

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MULTI-SUBSPACE MULTI-MODAL MODELING FOR DIFFUSION MODELS: ESTIMATION, CONVERGENCE AND MIXTURE OF EXPERTS

Anonymous authors

Paper under double-blind review

ABSTRACT

Recently, diffusion models have achieved a great performance with a small dataset of size n and a fast optimization process. Despite the impressive performance, the estimation error suffers from the curse of dimensionality $n^{-1/D}$, where D is the data dimension. Since images are usually a union of low-dimensional manifolds, current works model the data as a union of linear subspaces with Gaussian latent and achieve a $1/\sqrt{n}$ bound. Though this modeling reflects the multi-manifold property of data, the Gaussian latent can not capture the multi-modal property of the latent manifold. To bridge this gap, we propose the mixture subspace of low-rank mixture of Gaussian (MoLR-MoG) modeling, which models the target data as a union of K linear subspaces, and each subspace admits a mixture of Gaussian latent (n_k modals with dimension d_k). With this modeling, the corresponding score function naturally has a mixture of expert (MoE) structure, captures the multi-modal information, and contains nonlinear properties since each expert is a nonlinear latent MoG score. We first conduct real-world experiments to show that the generation results of MoE-latent MoG NN are much better than the results of MoE-latent Gaussian score. Furthermore, MoE-latent MoG NN achieves a comparable performance with MoE-latent Unet with $10\times$ parameters. These results indicate that the MoLR-MoG modeling is reasonable and suitable for real-world data. After that, based on such MoE-latent MoG score, we provide a $R^4 \sqrt{\sum_{k=1}^K n_k} \sqrt{\sum_{k=1}^K n_k d_k} / \sqrt{n}$ estimation error, which escapes the curse of dimensionality by using data structure. Finally, we study the optimization process and prove the convergence guarantee under the MoLR-MoG modeling. Combined with these results, under a setting close to real-world data, this work explains why diffusion models only require a small training sample and enjoy a fast optimization process to achieve a great performance.

1 INTRODUCTION

Recently, diffusion models have achieved impressive performance in many areas, such as 2D, 3D, and video generation (Rombach et al., 2022; Ho et al., 2022; Chen et al., 2023a; Ma et al., 2024; Liu et al., 2024). Due to the score matching technique, diffusion models enjoy a more stable training process and can achieve great performance with a small training dataset.

Despite the empirical success, the theoretical guarantee for the estimation and optimization error of the score matching process is lacking. For estimation error, current results suffer from the curse of dimensionality. More specifically, given training dataset $\{x^i\}_{i=1}^n$ with $x^i \in \mathbb{R}^D$, the estimation error of the score function achieve the minimax $n^{-s'/D}$ results for (conditional) diffusion models with deep ReLU NN and diffusion transformer, where s' is the smoothness parameter of the score function (Oko et al., 2023; Hu et al., 2024b;a; Fu et al., 2024). It is clear that this estimation error is heavily influenced by the external dimension D , which can not explain why diffusion models can generate great images with a small training dataset. Hence, a series of works studies estimation errors under specific target data structures and reduces the curse of dimensionality. There are two notable ways to model the target data: the multi-modal modeling and the low-dimensional modeling. For the multi-modal modeling, as the real-world target data is usually multi-modal, some works study the mixture of Gaussian (MOG) target data and improve the estimation error (Shah et al., 2023; Cui et al.,

2023; Chen et al., 2024b). When we delve deeper into the images and text data, a key feature is that the image and text data usually admit a low-dimensional structure (Pope et al., 2021; Brown et al., 2023; Kamkari et al., 2024). Hence, one notable way is to assume the data admits a low-dimensional structure. More specifically, some works assume the data admits a linear subspace $x = Az$, where $A \in \mathbb{R}^{D \times d}$ to convert data to the latent space and $z \in \mathbb{R}^d$ is a bounded support (Chen et al., 2023b; Yuan et al., 2023; Guo et al., 2024). Then, they reduce the estimation error to $n^{-2/d}$, which removes the dependence of D . However, as shown in Brown et al. (2023) and Kamkari et al. (2024), though the image dataset admits low dimension, it is a union of manifolds instead of one manifold. Inspired by this observation, Wang et al. (2024) model the image data as a union of linear subspaces, assume each subspace admits a low-dimensional Gaussian (mixture of low-rank Gaussians (MoLRG)), and achieve a $1/\sqrt{n}$ estimation error. Though the union of the linear subspace is closer to the real-world image dataset, the latent Gaussian assumption is far away from the low-dimensional multi-modal manifold Brown et al. (2023). Hence, the following two natural questions remain open:

Can we propose a modeling that reflects the multi-manifold multi-modal property of real-world data?

Can we escape the curse of dimensionality and enjoy a fast convergence rate based on this modeling?

In this work, for the first time, we propose and analyze the mixture of low-rank mixture of Gaussian (MoLR-MoG) distribution, which is more realistic than MoLRG since it captures the multi-modal property of real-world distribution and has a nonlinear score function. Based on this modeling, we first induce a MoE-latent nonlinear score function and conduct experiments to show that MoLR-MoG modeling is closer to the real-world data. After that, we simultaneously analyze the estimation and optimization error of diffusion models and explain why diffusion models achieve great performance.

1.1 OUR CONTRIBUTION

MoLR-MoG modeling and MoE Structure Nonlinear Score. We propose the MoLR-MoG modeling for the target data, which captures the multi low-dimensional manifold and multi-modal property of real-world data and naturally introduces the MoE-latent MoG score. Through the real-world experiments, we show that with this score, diffusion models can generate images that is comparable with the deep neural network MoE-latent Unet and only has $10\times$ smaller parameters. On the contrary, the MoE-latent Gaussian score induced by previous MoLRG modeling can only generate blurry images, which indicates MoLR-MoG is a suitable modeling for the real-world data.

Take Advantage of MoLR-MoG to Escape the Curse of Dimensionality. For the estimation error, we show that by taking advantage of the union of a low-dimensional linear subspace and the latent MoG property, diffusion models escape the curse of dimensionality. More specifically, we achieve the $R^4 \sqrt{\sum_{k=1}^K n_k} \sqrt{\sum_{k=1}^K n_k d_k} / \sqrt{n}$ estimation error, where R is the diameter of the target data, d_k is the latent dimension and n_k is the number of the modal in the k -the subspace. This result clearly shows the dependence on the number of linear subspaces, modal, and the latent dimensions R, d_k .

Strongly Convex Property and Convergence Guarantee. After directly analyzing the estimation error, we study how to optimize the highly non-convex score-matching objective function. Facing nonlinear latent MoG scores, we use the gradient descent (GD) algorithm to optimize the objective function. To obtain the convergence guarantee, we take advantage of the closed form of nonlinear MoG score and show that the landscape around the ground truth parameter is strongly convex. Then, with a great initialization area, we prove the convergence guarantee when considering MoLR-MoG.

2 RELATED WORK

Estimation Error Analysis for Diffusion Models. As shown in Section 1, a series of works Oko et al. (2023) study the general target data with a deep NN and achieve the minimax $n^{-s'/D}$ result. Then, some works analyze the general target data with a 2-layer wide NN and achieve $n^{-2/5}$ estimation error with $\exp(n)$ NN size (Li et al., 2023; Han et al., 2024). For the multi-modal modeling, some works study MoG data and improve the estimation error (Shah et al., 2023; Cui et al., 2023; Chen et al., 2024b). Except for the MoG modeling, Cole and Lu (2024) assume data is close to Gaussian and then prove the model escapes the curse of dimensionality. Mei and Wu (2023) analyze Ising models and prove that the term corresponds to n is $1/\sqrt{n}$. For the low-dimensional modeling, some works assume the target data admits a linear subspace (Chen et al., 2023b; Yuan et al., 2023). Chen et al. (2023b) assume data admit a linear subspace $x = Az$ with $z \in \mathbb{R}^d$ and achieve a $n^{-2/d}$. As the

108 image is a union of low-dimensional manifolds, Wang et al. (2024) models the target data as a union
 109 of linear subspaces with Gaussian latent and achieve $1/\sqrt{n}$ estimation error for each subspace.
 110

111 **Optimization Analysis for Diffusion Models.** Since the score is highly nonlinear (except for
 112 Gaussian), only a few works analyze the optimization process, and most of them focus on the external
 113 dimensional space (Bruno et al., 2023; Cui and Zdeborová, 2023; Shah et al., 2023; Chen et al.,
 114 2024b; Li et al., 2023; Han et al., 2024). Since the score function of MoG has a nonlinear closed-form,
 115 a series of works design algorithms for diffusion models to learn the MoG (Bruno et al., 2023; Cui
 116 and Zdeborová, 2023; Shah et al., 2023; Chen et al., 2024b). For the general target data, Li et al.
 117 (2023) and Han et al. (2024) adopt a wide 2-layer ReLU NN to simplify the problem to a convex
 118 optimization. However, as discussed above, their NN has $\exp(n)$ size. For the latent space, only
 119 two works provide the optimization guarantee under the Gaussian latent (Yang et al., 2024a; Wang
 120 et al., 2024). Yang et al. (2024a) assume target data adopts a linear subspace with Gaussian latent
 121 and provide the closed-form minimizer. Wang et al. (2024) analyze the optimization process of each
 122 linear subspace separately, which is also reduced to the optimization for the Gaussian.

3 PRELIMINARIES

124 First, we introduce the basic knowledge and notation of diffusion models. Let p_0 be the data
 125 distribution. Given $x_0 \sim p_0 \in \mathbb{R}^D$, the forward process is defined by:

$$dx_t = f(t)x_t dt + g(t) dB_t,$$

126 where $\{B_t\}_{t \in [0, T]}$ is a D -dimensional Brownian motion, $f(t)$ is the coefficient of the drift term and
 127 $g(t)$ is the coefficient of the diffusion term. Let p_t be the density function of the forward process.
 128 After determining the forward process, the conditional distribution $p_t(x_t | x_0)$ has a closed-form
 129

$$p_t(x_t | x_0) = \mathcal{N}(x_t; s_t x_0, s_t^2 \sigma_t^2 I_D),$$

130 where $s_t = \exp\left(\int_0^t f(\xi) d\xi\right)$, $\sigma_t = \sqrt{\int_0^t g^2(\xi) / s^2(\xi) d\xi}$. To generate samples from p_0 , diffusion
 131 models reverse the given forward process and obtain the following reverse process (Song et al., 2020):
 132

$$dy_t = [f(t)y_t - g(t)^2 \nabla \log p_t(y_t)] dt + g(t) d\bar{B}_t, \quad y_0 \sim p_0$$

133 where \bar{B}_t is a reverse-time Brownian motion. A conceptual way to approximate the score function is
 134 to minimize the score matching (SM) objective function:
 135

$$\min_{s_\theta \in \text{NN}} \mathcal{L}_{\text{SM}} = \int_\delta^T \mathbb{E}_{x_t \sim q_t} \|\nabla \log p_t(x_t) - s_\theta(x_t, t)\|_2^2 dt, \quad (1)$$

136 where NN is a given function class and $\delta > 0$ is the early stopping parameter to avoid a blow-up score.
 137 Since the ground truth score $\nabla \log p_t$ is unknown, this objective function can not be calculated. To
 138 avoid this problem, Vincent (2011) propose the denoised score matching (DSM) objective function:
 139

$$\min_{s_\theta \in \text{NN}} \mathcal{L}_{\text{DSM}} = \int_\delta^T \mathbb{E}_{x_0 \sim q_0} \mathbb{E}_{x_t \sim x_0} \|\nabla \log p_t(x_t | x_0) - s_\theta(x_t, t)\|_2^2 dt.$$

140 As shown in Vincent (2011), the DSM and SM objective functions differ up to a constant independent
 141 of optimized parameters, which indicates these objective functions have the same landscape.
 142

3.1 MIXTURE OF LOW-RANK MIXTURE OF GAUSSIAN (MoLR-MoG) MODELING

143 This part shows our MoLR-MoG modeling, which reflects the low-dimensional (Gong et al., 2019)
 144 and multi-modal property (Brown et al., 2023; Kamkari et al., 2024) of real-world data. More
 145 specifically, we assume the data distribution lives near a union of K linear subspaces rather than
 146 arbitrary manifolds. Concretely, for the k -th subspace of dimension d_k (represented by a **orthonormal**
 147 **basic** matrix $A_k^* \in \mathbb{R}^{D \times d_k}$ with orthonormal columns **for the k -th manifold**), we place a n_k -modal
 148 MoG within that subspace:

$$w_k(x) = \sum_{l=1}^{n_k} \pi_{k,l} \mathcal{N}(x; A_k^* \mu_{k,l}^*, A_k^* \Sigma_{k,l}^* A_k^{*\top}),$$

149 where covariance $\Sigma_{k,l}^* = U_{k,l}^* U_{k,l}^{*\top}$, $l = 1, \dots, n_k$ with $U_{k,l}^* \in \mathbb{R}^{d_k \times d_{k,l}}$ ($d_{k,l} \leq d_k$) and $\mu_{k,l}^*$ is the
 150 mean of the l -th modal of the k -th subspace. **As shown in (Brown et al., 2023), the different manifold**

162 has different d_k and we do not require that d_k is exactly the same for each manifold. Then, the target
 163 distribution has the following form

$$165 \quad p_0 = \sum_{k=1}^K \frac{1}{K} \sum_{l=1}^{n_k} \pi_{k,l} \mathcal{N}(x; A_k^* \mu_{k,l}^*, A_k^* \Sigma_{k,l}^* A_k^{*\top}). \quad (2)$$

166 From the universal approximation perspective, by placing enough components and choosing parameters
 167 $\{\pi_{k,l}, \mu_{k,l}^*, \Sigma_{k,l}^*\}$, a MoG can approximate any smooth density arbitrarily well, which is more
 168 general than the Gaussian latent of Yang et al. (2024a) and Wang et al. (2024).

169 **Nonlinear Mixture of Experts (MoE)-latent MoG score.** Let $\gamma_t = s_t \sigma_t$, $\Sigma_{k,l,t,A} =$
 170 $s_t^2 A_k^* U_{k,l}^* U_{k,l}^{*\top} A_k^{*\top} + \gamma_t^2 I$ and $\delta_{k,l,t,A}(x) = x - s_t \mu_{k,l}^* - \frac{s_t^2}{s_t^2 + \gamma_t^2} A_k^* U_{k,l}^* U_{k,l}^{*\top} A_k^{*\top} (x - s_t \mu_{k,l}^* A_k^*)$.
 171 Under the MoLR-MoG modeling, the score function has the following form:

$$172 \quad \nabla \log p_t(x) = -\frac{1}{\gamma_t^2} \frac{\sum_{k=1}^K \frac{1}{K} \sum_{l=1}^{n_k} \pi_{k,l} \mathcal{N}(x; s_t \mu_{k,l}^* A_k^*, A_k^* \Sigma_{k,l,t,A}^* A_k^{*\top}) \delta_{k,l,t,A}(x)}{\sum_{k=1}^K \frac{1}{K} \sum_{l=1}^{n_k} \pi_{k,l} \mathcal{N}(x; s_t \mu_{k,l}^* A_k^*, A_k^* \Sigma_{k,l,t,A} A_k^{*\top})},$$

173 This score function has a MoE structure, where each expert is the latent nonlinear MoG score. The
 174 linear encoder A_k first encodes images to the k -th manifold, and diffusion models run the denoising
 175 process. After that, the linear decoder A_k^{\top} decodes the denoised latent to the full-dimensional images.
 176 Since the estimation error introduced by the linear encoder and decoder has the order Dd_k^3/\sqrt{n}
 177 (Yang et al., 2024a) and is not the dominant term, we assume the linear encoder and decoder are
 178 perfectly learned and focus on the more difficult latent MoG diffusion part in this work. From the
 179 empirical part, this operation is similar to using the pretrained stable diffusion VAE and only training
 180 the diffusion models in the latent space. For the k -th low-dimensional manifold, the score function is

$$181 \quad \nabla \log p_{t,k}(x^{\text{LD}}) = -\frac{1}{\gamma_t^2} \frac{\sum_{l=1}^{n_k} \pi_{k,l} \mathcal{N}(x^{\text{LD}}; s_t \mu_{k,l}^*, \Sigma_{k,l,t}^*) \delta_{k,l,t}(x^{\text{LD}})}{\sum_{l=1}^{n_k} \pi_{k,l} \mathcal{N}(x; s_t \mu_{k,l}^*, \Sigma_{k,l,t}^*)}, \quad (3)$$

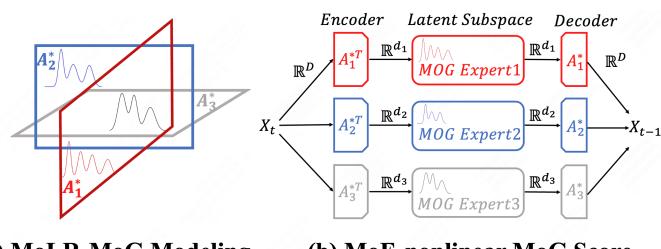
182 where $x^{\text{LD}} \in \mathbb{R}^{d_k}$ is a variable in the k -th low-dimensional subspace, $\Sigma_{k,l,t} = s_t^2 U_{k,l}^* U_{k,l}^{*\top} + \gamma_t^2 I$
 183 and $\delta_{k,l,t}(x^{\text{LD}}) = x^{\text{LD}} - s_t \mu_{k,l}^* - \frac{s_t^2}{s_t^2 + \gamma_t^2} U_{k,l}^* U_{k,l}^{*\top} (x^{\text{LD}} - s_t \mu_{k,l}^*)$. Let

$$184 \quad s_k^*(x^{\text{LD}}, t) = \nabla \log p_{t,k}(x^{\text{LD}}), s^*(x^{\text{LD}}, t) = (s_1^*(x^{\text{LD}}, t), s_2^*(x^{\text{LD}}, t), \dots, s_K^*(x^{\text{LD}}, t)),$$

185 where the parameters are $\theta^* = \{\mu_{k,l}^*, U_{k,l}^*\}_{k=1, \dots, K}$. In this work, we want to learn the
 186 parameters of the ground truth score function. Hence, we construct a NN function class $s_{\theta} =$
 187 $(s_1(\cdot, \cdot), s_2(\cdot, \cdot), \dots, s_K(\cdot, \cdot))$ according to the above closed-form of MoE-latent MoG score. Let
 188 θ is the union of $\mu_{k,l}$ and $U_{k,l}$. Since we mainly focus on the estimation and optimization in the latent
 189 subspace, we omit the superscript LD of the latent subspace when there is no ambiguity.

190 We note that this modeling
 191 can capture the information
 192 of each low-dimensional mani-
 193 fold and the multi-modal prop-
 194 erty of each latent distribution.
 195 In the next section, through the real-world
 196 experiments, we show that the
 197 MoE-latent MoG score has a
 198 better performance compared

199 with the MoE-latent Gaussian
 200 Figure 1: MoLR-MoG Modeling and Corresponding Nonlinear Score
 201 score induced by MoLRG modeling and compatible with the results of the MoE-latent Unet. In
 202 Section 5 and 6, we prove that by using the property of MoLR-MoG modeling, diffusion models can
 203 escape the curse of dimensionality and enjoy a fast convergence rate.



(a) MoLR-MoG Modeling (b) MoE-nonlinear MoG Score

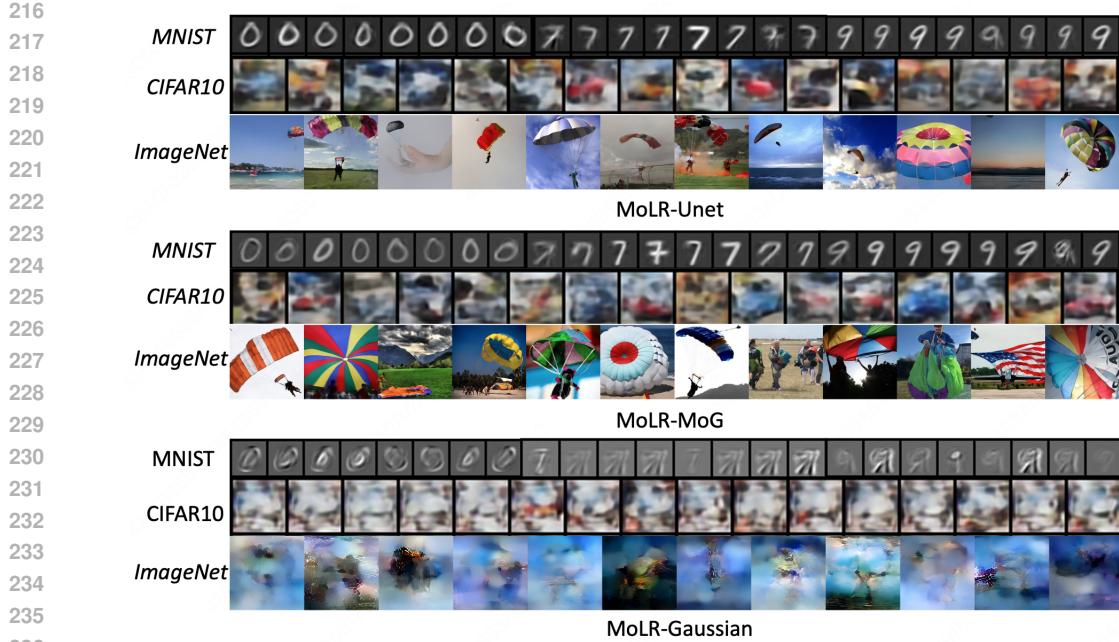


Figure 2: Results of Different Modeling on Real-world Data.

Remark 3.1 (Comparison with MoLRG modeling). Wang et al. (2024) provide the first multi-subspace modeling, which is an important and meaningful step. However, they assume a Gaussian latent with 0 mean, which can not capture the multi-modal property of real-world data. We also note that the MoLR-MoG modeling can not be viewed as MoLRG with $\sum_{k=1}^K n_k$ subspace since this modeling assumes there are $\sum_{k=1}^K n_k$ VAE, which is not reasonable in the real-world setting.

