HUkUk ~ dia’g(E[T%,l}HUk,lUkJ? E[T%,Z}HngUk,zv SERE) E[rlz,nk]HUk,nkUk,nk)'

HUk,lUkl E[Jlgl( )(Jlg,l<x))—r]

:E[(%)Z (U@ — o) (@ = ) U + U (@ = i) U (2 — o) )]
+E[<%>2 (UL (@ = ) (@ — i) UL + (O (@ = a))?)]

Similar to our calculation in[C.4} we can use [C.3]to calculate the minimum eigenvalue of Hy, v ,-

Hy, v, , is positive definite and

AU 1)) + 11Uk a3 22113 1))+ |
)\min(HUk,lUk,l,) = 2
Recall that
HUkUk ~ dia’g(E[T]%,l}HUk,lUk,l’ E[T]%,2}HUk,2Uk,2’ SERE) E[T]%,nk]HUk,nkUk,nk)'

and IE[r,Qf 1) &= 7,1, we can obtain the minimum eigenvalue of Hy, 7, , which is

' AU 1)) + 10k 213 e 13 = ||Uk7z||2|\mc,l||2\/8(U1Izmc,l))2 + 1Uk,l13]] 2,213
=tat T 2 '
=1,2,...,np
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Lemma D.4. [Local Strong Convexity] Assume Assumption in a neighborhood of 0*, V2L (0) =
oI,/ > 0,0 € ©. IfVz € R¥*, 31 € [ng], r1(x) = 1 are strictly satisfied, o' = min{\1, A2},

4
o C,1Y o _
where Ay = minj—1 . n, (S?+7§)2 A2 = minj—12 . n, = Amin(Hu, ,u,,)-

Proof.
HMkUk = diag(HHk:,lUk,l ) Huk,zUk,zv s 7Huk,1nkUk,nk )
57
H < \/ H H, = O(*)
H HkUk” = H NkMkH ” UkUkH 71&2 (S% +7§)2
- (diag<Hpk,1pk,17 o 7Huk,nkuk,nk) diag<HHk,lUk,17 ) H/J'k,nk Uk,ny, ))
diag<Huk,1Uk,17 ) Hﬂk,nk Uk,nk) diag(HUkTIUkJ? s ’HUk,nk Uk,nk)
Let
S = Hyy— HMUH(;llJHU#
we have
2
T /\H )\H 82
Ag > Ag > A — e TURDR (] — )\ >(1—-7r)—t__ >0.
R R T

.
u Hy o
max = =
lull=1,lv=1l \/uT Hpp s - 0T Hyypo, 0]

<1

r=1lifand onlyif u" J§ = cv " Jf;, ¢ # 0, which is almost impossible to happen.

More specifically, if we assume that Vo € R% 31 € [ng], rp.1(z) = 1, we have

Huk,zUk,z = ]EwNpk [']Ig],l (x) (']]l;,l('r))—r]

1 s} T T 57 T

= ————=FE,up, {rk,l )2 ((z — k.1 U, + (T — iy UkﬁlI } I— 7Ukle
7 B [ra@ (@ = UL+ @ ) U] (1= 5 UnaU,

L SNE S S (0@ (@ = UL+ (@ = ) U D)| (I -y, ZUJI)
AT A o vt G e

~0

The second equation holds because Vz, if © & Ny ; (.1, Xk.1)s 7,1 (2) = 0. And the third equation
holds because if © ~ Ny 1, (i1, Xk,1), V Const C,

]Eﬂc’\‘ﬂk,lNk,l [C(:L' - Nk,l)] =0.

Thus, let o’ be the minimum eigenvalue of H,

O/ = min{/\l, )\2}, (8)
where
4
. Cle,17¢
Ay = _ kT
RS e P
and
AU pre))? + 10k a3 e a1 — ||Uk,z||2\|ﬂk»,l||2\/8(U;Il#k,l))2 + 11Uk 130 k1113
)\2 = min Tkl .

