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ABSTRACT

Recently, diffusion models have achieved a great performance with a small dataset
of size n and a fast optimization process. Despite the impressive performance, the
estimation error suffers from the curse of dimensionality n~Y/DP where D is the
data dimension. Since images are usually a union of low-dimensional manifolds,
current works model the data as a union of linear subspaces with Gaussian latent and
achieve a 1/+/n bound. Though this modeling reflects the multi-manifold property
of data, the Gaussian latent can not capture the multi-modal property of the latent
manifold. To bridge this gap, we propose the mixture subspace of low-rank mixture
of Gaussian (MoLR-MoG) modeling, which models the target data as a union of K
linear subspaces, and each subspace admits a mixture of Gaussian latent (n;, modals
with dimension dy). With this modeling, the corresponding score function naturally
has a mixture of expert (MoE) structure, captures the multi-modal information, and
contains nonlinear properties since each expert is a nonlinear latent MoG score.
We first conduct real-world experiments to show that the generation results of
MoE-latent MoG NN are much better than the results of MoE-latent Gaussian
score. Furthermore, MoE-latent MoG NN achieves a comparable performance with
MoE-latent Unet with 10x parameters. These results indicate that the MoLR-MoG
modeling is reasonable and suitable for real-world data. After that, based on such

MoE-latent MoG score, we provide a R* \/ S \/ YK npdy/+/n estimation

error, which escapes the curse of dimensionality by using data structure. Finally,
we study the optimization process and prove the convergence guarantee under the
MoLR-MoG modeling. Combined with these results, under a setting close to real-
world data, this work explains why diffusion models only require a small training
sample and enjoy a fast optimization process to achieve a great performance.

1 INTRODUCTION

Recently, diffusion models have achieved impressive performance in many areas, such as 2D, 3D,
and video generation (Rombach et al., 2022} Ho et al., 2022; |Chen et al.|[2023a; Ma et al., [2024; [Liu
et al., 2024). Due to the score matching technique, diffusion models enjoy a more stable training
process and can achieve great performance with a small training dataset.

Despite the empirical success, the theoretical guarantee for the estimation and optimization error
of the score matching process is lacking. For estimation error, current results suffer from the curse
of dimensionality. More specifically, given training dataset {z*}"_ ; with 2° € RP, the estimation

error of the score function achieve the minimax n % /P results for (conditional) diffusion models
with deep ReLU NN and diffusion transformer, where s’ is the smoothness parameter of the score
function (Oko et al., 2023; [Hu et al., 2024b}a; |[Fu et al., 2024)). It is clear that this estimation error is
heavily influenced by the external dimension D, which can not explain why diffusion models can
generate great images with a small training dataset. Hence, a series of works studies estimation errors
under specific target data structures and reduces the curse of dimensionality. There are two notable
ways to model the target data: the multi-modal modeling and the low-dimensional modeling. For the
multi-modal modeling, as the real-world target data is usually multi-modal, some works study the
mixture of Gaussian (MOG) target data and improve the estimation error (Shah et al.; 2023} |Cui et al.,



Under review as a conference paper at ICLR 2026

2023; (Chen et al.,[2024). When we delve deeper into the images and text data, a key feature is that
the image and text data usually admit a low-dimensional structure (Pope et al.,[2021; Brown et al.,
2023; Kamkari et al.,|2024)). Hence, one notable way is to assume the data admits a low-dimensional
structure. More specifically, some works assume the data admits a linear subspace x = Az, where
A € RP*4 o convert data to the latent space and z € R? is a bounded support (Chen et al., 2023b;,
Yuan et al.;|2023; /Guo et al., [2024). Then, they reduce the estimation error to n=2/ 4 which removes
the dependence of D. However, as shown in|[Brown et al|(2023)) and [Kamkari et al.|(2024)), though
the image dataset admits low dimension, it is a union of manifolds instead of one manifold. Inspired
by this observation, [Wang et al.|(2024)) model the image data as a union of linear subspaces, assume
each subspace admits a low-dimensional Gaussian (mixture of low-rank Gaussians (MoLRG)), and
achieve a 1/4/n estimation error. Though the union of the linear subspace is closer to the real-world
image dataset, the latent Gaussian assumption is far away from the low-dimensional multi-modal
manifold [Brown et al.| (2023)). Hence, the following two natural questions remain open:

Can we propose a modeling that reflects the multi-manifold multi-modal property of real-world data?
Can we escape the curse of dimensionality and enjoy a fast convergence rate based on this modeling?