4 EXPERIMENTS FOR MOE-LATENT MOG SCORE

In this section, we conduct experiments using neural networks based on different modeling approaches (MoLR-MoG, MoLRG) as well as a general U-Net architecture. The goal is to demonstrate that MoLR-MoG provides a suitable modeling for real-world data, and that the MoE-latent MoG score is sufficient to generate images with clear semantic content. Specifically, we first show that training with MoLR-MoG yields significantly better results than the MoLRG model. Then, we show that the MoE-latent MoG network achieves performance comparable to that of the MoLR-U-Net, while using 10 \times fewer parameters for MNIST, CIFAR-10, ImageNet 256. (Figure 2)

Following Brown et al. (2023), we train 10 VAEs for each number in the MNIST, which represents our K low-dimensional manifold. In this part, we adopt nonlinear VAEs to achieve a good performance in real-world datasets. However, we still note that a series of theoretical works adopt linear subspaces, and our MoLR-MoG modeling with linear VAEs makes a step toward explaining the good performance of diffusion models. After obtaining these 10 VAE, we train diffusion models with different parametrized NNs. We adopt three different parameterizations: latent U-net, latent MoG NN, and latent Gaussian NN. For the latent MoG, we adopt the form of Eq. 3 with $n_k = 4, 8, 40$ in MNIST, CIFAR-10, and ImageNet256 for $k \in [K]$. For the latent Gaussian, we adopt the form of the closed-form score (Wang et al., 2024), which leads to a linear NN.

Discussion. From a qualitative perspective, as shown in Figure 2, the generation results with MoLRG modeling are difficult to distinguish specific numbers. On the contrary, the MoE-latent MoG can generate clean images comparable with the images generated by MoLR-Unet, which means this modeling captures the multi-modal property of each low-dimensional manifold. The training loss curve (Figure 3) shows that the loss of MoE-MoG NN is significantly smaller than the MoE-Gaussian and close to MoE-Uet, which indicates MoE-MoG NN efficiently approximates the ground-truth

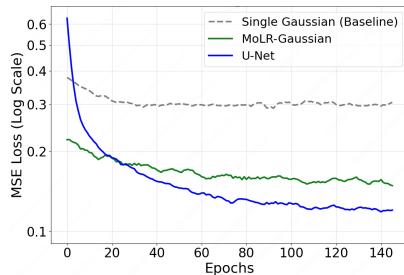


Figure 3: Loss Curve for CIFAR-10

270 score and supports our theoretical results. From a quantitative perspective, we calculate the CLIP
 271 score for the parachute class of ImageNet with text prompts "a photo of parachute". The Clip score for
 272 MoLR with Unet, MoG, and Gaussian NN is 0.304, 0.293, and 0.254, which indicates MoLR-MoG
 273 achieves almost comparable text-to-image alignment with MoE-Unet. Furthermore, the MoLR-MoG
 274 NN contains many fewer parameters compared to Unet since it uses the prior of latent MoG.
 275

276 **Discussion on Expert-Specific VAE.** As shown in the score of MoLR-MoG, different from latent
 277 diffusion models with a single VAE, there are K VAEs to encode the input to the corresponding
 278 manifold. We note that this operation is important for MoLR-MoG with small MoG experts. As
 279 shown in Figure 4, with a unified VAE, the unified latent is complex, and a MoG expert can not
 280 learn a meaningful image with the target class. Hence, with a unified VAE, latent diffusion models
 281 require a large latent Unet. However, with an expert-specific VAE (for example, we fine-tune the
 282 pretrained VAE with the parachute class dataset), the latent manifold becomes simple, and latent
 283 MoG experts are enough to generate clear models, which also supports our theoretical modeling.

284 We note that these experiments aim to show that
 285 the MoLR-MoG modeling is reasonable instead of
 286 achieving the SOTA performance. It is possible to
 287 achieve great performance with a small-sized NN
 288 using MoLR-MoG modeling in the application. For
 289 large-scale datasets without labels, we can use a
 290 clustering algorithm to divide the data into different
 291 clusters. Then, we can train a VAE encoder, de-
 292 coder, and latent MoG score for each cluster. For
 293 the VAE training, we do not require training the
 294 VAE from a sketch. We can LoRA fine-tune a VAE
 295 pretrained on large-scale datasets (for example, DC-
 296 AE (Chen et al., 2024a) for our ImageNet experi-
 297 ments) for each expert, which shares a pretrained
 298 VAE backbone and has a smaller model size. When
 299 generating images, we activate different VAE LoRA according to the clustering weight, which
 300 matches the spirit of MoE. We leave it as an interesting future work.

Figure 4: MoLR-MoG with Different VAE

5 ESCAPE THE CURSE OF DIMENSIONALITY WITH MoLR-MOG MODELING

301 This section shows that diffusion models can escape the curse of dimensionality by using MoLR-MoG
 302 properties. Before introducing our results, we first introduce the assumption on the target data.

303 **Assumption 5.1.** For $x \sim p_0$, we have that $\|x\|_2 \leq R$.

305 The bounded-support assumption is widely used in theoretical works (Chen et al., 2022; Yang et al.,
 306 2024a;b) and is naturally satisfied by image datasets. For a latent MoG, each component concentrates
 307 almost all mass within a few standard deviations of its mean, so by taking the most component means
 308 and variances, one can choose R large enough that $\|x\|_2 \leq R$ holds with high probability.

309 Since MoE-latent MoG score has a closed-form, we only need to learn the parameters $\mu_{k,l}$ and $U_{k,l}$
 310 at a fixed time t . As a result, we consider the estimation error at a fixed time t . Let $\ell(\theta; x, t) =$
 311 $\|s_\theta(x, t) - s^*(x, t)\|_2^2$ be the per-sample squared error at time t . In this part, we study the estimation
 312 error with a limited training dataset $\{x_i\}_{i=1}^n$:

$$|\mathcal{L}(\theta) - \widehat{\mathcal{L}}_n(\theta)|, \text{ with } \widehat{\mathcal{L}}_n(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(\theta; x_i, t).$$

316 To obtain the estimation error, we first provide the Lipschitz constant for s_θ and the loss function by
 317 fully using the property of MoLR-MoG modeling and MoE-latent MoG score.

318 **Lemma 5.2.** [Lipschitz Continuity] Let L_{μ_l} and L_{U_k} be the Lipschitz constant w.r.t. s_θ . With
 319 MoLR-MoG modeling and Assumption 5.1, there is a constant

$$L \leq \sqrt{\sum_{i=1}^K n_k (L_{\mu_l}^2 + L_{U_k}^2)} = O\left((\sum_{k=1}^K n_k)^{\frac{1}{2}} C_w\right)$$

320 such that for any θ, θ' , $\|s_\theta(x, t) - s_{\theta'}(x, t)\|_2 \leq L \|\theta - \theta'\|_2$, where $C_w = \frac{(R+s_t B_\mu)^3 s_t^2}{\gamma_t^4}, B_\mu =$
 321 $\max_{k,l} \|\mu_{k,l}\|_2$. For s_θ and s^* , we have that $2\|s_\theta(x, t) - s^*(x, t)\|_2 \leq 2(R+s_t B_\mu)/\gamma_t^2 := L_l$.

324 Then, we obtain the Lipschitz constant $L' = L_l L$ for the whole loss function. With this Lipschitz
 325 property, the next step is to argue that fitting the network on n samples generalizes to the true
 326 population loss. We do so by controlling the Rademacher complexity of the loss class and then using
 327 a Bernstein concentration argument to obtain the following theorem.

328 **Theorem 5.3.** *Denote by $\hat{\mathcal{L}}_n(\theta)$ the empirical loss on n i.i.d. samples and by $\mathcal{L}(\theta)$ its population
 329 counterpart. Then there exist constants C_1, C_2 such that with probability at least $1 - \delta$, for all $\theta \in \Theta$,*

$$331 \quad | \mathcal{L}(\theta) - \hat{\mathcal{L}}_n(\theta) | \leq O \left(C_1 \frac{(R + s_t B_\mu)^4 s_t^2 \sqrt{\sum_{k=1}^K n_k}}{\gamma_t^6} \sqrt{\frac{\sum_{k=1}^K n_k d_k}{n}} + C_2 \sqrt{\frac{\log(1/\delta)}{n}} \right).$$

334 where $C_1 = \max_{\theta \in \Theta} \|\theta_i - \theta_j\|_2$, $C_2 = \sigma \log 2$, $\sigma^2 = \sup_{\theta \in \Theta} \text{Var}[\ell(\theta; X, t)]$.

336 This result removes the exponential dependence on D with the number of latent subspace K , the
 337 latent dimension d_k , and the number of modalities n_k at each linear subspace, which reflects the key
 338 feature of the real-world data and escape the curse of dimensionality. The remaining question is why
 339 diffusion models enjoy a fast and stable optimization process. In the next part, we show that with
 340 MoLR-MoG modeling, the objective function is locally strongly convex and answer this question.

342 6 STRONGLY CONVEX PROPERTY AND CONVERGENCE GUARANTEE

344 In this part, by using the property of MoLR-MoG modeling, we derive explicit expressions for the
 345 *Jacobian* and *Hessian* of the objective function for 2-modal MoG latent and general MoG latent.
 346 Then, we establish conditions under which the resulting score-matching loss is locally strongly convex
 347 for each setting. Finally, we provide the convergence guarantee for the optimization.

348 6.1 2-MODAL LATENT MOG HESSIAN ANALYSIS AND OPTIMIZATION

350 In this section, we show that, under sufficient cluster separation, the Hessian matrix near θ^* simplifies
 351 to a block-diagonal form, yielding local strong convexity, which derives a linear convergence rate.
 352 As discussed in Section 3.1, following the real-world setting, we consider the optimization dynamic
 353 in the k -th latent subspace. While our modeling contains K encoders and decoders, facing an input
 354 image x , we can first determine which cluster image x belongs to, and then use the corresponding A_k
 355 to encode it into the corresponding latent space. Then, we only use data belonging to k clustering
 356 to train the k -th latent MoG score. This operation matches our experimental settings, and Wang
 357 et al. (2024) also adopts this operation. When considering the optimization problem, to simplify the
 358 calculation of the Hessian matrix, we set $d_{k,l} = 1$.

359 Similar to Shah et al. (2023), we start from a latent 2-modal MoG with the same covariance matrix
 360 Σ_k^* and $\mu_{k,1}^* = \mu_k^*, \mu_{k,2}^* = -\mu_k^*$, which leads to the following score:

$$362 \quad \nabla \log p_{t,k}(x) = -\frac{1}{\gamma_t^2} \frac{\frac{1}{2} \mathcal{N}(x; s_t \mu_k^*, \Sigma_k^*) \delta'_k(x) + \frac{1}{2} \mathcal{N}(x; -s_t \mu_k^*, \Sigma_k^*) \epsilon_k(x)}{\frac{1}{2} \mathcal{N}(x; s_t \mu_k^*, \Sigma_k^*) + \frac{1}{2} (x; -s_t \mu_k^*, \Sigma_k^*)}, \quad (4)$$

364 where $\epsilon_k(x) = x - s_t \mu_k^* - \frac{s_t^2}{s_t^2 + \gamma_t^2} U_k^* U_k^{*\top} (x - s_t \mu_k^*)$, and $\delta'_k(x) = x + s_t \mu_k^* - \frac{s_t^2}{s_t^2 + \gamma_t^2} U_k^* U_k^{*\top} (x + s_t \mu_k^*)$.
 365 Before providing the convergence guarantee, we make an assumption on the 2-MoG latent distribution.

367 **Assumption 6.1.** [Separation within a cluster] Within each cluster k , the two symmetric peaks are
 368 well separated in the sense that $\|s_t \mu_k^* - (-s_t \mu_k^*)\| \geq \Delta_{\text{intra}}$, for some $\Delta_{\text{intra}} \gg \gamma_t$. Consequently,
 369 if a sample x is drawn from the “+” peak then its responsibility under the “-” peak satisfies

$$370 \quad r_k^-(x) = \frac{\frac{1}{2} \mathcal{N}(x; -s_t \mu_k^*, \Sigma_k^*)}{\frac{1}{2} \mathcal{N}(x; s_t \mu_k^*, \Sigma_k^*) + \frac{1}{2} \mathcal{N}(x; -s_t \mu_k^*, \Sigma_k^*)} = O(e^{-\Delta_{\text{intra}}^2 / (2\gamma_t^2)}) \ll 1,$$

373 and symmetrically $r_k^+(x) \ll 1$ when x is drawn from the “-” peak.

375 The above assumption means that the separation of the two modals is sufficient. For each symmetric
 376 sub-peak, if the distance between them is relatively small, we can view them as having a mean of 0.
 377 Since they are the same distribution ($\mu = 0$ and $\Sigma = U_k U_k^\top + \gamma_t^2 I$), they are the same regardless
 378 of how they mix, which indicates that we can assume $r_k^+ \approx 1$ or $r_k^- \approx 1$. Moreover, in practice, if

378 raw data do not exhibit such clear gaps, one can always apply a simple linear embedding to magnify
 379 inter-mean distances relative to noise, thereby enforcing the same hard-assignment regime.
 380

381 Since the ground truth score function has a closed-form under the MoLR-MoG modeling, we focus
 382 on the score matching objective function $\mathcal{L}_{\text{SM}}(\theta)$ instead of $\mathcal{L}_{\text{DSM}}(\theta)$ and abbreviate $\mathcal{L}_{\text{SM}}(\theta)$ as
 383 $\mathcal{L}(\theta)$. We note that $\mathcal{L}_{\text{SM}}(\theta)$ and $\mathcal{L}_{\text{DSM}}(\theta)$ are equivalent up to a constant independent of θ , which
 384 indicates the optimization landscape is the same. Furthermore, when considering the convergence
 385 guarantee under a 2-layer wide ReLU NN, Li et al. (2023) also adopt score matching objective \mathcal{L}_{SM}
 386 instead of \mathcal{L}_{DSM} . Though calculating the bound of Jacobian $J_k^{\mu}(x) = \partial_{\mu_k} s_{\theta}$, $J_k^U(x)$ and the Hessian
 387 matrix w.r.t. \mathcal{L} , we provide the local strongly convexity parameters for the objective function.
 388

389 **Lemma 6.2.** [Local Strong Convexity] Combining Lemma C.4 with continuity of $\nabla^2 \mathcal{L}$, there exist
 390 $\alpha > 0$ and neighborhood U of θ^* such that $\nabla^2 \mathcal{L}(\theta) \succeq \alpha I, \forall \theta \in \Theta$. If $\forall x \in \mathbb{R}^{d_k}, r_k^+(x) = 1$ or
 391 $r_k^-(x) = 1$ are strictly satisfied,

$$392 \alpha = \min \left\{ \frac{s_t^2}{(s_t^2 + \gamma_t^2)^2}, \frac{4(U_k^\top \mu_k)^2 + \|U_k\|_2^2 \|\mu_k\|_2^2 - \|U_k\|_2 \|\mu_k\|_2 \sqrt{8(U_k^\top \mu_k)^2 + \|U_k\|_2^2 \|\mu_k\|_2^2}}{2} \right\}. \\ 393$$

394 **Theorem 6.3.** [Local Linear Convergence] Under Assumptions 5.1 and 6.1, if we take $\eta_m = \eta = 2/(\eta + L')$, and $\kappa = L'/\alpha$, then there exists a neighborhood U of θ^* such that

$$395 \|\theta^{(m)} - \theta^*\|_2 \leq \left(\frac{\kappa-1}{\kappa+1} \right)^m \|\theta^{(0)} - \theta^*\|_2,$$

396 where m is the number of gradient descent iterations.
 397

402 This result gives a lower bound on the convergence rate near θ^* . Due to its strongly convex property,
 403 the convergence rate is fast, which explains the fast and stable optimization process.

404 *Proof Overview.* Assumption 6.1 justifies the Jacobian simplification (Lemma C.2), which in turn
 405 yields the Hessian block structure (Lemma C.4). By Schur complement, this result gives local strong
 406 convexity (Lemma 6.2). Combining with the Lipschitz constant, we finish the proof.
 407

408 6.2 GENERAL MOG LATENT HESSIAN ANALYSIS AND OPTIMIZATION

410 We now extend our analysis to the case where each subspace k carries an *asymmetric* Gaussian
 411 mixture (Equation 3). As before, we first state the key separation assumption and show that on each
 412 subspace, the individual Gaussian distributions in the mixture of Gaussian are highly separated from
 413 each other. Then, we simplify the Hessian and prove local convexity. Finally, we conclude a linear
 414 convergence rate based on the strongly convex and smooth property.

415 **Assumption 6.4.** [Highly Separated Gaussian] Consider the Gaussian mixture

$$417 p_k(x) = \sum_{l=1}^{n_k} \pi_{k,l} \mathcal{N}(x; \mu_{k,l}, \Sigma_{k,l}), \quad r_{k,l}(x) := \frac{\pi_{k,l} \mathcal{N}(x; \mu_{k,l}, \Sigma_{k,l})}{\sum_{i=1}^{n_k} \pi_{k,i} \mathcal{N}(x; \mu_{k,i}, \Sigma_{k,i})}.$$

420 There exist constants $\varepsilon \ll 1$ and $\delta \ll 1$ such that when $x \sim p_k$ we have

$$421 \Pr_{x \sim p_k} \left(\exists l \in \{1, \dots, n_k\} \text{ with } r_{k,l}(x) \geq 1 - \varepsilon \right) \geq 1 - \delta.$$

424 *Justification.* With MoLR-MoG modeling, after adding diffusion noise of scale γ_t , each point
 425 x remains within $O(\gamma_t)$ of the subspace's moment-matched center $\bar{\mu}_k$. Concretely, the subspace
 426 structure (or a preliminary projection onto principal components) ensures $\|x - \bar{\mu}_k\|_2 \leq \Delta = C\gamma_t$
 427 with high probability, for some moderate constant C . Hence, any third-order Taylor term $\propto \|x - \bar{\mu}_k\|^3$
 428 is $O(\gamma_t^3)$, which vanishes compared to the leading Hessian scale $O(\gamma_t^2)$. In the following corollary,
 429 we further show the approximation effect of equivalent Gaussians.

430 **Corollary 6.5.** Assume that $\|\mu_{k,i}^* - \mu_{k,j}^*\|_2 \leq \delta$, $\|U_{k,i}^* - U_{k,j}^*\|_2 \leq \epsilon$ and $\|x - \bar{\mu}_k^*\|_2 \leq \Delta$. We have

$$431 \|\log p(x) - \log \bar{p}(x)\|_2 = O(\epsilon + \delta\Delta + \Delta^3)$$

432 *Remark 6.6* (Separated Gaussian simplification). For simplicity of description, we assume the
 433 individual Gaussian distributions in the mixture of Gaussians are highly separated. Actually, if there
 434 are n'_k Gaussians that are not separated from each other, we can employ clustering techniques to
 435 transform them into n_k mutually independent Gaussian distributions. The error caused by such an
 436 operation can be calculated using corollary 6.5. The core intuition is that the modals should not have
 437 much influence on each other. Hence, we can also use the idea of recursion to first cluster the general
 438 MoG into a 2-modal MoG latent. Then, we can use the analysis of Section 6.1 with Assumption 6.1.

439 Then, similar to the above section, we also calculate the Hessian matrix and show the local strong
 440 convex parameters. Finally, we provide the convergence guarantee for general MoLR-MoG modeling.
 441

442 **Lemma 6.7.** *[Eigenvalues of the Hessian] Assume Assumption 6.4, the Hessian at the k -th subspace
 443 is convex on a neighborhood of θ^* . If $\forall x \in \mathbb{R}^{d_k}$, $r_k^+(x) = 1$ or -1 are strictly satisfied, we have*

$$444 \quad \lambda_{\min}(H_{\mu_{k,l}\mu_{k,l}}) = \frac{\pi_{k,l}s_t^2}{(s_t^2 + \gamma_t^2)^2},$$

445 and $\lambda_{\min}(H_{U_{k,l}U_{k,l}})$ has the following form:

$$446 \quad \left(\pi_{k,l}4(U_{k,l}^\top \mu_{k,l})^2 + \|U_{k,l}\|_2^2 \|\mu_{k,l}\|_2^2 - \|U_{k,l}\|_2 \|\mu_{k,l}\|_2 \sqrt{8(U_{k,l}^\top \mu_{k,l})^2 + \|U_{k,l}\|_2^2 \|\mu_{k,l}\|_2^2} \right) / 2.$$

447 **Lemma 6.8.** *[Local Strong Convexity] Assume Assumption 6.4, in a neighborhood of θ^* , $\nabla^2 \mathcal{L}(\theta) \succeq$
 448 $\alpha' I$, $\alpha' > 0$, $\forall \theta \in \Theta$. If $\forall x \in \mathbb{R}^{d_k}$, $\exists l \in [n_k]$, $r_{k,l}(x) = 1$ are strictly satisfied, $\alpha' = \min\{\lambda_1, \lambda_2\}$,
 449 where $\lambda_1 = \min_{l=1 \dots, n_k} \frac{c_{k,l}\gamma_t^4}{(s_t^2 + \gamma_t^2)^2}$, $\lambda_2 = \min_{l=1,2,\dots,n_k} \lambda_{\min}(H_{U_{k,l}U_{k,l}})$.*

450 Thus, even without symmetry, equivalent Gaussians and sufficient subspace separation recover the
 451 same local convexity and linear convergence guarantees as in the asymmetric case. Similar to
 452 Theorem 6.3, under Assumption 6.4, we can obtain a convergence guarantee.

453 *Remark 6.9* (Previous MoG Learning through Score Matching). Shah et al. (2023) and Chen et al.
 454 (2024b) consider MoG data and analyze the optimization process of diffusion models at the full
 455 space. However, these works aim to design a specific algorithm to learn the MoG distribution instead
 456 of using a standard optimization algorithm. On the contrary, by using the MoLR-MoG property to
 457 calculate the Hessian matrix, we adopt the GD algorithm and obtain the convergence guarantee.

458 *Remark 6.10* (Initialization). Since the multi-modal GMM latent leads to a highly non-convex
 459 landscape, Theorem 6.3 and the corresponding asymmetric variant require the initialization to be
 460 around θ^* to guarantee local strong convexity and obtain a local convergence guarantee. As the
 461 MoLR-MoG is the first step to model the multi low-dimensional and multi-modal property, we leave
 462 the analysis of the global convergence guarantee as an interesting future work.