1=1,2,...,np 2
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E EXTENSION TO MOG LATENT WITHOUT SEPARATION ASSUMPTION

E.1 2-MODE ANALYSIS

In this section, we relax the high separation assumption (where r;\ (z)r; (x) ~ 0). Instead, we treat

the overlap between manifold components as a bounded perturbation to the ideal system. We aim to
prove that the Hessian remains positive definite provided the overlap factor is sufficiently small.

E.1.1 DEFINITION OF OVERLAP FACTOR

We define the pointwise overlap factor &, () as the product of the assignment probabilities for the
positive and negative components of the k-th manifold:

r(z) £ rif(0)r), (z). )

Since 7} (x),7;, () € [0,1] and r; (x) + r}, (¥) = 1, the overlap factor is naturally bounded:
0 < &(x) < 0.25.

We denote the maximum expected overlap magnitude as €qyerlap:
€overlap = sup &k (-T) (10)
xEsupp(pt)

E.1.2 JACOBIAN ANALYSIS
We revisit the derivation of the Jacobian J;'. In the original derivation, J;" was decomposed into

Term A (dominant term) and Term B (previously ignored):

JllJ( ) Jlf:lbeal( )+E’M<x)
Term A Term B
When & (2) — 0, we can recover the ideal Jacobian derived previously:

2

LU,
+ ’“’“)

Thee) = =250 @) = (o) (1 -
Term B contains the cross-product of weights, which is exactly our overlap factor £ (). Specifically:
2

42
S ).gk() Ty x<I+ in UkUk>

El(p) = — ot
(@) Yewp(x

We can bound the norm of this error term. Since terms like ( ) and projection matrices are bounded
within the support, there exists a constant C'y such that:

1B (2)l]2 < C1 - &k(). (11)

Similarly, for the Jacobian with respect to U}, we can decompose it into an ideal part and an error
part proportional to the overlap:

T () = Jigea(x) + BV (2),  where | EY (2)|[F < Ca - & ().

E.1.3 HESSIAN ANALYSIS

The Hessian matrix H is defined as the expected outer product of the Jacobians:
H =By, ()| () T (2) 7).
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Let J(x) = Jigea(z) + E(x). Substituting this into the Hessian definition:

H=E [(Jideal + E)(Jideal + E)T]
- E[Jideali'geal] +E[JidealET + EJiT 1+ EET] :

dea

Higeal AH

Here, Hjgeq is the Hessian matrix under the high separation assumption and A H is the perturbation
matrix induced by the overlap.

From the previous proof , we established that Hijqgeq is block-diagonal (or has negligible off-diagonals
due to symmetry) and positive definite. Let o« > 0 be its minimum eigenvalue:

Amin (Higea) ~ E[(ry; () — r;; ()] min Ain (Hp i) Amin (Huv,,))
= E[(1 — 48 ()] min (Amin (Hyuy . )> Amin (Hu,uy,))
> (1 - 4€0verlap) min ()\min(H/_Lk,uk)a )\min(HUkUk)) £ Q.

We apply the Triangle Inequality and Cauchy-Schwarz inequality to bound the spectral norm of AH:

IAH]l2 < 2||E[Jca B2 + [E[EE ]2
< 2VE[[[ JigeaIPIE[I E]1?] + E[| E]1?].

Since || E*(z)|| < Cy - &k (z) and || EY (z)|| < Cs - & (2), the perturbation norm is dominated by the
overlap factor:

I (2) = Jgeu(@) + BV (2),  where |[EY ()| < Cs - &4 ().

The Hessian perturbation matrix is given by AH = IE[JidealET +EJ!

dear)- TO bound its spectral
norm ||AH ||, we define the signal bounds

St
Su = sup || Jgeu (@) |2 = =
x ’Yt

and 5
StR

SU = sup ||Jigeal(x)||2 ~ 2

x Vi

We can define the composite perturbation constant C” as:

C' = Q(SH + SU)(Cl + CQ).