In this work, for the first time, we propose and analyze the mixture of low-rank mixture of Gaussian
(MoLR-MoG) distribution, which is more realistic than MoLRG since it captures the multi-modal
property of real-world distribution and has a nonlinear score function. Based on this modeling, we
first induce a MoE-latent nonlinear score function and conduct experiments to show that MoLR-MoG
modeling is closer to the real-world data. After that, we simultaneously analyze the estimation and
optimization error of diffusion models and explain why diffusion models achieve great performance.

1.1 OUR CONTRIBUTION

MoLR-MoG modeling and MoE Structure Nonlinear Score. We propose the MoLR-MoG
modeling for the target data, which captures the multi low-dimensional manifold and multi-modal
property of real-world data and naturally introduces the MoE-latent MoG score. Through the real-
world experiments, we show that with this score, diffusion models can generate images that is
comparable with the deep neural network MoE-latent Unet and only has 10x smaller parameters.
On the contrary, the MoE-latent Gaussian score induced by previous MoLRG modeling can only
generate blurry images, which indicates MoLR-MoG is a suitable modeling for the real-world data.

Take Advantage of MoLR-MoG to Escape the Curse of Dimensionality. For the estimation error,
we show that by taking advantage of the union of a low-dimensional linear subspace and the latent
MoG property, diffusion models escape the curse of dimensionality. More specifically, we achieve

the R* \/ SE g, \/ SK  nydy/+/n estimation error, where R is the diameter of the target data, dy,

is the latent dimension and ny, is the number of the modal in the k-the subspace. This result clearly
shows the dependence on the number of linear subspaces, modal, and the latent dimensions R, dy.

Strongly Convex Property and Convergence Guarantee. After directly analyzing the estimation
error, we study how to optimize the highly non-convex score-matching objective function. We note
that only two works analyze the optimization process under latent space (Yang et al.} 2024a}; |Wang
et al.| 2024). However, they assume the latent distribution is Gaussian, whose score function is linear.
In other words, the minimizer has a closed form. On the contrary, since latent MoG score is nonlinear,
we use the gradient descent (GD) algorithm to optimize the objective function, which matches the
real-world application. To calculate the Hessian matrix, we take advantage of the closed form of
nonlinear MoG score and show that the landscape around the ground truth parameter is strongly
convex. Then, with a great initialization area (around the ground-truth parameters), we prove the
convergence guarantee when considering MoLR-MoG using the gradient descent algorithm.

Combined with the above results, this work adopts the realistic MoLR-MoG modeling and shows
that diffusion models enjoy a small estimation error and a fast convergence rate, which explains the
great performance of diffusion models in applications.

2 RELATED WORK

Estimation Error Analysis for Diffusion Models. A series of works analyzes the estimation error
of diffusion models. As a start, a series of works |Oko et al.| (2023) study the general target data
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with a deep ReLU and transformer network and achieve the minimax n=s'/D result, where s is the
smooth parameter (Oko et al.,[2023} [Hu et al.| 2024b; [Fu et al., [2024} |[Hu et al.||2024a)). Then, some
works analyze the general target data with a 2-layer wide random feature ReLU NN and achieve
n~2/5 estimation error with exp (n) NN size (Li et al.,2023; |Han et al.,|{2024). For the multi-modal
modeling, some works study MoG data and improve the estimation error (Shah et al., 2023} |Cui et al.|
2023}; (Chen et al.}|2024). More specifically, Shah et al.| (2023) and |Cui et al.| (2023)) analyze MoG
with known variance and achieve a 1/n estimation error. (Chen et al.|(2024) study a general MoG
and show that the score matching technique can efficiently reduce the estimation error. Except for
the MoG modeling, |Cole and Lu|(2024) assume the target data is close to the Gaussian distribution
and then prove the model escapes the curse of dimensionality. [Me1 and Wu| (2023) analyze Ising
models and prove that the term corresponds to n is 1/4/n. For the low-dimensional modeling, some
works assume the target data admits a linear subspace (Chen et al.| 2023bj |Yuan et al.,2023)). (Chen
et al.| (2023b)) assume the target data admit a linear subspace = Az with a bounded latent variable
2 € R® and achieve a n~2/? estimation error. [Yuan et al. (2023) analyze data with linear subspace
with Gaussian latent and achieve 1/+/n result. Based on the empirical observation that the image is a
union of low-dimensional manifolds,|Wang et al.| (2024)) models the target data as a union of linear
subspaces with Gaussian latent and achieve 1//n estimation error for each subspace.