463 6.3 ANALYSIS WITHOUT HIGHLY SEPARATED CONDITION

464 In this part, we extend our analysis to latent MoG with overlap, which is closer to the real-world
 465 datasets. We define the pairwise overlap factor $\xi_{i,j}(x)$ between components i and j at the k -th
 466 manifold

$$467 \quad \xi_{i,j}(x) \triangleq r_{k,i}(x)r_{k,j}(x).$$

468 and the maximum expected overlap for the manifold as: $\epsilon_{\text{overlap}} = \max_i \sum_{j \neq i} \mathbb{E}_{x \sim p_t} [\xi_{i,j}(x)]$.

469 Without the high-separation assumption, our analysis proceeds in two steps. With the overlap factor
 470 $\epsilon_{\text{overlap}}$, we first examine the block-diagonal Hessian, deriving a refined lower bound α . Second,
 471 we analyze the full Hessian by treating off-diagonal interference as a perturbation bounded by the
 472 overlap factor. Applying Weyl's Inequality, we prove that the global matrix remains positive definite
 473 provided the perturbation (introduced by the overlap) is smaller than the effective diagonal curvature
 474 α , thus guaranteeing linear convergence.

475 **Lemma 6.11** (Minimum Curvature for 2-Mode Mixture). *Consider a mixture of two Gaussian
 476 components. Let $\epsilon_{\text{overlap}} = \sup_x r_k^+(x)r_k^-(x)$ denote the maximum pointwise overlap factor. The
 477 minimum eigenvalue of the ideal Hessian matrix, denoted as $\alpha_{2\text{-mode}}$, is bounded below by:*

$$478 \quad \alpha_{2\text{-mode}} \triangleq (1 - 4\epsilon_{\text{overlap}}) \min(\lambda_{\min}(H_{\mu_k\mu_k}), \lambda_{\min}(H_{U_kU_k})),$$

486

and

487

488

$$\lambda_{\min}(H) \geq \alpha_{2\text{-mode}} - C' \epsilon_{overlap} > 0,$$

489

490

where C' is defined in E.1.3.

491

492

493

494

495

Lemma 6.12 (Minimum Curvature for Multi-Modal). *Let $\epsilon_{k,l}^{\text{total}} = \sum_{j \neq l} \mathbb{E}[\xi_{j,l}(x)]$ represent the total probability mass leaking from the l -th component due to overlap. The minimum eigenvalue of the block-diagonal Hessian, denoted as $\alpha_{\text{Multi-Modal}}$, is determined by the component with the minimum effective mass:*

496

497

$$\alpha_{\text{Multi-Modal}} \triangleq \min_{l \in \{1, \dots, n_k\}} [(\pi_{k,l} - \epsilon_{k,l}^{\text{total}}) \min(\lambda_{\min}(H_{\mu_{k,l} \mu_{k,l}}), \lambda_{\min}(H_{U_{k,l} U_{k,l}}))],$$

498

499

and

500

501

$$\lambda_{\min}(H) \geq \alpha_{\text{Multi-Modal}} - \tilde{C} \cdot \epsilon_{overlap},$$

502

where \tilde{C} is defined in E.2.4.

503

504

For the Hessian to remain positive definite, the intrinsic weight of every cluster must exceed its total confusion with other clusters (i.e., $\pi_{k,l} > \epsilon_{k,l}^{\text{total}}$ for all l).

505

506

507

7 CONCLUSION

508

In this work, we provide a mixture of low-rank mixture of Gaussian (MoLR-MoG) modeling for target data, which reflects the low-dimensional and multi-modal property of real-world data. Through the real-world experiments, we first show that the MoLR-MoG is a suitable modeling for the real-world data. Then, we analyze the estimation error and optimization process under the MoLR-MoG modeling and explain why diffusion models can achieve great performance with a small training dataset and a fast optimization process.

509

510

511

512

513

514

For the estimation error, we show that with the MoLR-MoG modeling, the estimation error is $R^4 \sqrt{\sum_{k=1}^K n_k} \sqrt{\sum_{k=1}^K n_k d_k} / \sqrt{n}$, which means diffusion models can take fully use of the multi subspace, low-dimensional and multi-modal information to escape the curse of dimensionality. For the optimization process, we conducted a detailed analysis of the score-matching loss landscape. By formulating the exact score in both symmetric and asymmetric mixture settings, we derived explicit expressions for the parameter Jacobians and identified the dominant components under standard separation assumptions. Then, we prove that the population loss becomes strongly convex in a neighborhood of the ground truth score function, by estimating the Hessian and presenting lower bounds on both its minimal eigenvalue and the convergence rate. Then, we provide the local convergence guarantee for the score matching objective function, which explains the fast and stable training process of diffusion models.

515

516

517

518

519

520

521

522

523

524

525

Future work and limitation. Though we have extended the situation to multi-manifold MoG, how to extend the analysis to more general non-Gaussian sub-manifolds (e.g. heavy-tailed or multi-modal beyond second moments) by higher-order moment matching is still unknown. Meanwhile, we wish to design optimization algorithms or network architectures that explicitly leverage the block-diagonal Hessian structure for faster training. For example, we can perform a natural-gradient step separately in each block with a block-diagonal Hessian with decomposed data, which will accelerate the optimization process.

526

527

528

529

530

531

532

Ethics statement. Our work aims to deepen the understanding of the modeling of diffusion models and explain the success of diffusion models from a theoretical perspective. The MoLR-MoG modeling has the potential to achieve a great performance with fewer parameters. Hence, this work can be viewed as an important step in understanding diffusion models, and the societal impact is similar to general generative models (Mirsky and Lee, 2021).

533

534

535

536

537

538

539

Reproducibility statement. The detail and description of the real-world experiments are provided in Appendix F. We detail the model, hyperparameters and data.

540 REFERENCES
541

542 Bradley CA Brown, Anthony L Caterini, Brendan Leigh Ross, Jesse C Cresswell, and Gabriel Loaiza-Ganem.
543 Verifying the union of manifolds hypothesis for image data. In *ICLR*, 2023.

544 Stefano Bruno, Ying Zhang, Dong-Young Lim, Ömer Deniz Akyildiz, and Sotirios Sabanis. On diffusion-based
545 generative models and their error bounds: The log-concave case with full convergence estimates. *arXiv
546 preprint arXiv:2311.13584*, 2023.

547 Hong Chen, Xin Wang, Guanning Zeng, Yipeng Zhang, Yuwei Zhou, Feilin Han, and Wenwu Zhu. Video-
548 dreamer: Customized multi-subject text-to-video generation with disen-mix finetuning. *arXiv preprint
549 arXiv:2311.00990*, 2023a.

550 Junyu Chen, Han Cai, Junsong Chen, Enze Xie, Shang Yang, Haotian Tang, Muyang Li, Yao Lu, and
551 Song Han. Deep compression autoencoder for efficient high-resolution diffusion models. *arXiv preprint
552 arXiv:2410.10733*, 2024a.

553 Minshuo Chen, Kaixuan Huang, Tuo Zhao, and Mengdi Wang. Score approximation, estimation and distribution
554 recovery of diffusion models on low-dimensional data. *arXiv preprint arXiv:2302.07194*, 2023b.

555 Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling is as easy as learning
556 the score: theory for diffusion models with minimal data assumptions. *arXiv preprint arXiv:2209.11215*,
557 2022.

558 Sitan Chen, Vasilis Kontonis, and Kulin Shah. Learning general gaussian mixtures with efficient score matching.
559 *arXiv preprint arXiv:2404.18893*, 2024b.

560 Frank Cole and Yulong Lu. Score-based generative models break the curse of dimensionality in learning a family
561 of sub-gaussian probability distributions. *arXiv preprint arXiv:2402.08082*, 2024.

562 Hugo Cui and Lenka Zdeborová. High-dimensional asymptotics of denoising autoencoders. *arXiv preprint
563 arXiv:2305.11041*, 2023.

564 Hugo Cui, Florent Krzakala, Eric Vanden-Eijnden, and Lenka Zdeborová. Analysis of learning a flow-based
565 generative model from limited sample complexity. *arXiv preprint arXiv:2310.03575*, 2023.

566 Hengyu Fu, Zhuoran Yang, Mengdi Wang, and Minshuo Chen. Unveil conditional diffusion models with
567 classifier-free guidance: A sharp statistical theory. *arXiv preprint arXiv:2403.11968*, 2024.

568 Sixue Gong, Vishnu Naresh Boddeti, and Anil K Jain. On the intrinsic dimensionality of image representations.
569 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 3987–3996,
570 2019.

571 Yingqing Guo, Hui Yuan, Yukang Yang, Minshuo Chen, and Mengdi Wang. Gradient guidance for diffusion
572 models: An optimization perspective. *arXiv preprint arXiv:2404.14743*, 2024.

573 Yinbin Han, Meisam Razaviyayn, and Renyuan Xu. Neural network-based score estimation in diffusion models:
574 Optimization and generalization. *arXiv preprint arXiv:2401.15604*, 2024.

575 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J Fleet. Video
576 diffusion models. *arXiv preprint arXiv:2204.03458*, 2022.

577 Jerry Yao-Chieh Hu, Weimin Wu, Yi-Chen Lee, Yu-Chao Huang, Minshuo Chen, and Han Liu. On statistical
578 rates of conditional diffusion transformers: Approximation, estimation and minimax optimality. *arXiv preprint
579 arXiv:2411.17522*, 2024a.

580 Jerry Yao-Chieh Hu, Weimin Wu, Zhuoru Li, Sophia Pi, Zhao Song, and Han Liu. On statistical rates and
581 provably efficient criteria of latent diffusion transformers (dits). *Advances in Neural Information Processing
582 Systems*, 37:31562–31628, 2024b.

583 Hamid Kamkari, Brendan Ross, Rasa Hosseinzadeh, Jesse Cresswell, and Gabriel Loaiza-Ganem. A geometric
584 view of data complexity: Efficient local intrinsic dimension estimation with diffusion models. *Advances in
585 Neural Information Processing Systems*, 37:38307–38354, 2024.

586 Puheng Li, Zhong Li, Huishuai Zhang, and Jiang Bian. On the generalization properties of diffusion models.
587 *arXiv preprint arXiv:2311.01797*, 2023.

594 Minghua Liu, Ruoxi Shi, Linghao Chen, Zhuoyang Zhang, Chao Xu, Xinyue Wei, Hansheng Chen, Chong
 595 Zeng, Jiayuan Gu, and Hao Su. One-2-3-45++: Fast single image to 3d objects with consistent multi-view
 596 generation and 3d diffusion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 597 *Recognition*, pages 10072–10083, 2024.

598 Yue Ma, Yingqing He, Hongfa Wang, Andong Wang, Chenyang Qi, Chengfei Cai, Xiu Li, Zhifeng Li, Heung-
 599 Yeung Shum, Wei Liu, et al. Follow-your-click: Open-domain regional image animation via short prompts.
 600 *arXiv preprint arXiv:2403.08268*, 2024.

601 Song Mei and Yuchen Wu. Deep networks as denoising algorithms: Sample-efficient learning of diffusion
 602 models in high-dimensional graphical models. *arXiv preprint arXiv:2309.11420*, 2023.

603

604 Yisroel Mirsky and Wenke Lee. The creation and detection of deepfakes: A survey. *ACM Computing Surveys*
 605 (CSUR), 54(1):1–41, 2021.

606 Kazusato Oko, Shunta Akiyama, and Taiji Suzuki. Diffusion models are minimax optimal distribution estimators.
 607 *arXiv preprint arXiv:2303.01861*, 2023.

608 Phillip Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein. The intrinsic dimension of
 609 images and its impact on learning. *arXiv preprint arXiv:2104.08894*, 2021.

610

611 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image
 612 synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and*
 613 *pattern recognition*, pages 10684–10695, 2022.

614 Kulin Shah, Sitan Chen, and Adam Klivans. Learning mixtures of gaussians using the ddpm objective. *arXiv*
 615 *preprint arXiv:2307.01178*, 2023.

616 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
 617 Score-based generative modeling through stochastic differential equations. *arXiv preprint arXiv:2011.13456*,
 618 2020.

619 Pascal Vincent. A connection between score matching and denoising autoencoders. *Neural computation*, 23(7):
 620 1661–1674, 2011.

621

622 Peng Wang, Huijie Zhang, Zekai Zhang, Siyi Chen, Yi Ma, and Qing Qu. Diffusion models learn low-dimensional
 623 distributions via subspace clustering. *arXiv preprint arXiv:2409.02426*, 2024.

624 Ruofeng Yang, Bo Jiang, Cheng Chen, Ruinan Jin, Baoxiang Wang, and Shuai Li. Few-shot diffusion models
 625 escape the curse of dimensionality. In *The Thirty-eighth Annual Conference on Neural Information Processing*
 626 *Systems*, 2024a.

627 Ruofeng Yang, Zhijie Wang, Bo Jiang, and Shuai Li. Leveraging drift to improve sample complexity of variance
 628 exploding diffusion models. In *The Thirty-eighth Annual Conference on Neural Information Processing*
 629 *Systems*, 2024b.

630 Hui Yuan, Kaixuan Huang, Chengzhuo Ni, Minshuo Chen, and Mengdi Wang. Reward-directed conditional
 631 diffusion: Provable distribution estimation and reward improvement. *arXiv preprint arXiv:2307.07055*, 2023.

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 APPENDIX
649650 A THE USE OF LARGE LANGUAGE MODELS (LLMs)
651652 As this work mainly focus on the new modeling of diffusion models from a theoretical perspective,
653 large language models were only used for minor language editing to check grammar. All ideas, new
654 modelings, experiments, theoretical guarantee, discussion and writing decisions were made entirely
655 by the authors.
656657 B SCORE FUNCTION ERROR ESTIMATION
658660 B.1 CALCULATE $\nabla \log p_t(x)$ AND DECOMPOSITION
661662 Consider the k -th subspace

663
$$p_{t,k}(x) = \sum_{l=1}^{n_k} \pi_{k,l} \mathcal{N}(\mu_{k,l}, \Sigma_{k,l})$$

664
665

666 where $\Sigma_{k,l} = s_t^2 U_{k,l} U_{k,l}^\top + \gamma_t^2 I$.
667

668 We know that

669
$$\Sigma_{k,l}^{-1} = \frac{1}{\gamma_t^2} \left(I - \frac{s_t^2}{s_t^2 + \gamma_t^2} U_{k,l} U_{k,l}^\top \right),$$

670
671
$$\nabla p_{t,k}(x) = \frac{1}{\gamma_t^2} \sum_{l=1}^{n_k} \pi_{k,l} \mathcal{N}(\mu_{k,l}, \Sigma_{k,l}) \left(I - \frac{s_t^2}{s_t^2 + \gamma_t^2} U_{k,l} U_{k,l}^\top \right) (x - \mu_{k,l}),$$

672
673

674 which indicates

675
676
$$\nabla \log p_{t,k}(x) = \frac{\nabla p_{t,k}(x)}{p_{t,k}(x)} = \frac{1}{\gamma_t^2} \frac{\sum_{l=1}^{n_k} \pi_{k,l} \mathcal{N}(\mu_{k,l}, \Sigma_{k,l}) \left(I - \frac{s_t^2}{s_t^2 + \gamma_t^2} U_{k,l} U_{k,l}^\top \right) (x - \mu_{k,l})}{\sum_{l=1}^{n_k} \pi_{k,l} \mathcal{N}(\mu_{k,l}, \Sigma_{k,l})}.$$

677
678

679 We want to learn the parameters of the score function:
680

681
$$s_k^*(x, t) = \nabla \log p_{t,k}(x),$$

682

683 where the parameters are $\{\mu_{k,l}^*, U_{k,l}^*\}$, $k = 1, \dots, K$.
684

And

685
$$s^*(x, t) = (s_1^*(x, t), s_2^*(x, t), \dots, s_K^*(x, t))$$

686

687 Define

688
689
$$R(s_k) = \mathbb{E} [\|s_k(x, t) - s_k^*(x, t)\|^2], \quad \hat{R}_n(s_k) = \frac{1}{n} \sum_{i=1}^n \|s_k(x_i, t_i) - s_k^*(x_i, t_i)\|^2$$

690
691

692 We have the following decomposition:
693

694
$$R(\hat{s}_{k,\hat{\theta}_n}) - \hat{R}_n(s_{k,\hat{\theta}_n}) = \underbrace{R(\hat{s}_{k,\hat{\theta}_n}) - \hat{R}(s_k^*)}_{\text{Estimation}} + \underbrace{\hat{R}(s_k^*) - \hat{R}(s_{k,\theta^*})}_{\text{Approximation}} + \underbrace{\hat{R}_n(s_{k,\theta^*}) - \hat{R}_n(\hat{s}_{k,\hat{\theta}_n})}_{\text{optimization}}$$

695
696

697 We can also obtain that

698
$$R(s) = \sum_{k=1}^K R(s_k)$$

699
700

701 Since *Estimation* and *Approximation* reflect the fitting ability of the network, we analyze the first
term first. Then, in the next section, we analyze the optimization dynamic.

702 B.2 ESTIMATION
703704 First, we show that f and loss function are Lipschitz. We will first prove that s_k is Lipschitz for $\forall k$,
705 then we can know that s is Lipschitz.706 **Lemma B.1.** [Lipschitz Continuity] Let L_{μ_l} and L_{U_k} be the Lipschitz constant w.r.t. s_θ . With
707 MoLR-MoG modeling and Assumption 5.1, there is a constant

708
709
$$L \leq \sqrt{\sum_{i=1}^K n_k (L_{\mu_l}^2 + L_{U_k}^2)} = O\left((\sum_{k=1}^K n_k)^{\frac{1}{2}} C_w\right)$$

710

711 such that for any θ, θ' , $\|s_\theta(x, t) - s_{\theta'}(x, t)\|_2 \leq L \|\theta - \theta'\|_2$, where $C_w = \frac{(R+s_t B_\mu)^3 s_t^2}{\gamma_t^4}, B_\mu =$
712 $\max_{k,l} \|\mu_{k,l}\|_2$. For s_θ and s^* , we have that $2\|s_\theta(x, t) - s^*(x, t)\|_2 \leq 2(R + s_t B_\mu)/\gamma_t^2 := L_l$.
713
714715 **Proof.** Since we analyze the estimation error at a fixed time t , we ignore subscript t for $\Sigma_{k,l,t}, w_{k,t},$
716 $w_{l,k,t}$ and $\delta_{k,l,t}$ and define by

717
718
$$\Sigma_{k,l} = s_t^2 U_{k,l} U_{k,l}^\top + \gamma_t^2 I$$

719
$$w_k(x) = \sum_{l=1}^{n_k} \pi_{k,l} \mathcal{N}(x; s_t \mu_{k,l}, \Sigma_{k,l})$$

720
$$w_{k,l} = \frac{1}{M} \pi_{k,l} \mathcal{N}(x; s_t \mu_{k,l}, \Sigma_{k,l})$$

721
722
$$\delta_{k,l}(x) = x + s_t \mu_{k,l} - \frac{s_t^2}{s_t^2 + \gamma_t^2} U_{k,l} U_{k,l}^\top (x + s_t \mu_{k,l}).$$

723
724

725 Assume that $\|U_{k,l}\|_2 \leq B_U, \|\mu_{k,l}\|_2 \leq B_\mu, \max\{B_U, B_\mu\} = C$, and $\|x\|_2 \leq R$ for $\forall x \in X$.726 For $\Sigma_{k,l}$, we know that

727
728
$$\Sigma_{k,l} = U_{k,l} U_{k,l}^\top + \gamma_t^2 I \succ \gamma_t^2 I \Rightarrow \lambda_{\min}(\Sigma_{k,l}) \geq \gamma_t^2 \Rightarrow \|\Sigma_{k,l}^{-1}\|_2 \leq \frac{1}{\gamma_t^2}.$$

729
730

731 To obtain the first L in this lemma, we need to bound $\left\| \frac{\partial s_{k,\theta}(x,t)}{\partial \mu_{k,l}} \right\|_2$ and $\left\| \frac{\partial s_{k,\theta}(x,t)}{\partial U_{k,l}} \right\|_2$.
732733 **The bound of** $\left\| \frac{\partial s_{k,\theta}(x,t)}{\partial \mu_{k,l}} \right\|_2$. For the latent score of the k -th subspace, we have that
734

735
736
$$s_{k,\theta}(x, t) = -\frac{1}{\gamma_t^2} \frac{\sum_{l=1}^{n_k} w_{k,l}(x) \delta_{k,l}(x)}{w_k(x)},$$

737
738
$$\frac{\partial s_{k,\theta}(x, t)}{\partial \mu_{k,l}} = -\frac{1}{\gamma_t^2} \frac{\sum_{l=1}^{n_k} \left(\frac{\partial w_{k,l}(x)}{\partial \mu_{k,l}} \delta_{k,l}(x) + \frac{\partial \delta_{k,l}(x)}{\partial \mu_{k,l}} w_{k,l}(x) \right) w_k(x) - \frac{\partial w_k(x)}{\partial \mu_{k,l}} (\sum_{l=1}^{n_k} w_{k,l}(x) \delta_{k,l}(x))}{w_k^2(x)},$$

739
740
741
$$\left\| \frac{\partial s_{k,\theta}(x, t)}{\partial \mu_{k,l}} \right\|_2 \leq \frac{1}{\gamma_t^2} \left(\left\| \frac{\sum_{l=1}^{n_k} \left(\frac{\partial w_{k,l}(x)}{\partial \mu_{k,l}} \delta_{k,l}(x) + \frac{\partial \delta_{k,l}(x)}{\partial \mu_{k,l}} w_{k,l}(x) \right)}{w_k(x)} \right\|_2 + \left\| \frac{\frac{\partial w_k(x)}{\partial \mu_{k,l}} (\sum_{l=1}^{n_k} w_{k,l}(x) \delta_{k,l}(x))}{w_k^2(x)} \right\|_2 \right).$$

742
743

744 To bound this term, we separately show that
745746 (1) $w_k(x)$ has a lower bound.747 (2) $w_{k,l}(x), \delta_{k,l}(x), \frac{\partial w_{k,l}(x)}{\partial \mu_k}, \frac{\partial \delta_{k,l}(x)}{\partial \mu_k}$ have upper bounds.748 (3) $\left\| \frac{\frac{\partial w_k(x)}{\partial \mu_{k,l}} \delta_{k,l}(x)}{w_k} \right\|_2, \left\| \frac{\sum_{l=1}^{n_k} \frac{\partial \delta_{k,l}(x)}{\partial \mu_{k,l}} w_{k,l}(x)}{w_k(x)} \right\|_2, \left\| \frac{\frac{\partial w_k(x)}{\partial \mu_{k,l}} \sum_{l=1}^{n_k} w_{k,l}(x) \delta_{k,l}(x)}{w_k^2(x)} \right\|_2$ have upper bounds.
749
750
751
752753 (1) $w_k(x)$ has a lower bound.
754755 $w_k(x) = \sum_{l=1}^{n_k} \pi_{k,l} \mathcal{N}(x; s_t \mu_{k,l}, \Sigma_{k,l})$, which is continuous.