And thus,

||AH||2 < c’- €overlap-

E.1.4 POSITIVE DEFINITENESS VIA WEYL’S INEQUALITY

We now use Matrix Perturbation Theory to prove the convexity of the actual loss landscape. With
Weyl’s Inequality for Hermitian Matrices, we have: Let H = Higea + AH. The eigenvalues of H
are bounded by:

)\min(H) Z )\min(Hideal) - HAHH2 (12)

Substituting our bounds:
Amin (H) Z o — Cl : 6overlap- (13)
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Condition for Convexity: For the Hessian H to remain positive definite (ensuring strong convexity),
we require:

(0%
a—-C"- €overlap > 0 = €overlap < E (14)

This physically implies that as long as the manifolds are not excessively overlapping , the loss function
remains locally strongly convex.

E.1.5 CONVERGENCE ANALYSIS

Based on the perturbation analysis, we state the revised convergence theorem.

Theorem E.1 (Linear Convergence under Bounded Overlap). Let L(6) be the loss function. Assume
the overlap factor satisfies €oyeriap < % Then, the Hessian H at 0* is positive definite with minimum
eigenvalue:

)\min(H) > Qeff = Q0 — Cleaverlap > 0.
Consequently, gradient descent with step size 1 converges linearly:
ke — 1\
16~ 0% < (221 ) 160 - 7],
Kef + 1

where the effective condition number is degraded by the overlap:

L

Reff = ——~ -
2 /
o — C€overtap

Proof. The proof follows directly from the strong convexity of L(#) established by Weyl’s inequality.
AS €overtap — 0, we recover the ideal convergence rate. |

E.2 MULTI-MODAL ANALYSIS

In this section, we analyze the convergence properties for the K-Mode Mixture of Gaussians model.
We explicitly model the overlap between Gaussian components as a perturbation.

E.2.1 THE OVERLAP FACTOR

We formally define the Pairwise Overlap Factor ; ;(x) between two components ¢ and j:

§ij(2) £ rpi(@)ryj(2). (15)
And we define the Maximum Expected Overlap €,y for the manifold as:
€overlap = m?X Z ]EwNPt [fi,j ($>] . (16)
JFi

This scalar €oyeriap quantifies the deviation from the ideal high separation regime. If components are
perfectly separated, &; ; — 0 and €qyeriap — 0.

E.2.2 JACOBIAN DERIVATION

We need to compute the Jacobian of the score matching error vector sg(z,t) — Vlog p(x) with
respect to the parameter p, ;. Let J/'(z) = %V log py k().

Similarly, we decompose the Jacobian for the [-th component into a Signal Term (Self) and a Noise
Term (Interference).
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J;l/.(I) - ‘];l;,ideal( )+E;l4 crosq( ) .
—_———— —

Signal Noise

This term arises when we ignore the change in weights of other clusters (j # [). It dominates when
T~ L

2
St St T

Jb T) R~ rra(x) (1 U, U .

u,ldeal( ) 72 kJ( ) ( 52 ’)/262 k,l k,l)

t t

This term captures the gradient leaking into other clusters due to overlap:

,u cros% Z Cl “ Tk ,J )TkJ(x)a (17)
~—_————
gj l( )

where C' (x) collects bounded vector terms. The norm of the error term is strictly bounded by the
overlap:

|| H,Cross )H2SC:{Z§.],Z($)
J#l

For the Jacobian with respect to Uy, we have Similar derivation.

1EG ross(@) 12 < C3 Y €ja(2)

J#l

E.2.3 HESSIAN BLOCK STRUCTURE
The Hessian H for the parameters pt = [ug 1, . . -, (g n, ] i8 @ block matrix composed of ny, x ny
blocks, where each block is D x D.

Hyy Hip -+ Hipg,

Hyy Hzo -+ Hay,

Hyup = : : . :
an,l HTL)C,Q tee an,nk

The (4, j)-th block is defined as:

H;; = Ex[Jf(x)(Ju(w))T]

For diagonal blocks (¢ = j = [), the curvature is strictly determined by the expectation of the squared
weights E[ry ;(z)?]. Crucially, overlap causes signal attenuation, as the weight 74 ; () drops below
1 in transition regions.