Optimization Analysis for Diffusion Models. Since the score is highly nonlinear (except for
Gaussian distribution), the score matching objective function is highly non-convex and non-smooth.
Hence, only a few works analyze the optimization process, and most of them focus on the problem
in the external dimensional space (Bruno et al., 2023}, |Cui and Zdeborova, [2023}; |Shah et al., [2023};
Chen et al., {2024} [L1 et al., 2023; [Han et al., 2024). Since the score function of MoG has a nonlinear
closed-form, a series of works design algorithms for diffusion models to learn the MoG (Bruno et al.|
2023} |Cui and Zdeborova, [2023; [Shah et al.,|2023; |Chen et al., 2024)). For the general target data,
L1 et al.| (2023) and |Han et al.|(2024) adopt a wide 2-layer ReLU NN to simplify the problem to a
convex optimization. Then, they use the gradient flow algorithm to optimize the objective function
and provide a global convergence guarantee. However, as the above discussion, their NN has exp (n)
size, which is not used in the application. For the analysis of the latent space, only two works provide
the optimization guarantee under the Gaussian latent (Yang et al.,[2024a; Wang et al.,[2024)). More
specifically, [Yang et al.|(2024a) assume the target data adopts a linear subspace with Gaussian latent
and provide the closed-form minimizer of the objective function. |Wang et al.|(2024) analyze the
optimization process of each linear subspace separately, which is also reduced to the optimization
problem for the Gaussian distribution.

3 PRELIMINARIES

First, we introduce the basic knowledge and notation of diffusion models. Then, Sec@]introduces
our mixture of low-rank mixture of Gaussian (MoLR-MoG) modeling for the target data, which
reflects the multi-modal and low-dimensional property of the real-world image and text data. Let pg
be the data distribution. Given 2o ~ pg € RP, the forward process is defined by:

where {B;}+¢[o,7] is a D-dimensional Brownian motion, f(t) is the coefficient of the drift term and
g(t) is the coefficient of the diffusion term. Let p; is the density function of the forward process.
After determining the forward process, the conditional distribution p;(x;|x¢) has a closed-form

e (x¢]20) = N(Jﬁt;StImS%U?ID) )

where s; = exp (fot f(f)df) ,Op = \/fot g2(&)/s2(£)d€. To generate samples from pg, diffusion

models reverse the given forward process and obtain the following reverse process (Song et al.| [2020):
dys = [f(t)ye — 9(t)*Vlogpi(y:)] dt + g(t)dBy,  yo ~ po

where B; is a reverse-time Brownian motion. A conceptual way to approximate the score function is

to minimize the score matching (SM) objective function:

T
min Ly = / Eaymg, |V 10gps () — s0(24,)]5dt (1)
sgENN 5

where NN is a given function class and 6 > 0 is the early stopping parameter to avoid a blow-up score.
Since the ground truth score V log p; is unknown, this objective function can not be calculated. To
avoid this problem, Vincent| (2011) propose the denoised score matching (DSM) objective function:
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. T
MmN, eNN EDSM = fzi EwoquEwt\wo ||V10gpt ($t|l‘0) - Sg(xtvt)Hg dt.

As shown in|Vincent|(2011), the DSM and SM objective functions differ up to a constant independent
of optimized parameters, which indicates these objective functions have the same landscape.

3.1 MIXTURE OF LOW-RANK MIXTURE OF GAUSSIAN (MOLR-M0OG) MODELING

In this part, we show our MoLR-MoG modeling, which reflects the low-dimensional (Gong et al.,
2019) and multi-modal property (Brown et al.,[2023} Kamkari et al., [2024) of real-world data. More
specifically, we assume the data distribution lives near a union of K linear subspaces rather than
arbitrary manifolds. Concretely, for the k-th subspace of dimension dj, (represented by a matrix
Aj € RPxdk with orthonormal columns), we place a n;-modal MoG within that subspace:

ngk

wi(z) = e N ( Ajpk g, ARS5 AR,

1=1
where covariance EZJ = U,’C“JU,:‘I,I =1,...,n; with U,j’l € Rxx (di,; < di) and u}i)l is the
mean of the [-th modal of the k-th subspace. Then, the target distribution has the following form
K 1 ng
Do = Z T Zﬂk,l/\/@; A ARTE AR - (2
k=1"" I=1

From the universal approximation perspective, by placing enough components and choosing parame-
ters {71, Prets 2k, 1}, @ MoG can approximate any smooth density arbitrarily well, which is more
general than the Gaussian latent of |[Yang et al.|(2024a) and [Wang et al.| (2024)).