756 Since continuous function has maximum and minimum in a closed internal and $\|x\|_2 \leq R$, we can
757 assume that $w_k(x) \geq m_w$. And for any x , $w_k(x) > 0$, so $m_w > 0$ holds.
758

759 (2) $w_{k,l}(x)$, $\delta_{k,l}(x)$, $\frac{\partial \delta_{k,l}(x)}{\partial \mu_k}$, $\frac{\partial w_{k,l}(x)}{\partial \mu_k}$ have upper bounds.
760

761 We already know that continuous function has maximum and minimum in a closed internal and
762 $\|x\|_2 \leq R$. Thus, we can assume that $w_k(x) \leq M_{w_k}$. We also have that
763

$$w_k(x) \leq M_{w_k} \leq \sum_{l=1}^{n_k} \pi_{k,l} (2\pi)^{-\frac{n}{2}} |\Sigma_{k,l}|^{-\frac{1}{2}}.$$

764 For the second term, we have that

$$\delta_{k,l}(x) = x - s_t \mu_{k,l} - \frac{s_t^2}{s_t^2 + \gamma_t^2} U_{k,l} U_{k,l}^\top (x - s_t \mu_{k,l}) = \left(I - \frac{s_t^2}{s_t^2 + \gamma_t^2} U_{k,l} U_{k,l}^\top \right) (x - s_t \mu_{k,l}),$$

765 whose L_2 norm is bounded by
766

$$\left\| \left(I - \frac{s_t^2}{s_t^2 + \gamma_t^2} U_{k,l} U_{k,l}^\top \right) (x - s_t \mu_{k,l}) \right\|_2 \leq \|x - s_t \mu_{k,l}\|_2 \leq \|x\|_2 + \|s_t \mu_{k,l}\|_2 \leq R + s_t B_\mu.$$

767 Then, for the third term, we know that
768

$$\frac{\partial \delta_{k,l}(x)}{\partial \mu_{k,l}} = -s_t + \frac{s_t^3}{s_t^2 + \gamma_t^2} U_{k,l} U_{k,l}^\top = -s_t \left(I - \frac{s_t^2}{s_t^2 + \gamma_t^2} U_{k,l} U_{k,l}^\top \right).$$

769 For the last term, we have we have the following expression
770

$$\frac{\partial w_{k,l}(x)}{\partial \mu_{k,l}} = -\frac{s_t}{2} \mathcal{N}(x; s_t \mu_{k,l}, \Sigma_{k,l}) \Sigma_{k,l}^{-1} (x - s_t \mu_{k,l}).$$

771 For term $\|\Sigma_{k,l}^{-1}(x - s_t \mu_{k,l})\|_2$, we have that
772

$$\|\Sigma_{k,l}^{-1}(x - s_t \mu_{k,l})\|_2 \leq \|\Sigma_{k,l}^{-1}\|_2 \|x - s_t \mu_{k,l}\|_2 = \frac{1}{\gamma_t^2} \|x - s_t \mu_{k,l}\|_2 \leq \frac{1}{\gamma_t^2} (R + \|s_t \mu_{k,l}\|_2),$$

773 which indicates
774

$$\begin{aligned} \left\| \frac{\partial w_{k,l}(x)}{\partial \mu_{k,l}} \right\|_2 &\leq s_t \mathcal{N}(x; s_t \mu_{k,l}, \Sigma_{k,l}) \frac{1}{\gamma_t^2} (R + \|s_t \mu_{k,l}\|_2) \leq s_t \mathcal{N}(x; s_t \mu_{k,l}, \Sigma_{k,l}) \frac{1}{\gamma_t^2} (R + s_t B_\mu) \\ \left\| \frac{\partial w_k(x)}{\partial \mu_{k,l}} \right\|_2 &\leq \sum_{l=1}^{n_k} s_t \mathcal{N}(x; s_t \mu_{k,l}, \Sigma_{k,l}) \frac{1}{\gamma_t^2} (R + s_t B_\mu). \end{aligned}$$

775 (3) $\left\| \frac{\frac{\partial w_k(x)}{\partial \mu_{k,l}} \delta_{k,l}(x)}{w_k} \right\|_2, \left\| \frac{\sum_{l=1}^{n_k} \frac{\partial \delta_{k,l}(x)}{\partial \mu_{k,l}} w_{k,l}(x)}{w_k(x)} \right\|_2, \left\| \frac{\frac{\partial w_k(x)}{\partial \mu_{k,l}} \sum_{l=1}^{n_k} w_{k,l}(x) \delta_{k,l}(x)}{w_k^2(x)} \right\|_2$ have upper bounds.
776

777 For the first two term,
778

$$\left\| \frac{\frac{\partial w_k(x)}{\partial \mu_{k,l}} \delta_{k,l}(x)}{w_k} \right\|_2 \leq \frac{s_t}{\gamma_t^2} (R + s_t B_\mu)^2,$$

779 and
780

$$\left\| \frac{\partial \delta_{k,l}(x)}{\partial \mu_{k,l}} \right\|_2 = \text{Constant} \leq s_t, \left\| \frac{\sum_{l=1}^{n_k} \frac{\partial \delta_{k,l}(x)}{\partial \mu_{k,l}} w_{k,l}(x)}{w_k(x)} \right\|_2 \leq s_t.$$

781 For the third term, we know that
782

$$\left\| \frac{\frac{\partial w_k(x)}{\partial \mu_{k,l}} \sum_{l=1}^{n_k} w_{k,l}(x) \delta_{k,l}(x)}{w_k^2(x)} \right\|_2 \leq \left\| \frac{s_t w_k^2(x) \frac{s_t}{\gamma_t^2} (R + s_t B_\mu)}{w_k^2(x)} \right\|_2 = \frac{s_t^2}{\gamma_t^2} (R + s_t B_\mu).$$

783 Combined with the above three, we obtain the bound for $\left\| \frac{\partial s_{k,\theta}(x,t)}{\partial \mu_{k,l}} \right\|_2$:
784

$$\begin{aligned} \left\| \frac{\partial s_{k,\theta}(x,t)}{\partial \mu_{k,l}} \right\|_2 &\leq \frac{1}{\gamma_t^2} \left(\left\| \frac{\sum_{l=1}^{n_k} \left(\frac{\partial w_{k,l}(x)}{\partial \mu_{k,l}} + \frac{\partial \delta_{k,l}(x)}{\partial \mu_{k,l}} \right) \delta_{k,l}(x)}{w_k(x)} \right\|_2 + \left\| \frac{\frac{\partial w_k(x)}{\partial \mu_{k,l}} (\sum_{l=1}^{n_k} w_{k,l}(x) \delta_{k,l}(x))}{w_k^2(x)} \right\|_2 \right) \\ &\leq \frac{s_t^2}{\gamma_t^2} (R + s_t B_\mu)^2 + s_t + \frac{s_t}{\gamma_t^2} (R + s_t B_\mu) = O \left(\frac{s_t^2 (R + s_t B_\mu)^2}{\gamma_t^2} \right). \end{aligned}$$

810 **The bound of** $\left\| \frac{\partial s_{k,\theta}(x,t)}{\partial U_{k,l}} \right\|_2$. Now we compute the part about $U_{k,l}$. Through some simple algebra,
811 we know that
812

$$813 \frac{\partial s_{k,\theta}(x,t)}{\partial U_{k,l}} = -\frac{1}{\gamma_t^2} \frac{\sum_{l=1}^{n_k} \left(\frac{\partial w_{k,l}(x)}{\partial U_{k,l}} \delta_{k,l}(x) + \frac{\partial \delta_{k,l}(x)}{\partial U_{k,l}} w_{k,l}(x) \right) w_k(x) - \frac{\partial w_k(x)}{\partial U_{k,l}} (\sum_{l=1}^{n_k} w_{k,l}(x) \delta_{k,l}(x))}{w_k^2(x)}.$$

816 Then, we have the following inequality

$$817 \frac{\partial s_{k,\theta}(x,t)}{\partial U_{k,l}} = -\frac{1}{\gamma_t^2} \frac{\sum_{l=1}^{n_k} \left(\frac{\partial w_{k,l}(x)}{\partial U_{k,l}} \delta_{k,l}(x) + \frac{\partial \delta_{k,l}(x)}{\partial U_{k,l}} w_{k,l}(x) \right) w_k(x) - \frac{\partial w_k(x)}{\partial U_{k,l}} (\sum_{l=1}^{n_k} w_{k,l}(x) \delta_{k,l}(x))}{w_k^2(x)}.$$

$$818 \left\| \frac{\partial s_{k,\theta}(x,t)}{\partial U_{k,l}} \right\|_2 \leq \frac{1}{\gamma_t^2} \left(\left\| \frac{\sum_{l=1}^{n_k} \left(\frac{\partial w_{k,l}(x)}{\partial U_{k,l}} \delta_{k,l}(x) + \frac{\partial \delta_{k,l}(x)}{\partial U_{k,l}} w_{k,l}(x) \right)}{w_k(x)} \right\|_2 + \left\| \frac{\frac{\partial w_k(x)}{\partial U_{k,l}} * (\sum_{l=1}^{n_k} w_{k,l}(x) \delta_{k,l}(x))}{w_k^2(x)} \right\|_2 \right).$$

823 Similar with $\left\| \frac{\partial s_{k,\theta}(x,t)}{\partial \mu_{k,l}} \right\|_2$, we need to provide:

824 (1) The upper bound of $\frac{\partial w_{k,l}}{\partial U_{k,l}}$ and $\frac{\partial \delta_{k,l}}{\partial U_{k,l}}$,

825 (2) The upper bound of $\left\| \frac{\sum_{l=1}^{n_k} \left(\frac{\partial w_{k,l}(x)}{\partial U_{k,l}} \delta_{k,l}(x) + \frac{\partial \delta_{k,l}(x)}{\partial U_{k,l}} w_{k,l}(x) \right)}{w_k(x)} \right\|_2$ and $\left\| \frac{\frac{\partial w_k(x)}{\partial U_{k,l}} * (\sum_{l=1}^{n_k} w_{k,l}(x) \delta_{k,l}(x))}{w_k^2(x)} \right\|_2$.

830 (1) The upper bound of $\frac{\partial w_{k,l}}{\partial U_{k,l}}$ and $\frac{\partial \delta_{k,l}}{\partial U_{k,l}}$.

831 For the first term, we have the following form

$$832 \frac{\partial w_{k,l}}{\partial U_{k,l}} = \pi_{k,l} \frac{\partial \mathcal{N}(x; s_t \mu_{k,l}, \Sigma_{k,l})}{\partial U_k}$$

$$833 = 2\pi_{k,l} s_t^2 [\mathcal{N}(x; s_t \mu_{k,l}, \Sigma_{k,l}) (\Sigma_k^{l-1} (x - s_t \mu_{k,l}) (x - s_t \mu_{k,l})^\top \Sigma_{k,l}^{-1} - \Sigma_{k,l}^{-1})] U_{k,l}.$$

838 Then, we know that

$$839 \left\| \frac{\partial w_{k,l}}{\partial U_{k,l}} \right\|_2 \leq 2\pi_{k,l} \mathcal{N}(x; s_t \mu_{k,l}, \Sigma_{k,l}) s_t^2 \left(\frac{(R + s_t \|\mu_{k,l}\|_2)^2}{\gamma_t^4} + \frac{1}{\gamma_t^2} \right)$$

$$840 \leq 2\pi_{k,l} \mathcal{N}(x; s_t \mu_{k,l}, \Sigma_{k,l}) s_t^2 \left(\frac{(R + s_t B_\mu)^2}{\gamma_t^4} + \frac{1}{\gamma_t^2} \right).$$

844 For the second term, we have that

$$845 \frac{\partial \delta_{k,l}(x)}{\partial U_{k,l}} = -2 \frac{s_t^2}{s_t^2 + \gamma_t^2} (U_{k,l}^\top (x - s_t \mu_{k,l}) I + U_{k,l} (x - s_t \mu_{k,l})^\top),$$

848 which indicates

$$849 \left\| \frac{\partial \delta_{k,l}(x)}{\partial U_{k,l}} \right\|_2 \leq 2 \frac{s_t^2}{s_t^2 + \gamma_t^2} (R + \|s_t \mu_{k,l}\|_2) \leq 2(R + \|s_t \mu_{k,l}\|_2)$$

$$850 \leq 2(R + s_t B_\mu).$$

$$851 \text{(2) The upper bound of } \left\| \frac{\sum_{l=1}^{n_k} \left(\frac{\partial w_{k,l}(x)}{\partial U_{k,l}} \delta_{k,l}(x) + \frac{\partial \delta_{k,l}(x)}{\partial U_{k,l}} w_{k,l}(x) \right)}{w_k(x)} \right\|_2 \text{ and } \left\| \frac{\frac{\partial w_k(x)}{\partial U_{k,l}} * (\sum_{l=1}^{n_k} w_{k,l}(x) \delta_{k,l}(x))}{w_k^2(x)} \right\|_2.$$

$$852 \left\| \frac{\sum_{l=1}^{n_k} \left(\frac{\partial w_{k,l}(x)}{\partial U_{k,l}} \delta_{k,l}(x) + \frac{\partial \delta_{k,l}(x)}{\partial U_{k,l}} w_{k,l}(x) \right)}{w_k(x)} \right\|_2 \leq s_t^2 \left(\frac{(R + s_t B_\mu)^3}{\gamma_t^4} + \frac{1}{\gamma_t^2} \right) + 2(R + s_t B_\mu)$$

860 We also have

$$861 \left\| \frac{\frac{\partial w_k(x)}{\partial U_{k,l}} * (\sum_{l=1}^{n_k} w_{k,l}(x) \delta_{k,l}(x))}{w_k^2(x)} \right\|_2 \leq s_t^2 \left(\frac{(R + s_t B_\mu)^2}{\gamma_t^4} + \frac{1}{\gamma_t^2} \right) (R + s_t B_\mu)$$

$$\begin{aligned}
& \left\| \frac{\partial s_{k,\theta}(x,t)}{\partial U_{k,l}} \right\|_2 \leq s_t^2 \left(\frac{(R+s_t B_\mu)^2}{\gamma_t^4} + \frac{1}{\gamma_t^2} \right) + 2(R+s_t B_\mu) + s_t^2 \left(\frac{(R+s_t B_\mu)^2}{\gamma_t^4} + \frac{1}{\gamma_t^2} \right) (R+s_t B_\mu) \\
& = O \left(\frac{(R+s_t B_\mu)^3 s_t^2}{\gamma_t^4} \right).
\end{aligned}$$

Therefore, $s_{\theta,k}$ is L_k -lipshiz, where

$$L_k \leq \sqrt{n_k(L_{\mu_{k,l}}^2 + L_{U_{k,l}}^2)} = O \left(n_k^{\frac{1}{2}} \frac{(R+s_t B_\mu)^3 s_t^2}{\gamma_t^4} \right).$$

Furthermore, we know that

$$\|s_\theta(x) - s_\theta(y)\|_2 = \left(\sum_{i=1}^K \|s_{\theta,i}(x^{(i)}) - s_{\theta,i}(y^{(i)})\|^2 \right)^{\frac{1}{2}} \leq \left(\sum_{i=1}^K L_i \|x^{(i)} - y^{(i)}\|_2^2 \right)^{\frac{1}{2}} \leq \sqrt{\sum_{i=1}^k L_i^2 \|x - y\|_2}.$$

Thus,

$$L = \sqrt{\sum_{i=1}^k L_i^2} = O \left(\sqrt{\sum_{i=1}^k n_i^{\frac{1}{2}} \frac{(R+s_t B_\mu)^3 s_t^2}{\gamma_t^4}} \right).$$

After obtaining the Lipschitz constant for s_θ , we bound the gap between s_θ and s^* :

$$\nabla \log p_{t,k}(x) = -\frac{1}{\gamma_t^2} \frac{\sum_{l=1}^{n_k} \pi_{k,l} \mathcal{N}(x; s_t \mu_{k,l}, s_t^2 U_{k,l}^\star U_{k,l}^{\star\top} + \gamma_t^2 I) \left(x - s_t \mu_{k,l} - \frac{s_t^2}{s_t^2 + \gamma_t^2} U_{k,l}^\star U_{k,l}^{\star\top} (x - s_t \mu_{k,l}) \right)}{\sum_{l=1}^{n_k} \pi_{k,l} \mathcal{N}(x; s_t \mu_{k,l}, s_t^2 U_{k,l}^\star U_{k,l}^{\star\top} + \gamma_t^2 I)}.$$

With the following bound

$$\|x - s_t \mu_{k,l} - \frac{s_t^2}{s_t^2 + \gamma_t^2} U_{k,l}^\star U_{k,l}^{\star\top} (x - s_t \mu_{k,l})\|_2 \leq R + s_t B_\mu,$$

we have that

$$\|\nabla \log p_{t,k}(x)\|_2 \leq \frac{1}{\gamma_t^2} (R + s_t B_\mu), \text{ and } \|s_{k,\theta}(x)\|_2 \leq \frac{1}{\gamma_t^2} (R + s_t B_\mu),$$

which indicates

$$\|s_{k,\theta}(x) - \nabla \log p_{t,k}(x)\|_2 \leq \frac{2}{\gamma_t^2} (R + s_t B_\mu).$$

Hence, we obtain that

$$L_l \leq 2\|s_{k,\theta}(x) - \nabla \log p_{t,k}(x)\|_2 = O(R + s_t B_\mu).$$

Lemma B.2. [Rademacher Complexity] Let $\mathcal{F} = \{\ell(\theta; \cdot, \cdot) : \theta \in \Theta\}$ and suppose Θ has diameter R_Θ . Then the empirical Rademacher complexity satisfies

$$\hat{\mathfrak{R}}_n(\mathcal{F}) = O \left(L' \sqrt{\frac{p}{n}} \right).$$

Proof. Let function class $\mathcal{F} = \{s_\theta(x) : \theta = (\{\{\mu_{k,l}, U_{k,l}\}_{l=1}^{n_k}\}_{k=1}^K) \in \Theta\}$, where $\mu_{k,l} \in \mathbb{R}^d, U_{k,l} \in \mathbb{R}^d$

We know that the number of parameters

$$p = \sum_{k=1}^K n_k (d + d) = 2 \sum_{k=1}^K n_k d_k.$$

918 And the covering number of the parameter space is
919

$$920 \quad 921 \quad \mathcal{N}(\epsilon, \Theta, \|\cdot\|_2) \leq \left(\frac{C}{\epsilon}\right)^p$$

922 If f is L-lipschitz, we know that
923

$$924 \quad \forall \theta_1, \theta_2 \in \Theta, \|f_{\theta_1} - f_{\theta_2}\|_{L_2(p)} \leq L\|\theta_1 - \theta_2\|_2 \quad \text{and} \quad \forall \theta, \exists \theta_j, \text{s.t.} \|\theta - \theta_j\|_2 \leq \frac{\epsilon}{L}$$

$$925 \quad \Rightarrow \|f_\theta - f_{\theta_j}\|_{L_2(p)} \leq L\|\theta - \theta_j\|_2 \leq \epsilon.$$

926 Thus, assume that $\|\theta_i - \theta_j\|_2 \leq C_1$ for any $\theta_i, \theta_j \in \Theta$
927

$$928 \quad \mathcal{N}(\epsilon, \Theta, \|\cdot\|_2) \leq \left(\frac{C_1}{\epsilon}\right)^p$$

$$929 \quad \Rightarrow \mathcal{N}\left(\frac{\epsilon}{L}, \Theta, \|\cdot\|_2\right) \leq \left(\frac{C_1 L}{\epsilon}\right)^p$$

$$930 \quad \Rightarrow \mathcal{N}(\epsilon, \mathcal{F}, \|\cdot\|_{L_2(p)}) \leq \mathcal{N}\left(\frac{\epsilon}{L}, \Theta, \|\cdot\|_2\right) \leq \left(\frac{C_1 L}{\epsilon}\right)^p \leq \left(\frac{C_1 L}{\epsilon}\right)^p, \log \mathcal{N}\left(\frac{\epsilon}{L}, \mathcal{F}, \|\cdot\|_{L_2(p)}\right) \leq p \log\left(\frac{C_1 L}{\epsilon}\right).$$

931 We also know that $\text{diam}(\mathcal{F}) \leq L \text{diam}(\Theta) = C_1 L$, with Dudley integral, we have
932

$$933 \quad \mathcal{R}_n(\mathcal{F}) \leq \frac{12}{\sqrt{n}} \int_0^{\text{diam}(\mathcal{F})} \sqrt{\log \mathcal{N}(\epsilon, \mathcal{F}, \|\cdot\|_{L_2(p)})} d\epsilon$$

$$934 \quad \leq \frac{12}{\sqrt{n}} \int_0^{C_1 L} \sqrt{p \log\left(\frac{C_1 L}{\epsilon}\right)} d\epsilon$$

$$935 \quad \leq \frac{12}{\sqrt{n}} \int_0^\infty p C_1 L \sqrt{t} \exp(-t) dt = \frac{6\sqrt{\pi p}}{\sqrt{n}} C_1 L = O(C_1 L \sqrt{\frac{p}{n}}).$$

936 We take the squared loss function.
937

$$938 \quad \mathcal{R}_n(\mathcal{L}) \leq L_l \mathcal{R}_n(\mathcal{F}) = O(C_1 L_l L \sqrt{\frac{p}{n}}).$$