Using the identity 4 (z)? = ry (@) (1 — > j41Tk,j(2)), we derive the exact expectation:

E[rk,l(x)z] Tk l Z ]E Tk l Tk,j (.I)]
J#l
= mis = Elgu()]
il
= g1 — €.
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Thus, we lower-bound the diagonal curvature by accounting for the total overlap mass €/*#! leaking
from cluster :

Hl,l ~ E[(Jlideal)(Jlideal)T] - )\diag,l . I,

where the effective base curvature is:

/\diag,l = (7Tk,l - EtIg,tlal) min (/\min(Huk,Luk,z)v )‘miH(HUk,zUk,z))

Here, the term (7, — €' represents the effective probability mass contributing to convexity. This

formulation explicitly shows that smaller clusters (small 7y, ;) are significantly more vulnerable to
instability, as the effective mass can vanish if the overlap %! becomes comparable to the cluster size
Tk,l-

For i # j, the block H; ; represents the interference.

Hij m Eo[ TN (%) 1] o< Elrgi (@) (2))-

E.2.4 PERTURBATION ANALYSIS

We write the full Hessian as a sum of a block-diagonal matrix and a perturbation matrix:

H}L}L - Hdiag + AHOVer]ap~
For the minimum eigenvalue of Hgj,g,
. . N
)\min(Hdiag) - HlllIl )\min (Hl,l) - IIlllIl )\diag,l - )\base~

For Spectral Norm of A Hyyeriap, by Weyl’s Inequality, the minimum eigenvalue of the full Hessian
is:
)\min(H) Z )\min<Hdiag) - ||AHoverlap||2~

and -
AI—Ioverlap <C- E[fi,j ((,C)], (18)

where

C =2(5,C1 + SuyCy)
Substituting the bounds:

)\min(H) > Abase — é * €overlap -

Therefore, H is positive definite if and only if:

)\base
€overlap < O .

Interpretation: The optimization landscape is locally strictly convex provided the overlap between
clusters is smaller than the intrinsic curvature of the individual Gaussians.

E.2.5 FULL CONVERGENCE THEOREM
Combining the analysis of 1 and the similar decoupling argument for U (using Schur complements
to handle H,,;; terms which are also O(¢)), we arrive at the final result.

Theorem E.2. Let L(0) be the score matching loss. Assume the maximum expected overlap €gveriap
satisfies the condition €pyeriap < T for some threshold T o< Apgse. Then the Hessian H (0*) is strictly
positive definite.
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Linear Convergence: Gradient descent with step size 1) converges as:
16 = 6%[l2 < p" 16 — 672,
where the convergence rate p < 1 is determined by the effective condition number:

L

H’(fﬁb - = .

)\lmse - Cf(}\f’er[up

This proves that the High Separation Assumption is not a binary requirement, but rather a continuum.
The algorithm is robust to finite overlap, with the convergence rate degrading gracefully as the overlap
increases.

Remark E.3. It is important to note that physically, €syerlap Will not be arbitrarily large.

F THE DETAIL OF THE REAL-WORLD EXPERIMENTS

In the part, we provide the detail of the experiments, including dataset and training pipeline. We use
MNIST and CIFAR-10 as the datasets, and we adopt the mixture Gaussian distribution as the prior
distribution in both cases.

For MNIST, our model consists of MLP-based encoder and decoder networks, each with a single
hidden layer of 256 dimensions. The model is trained with the AdamW optimizer at a learning rate
of 0.0005. We train 10 VAEs with the numbers 1 to 10 as the ten clusters.

On CIFAR-10, we implement a 3-layer RNN encoder and decoder for CIFAR-10. The encoder
hidden dimensions are [64, 128, 256], and the decoder’s are [256, 128, 64].And we train 10 VAEs for
each of the ten clusters based on the classification by category. Each layer in both networks stacks 3
recurrent blocks.The model is trained with the AdamW optimizer at a learning rate of 0.0001.

Our experiment was conducted on RTX4090.
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