Nonlinear Mixture of Experts (MoE)-latent MoG score. Let v, = 504 Xpjp4 =
2
sz,jU,j’lU,jjA,’;T + ’Yf[ and 5k,l,t,A(9C) =T — Stﬂz,z - 753273 AZUI:,IUI:IAZT(I‘ - StNZ,ZAZ)-

Under the MoLR-MoG modeling, the score function has the following form:

K nk

1 * * * Nk *
Z K Z Tkl /\/'(x; St/u'k,lAka Akzk,l,t,AAkT) Ok 1,t,4(7)
Vlogpi(z) = —%2 k=1 Kl:11 o )
Z i Zwk,u\/‘(w; syt Afs A aALT)
k=1~ 1=1

This score function has a MoE structure, where each expert is the latent nonlinear MoG score. The
linear encoder Ay, first encodes images to the k-th manifold, and diffusion models run the denoising
process. After that, the linear decoder AZ decodes the denoised latent to the full-dimensional images.
Since the estimation error introduced by the linear encoder and decoder has the order Dd3 /v/n
(Yang et al.l[2024a) and is not the dominant term, we assume the linear encoder and decoder are
perfectly learned and focus on the more difficult latent MoG diffusion part in this work. From the
empirical part, this operation is similar to using the pretrained stable diffusion VAE and only training
the diffusion models in the latent space. For the k-th low-dimensional manifold, the score function is

ng
) Z Tk, N(fLD; st/fé,h Ez,z,t) 5k,l,t(xLD)
=1

V log py i (z™P) = 2 o : 3)
t
Z Tk, N(w; Stﬂz,za EZ,z,t)
1=1
where 2P € R% is a variable in the k-th low-dimensional subspace, Xy 1+ = s7Uj: Ug | + 71
2
and 6,4 (z"P) = &P — sy | — S%‘:—‘W?U;@*JU;I(JJLD — siuy,,). Let
s,*c(:vLD,t) = Vlogpt,k(xLD) , s*(acLDﬂf) = (s’{(:cLD,t), sg(mLD,t), A s}}(wLDJ)) ,
where the parameters are 0* = {u;l , U,;l}k:l,m’ x. In this work, we want to learn the pa-

rameters of the ground truth score function. Hence, we construct a NN function class sy =
(s1(-y),82(*+), .., 8k (+,+)) according to the above closed-from of MoE-latent MoG score. Let
6 is the union of py; and Uy, ;. Since we mainly focus on the estimation and optimization in the latent
subspace, we omit the superscript LD of the latent subspace when there is no ambiguity.
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Figure 2: Results of Different Modeling on Real-world Data.

Encoder LatentSubspace Decoder

R%1
T D
] I "
X‘\.
next section, through the = —
real-world experiments, we
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MoG score has a better per-

formance compared with Figure 1: MoLR-MoG Modeling and Corresponding Nonlinear Score
the MoE-latent Gaussian score induced by MoLRG modeling and compatible with the results
of the MoE-latent Unet. In Section [5and[6] we prove that by using the property of MoLR-MoG
modeling, diffusion models can escape the curse of dimensionality and enjoy a fast convergence rate.
Remark 3.1 (Comparison with MoLRG modeling). (2024) provide the first multi-subspace
modeling under diffusion model setting, which is an important and meaningful step. However, they
assume a Gaussian latent with 0 mean, which can not capture the multi-modal property of real-world
data. We also note that the MoLR-MoG modeling can not be viewed as MoLRG with Zszl ng
subspace since this modeling assumes there are Zszl ng VAE encoders and decoders, which is not
reasonable in the real-world setting. On the contrary, the existing A} of MoLR-MoG completes the
clustering for the real-world data, shares information within the cluster, and has K subspaces.

We note that this modeling
can capture the information
of each low-dimensional
manifold and the multi-
modal property of each la-
tent distribution. In the

RP

4 EXPERIMENTS FOR MOE-LATENT MOG SCORE

In this section, we conduct experiments using neural networks based on different modeling approaches
(MoLR-MoG, MoLRG) as well as a general U-Net architecture. The goal is to demonstrate that
MoLR-MoG provides a suitable modeling for real-world data, and that the MoE-latent MoG score is
sufficient to generate images with clear semantic content. Specifically, we first show that training
with MoLR-MoG yields significantly better results than the MoLRG model. Then, we show that,
with appropriate initialization, the MoE-latent MoG network achieves performance comparable to
that of the MoLR-U-Net, while using 10x fewer parameters (Figure[2).