■

939
940 **Theorem 5.3.** Denote by $\hat{\mathcal{L}}_n(\theta)$ the empirical loss on n i.i.d. samples and by $\mathcal{L}(\theta)$ its population
941 counterpart. Then there exist constants C_1, C_2 such that with probability at least $1 - \delta$, for all $\theta \in \Theta$,

$$942 \quad |\mathcal{L}(\theta) - \hat{\mathcal{L}}_n(\theta)| \leq O\left(C_1 \frac{(R + s_t B_\mu)^4 s_t^2 \sqrt{\sum_{k=1}^K n_k}}{\gamma_t^6} \sqrt{\frac{\sum_{k=1}^K n_k d_k}{n}} + C_2 \sqrt{\frac{\log(1/\delta)}{n}}\right).$$

943 where $C_1 = \max_{\theta \in \Theta} \|\theta_i - \theta_j\|_2$, $C_2 = \sigma \log 2$, $\sigma^2 = \sup_{\theta \in \Theta} \text{Var}[\ell(\theta; X, t)]$.
944

945 **Proof.** Since
946

$$947 \quad L_l \mathcal{R}_n(\mathcal{F}) = O(C_1 L_l L \sqrt{\frac{p}{n}}).$$

948 We have
949

$$950 \quad \Delta = \sup_{\theta \in \Theta} |\hat{\mathcal{L}}(\theta) - \mathcal{L}(\theta)| = O(C_1 L_l L \sqrt{\frac{p}{n}})$$

$$951 \quad \Rightarrow \mathbb{E}[\Delta] = O(C_1 L_l L \sqrt{\frac{p}{n}}).$$

952 By Bernstein inequality, let $\sigma^2 = \sup_{\theta \in \Theta} \text{Var}[\ell(X; \theta)]$, we know that
953

$$954 \quad \Pr_{\theta \in \Theta} (\sup_{\theta \in \Theta} |\hat{\mathcal{L}}(\theta) - \mathcal{L}(\theta)| \geq \mathbb{E}[\Delta] + \epsilon) \leq 2 \exp\left(-\frac{n\epsilon^2}{2(\sigma^2 + L_l L C_1 \epsilon / 3)}\right) \leq 2 \exp\left(-\frac{n\epsilon^2}{3\sigma^2}\right).$$

955 Let $2 \exp\left(-\frac{n\epsilon^2}{3\sigma^2}\right) < \delta$, we can obtain that
956

$$957 \quad \Pr_{\theta \in \Theta} (\sup_{\theta \in \Theta} |\hat{\mathcal{L}}(\theta) - \mathcal{L}(\theta)| \geq C_1 L L_l \sqrt{\frac{p}{n}} + C_2 \sqrt{\frac{\log(1/\delta)}{n}}) \leq \delta.$$

■

972 B.3 APPROXIMATION
973974 Since our network can represent $\nabla \log p(x)$ strictly, we have
975

976
$$\text{Approximation Error} = 0$$

977

978 C 2-MODE MOG OPTIMIZATION
979980 C.1 SETTING
981982 In this section, we analyze
983

984
$$\nabla \log p_{t,k}(x) = \frac{\nabla p_{t,k}(x)}{p_{t,k}(x)} = -\frac{1}{\gamma_t^2} \frac{\frac{1}{2}\mathcal{N}(x; s_t\mu_k, s_t^2U_k^*U_k^{*\top} + \gamma_t^2I) \left(x - s_t\mu_k - \frac{s_t^2}{s_t^2 + \gamma_t^2} U_k^*U_k^{*\top}(x - s_t\mu_k) \right)}{\frac{1}{2}\mathcal{N}(x; s_t\mu_k, s_t^2U_k^*U_k^{*\top} + \gamma_t^2I) + \frac{1}{2}\mathcal{N}(x; -s_t\mu_k, s_t^2U_k^*U_k^{*\top} + \gamma_t^2I)},$$

985

986 which can be reduced to
987

988
$$\nabla \log p_{t,k}(x) = -\frac{1}{\gamma_t^2} \frac{\frac{1}{2}\mathcal{N}(x; s_t\mu_k, \Sigma_k) \delta'_k(x) + \frac{1}{2}\mathcal{N}(x; -s_t\mu_k, \Sigma_k) \epsilon_k(x)}{\frac{1}{2}\mathcal{N}(x; s_t\mu_k, \Sigma_k) + \frac{1}{2}(x; -s_t\mu_k, \Sigma_k)}, \quad (5)$$

989

990 where $\epsilon_k(x) = x - s_t\mu_k - \frac{s_t^2}{s_t^2 + \gamma_t^2} U_k^*U_k^{*\top}(x - s_t\mu_k)$, and $\delta'_k(x) = x + s_t\mu_k - \frac{s_t^2}{s_t^2 + \gamma_t^2} U_k^*U_k^{*\top}(x + s_t\mu_k)$.
991992 C.2 OPTIMIZATION
993994 **Assumption C.1.** [Separation within a cluster] Within each cluster k , the two symmetric peaks are
995 well separated in the sense that $\|s_t\mu_k^* - (-s_t\mu_k^*)\| \geq \Delta_{\text{intra}}$, for some $\Delta_{\text{intra}} \gg \gamma_t$. Consequently,
996 if a sample x is drawn from the “+” peak then its responsibility under the “-” peak satisfies
997

1000
$$r_k^-(x) = \frac{\frac{1}{2}\mathcal{N}(x; -s_t\mu_k^*, \Sigma_k^*)}{\frac{1}{2}\mathcal{N}(x; s_t\mu_k^*, \Sigma_k^*) + \frac{1}{2}\mathcal{N}(x; -s_t\mu_k^*, \Sigma_k^*)} = O(e^{-\Delta_{\text{intra}}^2/(2\gamma_t^2)}) \ll 1,$$

1001

1002 and symmetrically $r_k^+(x) \ll 1$ when x is drawn from the “-” peak.
10031004 In the following discussion, we assume that $x \in k$ -th manifold, which means that $w_i(x) = 0$ if $i \neq k$.
10051006 **Lemma C.2.** [Jacobian Simplification] Under Assumption 6.1, in a neighborhood of θ^* the first
1007 derivatives simplify to their “self-cluster” terms: $J_k^\mu(x) = \partial_{\mu_k} s_\theta \approx s_t(I - \alpha P_k)/\gamma_t^2$, and
1008

1009
$$J_k^U(x) \approx \frac{2s_t^2}{\gamma_t^2(s_t^2 + \gamma_t^2)} (r_k^-(x)(U_k^\top(x + s_t\mu_k)I + (x + s_t\mu_k)U_k^\top) + r_k^+(x)(U_k^\top(x - s_t\mu_k)I + U_k(x - s_t\mu_k)^\top)).$$

1010

1011 C. Proof
1012

1013
$$\begin{aligned} J_k^\mu &= -\frac{1}{\gamma_t^2} \frac{\frac{\partial w_k^-(x)}{\partial \mu_k} \delta'_k(x) + \frac{\partial w_k^+(x)}{\partial \mu_k} \epsilon_k(x) + \frac{\partial \delta'_k(x)}{\partial \mu_k} w_k^-(x) + \frac{\partial \epsilon_k(x)}{\partial \mu_k} w_k^+(x) * \sum_{k=1}^K w_k(x) - \sum_{k=1}^K \frac{\partial w_k(x)}{\partial \mu_k} * \sum_{k=1}^K (w_k^-(x) \delta'_k(x) + w_k^+(x) \epsilon_k(x))}{w_k^2(x)} \\ &= \underbrace{\frac{w_k^-(x) \frac{\partial \delta'_k(x)}{\partial \mu_k} + w_k^+(x) \frac{\partial \epsilon_k(x)}{\partial \mu_k}}{\gamma_t^2 w_k(x)} - \frac{\frac{\partial w_k^-(x)}{\partial \mu_k} \delta'_k(x) + \frac{\partial w_k^+(x)}{\partial \mu_k} \epsilon_k(x)}{\gamma_t^2 w_k(x)}}_{\text{Term A}} \\ &\quad + \underbrace{\frac{\frac{\partial w_k(x)}{\partial \mu_k} (w_k^-(x) \delta'_k(x) + w_k^+(x) \epsilon_k(x))}{\gamma_t^2 w_k^2(x)}}_{\text{Term B}}. \end{aligned}$$

1014

1015 We will now prove that term B can be ignored compared to term A under our assumptions.
1016

1026 For term B, we have
1027
1028
$$\frac{\frac{\partial w_k(x)}{\partial \mu_k}(w_k^-(x)\delta'_k(x) + w_k^+\epsilon_k(x))}{\gamma_t^2 w_k^2(x)} - \frac{\frac{\partial w_k^-(x)}{\partial \mu_k}\delta'_k(x) + \frac{\partial w_k^+(x)}{\partial \mu_k}\epsilon_k(x)}{\gamma_t^2 w_k(x)}$$

1029
1030
1031
$$= \frac{1}{\gamma_t^2 w_k^2(x)} \left(\frac{\partial w_k(x)}{\partial \mu_k} (w_k^-(x)\delta'_k(x) + w_k^+(x)\epsilon_k(x)) - w_k(x) \left(\frac{\partial w_k^-(x)}{\partial \mu_k} \delta'_k(x) + \frac{\partial w_k^+(x)}{\partial \mu_k} \epsilon_k(x) \right) \right)$$

1032
1033
$$= \frac{1}{\gamma_t^2 w_k^2(x)} \left(\frac{\partial w_k^+(x)}{\partial \mu_k} w_k^-(x)\delta'_k(x) + \frac{\partial w_k^-(x)}{\partial \mu_k} w_k^+(x)\epsilon_k(x) - w_k^+(x) \frac{\partial w_k^-(x)}{\partial \mu_k} \delta'_k(x) - w_k^-(x) \frac{\partial w_k^+(x)}{\partial \mu_k} \epsilon_k(x) \right)$$

1034
1035
1036
$$= \frac{1}{\gamma_t^2 w_k^2(x)} \left(\frac{\partial w_k^+}{\partial \mu_k} w_k^- - \frac{\partial w_k^-}{\partial \mu_k} w_k^+ \right) (\epsilon_k(x) - \delta'_k(x))$$

1037
1038
$$= -\frac{2}{\gamma_t^2 w_k^2(x)} \left(\frac{\partial w_k^+}{\partial \mu_k} w_k^- - \frac{\partial w_k^-}{\partial \mu_k} w_k^+ \right) \left(I + \frac{s_t^2}{s_t^2 + \gamma_t^2} U_k U_k^\top \right) s_t \mu_k$$

1039
1040
1041
$$= -\frac{4}{\gamma_t^2 w_k^2(x)} s_t^2 w_k^- w_k^+ \Sigma_k^{-1} x \left(I + \frac{s_t^2}{s_t^2 + \gamma_t^2} U_k U_k^\top \right) \mu_k = O\left(\frac{r_k^+ r_k^-}{\gamma_t^4} s_t \|\mu_k\|_2 \|x\|_2\right).$$

1042

1043 And for term A, we have

1044
1045
$$\frac{w_k^-(x) \frac{\partial \delta'_k(x)}{\partial \mu_k} + w_k^+(x) \frac{\partial \epsilon_k(x)}{\partial \mu_k}}{\gamma_t^2 w_k(x)} = O\left(\frac{s_t \|\mu_k\|_2}{\gamma_t^2} |w_k^+ - w_k^-|\right).$$

1046

1047 Thus,

1048
1049
$$\frac{O\left(\frac{r_k^+ r_k^-}{\gamma_t^4} s_t \|\mu_k\|_2 \|x\|_2\right)}{O\left(\frac{s_t \|\mu_k\|_2}{\gamma_t^2} |w_k^+ - w_k^-|\right)} = O\left(\frac{r_k^+ r_k^- w_k \|x\|_2}{\gamma_t^2 |r_k^+ - r_k^-|}\right) = O\left(\frac{r_k^+ r_k^- w_k \|x\|_2}{\gamma_t^2}\right) \rightarrow 0.$$

1050
1051

1052 Thus, $J_k^\mu \approx -\frac{1}{\gamma_t^2} (r_k^+(x) \frac{\partial \delta'_k(x)}{\partial \mu_k} + r_k^-(x) \frac{\partial \epsilon_k(x)}{\partial \mu_k}) = -\frac{s_t}{\gamma_t^2} (r_k^+(x) - r_k^-(x)) \left(I - \frac{s_t^2}{s_t^2 + \gamma_t^2} U_k U_k^\top \right).$
1053

1054 We will analyze J_k^U now.

1055
1056
$$J_k^U = -\frac{1}{\gamma_t^2} \frac{\left(\frac{\partial w_k^-(x)}{\partial U_k} \delta'_k(x) + \frac{\partial \delta'_k(x)}{\partial U_k} w_k^-(x) + \frac{\partial \epsilon_k(x)}{\partial U_k} w_k^+(x) + \frac{\partial w_k^+(x)}{\partial U_k} \epsilon_k(x) \right) w_k(x) - \frac{\partial w_k(x)}{\partial U_k} * (w_k^-(x)\delta'_k(x) + w_k^+\epsilon_k(x))}{w_k^2(x)}$$

1057
1058
1059
$$= -\frac{1}{\gamma_t^2} \frac{\left(\frac{\partial \delta'_k(x)}{\partial U_k} w_k^-(x) + \frac{\partial \epsilon_k(x)}{\partial U_k} w_k^+(x) \right)}{w_k(x)}$$

1060
1061
1062
$$+ \frac{\frac{\partial w_k^-(x)}{\partial U_k} \delta'_k(x) + \frac{\partial w_k^+(x)}{\partial U_k} \epsilon_k(x)}{w_k(x)} - \frac{\frac{\partial w_k(x)}{\partial U_k} (w_k^-(x)\delta'_k(x) + w_k^+\epsilon_k(x))}{w_k^2(x)}.$$

1063

1064 By calculating, we have

1065
1066
$$\frac{\frac{\partial w_k^-(x)}{\partial U_k} \delta_k(x) + \frac{\partial w_k^+(x)}{\partial U_k} \epsilon_k(x)}{w_k(x)} - \frac{\frac{\partial w_k(x)}{\partial U_k} * (w_k^-(x)\delta'_k(x) + w_k^+\epsilon_k(x))}{w_k^2(x)}$$

1067
1068
1069
$$= \frac{1}{w_k^2(x)} ((w_k(x) \frac{\partial w_k^-(x)}{\partial U_k} \delta'_k(x) + \frac{\partial w_k^+(x)}{\partial U_k} \epsilon_k(x)) - \frac{\partial w_k(x)}{\partial U_k} (w_k^-(x)\delta'_k(x) + w_k^+\epsilon_k(x)))$$

1070
1071
1072
$$= \frac{1}{w_k^2(x)} (w_k(x) \frac{\partial w_k^-(x)}{\partial U_k} \delta'_k(x) + \frac{\partial w_k^+(x)}{\partial U_k} \epsilon_k(x)) - \frac{\partial w_k(x)}{\partial U_k} (w_k^-(x)\delta'_k(x) + w_k^+\epsilon_k(x)))$$

1073
1074
1075
$$= \frac{1}{w_k^2(x)} \left(\frac{\partial w_k^+}{\partial U_k} w_k^- - \frac{\partial w_k^-}{\partial U_k} w_k^+ \right) (\epsilon_k(x) - \delta'_k(x))$$

1076
1077
1078
$$= -\frac{2 s_t^3}{w_k^2(x)} \left[\mathcal{N}(x; s_t \mu_k, \Sigma) M^+(x) - \mathcal{N}(x; -s_t \mu_k, \Sigma) M^-(x) \right] U_k (I - \alpha U_k U_k^\top) \mu_k$$

1079

$$= O(r_k^+ r_k^- \frac{s_t^3}{\gamma_t^2 (s_t^2 + \gamma_t^2)}).$$

1080 where $M^+(x) = \Sigma^{-1}(x - s_t\mu_k)(x - s_t\mu_k)^\top \Sigma^{-1} - \Sigma^{-1}$, $M^-(x) = \Sigma^{-1}(x + s_t\mu_k)(x +$
 1081 $s_t\mu_k)^\top \Sigma^{-1} - \Sigma^{-1}$, $\alpha = \frac{s_t^2}{s_t^2 + \gamma_t^2}$.

1082 We also know that

$$\begin{aligned} 1084 \frac{\sum_{k=1}^K (\frac{\partial \delta_k(x)}{\partial U_k} w_k^-(x) + \frac{\partial \epsilon_k(x)}{\partial U_k} w_k^+(x))}{\sum_{k=1}^K w_k(x)} &= O\left(\frac{s_t^2 \|x\|_2}{s_t^2 + \gamma_t^2}\right) = O\left(\frac{s_t^3 \|\mu_k\|_2}{s_t^2 + \gamma_t^2}\right) \\ 1085 \frac{O(r_k^+ r_k^- \frac{s_t^3}{\gamma_t^2 (s_t^2 + \gamma_t^2)})}{O(\frac{s_t^3 \|\mu_k\|_2}{s_t^2 + \gamma_t^2})} &\rightarrow 0. \end{aligned}$$

1086 Thus,

$$\begin{aligned} 1087 J_k^U &\approx \\ 1088 \frac{2s_t^2}{\gamma_t^2 (s_t^2 + \gamma_t^2)} (r_k^-(x)(U_k^\top (x + s_t\mu_k)I + (x + s_t\mu_k)U_k^\top) + r_k^+(x)(U_k^\top (x - s_t\mu_k)I + U_k(x - s_t\mu_k)^\top)) &. \end{aligned}$$

1089 ■
 1090
 1091 Before we provide the simplification of Hessian, we first prove that for $a, b \in \mathbb{R}^n$ $M = a^\top b I_n + ba^\top$, MM^\top is positive-definite if and only if $b^\top a \neq 0$. At the same time, we provide the minimum eigenvalue of MM^\top , which will be used later.

1092 **Lemma C.3.** *Let $a, b \in \mathbb{R}^n$ and $M = a^\top b I_n + ba^\top$. MM^\top is positive-definite if and only if $b^\top a \neq 0$.*

1093 Moreover,

$$\lambda_{\min}(MM^\top) = \mu_2 = \frac{4(a^\top b)^2 + \|a\|_2^2 \|b\|_2^2 - \|a\|_2 \|b\|_2 \sqrt{8(a^\top b)^2 + \|a\|_2^2 \|b\|_2^2}}{2}.$$

1094 **Proof.** Let $M = a^\top b I_n + ba^\top$, $c = a^\top b$. We know that $\forall x \in \mathbb{R}^n$,

$$\begin{aligned} 1095 x^\top MM^\top x &= (M^\top x)^\top (M^\top x) \\ 1096 &= \|M^\top x\|_2^2 \geq 0. \end{aligned}$$

1097 Thus, MM^\top is semi-positive definite.

1098 We can also have that

$$1099 |M| = |a^\top b I_n + ba^\top| = c^n |I_n + \frac{1}{c} ba^\top| = 2c^n \geq 0,$$

1100 where $c^n = 0$ if and only if $b^\top a = 0$.

1101 The last equation holds because

$$1102 |I_n + uv^\top| = 1 + v^\top u$$

1103 Thus, $|MM^\top| > 0$, MM^\top is positive definite.

1104 We can further get the eigenvalues of MM^\top .

1105 Expanding gives the convenient representation

$$1106 MM^\top = (a^\top b)^2 I_n + a^\top b (ba^\top + ab^\top) + a^\top abb^\top. \quad (6)$$

1107 $\forall x \in \mathbb{R}^n$, if $x^\top a = 0$ and $x^\top b = 0$, we have:

$$1108 MM^\top x = (a^\top b)^2 x.$$

1109 Thus, $(a^\top b)^2$ is an eigenvalue of M , and its eigenspace contains the orthogonal complement of
 1110 $\text{span}\{a, b\}$. If a and b are linearly independent then $\dim(\text{span}\{a, b\}) = 2$, so the multiplicity of the
 1111 eigenvalue α^2 is at least $n - 2$.

To find the remaining eigenvalues we restrict M to the subspace $\mathcal{S} := \text{span}\{a, b\}$. Assume first that a and b are linearly independent so that \mathcal{S} is two-dimensional.

Using equation 6, we can compute $\text{tr}(MM^\top)$, which is

$$\begin{aligned}\text{tr}(MM^\top) &= \text{tr}((a^\top b)^2 I_n + a^\top b(ba^\top + ab^\top) + a^\top abb^\top) \\ &= n(a^\top b)^2 + 2(a^\top b)^2 + \|a\|_2^2 \|b\|_2^2 \\ &= (n+2)(a^\top b)^2 + \|a\|_2^2 \|b\|_2^2.\end{aligned}$$

The second equation holds because of $\text{tr}(xy^\top) = \text{tr}(y^\top x) = y^\top x$.

We set the other two eigenvalues are μ_1 and μ_2 . Thus

$$\text{tr}(MM^\top) = \sum_{i=1}^n \lambda_i = (n-2)(a^\top b)^2 + \mu_1 + \mu_2 = (n+2)(a^\top b)^2 + \|a\|_2^2 \|b\|_2^2,$$

and

$$|MM^\top| = \prod_{i=1}^n \lambda_i = (a^\top b)^{2(n-2)} \mu_1 \mu_2 = 4(a^\top b)^{2n}.$$

So μ_1 and μ_2 are the two solutions of

$$x^2 - (4(a^\top b)^2 + \|a\|_2^2 \|b\|_2^2) x + 4(a^\top b)^4 = 0. \quad (7)$$

Solving equation 7, we have

$$\mu_1, \mu_2 = \frac{4(a^\top b)^2 + \|a\|_2^2 \|b\|_2^2 \pm \|a\|_2 \|b\|_2 \sqrt{8(a^\top b)^2 + \|a\|_2^2 \|b\|_2^2}}{2}.$$

Now we obtain all eigenvalues. Moreover, we can calculate the minimum of eigenvalues.

$$\lambda_{\min}(MM^\top) = \mu_2 = \frac{4(a^\top b)^2 + \|a\|_2^2 \|b\|_2^2 - \|a\|_2 \|b\|_2 \sqrt{8(a^\top b)^2 + \|a\|_2^2 \|b\|_2^2}}{2}.$$

Lemma C.4. [Eigenvalues of the Hessian blocks] Under the same conditions, H is convex. If $\forall x \in \mathbb{R}^{d_k}, r_k^+(x) = 1$ or $r_k^-(x) = 1$ are strictly satisfied, the eigenvalues of the Hessian at θ^* are

$$\lambda_{\min}(H_{\mu_k \mu_k}) = \frac{s_t^2}{(s_t^2 + \gamma_t^2)^2}, \text{ and}$$

$$\lambda_{\min}(H_{U_k U_k}) = \frac{4(U_k^\top \mu_k)^2 + \|U_k\|_2^2 \|\mu_k\|_2^2 - \|U_k\|_2 \|\mu_k\|_2 \sqrt{8(U_k^\top \mu_k)^2 + \|U_k\|_2^2 \|\mu_k\|_2^2}}{2}.$$

Proof. We first state the convexity of the loss function near the true value θ^* .

Let $\theta = \theta^* + \Delta\theta$

$$s_\theta(x, t) = s_{\theta^*}(x, t) + (\nabla_\theta s_\theta(x, t)|_{\theta^*})^\top [\Delta\theta] + O(\|\Delta\theta\|_2^2).$$

$$\begin{aligned}L(\theta) &= \mathbb{E}_{x \sim p_t(x)} [(s_\theta(x, t) - \nabla \log p_t(x))^\top (s_\theta(x, t) - \nabla \log p_t(x))] \\ &= \mathbb{E}_{x \sim p_t(x)} [(s_{\theta^*}(x, t) + (\nabla_\theta s_\theta(x, t)|_{\theta^*})^\top [\Delta\theta] + O(\|\Delta\theta\|_2^2) - \nabla \log p_t(x))^\top \\ &\quad (s_{\theta^*}(x, t) + (\nabla_\theta s_\theta(x, t)|_{\theta^*})^\top [\Delta\theta] + O(\|\Delta\theta\|_2^2) - \nabla \log p_t(x))] \\ &= \mathbb{E}_{x \sim p_t(x)} [((\nabla_\theta s_\theta(x, t)|_{\theta^*})^\top [\Delta\theta])^\top (\nabla_\theta s_\theta(x, t)|_{\theta^*} [\Delta\theta]) + O(\|\Delta\theta\|_2^3)] \\ &= (\Delta\theta)^\top \mathbb{E}_{x \sim p_t(x)} [(\nabla_\theta s_\theta(x, t)|_{\theta^*}) (\nabla_\theta s_\theta(x, t)|_{\theta^*})^\top] \Delta\theta \\ &\triangleq (\Delta\theta)^\top H \Delta\theta.\end{aligned}$$

1188

1189

1190

$$\frac{\partial^2 L(\theta)}{\partial \theta^2} = 2H.$$

1191 We then analyze the convexity of $\mathbb{E}_{x \sim p_t(x)}[(\nabla_\theta s_\theta(x, t)|_{\theta^*})(\nabla_\theta s_\theta(x, t)|_{\theta^*})^\top] \triangleq H$. We can divide
 1192 H into 4 parts: $H_{\mu\mu}$, H_{UU} , $H_{\mu U}$ and $H_{U\mu}$, where $H_{U\mu} = (H_{\mu U})^\top$.

1193 Let $J_k^\mu|_\theta = \frac{\partial s_\theta}{\partial \mu_k}|_\theta$.

1194

1195

1196

1197

$$H = \mathbb{E}_{x \sim p_t(x)}[(\nabla_\theta s_\theta(x, t)|_{\theta^*})(\nabla_\theta s_\theta(x, t)|_{\theta^*})^\top]$$

$$= \mathbb{E}_{x \sim p_t(x)}[J_{\theta^*}(x, t) J_{\theta^*}(x, t)^\top].$$

1198 **Term $H_{\mu\mu}$**

1199 We will show that $H_{\mu_k \mu_k}$ is α -convex, where $\alpha > 0$.

1200

1201

1202

1203

$$H_{\mu_k \mu_k} = \mathbb{E}_{x \sim p_t(x)}[J_k^\mu J_k^{\mu \top}]$$

1204

1205

1206

1207

$$H_{\mu_k \mu_k} \approx \mathbb{E}_{x \sim p_t(x)}[J_\mu^k J_\mu^{k \top}] \approx \frac{s_t^2}{\gamma_t^4} \mathbb{E}_{x \sim p_t(x)}[(r_k^+(x) - r_k^-(x))^2] (I - \frac{s_t^2}{s_t^2 + \gamma_t^2} U_k U_k^\top)^2.$$

1208 Let $P_k = U_k U_k^\top$, $\alpha = \frac{s_t^2}{s_t^2 + \gamma_t^2}$,

1209

1210

1211

$$(I - \alpha P_k)(I - \alpha P_k)^\top = (I - \alpha P_k)^2 = I - 2\alpha P_k + \alpha^2 P_k^2 = (I - \alpha P_k)^2.$$

1212 We then prove that $\lambda_{\min}((I - \alpha P_k)^2) = (\frac{\gamma_t^2}{s_t^2 + \gamma_t^2})^2$.

1213 First, we calculate the eigenvalue of P .

1214

1215

1216

$$P^2 = P \Rightarrow \lambda_1 = 1, \lambda_2 = 0.$$

1217 Then we take subspace $Col(P) = \{v ; v = Px, x \in \mathcal{R}^D\}$ corresponding to λ_1 , and subspace
 1218 $Ker(P) = \{v ; Pv = 0, x \in \mathcal{R}^D\}$ corresponding to λ_2 .

1219 If $w \in Col(P)$, $Pw = w$:

1220

1221

1222

1223

1224

$$(I - \alpha P)w = (1 - \alpha)w$$

$$(I - \alpha P)^2 w = (1 - \alpha)^2 w$$

$$\Rightarrow \lambda'_1 = (1 - \alpha)^2.$$

1225 If $w \in Ker(P)$, $Pw = 0$:

1226

1227

1228

1229

1230

$$(I - \alpha P)w = w$$

$$(I - \alpha P)^2 w = w$$

$$\Rightarrow \lambda'_2 = 1.$$

1231

1232

1233

1234

1235

$$H_{\mu\mu} = \mathbb{E}[J_k^\mu (J_k^\mu)^\top]$$

$$\lambda_{\min}(H_{\mu\mu}) \approx \frac{s_t^2}{(s_t^2 + \gamma_t^2)^2}.$$

1236 Therefore, $\lambda_{\min}((I - \alpha P_k)^2) = \left(\frac{\gamma_t^2}{s_t^2 + \gamma_t^2}\right)^2$. Hence, we have

1237

1238

1239

1240

1241

$$\lambda_{\min}(H_{\mu_k \mu_k}) \geq \frac{c_k s_t^2}{(s_t^2 + \gamma_t^2)^2} \approx \frac{s_t^2}{(s_t^2 + \gamma_t^2)^2},$$

where $c_k = \mathbb{E}_{x \sim p_t(x)}[(r_k^+(x) - r_k^-(x))^2] \approx 1$.

1242
1243**Term** $H_{U_k U_k}$

1244

$$H_{U_k U_k} \approx \mathbb{E}_{x \sim p_t(x)} [J_U^k J_U^{k \top}]$$

1245

1246

1247

1248

1249

$$\begin{aligned} & \approx \frac{4s_t^4}{\gamma_t^4(s_t^2 + \gamma_t^2)^2} \mathbb{E}_{x \sim p_t(x)} [(U_k^\top (x + s_t \mu_k) I + (x + s_t \mu_k) U_k^\top) (U_k^\top (x + s_t \mu_k) I + (x + s_t \mu_k) U_k^\top)^\top] \\ & = \frac{4s_t^4}{\gamma_t^4(s_t^2 + \gamma_t^2)^2} (s_t^2 U_k^\top \mu_k \mu_k^\top U_k I + s_t^2 \mu_k^\top U_k (\mu_k U_k^\top + U_k \mu_k^\top) + \mu_k U_k^\top U_k \mu_k^\top + M(x),) \end{aligned}$$

1250

where $M(x)$ is semi-positive for $\mathbb{E}_{x \sim p_t(x)}[x] = 0$.

1251

1252

Using lemma C.3, we can take $a = U_k$ and $b = \mu_k$ and obtain that

1253

 $H_{U_k U_k}$ is positive definite and

1254

1255

1256

$$\lambda_{\min}(H_{U_k U_k}) = \frac{4(U_k^\top \mu_k)^2 + \|U_k\|_2^2 \|\mu_k\|_2^2 - \|U_k\|_2 \|\mu_k\|_2 \sqrt{8(U_k^\top \mu_k)^2 + \|U_k\|_2^2 \|\mu_k\|_2^2}}{2}.$$

1257

Term $H_{\mu_k U_k}$ **and Term** $H_{U_k \mu_k}$

1258

1259

1260

Since $H_{U_k \mu_k} = H_{\mu_k U_k}^\top$, we just analyze $H_{\mu_k U_k}$. We want to analyze the Hessian block

1261

1262

1263

$$H_{\mu_k U_k} = \mathbb{E}_{x \sim p_t} [J_k^U(x) (J_k^\mu(x))^\top],$$

1264

and show that under symmetric assumptions, this cross-term is zero.

1265

The first-order derivative with respect to μ_k is approximately:

1266

1267

1268

$$J_k^\mu(x) \approx -\frac{s_t}{\gamma_t^2} (r_k^+(x) - r_k^-(x)) (I - \alpha U_k U_k^\top), \quad \alpha = \frac{s_t^2}{s_t^2 + \gamma_t^2}.$$

1269

The first-order derivative with respect to U_k is approximately:

1270

1271

1272

$$J_k^U(x) \approx -\frac{1}{\gamma_t^2} \left[r_k^-(x) \frac{\partial \delta_k(x)}{\partial U_k} + r_k^+(x) \frac{\partial \epsilon_k(x)}{\partial U_k} \right],$$

1273

with

1274

1275

1276

1277

$$\frac{\partial \delta_k(x)}{\partial U_k} = -2 \frac{s_t^2}{s_t^2 + \gamma_t^2} U_k (x + s_t \mu_k), \quad \frac{\partial \epsilon_k(x)}{\partial U_k} = -2 \frac{s_t^2}{s_t^2 + \gamma_t^2} U_k (x - s_t \mu_k).$$

1278

combining terms:

1279

1280

$$J_k^U(x) = C \cdot U_k [r_k^-(x)(x + s_t \mu_k) + r_k^+(x)(x - s_t \mu_k)],$$

1281

1282

where $C = \frac{2s_t^2}{\gamma_t^2(s_t^2 + \gamma_t^2)}$. Assume that the underlying component distribution $p_k(x)$ is symmetric:

1283

1284

1285

$$p_k(x) = p_k(-x),$$

and the weights satisfy:

1286

1287

$$r_k^+(-x) = r_k^-(x), \quad r_k^-(-x) = r_k^+(x).$$

1288

Then we have:

1289

1290

(a) $J_k^\mu(x)$ **is an odd function:**

1291

1292

1293

1294

1295

$$\begin{aligned} J_k^\mu(-x) &= -\frac{s_t}{\gamma_t^2} (r_k^+(-x) - r_k^-(-x)) (I - \alpha U_k U_k^\top) \\ &= -\frac{s_t}{\gamma_t^2} (r_k^-(x) - r_k^+(x)) (I - \alpha U_k U_k^\top) \\ &= -J_k^\mu(x). \end{aligned}$$

1296 (b) $J_k^U(x)$ is an odd function:
 1297

$$\begin{aligned}
 1298 \quad J_k^U(-x) &= C U_k [r_k^-(x)(-x + s_t \mu_k) + r_k^+(-x)(-x - s_t \mu_k)] \\
 1299 &= C U_k [r_k^+(x)(-x + s_t \mu_k) + r_k^-(x)(-x - s_t \mu_k)] \\
 1300 &= -C U_k [r_k^-(x)(x + s_t \mu_k) + r_k^+(x)(x - s_t \mu_k)] \\
 1301 &= -J_k^U(x).
 \end{aligned}$$

1304 Now compute:
 1305

$$H_{\mu_k U_k} = \int J_k^U(x) (J_k^\mu(x))^\top p_k(x) dx.$$

1307 Using symmetry:
 1308

$$\begin{aligned}
 1309 \quad &= \int J_k^U(-x) (J_k^\mu(-x))^\top p_k(-x) dx = \int (-J_k^U(x)) (-J_k^\mu(x))^\top p_k(x) dx = H_{\mu_k U_k}.
 \end{aligned}$$

1311 Thus,
 1312

$$\begin{aligned}
 1313 \quad H_{\mu_k U_k} &= \mathbb{E}_{x \sim p_{data}} [J_k^\mu (J_k^U)^\top] = \mathbb{E}_{x \sim p_{data}} \left[\frac{2s_t^3}{\gamma_t^4(s_t^2 + \gamma_t^2)} (r_k^+(x) - r_k^-(x)) (1 - \frac{s_t^2}{s_t^2 + \gamma_t^2} U_k U_k^\top) \right. \\
 1314 &\quad \left. (r_k^-(x)(U_k^\top(x + s_t \mu_k)I + U_k(x + s_t \mu_k)^\top) + r_k^+(x)(U_k^\top(x - s_t \mu_k)I + U_k(x - s_t \mu_k)^\top)) \right].
 \end{aligned}$$

$$\begin{aligned}
 1318 \quad \lambda_{H_{\mu\mu}} &= \mathbb{E}_{x \sim p_{data}} [(u^\top J_\mu^k)^2] \\
 1319 \quad \lambda_{H_{UU}} &= \mathbb{E}_{x \sim p_{data}} [(u^\top J_U^k)^2] \\
 1320 \quad \lambda_{H_{\mu U}} &= \mathbb{E}_{x \sim p_{data}} [(u^\top J_\mu^k)(u^\top J_U^k)] \leq \sqrt{\lambda_{H_{\mu\mu}} \lambda_{H_{\mu U}}}.
 \end{aligned}$$

■

1324 **Analyze H**

$$H = \begin{pmatrix} H_{\mu_k \mu_k} & H_{\mu_k U_k} \\ H_{\mu_k U_k} & H_{U_k U_k} \end{pmatrix}$$

1328 . If we can prove that $H_{\mu_k \mu_k} - H_{U_k \mu_k} H_{U_k U_k}^{-1} H_{U_k \mu_k}^\top$ is positive-definite, then H is positive-definite
 1329 for Schur's Theorem.
 1330

$$\lambda_H \geq \lambda_S \geq \lambda_{H_{\mu_k \mu_k}} - \frac{r^2 \lambda_{H_{\mu_k \mu_k}} \lambda_{H_{U_k U_k}}}{\lambda_{H_{U_k U_k}}} = (1 - r^2) \lambda_{H_{\mu_k \mu_k}} \geq (1 - r^2) \frac{s_t^2}{(s_t^2 + \gamma_t^2)^2} > 0.$$

$$r = \max_{\|u\|=1, \|v\|=1} \frac{u^\top H_{\mu_k U_k} v}{\sqrt{u^\top H_{\mu_k \mu_k} u \cdot v^\top H_{U_k U_k} v}} \leq 1.$$

1336 $r = 1$ if and only if $u^\top J_\mu^k = cv^\top J_U^k$, $c \neq 0$, which is almost impossible to happen.
 1337

1338 More specially, if we assume that $\forall x \in \mathbb{R}^{d_k}, r_k^+ = 1$ or $r_k^- = 1$, for
 1339

$$\begin{aligned}
 1340 \quad H_{\mu_k U_k} &= \mathbb{E}_{x \sim p_{data}} [J_k^\mu (J_k^U)^\top] = \mathbb{E}_{x \sim p_{data}} \left[\frac{2s_t^3}{\gamma_t^4(s_t^2 + \gamma_t^2)} (r_k^+(x) - r_k^-(x)) (1 - \frac{s_t^2}{s_t^2 + \gamma_t^2} U_k U_k^\top) \right. \\
 1341 &\quad \left. (r_k^-(x)(U_k^\top(x + s_t \mu_k)I + U_k(x + s_t \mu_k)^\top) + r_k^+(x)(U_k^\top(x - s_t \mu_k)I + U_k(x - s_t \mu_k)^\top)) \right] \\
 1342 &= \mathbb{E}_{x \sim \mathcal{N}(s_t \mu_k, \Sigma_k)} \left[\frac{2s_t^3}{\gamma_t^4(s_t^2 + \gamma_t^2)} (r_k^+(x) - r_k^-(x)) \left(1 - \frac{s_t^2}{s_t^2 + \gamma_t^2} U_k U_k^\top \right) \right. \\
 1343 &\quad \left. (r_k^-(x)(U_k^\top(x + s_t \mu_k)I + U_k(x + s_t \mu_k)^\top) + r_k^+(x)(U_k^\top(x - s_t \mu_k)I + U_k(x - s_t \mu_k)^\top)) \right] \\
 1344 &= \mathbb{E}_{x \sim \mathcal{N}(s_t \mu_k, \Sigma_k)} \left[\frac{2s_t^3}{\gamma_t^4(s_t^2 + \gamma_t^2)} \left(1 - \frac{s_t^2}{s_t^2 + \gamma_t^2} U_k U_k^\top \right) + (U_k^\top(x - s_t \mu_k)I + U_k(x - s_t \mu_k)^\top) \right] \\
 1345 &= 0.
 \end{aligned}$$

1350 We have $r = 0$,

$$1352 \alpha = \min\left\{\frac{s_t^2}{(s_t^2 + \gamma_t^2)^2}, \frac{4(U_k^\top \mu_k))^2 + \|U_k\|_2^2 \|\mu_k\|_2^2 - \|U_k\|_2 \|\mu_k\|_2 \sqrt{8(U_k^\top \mu_k))^2 + \|U_k\|_2^2 \|\mu_k\|_2^2}}{2}\right\}.$$

1355 Util now, We have shown that H is α -convex and L-lipschiz, where $\alpha = (1 - r^2)\lambda_{H_{\mu_k \mu_k}}$. And we
1356 can know that $L(\theta)$ is exponentially convergent.

1357 **Theorem C.5.** If we take $\eta_t = \eta = \frac{2}{\eta + L}$, and $\kappa = \frac{L}{\alpha}$, then

$$1359 \|\theta^t - \theta^*\|_2 \leq \left(\frac{\kappa - 1}{\kappa + 1}\right)^t \|\theta^{(0)} - \theta^*\|_2.$$

D K-MODE MOG OPTIMIZATION

D.1 SETTING

1366 In this section, we analyze

$$1368 \nabla \log p_{t,k}(x) = \frac{\nabla p_{t,k}(x)}{p_{t,k}(x)} \\ 1369 = -\frac{1}{\gamma_t^2} \frac{\sum_{l=1}^{n_k} \pi_{k,l} \mathcal{N}(x; s_t \mu_{k,l}, s_t^2 U_{k,l}^\star U_{k,l}^{\star\top} + \gamma_t^2 I) \left(x - s_t \mu_{k,l} - \frac{s_t^2}{s_t^2 + \gamma_t^2} U_{k,l}^\star U_{k,l}^{\star\top} (x - s_t \mu_{k,l})\right)}{\sum_{l=1}^{n_k} \pi_{k,l} \mathcal{N}(x; s_t \mu_{k,l}, s_t^2 U_{k,l}^\star U_{k,l}^{\star\top} + \gamma_t^2 I)}.$$

D.2 OPTIMIZATION

1374 **Assumption D.1.** [Highly Separated Gaussian] Consider the Gaussian mixture

$$1377 p_k(x) = \sum_{l=1}^{n_k} \pi_{k,l} \mathcal{N}(x; \mu_{k,l}, \Sigma_{k,l}), \quad r_{k,l}(x) := \frac{\pi_{k,l} \mathcal{N}(x; \mu_{k,l}, \Sigma_{k,l})}{\sum_{i=1}^{n_k} \pi_{k,i} \mathcal{N}(x; \mu_{k,i}, \Sigma_{k,i})}.$$

1380 There exist constants $\varepsilon \ll 1$ and $\delta \ll 1$ such that when $x \sim p_k$ we have

$$1381 \Pr_{x \sim p_k} \left(\exists l \in \{1, \dots, n_k\} \text{ with } r_{k,l}(x) \geq 1 - \varepsilon \right) \geq 1 - \delta.$$

1384 We assume that the gap between the subspaces is large, and the gap within the subspace is relatively
1385 small, and the equivalent Gaussian is used to replace the whole subspace.

1386 **Corollary D.2.** Assume that $\|\mu_{k,i}^* - \mu_{k,j}^*\|_2 \leq \delta$, $\|U_{k,i}^* - U_{k,j}^*\|_2 \leq \epsilon$ and $\|x - \bar{\mu}_k^*\|_2 \leq \Delta$. We have

$$1388 \|\log p(x) - \log \bar{p}(x)\|_2 = O(\epsilon + \delta \Delta + \Delta^3)$$

1389 **Proof.** For k -th subspace, $w_k(x) = \sum_{l=1}^{n_k} \pi_{k,l} \mathcal{N}(x; s_t \mu_{k,l}, \Sigma_{k,l})$, we take

$$1391 \tilde{w}_k(x) = \mathcal{N}(x; \bar{\mu}_k, \bar{\Sigma}_k).$$

1392 where

$$1394 \mathbb{E}_{\tilde{w}_k}[x] = \bar{\mu}_k = \mathbb{E}_{w_k}[x] = \sum_{l=1}^{n_k} \pi_{k,l} s_t \mu_{k,l} \\ 1395 \text{Cov}_{\tilde{w}_k}(x) = \text{Cov}_{w_k}(x) = \mathbb{E}[(x - \bar{\mu}_k)(x - \bar{\mu}_k)^\top] = \sum_{l=1}^{n_k} \pi_{k,l} (\Sigma_{k,l} + s_t^2 \mu_{k,l} \mu_{k,l}^\top - s_t^2 \bar{\mu}_{k,l} \bar{\mu}_{k,l}^\top) \\ 1396 \Rightarrow \bar{\Sigma}_k = \sum_{l=1}^{n_k} (\Sigma_{k,l} + s_t^2 \mu_{k,l} \mu_{k,l}^\top - s_t^2 \bar{\mu}_{k,l} \bar{\mu}_{k,l}^\top).$$

1398 We next show the order of the estimation under the condition that $\|\mu_{k,i} - \mu_{k,j}\|_2 \leq \delta$, $\|U_{k,i} - U_{k,j}\|_2 \leq \epsilon$ and $\|x - \bar{\mu}_k\|_2 \leq \Delta$. Using Taylor's Theorem and take $x_0 = \bar{\mu}_k$, we can obtain that

$$1401 \log p(x) = \log p(x_0) + (x - x_0)^\top \nabla \log p(x_0) + \frac{1}{2} (x - x_0)^\top \nabla^2 \log p(x_0) (x - x_0) + O(\|x - x_0\|^3)$$

$$1403 \log \tilde{p}(x) = \log \tilde{p}(x_0) + (x - x_0)^\top \nabla \log \tilde{p}(x_0) + \frac{1}{2} (x - x_0)^\top \nabla^2 \log \tilde{p}(x_0) (x - x_0) + O(\|x - x_0\|^3).$$

$$\begin{aligned}
1404 \quad & \log p(x_0) - \log \tilde{p}(x_0) = \log \frac{\sum_{l=1}^{n_k} \pi_{k,l} \mathcal{N}(x_0; \mu_{k,l}, \Sigma_{k,l})}{\mathcal{N}(x_0; \bar{\mu}_k, \bar{\Sigma}_k)} \\
1405 \quad & = \log \left(\sum_{l=1}^{n_k} \pi_{k,l} \frac{1}{|\Sigma_{k,l}|^{\frac{1}{2}}} \exp \left(-\frac{1}{2} (\bar{\mu} - \mu_{k,l})^\top \Sigma_{k,l}^{-1} (\bar{\mu} - \mu_{k,l}) \right) \right) + \frac{1}{2} \log |\bar{\Sigma}_k| \\
1406 \quad & = \log \left(\sum_{l=1}^{n_k} \pi_{k,l} \frac{1}{|\Sigma_{k,l}|^{\frac{1}{2}}} (1 + O(\delta^2)) \right) + \frac{1}{2} \log |\bar{\Sigma}_k| \\
1407 \quad & = \log \left(\sum_{l=1}^{n_k} \pi_{k,l} \frac{|\bar{\Sigma}_k|^{\frac{1}{2}}}{|\Sigma_{k,l}|^{\frac{1}{2}}} + O(\delta^2) \right) \\
1408 \quad & = O \left(\sum_{l=1}^{n_k} \pi_{k,l} \left(\frac{|\bar{\Sigma}_k|^{\frac{1}{2}}}{|\Sigma_{k,l}|^{\frac{1}{2}}} - 1 \right) + O(\delta^2) \right) \\
1409 \quad & \\
1410 \quad & \\
1411 \quad & \\
1412 \quad & \\
1413 \quad & \\
1414 \quad & \\
1415 \quad & \\
1416 \quad & \\
1417 \quad & \\
1418 \quad & \\
1419 \quad & \\
1420 \quad & \|\log p(x_0) - \log \tilde{p}(x_0)\|_2 = O(\epsilon + \delta^2). \\
1421 \quad & \\
1422 \quad & \\
1423 \quad & \\
1424 \quad & \nabla \log p(x_0) - \nabla \log \tilde{p}(x_0) = \nabla \log \sum_{l=1}^{n_k} \pi_{k,l} \mathcal{N}(x; \mu_{k,l}, \Sigma_{k,l})|_{x_0} \\
1425 \quad & = \frac{\sum_{l=1}^{n_k} \pi_{k,l} \mathcal{N}(x_0; \mu_{k,l}, \Sigma_{k,l}) (-\Sigma_{k,l}^{-1} (\bar{\mu} - \mu_{k,l}))}{p(x_0)}. \\
1426 \quad & \\
1427 \quad & \\
1428 \quad & \\
1429 \quad & \\
1430 \quad & \|\nabla \log p(x_0) - \nabla \log \tilde{p}(x_0)\|_2 = O(\delta). \\
1431 \quad & \\
1432 \quad & \\
1433 \quad & \\
1434 \quad & \nabla^2 \log p(x_0) - \nabla^2 \log \tilde{p}(x_0) = \frac{\nabla^2 p(x_0)}{p(x_0)} - \left(\frac{\nabla p(x_0)}{p(x_0)} \right) \left(\frac{\nabla p(x_0)}{p(x_0)} \right)^\top - \frac{\nabla^2 \tilde{p}(x_0)}{\tilde{p}(x_0)} \\
1435 \quad & = \left(\frac{\nabla^2 p(x_0)}{p(x_0)} - \frac{\nabla^2 \tilde{p}(x_0)}{\tilde{p}(x_0)} \right) - \left(\frac{\nabla p(x_0)}{p(x_0)} \right) \left(\frac{\nabla p(x_0)}{p(x_0)} \right)^\top. \\
1436 \quad & \\
1437 \quad & \\
1438 \quad & \\
1439 \quad & \\
1440 \quad & \|\nabla^2 \log p(x_0) - \nabla^2 \log \tilde{p}(x_0)\|_2 = O(\epsilon^2 + \delta^2). \\
1441 \quad & \\
1442 \quad & \\
1443 \quad & \text{Thus, } \|\log p(x) - \log \tilde{p}(x)\|_2 = O(\epsilon + \delta \Delta + \Delta^3). \quad \blacksquare \\
1444 \quad & \\
1445 \quad & \textbf{Lemma D.3.} [Eigenvalues of the Hessian] Assume Assumption 6.4, the Hessian at the k -th subspace \\
1446 \quad & is convex on a neighborhood of θ^* . If $\forall x \in \mathbb{R}^{d_k}$, $r_k^+(x) = 1$ or -1 are strictly satisfied, we have \\
1447 \quad & \\
1448 \quad & \lambda_{\min}(H_{\mu_{k,l} \mu_{k,l}}) = \frac{\pi_{k,l} s_t^2}{(s_t^2 + \gamma_t^2)^2}, \\
1449 \quad & \\
1450 \quad & \\
1451 \quad & \text{and } \lambda_{\min}(H_{U_{k,l} U_{k,l}}) \text{ has the following form:} \\
1452 \quad & \\
1453 \quad & \left(\pi_{k,l} 4(U_{k,l}^\top \mu_{k,l})^2 + \|U_{k,l}\|_2^2 \|\mu_{k,l}\|_2^2 - \|U_{k,l}\|_2 \|\mu_{k,l}\|_2 \sqrt{8(U_{k,l}^\top \mu_{k,l})^2 + \|U_{k,l}\|_2^2 \|\mu_{k,l}\|_2^2} \right) / 2. \\
1454 \quad & \\
1455 \quad & \\
1456 \quad & \\
1457 \quad & \textbf{Proof.} According to the previous conclusion, we only need to calculate J_μ and J_U . With these \\
assumptions and simplifications, similar to the symmetry case, we will prove that $J_{k,l}^\mu$ and $J_{k,l}^U$ have
\end{aligned}$$

1458 dominant terms.

$$\begin{aligned}
1459 \quad & J_{k,l}^\mu(x) \\
1460 \quad &= -\frac{1}{\gamma_t^2} \frac{\partial s_\theta(x, t)}{\partial \mu_{k,l}} \\
1461 \quad &= -\frac{1}{\gamma_t^2} \frac{\sum_{l=1}^{n_k} \left(\frac{\partial w_{k,l}(x)}{\partial \mu_{k,l}} \delta_{k,l}(x) + \frac{\partial \delta_{k,l}(x)}{\partial \mu_{k,l}} w_{k,l}(x) \right) w_k(x) - \frac{\partial w_k(x)}{\partial \mu_{k,l}} \sum_{l=1}^{n_k} w_{k,l}(x) \delta_{k,l}(x)}{w_k^2(x)} \\
1462 \quad &= -\frac{1}{\gamma_t^2} \left(\frac{\sum_{l=1}^{n_k} \frac{\partial w_{k,l}(x)}{\partial \mu_{k,l}} \delta_{k,l}(x)}{w_k(x)} + \frac{\sum_{l=1}^{n_k} \frac{\partial \delta_{k,l}(x)}{\partial \mu_{k,l}} w_{k,l}(x)}{w_k(x)} - \frac{\frac{\partial w_k(x)}{\partial \mu_{k,l}} \sum_{l=1}^{n_k} w_{k,l}(x) \delta_{k,l}(x)}{w_k^2(x)} \right). \\
1463 \\
1464 \\
1465 \\
1466 \\
1467 \\
1468 \\
1469 \\
1470
\end{aligned}$$

1471 Let's go ahead and do the calculation.

$$\begin{aligned}
1472 \quad & \frac{\sum_{l=1}^{n_k} \frac{\partial w_{k,l}(x)}{\partial \mu_{k,l}} \delta_{k,l}(x)}{w_k(x)} - \frac{\left(\frac{\partial w_k(x)}{\partial \mu_{k,l}} \right) \sum_{l=1}^{n_k} w_{k,l}(x) \delta_{k,l}(x)}{w_k^2(x)} = \frac{\frac{\partial w_{k,l}(x)}{\partial \mu_{k,l}}}{w_k(x)} (\delta_{k,l}(x) - \bar{\delta}_k(x)) \\
1473 \quad & \frac{\sum_{l=1}^{n_k} \frac{\partial \delta_{k,l}(x)}{\partial \mu_{k,l}} w_{k,l}(x)}{w_k(x)} \approx \frac{s_t}{\gamma_t^2} \sum_{l=1}^{n_k} r_{k,l}(x) \left(I - \frac{s_t^2}{s_t^2 + \gamma_t^2} U_{k,l} U_{k,l}^\top \right). \\
1474 \\
1475 \\
1476 \\
1477 \\
1478
\end{aligned}$$

$$1479 \text{ where } r_{k,l}(x) = \frac{\pi_{k,l} \mathcal{N}(x; \bar{\mu}_k, \bar{\Sigma}_k)}{\sum_{j=1}^K \mathcal{N}(x; \bar{\mu}_j, \bar{\Sigma}_j)}.$$

1480 Therefore, we can obtain that

$$\begin{aligned}
1481 \quad & \left\| \frac{\sum_{l=1}^{n_k} \frac{\partial w_{k,l}(x)}{\partial \mu_{k,l}} \delta_{k,l}(x)}{w_k(x)} - \frac{\frac{\partial w_k(x)}{\partial \mu_{k,l}} \sum_{l=1}^{n_k} (w_{k,l}(x) \delta_{k,l}(x))}{w_k^2(x)} \right\|_2 = O(\delta(R + s_t B_\mu) \frac{s_t^2}{\gamma_t^2}) \\
1482 \quad & \left\| \frac{\sum_{l=1}^{n_k} \frac{\partial \delta_{k,l}(x)}{\partial \mu_{k,l}} w_{k,l}(x)}{w_k(x)} \right\|_2 = O(s_t). \\
1483 \\
1484 \\
1485 \\
1486 \\
1487 \\
1488
\end{aligned}$$

1489 where $\delta \leq \|\mu_{k,i} - \mu_{k,j}\|_2 \ll 1$.

1490 Thus, we have

$$1491 \quad J_{k,l}^\mu(x) = \frac{\partial s_\theta}{\partial \mu_{k,l}} \approx \frac{s_t}{\gamma_t^2} r_{k,l}(x) \left(I - \frac{s_t^2}{s_t^2 + \gamma_t^2} U_{k,l} U_{k,l}^\top \right).$$

$$\begin{aligned}
1492 \quad H_{\mu_{k,l} \mu_{k,l}} &= \mathbb{E}_{x \sim p_t} [J_{k,l}^\mu(x) J_{k,l}^\mu(x)^\top] \\
1493 \quad &= \frac{s_t^2}{\gamma_t^4} \mathbb{E}[r_{k,l}(x)^2] \left(I - \frac{s_t^2}{s_t^2 + \gamma_t^2} U_{k,l} U_{k,l}^\top \right) \left(I - \frac{s_t^2}{s_t^2 + \gamma_t^2} U_{k,l} U_{k,l}^\top \right)^\top. \\
1494
\end{aligned}$$

1495 For a given x , since we focus on the equivalent Gaussian distribution for each cluster, we have

$$1496 \quad H_{\mu_k \mu_k} \approx \text{diag}(\mathbb{E}[r_{k,1}^2] H_{\mu_{k,1} \mu_{k,1}}, \mathbb{E}[r_{k,2}^2] H_{\mu_{k,2} \mu_{k,2}}, \dots, \mathbb{E}[r_{k,n_k}^2] H_{\mu_{k,n_k} \mu_{k,n_k}}).$$

1497 We first show that $\mathbb{E}[r_{k,l}^2] H_{\mu_{k,l} \mu_{k,l}}$ is positive-definite, then we will further show that $H_{\mu_k \mu_k}$ is positive-definite.

1498 For $H_{\mu_{k,l} \mu_{k,l}}$, we know that

$$\begin{aligned}
1499 \quad & \lambda_{\min}(H_{\mu_{k,l} \mu_{k,l}}) = c_{k,l} \lambda_{\min}(J_{k,l}^\mu (J_{k,l}^\mu)^\top) \\
1500 \quad &= c_{k,l} \lambda_{\min}((I - \alpha P_k)^2) \\
1501 \quad &= \frac{c_{k,l} \gamma_t^4}{(s_t^2 + \gamma_t^2)^2}, \\
1502 \\
1503 \\
1504 \\
1505 \\
1506 \\
1507 \\
1508 \\
1509 \\
1510 \\
1511
\end{aligned}$$

1512 where

1513

$$1514 c_{k,l} = \frac{s_t^2}{\gamma_t^4} \mathbb{E}[r_{k,l}^2] \approx \pi_{k,l} \frac{s_t^2}{\gamma_t^4}.$$

1515

1516 We know that for a block matrix $A = \text{diag}(A_1, A_2, \dots, A_k)$,

1517

$$1518 \lambda(A) = \bigcup_{i=1}^k \lambda(A_i).$$

1519

Therefore,

1520

$$1521 \lambda_{\min}(H_{\mu_k \mu_k}) = \min_{l=1, \dots, n_k} \frac{c_{k,l} \gamma_t^4}{(s_t^2 + \gamma_t^2)^2}.$$

1522

Thus, we take

1523

$$1524 \lambda_{H_{\mu_k \mu_k}} = \frac{c_{k,n_k} \gamma_t^4}{(s_t^2 + \gamma_t^2)^2}.$$

1525

1526 Similar to previous situation, because

1527

$$1528 \frac{\left\| \frac{\sum_{l=1}^{n_k} \left(\frac{\partial \delta_{k,l}(x)}{\partial U_{k,l}} w_{k,l}(x) \right) (w_k(x) - \left(\frac{\partial w_k(x)}{\partial U_{k,l}} \right) \sum_{l=1}^{n_k} w_{k,l}(x) \delta_{k,l}(x)}{w_k^2(x)} \right\|_2}{\left\| \frac{\sum_{l=1}^{n_k} \frac{\partial \delta_{k,l}(x)}{\partial U_{k,l}} w_{k,l}(x)}{w_k(x)} \right\|_2} \rightarrow 0.$$

1529

1530

1531

we can obtain that

1532

$$1533 J_{k,l}^U(x) = -\frac{1}{\gamma_t^2} \frac{\sum_{l=1}^{n_k} \left(\frac{\partial w_{k,l}(x)}{\partial U_{k,l}} \delta_{k,l}(x) + w_{k,l}(x) \frac{\partial \delta_{k,l}(x)}{\partial U_{k,l}} \right) w_k(x) - \left(\frac{\partial w_k(x)}{\partial U_{k,l}} \right) \sum_{l=1}^{n_k} w_{k,l}(x) \delta_{k,l}(x)}{w_k^2(x)}$$

1534

1535

$$1536 = -\frac{1}{\gamma_t^2} \frac{\sum_{l=1}^{n_k} w_{k,l}(x) \frac{\partial \delta_{k,l}(x)}{\partial U_{k,l}}}{w_k(x)}$$

1537

1538

$$1539 \approx \frac{1}{\gamma_t^2} \frac{s_t^2}{s_t^2 + \gamma_t^2} r_{k,l}(x) \left[U_{k,l}(x - \mu_{k,l})^\top + (x - \mu_{k,l})^\top U_{k,l} \right].$$

1540

1541

$$1542 H_{U_k U_k} \approx \text{diag}(\mathbb{E}[r_{k,1}^2] H_{U_{k,1} U_{k,1}}, \mathbb{E}[r_{k,2}^2] H_{U_{k,2} U_{k,2}}, \dots, \mathbb{E}[r_{k,n_k}^2] H_{U_{k,n_k} U_{k,n_k}}).$$

1543

1544

$$1545 H_{U_{k,l} U_{k,l}} = \mathbb{E}[J_{k,l}^U(x) (J_{k,l}^U(x))^\top]$$

1546

$$1547 = \mathbb{E}\left[\left(\frac{\alpha}{\gamma_t^2}\right)^2 (U_{k,l}(x - \mu_{k,l})^\top (x - \mu_{k,l}) U_{k,l}^\top + U_{k,l}^\top (x - \mu_{k,l}) U_{k,l}(x - \mu_{k,l})^\top)\right]$$

1548

$$1549 + \mathbb{E}\left[\left(\frac{\alpha}{\gamma_t^2}\right)^2 (U_{k,l}^\top (x - \mu_{k,l}) (x - \mu_{k,l}) U_{k,l}^\top + (U_{k,l}^\top (x - \mu_{k,l}))^2)\right].$$

1550

1551 Similar to our calculation in C.4, we can use C.3 to calculate the minimum eigenvalue of $H_{U_{k,l} U_{k,l}}$.

1552 $H_{U_{k,l} U_{k,l}}$ is positive definite and

1553

$$1554 \lambda_{\min}(H_{U_{k,l} U_{k,l}}) = \frac{4(U_{k,l}^\top \mu_{k,l})^2 + \|U_{k,l}\|_2^2 \|\mu_{k,l}\|_2^2 - \|U_{k,l}\|_2 \|\mu_{k,l}\|_2 \sqrt{8(U_{k,l}^\top \mu_{k,l})^2 + \|U_{k,l}\|_2^2 \|\mu_{k,l}\|_2^2}}{2}.$$

1555

1556

1557

1558 Recall that

1559

$$1560 H_{U_k U_k} \approx \text{diag}(\mathbb{E}[r_{k,1}^2] H_{U_{k,1} U_{k,1}}, \mathbb{E}[r_{k,2}^2] H_{U_{k,2} U_{k,2}}, \dots, \mathbb{E}[r_{k,n_k}^2] H_{U_{k,n_k} U_{k,n_k}}).$$

1561

1562 and $\mathbb{E}[r_{k,l}^2] \approx \pi_{k,l}$, we can obtain the minimum eigenvalue of $H_{U_k U_k}$, which is

1563

$$1564 \min_{l=1,2,\dots,n_k} \pi_{k,l} \frac{4(U_{k,l}^\top \mu_{k,l})^2 + \|U_{k,l}\|_2^2 \|\mu_{k,l}\|_2^2 - \|U_{k,l}\|_2 \|\mu_{k,l}\|_2 \sqrt{8(U_{k,l}^\top \mu_{k,l})^2 + \|U_{k,l}\|_2^2 \|\mu_{k,l}\|_2^2}}{2}.$$

1565

■

1566 **Lemma D.4.** [Local Strong Convexity] Assume Assumption 6.4, in a neighborhood of θ^* , $\nabla^2 \mathcal{L}(\theta) \succeq$
1567 $\alpha' I$, $\alpha' > 0$, $\forall \theta \in \Theta$. If $\forall x \in \mathbb{R}^{d_k}$, $\exists l \in [n_k]$, $r_{k,l}(x) = 1$ are strictly satisfied, $\alpha' = \min\{\lambda_1, \lambda_2\}$,
1568 where $\lambda_1 = \min_{l=1 \dots, n_k} \frac{c_{k,l}\gamma_t^4}{(s_t^2 + \gamma_t^2)^2}$, $\lambda_2 = \min_{l=1,2,\dots,n_k} = \lambda_{\min}(H_{U_{k,l}U_{k,l}})$.
1569

1570 **Proof.**

1571
$$H_{\mu_k U_k} = \text{diag}(H_{\mu_{k,1} U_{k,1}}, H_{\mu_{k,2} U_{k,2}}, \dots, H_{\mu_{k,n_k} U_{k,n_k}}).$$

1572
$$\|H_{\mu_k U_k}\| \leq \sqrt{\|H_{\mu_k \mu_k}\| \|H_{U_k U_k}\|} = O\left(\frac{s_t^3}{\gamma_t^2 (s_t^2 + \gamma_t^2)^2}\right).$$

1573
$$H = \begin{pmatrix} \text{diag}(H_{\mu_{k,1} \mu_{k,1}}, \dots, H_{\mu_{k,n_k} \mu_{k,n_k}}) & \text{diag}(H_{\mu_{k,1} U_{k,1}}, \dots, H_{\mu_{k,n_k} U_{k,n_k}}) \\ \text{diag}(H_{\mu_{k,1} U_{k,1}}, \dots, H_{\mu_{k,n_k} U_{k,n_k}}) & \text{diag}(H_{U_{k,1} U_{k,1}}, \dots, H_{U_{k,n_k} U_{k,n_k}}) \end{pmatrix}.$$

1574 Let

1575
$$S = H_{\mu\mu} - H_{\mu U} H_{U U}^{-1} H_{U \mu}$$

1576 we have

1577
$$\lambda_H \geq \lambda_S \geq \lambda_{H_{\mu_k \mu_k}} - \frac{r^2 \lambda_{H_{\mu_k \mu_k}} \lambda_{H_{U_k U_k}}}{\lambda_{H_{U_k U_k}}} = (1 - r^2) \lambda_{H_{\mu_k \mu_k}} \geq (1 - r^2) \frac{s_t^2}{(s_t^2 + \gamma_t^2)^2} > 0.$$

1578
$$r = \max_{\|u\|=1, \|v\|=1} \frac{u^\top H_{\mu_k U_k} v}{\sqrt{u^\top H_{\mu_k \mu_k} u \cdot v^\top H_{U_k U_k} v}} \leq 1.$$

1579 $r = 1$ if and only if $u^\top J_{\mu}^k = cv^\top J_U^k$, $c \neq 0$, which is almost impossible to happen.

1580 More specifically, if we assume that $\forall x \in \mathbb{R}^{d_k}$, $\exists l \in [n_k]$, $r_{k,l}(x) = 1$, we have

1581
$$\begin{aligned} H_{\mu_{k,l} U_{k,l}} &= \mathbb{E}_{x \sim p_k} [J_{k,l}^U(x) (J_{k,l}^{\mu}(x))^\top] \\ 1582 &= \frac{1}{\gamma_t^4} \frac{s_t^3}{s_t^2 + \gamma_t^2} \mathbb{E}_{x \sim p_k} [r_{k,l}(x)^2 ((x - \mu_{k,l}) U_{k,l}^\top + (x - \mu_{k,l})^\top U_{k,l} I)] \left(I - \frac{s_t^2}{s_t^2 + \gamma_t^2} U_{k,l} U_{k,l}^\top \right) \\ 1583 &= \frac{1}{\gamma_t^4} \frac{s_t^3}{s_t^2 + \gamma_t^2} \mathbb{E}_{x \sim \pi_{k,l} \mathcal{N}_{k,l}} [r_{k,l}(x)^2 ((x - \mu_{k,l}) U_{k,l}^\top + (x - \mu_{k,l})^\top U_{k,l} I)] \left(I - \frac{s_t^2}{s_t^2 + \gamma_t^2} U_{k,l} U_{k,l}^\top \right) \\ 1584 &\approx 0 \end{aligned}$$

1585 The second equation holds because $\forall x$, if $x \notin \mathcal{N}_{k,l}(\mu_{k,l}, \Sigma_{k,l})$, $r_{k,l}(x) = 0$. And the third equation
1586 holds because if $x \sim \mathcal{N}_{k,l}(\mu_{k,l}, \Sigma_{k,l})$, $\forall \text{Const } C$,

1587
$$\mathbb{E}_{x \sim \pi_{k,l} \mathcal{N}_{k,l}} [C(x - \mu_{k,l})] = 0.$$

1588 Thus, let α' be the minimum eigenvalue of H ,

1589
$$\alpha' = \min\{\lambda_1, \lambda_2\}, \quad (8)$$

1590 where

1591
$$\lambda_1 = \min_{l=1 \dots, n_k} \frac{c_{k,l}\gamma_t^4}{(s_t^2 + \gamma_t^2)^2},$$

1592 and

1593
$$\lambda_2 = \min_{l=1,2,\dots,n_k} \pi_{k,l} \frac{4(U_{k,l}^\top \mu_{k,l})^2 + \|U_{k,l}\|_2^2 \|\mu_{k,l}\|_2^2 - \|U_{k,l}\|_2 \|\mu_{k,l}\|_2 \sqrt{8(U_{k,l}^\top \mu_{k,l})^2 + \|U_{k,l}\|_2^2 \|\mu_{k,l}\|_2^2}}{2}.$$

1594 \blacksquare

1620 **E EXTENSION TO MoG LATENT WITHOUT SEPARATION ASSUMPTION**
16211622 **E.1 2-MODE ANALYSIS**
16231624 In this section, we relax the high separation assumption (where $r_k^+(x)r_k^-(x) \approx 0$). Instead, we treat
1625 the overlap between manifold components as a bounded perturbation to the ideal system. We aim to
1626 prove that the Hessian remains positive definite provided the overlap factor is sufficiently small.
16271628 **E.1.1 DEFINITION OF OVERLAP FACTOR**
16291630 We define the pointwise overlap factor $\xi_k(x)$ as the product of the assignment probabilities for the
1631 positive and negative components of the k -th manifold:
1632

1633
$$\xi_k(x) \triangleq r_k^+(x)r_k^-(x). \quad (9)$$

1634 Since $r_k^+(x), r_k^-(x) \in [0, 1]$ and $r_k^+(x) + r_k^-(x) = 1$, the overlap factor is naturally bounded:
1635 $0 \leq \xi_k(x) \leq 0.25$.
16361637 We denote the maximum expected overlap magnitude as $\epsilon_{\text{overlap}}$:

1639
$$\epsilon_{\text{overlap}} = \sup_{x \in \text{supp}(p_t)} \xi_k(x). \quad (10)$$

1640 **E.1.2 JACOBIAN ANALYSIS**
16411642 We revisit the derivation of the Jacobian J_k^μ . In the original derivation, J_k^μ was decomposed into
1643 Term A (dominant term) and Term B (previously ignored):
1644

1645
$$J_k^\mu(x) = \underbrace{J_{\text{ideal}}^\mu(x)}_{\text{Term A}} + \underbrace{E^\mu(x)}_{\text{Term B}}.$$

1646 When $\xi_k(x) \rightarrow 0$, we can recover the ideal Jacobian derived previously:
1647

1648
$$J_{\text{ideal}}^\mu(x) = -\frac{s_t}{\gamma_t^2} (r_k^+(x) - r_k^-(x)) \left(I - \frac{s_t^2}{s_t^2 + \gamma_t^2} U_k U_k^\top \right).$$

1649 Term B contains the cross-product of weights, which is exactly our overlap factor $\xi_k(x)$. Specifically:
1650

1651
$$E^\mu(x) = -\frac{4s_t^2}{\gamma_t^2 w_k^2(x)} \cdot \xi_k(x) \cdot \Sigma_k^{-1} x \left(I + \frac{s_t^2}{s_t^2 + \gamma_t^2} U_k U_k^\top \right) \mu_k.$$

1652 We can bound the norm of this error term. Since terms like $\frac{x}{w_k(x)}$ and projection matrices are bounded
1653 within the support, there exists a constant C_1 such that:
1654

1655
$$\|E^\mu(x)\|_2 \leq C_1 \cdot \xi_k(x). \quad (11)$$

1656 Similarly, for the Jacobian with respect to U_k , we can decompose it into an ideal part and an error
1657 part proportional to the overlap:
1658

1659
$$J_k^U(x) = J_{\text{ideal}}^U(x) + E^U(x), \quad \text{where } \|E^U(x)\|_F \leq C_2 \cdot \xi_k(x).$$

1660 **E.1.3 HESSIAN ANALYSIS**
16611662 The Hessian matrix H is defined as the expected outer product of the Jacobians:
1663

1664
$$H = \mathbb{E}_{x \sim p_t(x)} [J(x) J(x)^\top].$$

1674 Let $J(x) = J_{\text{ideal}}(x) + E(x)$. Substituting this into the Hessian definition:
 1675

$$1676 \quad H = \mathbb{E}[(J_{\text{ideal}} + E)(J_{\text{ideal}} + E)^{\top}] \\ 1677 \quad = \underbrace{\mathbb{E}[J_{\text{ideal}} J_{\text{ideal}}^{\top}]}_{H_{\text{ideal}}} + \underbrace{\mathbb{E}[J_{\text{ideal}} E^{\top} + E J_{\text{ideal}}^{\top} + E E^{\top}]}_{\Delta H}.$$

1681 Here, H_{ideal} is the Hessian matrix under the high separation assumption and ΔH is the perturbation
 1682 matrix induced by the overlap.

1683 From the previous proof, we established that H_{ideal} is block-diagonal (or has negligible off-diagonals
 1684 due to symmetry) and positive definite. Let $\alpha > 0$ be its minimum eigenvalue:
 1685

$$1686 \quad \lambda_{\min}(H_{\text{ideal}}) \approx \mathbb{E}[(r_k^+(x) - r_k^-(x))^2] \min(\lambda_{\min}(H_{\mu_k \mu_k}), \lambda_{\min}(H_{U_k U_k})) \\ 1687 \quad = \mathbb{E}[(1 - 4\xi_k(x))] \min(\lambda_{\min}(H_{\mu_k \mu_k}), \lambda_{\min}(H_{U_k U_k})) \\ 1688 \quad \geq (1 - 4\epsilon_{\text{overlap}}) \min(\lambda_{\min}(H_{\mu_k \mu_k}), \lambda_{\min}(H_{U_k U_k})) \triangleq \alpha.$$

1690 We apply the Triangle Inequality and Cauchy-Schwarz inequality to bound the spectral norm of ΔH :
 1691

$$1693 \quad \|\Delta H\|_2 \leq 2\|\mathbb{E}[J_{\text{ideal}} E^{\top}]\|_2 + \|\mathbb{E}[E E^{\top}]\|_2 \\ 1694 \quad \leq 2\sqrt{\mathbb{E}[\|J_{\text{ideal}}\|^2]\mathbb{E}[\|E\|^2]} + \mathbb{E}[\|E\|^2].$$

1696 Since $\|E^{\mu}(x)\| \leq C_1 \cdot \xi_k(x)$ and $\|E^U(x)\| \leq C_2 \cdot \xi_k(x)$, the perturbation norm is dominated by the
 1697 overlap factor:

$$1698 \quad J_k^U(x) = J_{\text{ideal}}^U(x) + E^U(x), \quad \text{where } \|E^U(x)\|_F \leq C_2 \cdot \xi_k(x).$$

1700 The Hessian perturbation matrix is given by $\Delta H \approx \mathbb{E}[J_{\text{ideal}} E^{\top} + E J_{\text{ideal}}^{\top}]$. To bound its spectral
 1701 norm $\|\Delta H\|_2$, we define the signal bounds

$$1703 \quad S_{\mu} \triangleq \sup_x \|J_{\text{ideal}}^{\mu}(x)\|_2 \approx \frac{s_t}{\gamma_t^2}$$

1705 and

$$1706 \quad S_U \triangleq \sup_x \|J_{\text{ideal}}^U(x)\|_2 \approx \frac{s_t R^2}{\gamma_t^2}.$$

1709 We can define the composite perturbation constant C' as:

$$1710 \quad C' = 2(S_{\mu} + S_U)(C_1 + C_2).$$

1714 And thus,

$$1716 \quad \|\Delta H\|_2 \leq C' \cdot \epsilon_{\text{overlap}}.$$

1718 E.1.4 POSITIVE DEFINITENESS VIA WEYL'S INEQUALITY

1719 We now use Matrix Perturbation Theory to prove the convexity of the actual loss landscape. With
 1720 Weyl's Inequality for Hermitian Matrices, we have: Let $H = H_{\text{ideal}} + \Delta H$. The eigenvalues of H
 1721 are bounded by:

$$1723 \quad \lambda_{\min}(H) \geq \lambda_{\min}(H_{\text{ideal}}) - \|\Delta H\|_2. \quad (12)$$

1725 Substituting our bounds:

$$1727 \quad \lambda_{\min}(H) \geq \alpha - C' \cdot \epsilon_{\text{overlap}}. \quad (13)$$

1728
1729 **Condition for Convexity:** For the Hessian H to remain positive definite (ensuring strong convexity),
1730 we require:

1731
1732
$$\alpha - C' \cdot \epsilon_{\text{overlap}} > 0 \implies \epsilon_{\text{overlap}} < \frac{\alpha}{C'}. \quad (14)$$

1733 This physically implies that as long as the manifolds are not excessively overlapping, the loss function
1734 remains locally strongly convex.

1736 **E.1.5 CONVERGENCE ANALYSIS**

1738 Based on the perturbation analysis, we state the revised convergence theorem.

1739 **Theorem E.1** (Linear Convergence under Bounded Overlap). *Let $L(\theta)$ be the loss function. Assume
1740 the overlap factor satisfies $\epsilon_{\text{overlap}} < \frac{\alpha}{C'}$. Then, the Hessian H at θ^* is positive definite with minimum
1741 eigenvalue:*

1743
1744
$$\lambda_{\min}(H) \geq \alpha_{\text{eff}} = \alpha - C' \epsilon_{\text{overlap}} > 0.$$

1745 Consequently, gradient descent with step size η converges linearly:

1747
1748
$$\|\theta^t - \theta^*\|_2 \leq \left(\frac{\kappa_{\text{eff}} - 1}{\kappa_{\text{eff}} + 1} \right)^t \|\theta^{(0)} - \theta^*\|_2,$$

1750 where the effective condition number is degraded by the overlap:

1752
1753
$$\kappa_{\text{eff}} = \frac{L}{\alpha - C' \epsilon_{\text{overlap}}}.$$

1755 **Proof.** The proof follows directly from the strong convexity of $L(\theta)$ established by Weyl's inequality.
1756 As $\epsilon_{\text{overlap}} \rightarrow 0$, we recover the ideal convergence rate. ■

1758 **E.2 MULTI-MODAL ANALYSIS**

1760 In this section, we analyze the convergence properties for the K-Mode Mixture of Gaussians model.
1761 We explicitly model the **overlap** between Gaussian components as a perturbation.

1763 **E.2.1 THE OVERLAP FACTOR**

1764 We formally define the **Pairwise Overlap Factor** $\xi_{i,j}(x)$ between two components i and j :

1766
1767
$$\xi_{i,j}(x) \triangleq r_{k,i}(x) r_{k,j}(x). \quad (15)$$

1768 And we define the **Maximum Expected Overlap** $\epsilon_{\text{overlap}}$ for the manifold as:

1771
1772
$$\epsilon_{\text{overlap}} = \max_i \sum_{j \neq i} \mathbb{E}_{x \sim p_t} [\xi_{i,j}(x)]. \quad (16)$$

1773 This scalar $\epsilon_{\text{overlap}}$ quantifies the deviation from the ideal high separation regime. If components are
1774 perfectly separated, $\xi_{i,j} \rightarrow 0$ and $\epsilon_{\text{overlap}} \rightarrow 0$.

1776 **E.2.2 JACOBIAN DERIVATION**

1778 We need to compute the Jacobian of the score matching error vector $s_\theta(x, t) - \nabla \log p_t(x)$ with
1779 respect to the parameter $\mu_{k,l}$. Let $J_l^\mu(x) = \frac{\partial}{\partial \mu_{k,l}} \nabla \log p_{t,k}(x)$.

1780 Similarly, we decompose the Jacobian for the l -th component into a **Signal Term** (Self) and a **Noise**
1781 **Term** (Interference).

1782

1783

1784

1785

1786

1787 This term arises when we ignore the change in weights of other clusters ($j \neq l$). It dominates when
1788 $r_{k,l} \approx 1$:

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

$$J_{\mu}^l(x) = \underbrace{J_{\mu,\text{ideal}}^l(x)}_{\text{Signal}} + \underbrace{E_{\mu,\text{cross}}^l(x)}_{\text{Noise}}.$$

This term arises when we ignore the change in weights of other clusters ($j \neq l$). It dominates when $r_{k,l} \approx 1$:

$$J_{\mu,\text{ideal}}^l(x) \approx -\frac{s_t}{\gamma_t^2} r_{k,l}(x) \left(I - \frac{s_t^2}{s_t^2 + \gamma_t^2} U_{k,l} U_{k,l}^\top \right).$$

This term captures the gradient leaking into other clusters due to overlap:

$$E_{\mu,\text{cross}}^l(x) = \sum_{j=1}^{n_k} C'_1(x) \cdot \underbrace{r_{k,j}(x) r_{k,l}(x)}_{\xi_{j,l}(x)}, \quad (17)$$

where $C'_1(x)$ collects bounded vector terms. The norm of the error term is strictly bounded by the overlap:

$$\|E_{\mu,\text{cross}}^l(x)\|_2 \leq C'_1 \sum_{j \neq l} \xi_{j,l}(x).$$

For the Jacobian with respect to U_k , we have Similar derivation.

$$\|E_{U,\text{cross}}^l(x)\|_2 \leq C'_2 \sum_{j \neq l} \xi_{j,l}(x).$$

E.2.3 HESSIAN BLOCK STRUCTURE

The Hessian H for the parameters $\mu = [\mu_{k,1}, \dots, \mu_{k,n_k}]$ is a block matrix composed of $n_k \times n_k$ blocks, where each block is $D \times D$.

$$H_{\mu\mu} = \begin{pmatrix} H_{1,1} & H_{1,2} & \cdots & H_{1,n_k} \\ H_{2,1} & H_{2,2} & \cdots & H_{2,n_k} \\ \vdots & \vdots & \ddots & \vdots \\ H_{n_k,1} & H_{n_k,2} & \cdots & H_{n_k,n_k} \end{pmatrix}.$$

The (i, j) -th block is defined as:

$$H_{i,j} = \mathbb{E}_x[J_i^\mu(x)(J_j^\mu(x))^\top].$$

For diagonal blocks ($i = j = l$), the curvature is strictly determined by the expectation of the squared weights $\mathbb{E}[r_{k,l}(x)^2]$. Crucially, overlap causes **signal attenuation**, as the weight $r_{k,l}(x)$ drops below 1 in transition regions.

Using the identity $r_{k,l}(x)^2 = r_{k,l}(x)(1 - \sum_{j \neq l} r_{k,j}(x))$, we derive the exact expectation:

$$\begin{aligned} \mathbb{E}[r_{k,l}(x)^2] &= \mathbb{E}[r_{k,l}(x)] - \sum_{j \neq l} \mathbb{E}[r_{k,l}(x)r_{k,j}(x)] \\ &= \pi_{k,l} - \sum_{j \neq l} \mathbb{E}[\xi_{j,l}(x)] \\ &= \pi_{k,l} - \epsilon_{k,l}^{\text{total}}. \end{aligned}$$

1836 Thus, we lower-bound the diagonal curvature by accounting for the total overlap mass $\epsilon_{k,l}^{\text{total}}$ leaking
 1837 from cluster l :

$$1839 \quad 1840 \quad H_{l,l} \approx \mathbb{E}[(J_l^{\text{ideal}})(J_l^{\text{ideal}})^\top] \succeq \lambda_{\text{diag},l} \cdot I,$$

1841 where the effective base curvature is:

$$1844 \quad 1845 \quad \lambda_{\text{diag},l} = (\pi_{k,l} - \epsilon_{k,l}^{\text{total}}) \min(\lambda_{\min}(H_{\mu_{k,l}\mu_{k,l}}), \lambda_{\min}(H_{U_{k,l}U_{k,l}}))$$

1846 Here, the term $(\pi_{k,l} - \epsilon_{k,l}^{\text{total}})$ represents the effective probability mass contributing to convexity. This
 1847 formulation explicitly shows that smaller clusters (small $\pi_{k,l}$) are significantly more vulnerable to
 1848 instability, as the effective mass can vanish if the overlap $\epsilon_{k,l}^{\text{total}}$ becomes comparable to the cluster size
 1849 $\pi_{k,l}$.

1850 For $i \neq j$, the block $H_{i,j}$ represents the interference.

$$1852 \quad 1853 \quad H_{i,j} \approx \mathbb{E}_x[J_i^{\text{ideal}}(J_j^{\text{ideal}})^\top] \propto \mathbb{E}[r_{k,i}(x)r_{k,j}(x)].$$

1854 E.2.4 PERTURBATION ANALYSIS

1856 We write the full Hessian as a sum of a block-diagonal matrix and a perturbation matrix:

$$1858 \quad 1859 \quad H_{\mu\mu} = H_{\text{diag}} + \Delta H_{\text{overlap}}.$$

1860 For the minimum eigenvalue of H_{diag} ,

$$1862 \quad 1863 \quad \lambda_{\min}(H_{\text{diag}}) = \min_l \lambda_{\min}(H_{l,l}) = \min_l \lambda_{\text{diag},l} \triangleq \lambda_{\text{base}}.$$

1864 For Spectral Norm of $\Delta H_{\text{overlap}}$, by Weyl's Inequality, the minimum eigenvalue of the full Hessian
 1865 is:

$$1866 \quad \lambda_{\min}(H) \geq \lambda_{\min}(H_{\text{diag}}) - \|\Delta H_{\text{overlap}}\|_2.$$

1867 and

$$1868 \quad 1869 \quad \Delta H_{\text{overlap}} \leq \tilde{C} \cdot \mathbb{E}[\xi_{i,j}(x)], \quad (18)$$

1870 where

$$1871 \quad \tilde{C} = 2(S_\mu C'_1 + S_U C'_2)$$

1872 Substituting the bounds:

$$1874 \quad 1875 \quad \lambda_{\min}(H) \geq \lambda_{\text{base}} - \tilde{C} \cdot \epsilon_{\text{overlap}}.$$

1876 Therefore, H is positive definite if and only if:

$$1878 \quad 1879 \quad \epsilon_{\text{overlap}} < \frac{\lambda_{\text{base}}}{\tilde{C}}.$$

1881 **Interpretation:** The optimization landscape is locally strictly convex provided the overlap between
 1882 clusters is smaller than the intrinsic curvature of the individual Gaussians.

1884 E.2.5 FULL CONVERGENCE THEOREM

1886 Combining the analysis of μ and the similar decoupling argument for U (using Schur complements
 1887 to handle $H_{\mu U}$ terms which are also $O(\epsilon)$), we arrive at the final result.

1888 **Theorem E.2.** Let $\mathcal{L}(\theta)$ be the score matching loss. Assume the maximum expected overlap $\epsilon_{\text{overlap}}$
 1889 satisfies the condition $\epsilon_{\text{overlap}} < \tau$ for some threshold $\tau \propto \lambda_{\text{base}}$. Then the Hessian $H(\theta^*)$ is strictly
 positive definite.

1890

Linear Convergence: Gradient descent with step size η converges as:

1891

$$\|\theta^{(t)} - \theta^*\|_2 \leq \rho^t \|\theta^{(0)} - \theta^*\|_2,$$

1892

where the convergence rate $\rho < 1$ is determined by the effective condition number:

1893

1894

1895

1896

1897

1898

1899

1900

This proves that the High Separation Assumption is not a binary requirement, but rather a continuum. The algorithm is robust to finite overlap, with the convergence rate degrading gracefully as the overlap increases.

1901

Remark E.3. It is important to note that physically, $\epsilon_{overlap}$ will not be arbitrarily large.

1902

1903

1904

F THE DETAIL OF THE REAL-WORLD EXPERIMENTS

1905

1906

1907

In the part, we provide the detail of the experiments, including dataset and training pipeline. We use MNIST and CIFAR-10 as the datasets, and we adopt the mixture Gaussian distribution as the prior distribution in both cases.

1908

1909

1910

1911

For MNIST, our model consists of MLP-based encoder and decoder networks, each with a single hidden layer of 256 dimensions. The model is trained with the AdamW optimizer at a learning rate of 0.0005. We train 10 VAEs with the numbers 1 to 10 as the ten clusters.

1912

1913

1914

1915

On CIFAR-10, we implement a 3-layer RNN encoder and decoder for CIFAR-10. The encoder hidden dimensions are [64, 128, 256], and the decoder's are [256, 128, 64]. And we train 10 VAEs for each of the ten clusters based on the classification by category. Each layer in both networks stacks 3 recurrent blocks. The model is trained with the AdamW optimizer at a learning rate of 0.0001.

1916

Our experiment was conducted on RTX4090.

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943