Following |Brown et al.| (2023)), we train 10 VAEs for each number in the MNIST dataset, which
represents our K low-dimensional manifold. After obtaining these 10 VAE encoders and decoders, we
train diffusion models with different parametrized NNs. We adopt three different parameterizations:
latent U-net, latent MoG NN, and latent Gaussian NN. For the latent MoG, we adopt the form of
the ground truth score function (Equation (3)) with n;, = 4 in MNIST and nj, = 8 in CIFAR-10 for
k € [K].We set each mean and covariance metric to be trainable. For the latent Gaussian, we also
adopt the form of the closed-form score function [2024), which leads to a linear NN.
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Discussion. As shown in Figure [2 the generation results with MoLRG modeling are difficult to
distinguish specific numbers. On the contrary, Moe-latent MoG score can generate clean images
comparable with the images generated by MoLR-Unet, which means this modeling captures the
multi-modal property of each low-dimensional manifold. Furthermore, the MoLR-MoG NN contains
many fewer parameters compared with Unet since it uses the prior of latent MoG. We note that
these experiments aim to show that the MoLR-MoG modeling is reasonable instead of achieving the
state-of-the-art performance. It is possible to achieve great performance with a small-sized NN using
MoLR-MoG modeling in the application. For the large-scale data without labels, we can use the
clustering algorithm to divide the datasets into different clusters. Then, we can train a VAE encoder,
decoder, and latent MoG score for each cluster. We leave it as an interesting future work.

5 ESCAPE THE CURSE OF DIMENSIONALITY WITH MOLR-MOG MODELING

This section shows that diffusion models can escape the curse of dimensionality by using MoLR-MoG
properties. Before introducing our results, we first introduce the assumption on the target data.

Assumption 5.1. For z ~ po, we have that [z < R.

The bounded-support assumption is widely used in theoretical works (Chen et al.,[2022; [Yang et al.,
2024aib) and is naturally satisfied by image datasets. For a latent MoG, each component concentrates
almost all mass within a few standard deviations of its mean, so by taking the most component means
and variances, one can choose R large enough that ||z|2 < R holds with high probability.

Since Moe-latent MoG score has a closed-form, we only need to learn the parameters (i), ; and Uy,
at a fixed time ¢. As a result, we consider the estimation error at a fixed time ¢. Let £(6;x,t) =

2 . . L
||59 (z,t) — s*(x,t) || , be the per-sample squared error at time ¢. In this part, we study the estimation
error with a limited training dataset {z; }7" ;:

~ 1
,with £,,(0) = =7 £(6; z;, ) .

n

|(6) ~ £.(6)

To obtain the estimation error, we first provide the Lipschitz constant for sy and the loss function by
fully using the property of MoLR-MoG modeling and MoE-latent MoG score.

Lemma 5.2. [Lipschitz Continuity] Let L,, and Ly, be the Lipschitz constant w.r.t. sg. With
MoLR-MoG modeling and Assumption there is a constant

L< \/zfglnk(Lgl +12)=0 ((zlenk)%cw)

such that for any 0,0, ||sg(x,t) — sg(z, t)H2 < L|o—¢

3.2
— (R+5;§/L) St’BM —
H}falXHMk,le For sg and s*, we have that 2||sg(z,t) — s*(z,t)||2 < 2(R + s:B,,)/7¢ = L.

o, where C.,

Then, we obtain the Lipschitz constant I’ = L; L for the whole loss function. With this Lipschitz
property, the next step is to argue that fitting the network on n samples generalizes to the true
population loss. We do so by controlling the Rademacher complexity of the loss class and then using
a Bernstein concentration argument to obtain the following theorem.

Theorem 5.3. Denote by En(O) the empirical loss on n i.i.d. samples and by L(0) its population
counterpart. Then there exist constants C1, Co such that with probability at least 1 — 0, for all § € ©,

5 (R+s:Bu)*si\ /S0 [wK pad log(1/6
|£(0) = £4(0)] < 0<01 ”Vgﬁ s | ¢, [0/0))
t

where Cy = max||0; — 0,2, C2 = olog2, o = sup Var[€(6; X, t)].
9c© 0co

This result removes the exponential dependence on D with the number of latent subspace K, the
latent dimension dg, and the number of modalities n, at each linear subspace, which reflects the key
feature of the real-world data and escape the curse of dimensionality. The remaining question is why
diffusion models enjoy a fast and stable optimization process. In the next part, we show that with
MoLR-MoG modeling, the objective function is locally strongly convex and answer this question.
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6 STRONGLY CONVEX PROPERTY AND CONVERGENCE GUARANTEE

In this part, by using the property of MoLR-MoG modeling, we derive explicit expressions for the
Jacobian and Hessian of the objective function for 2-modal MoG latent and general MoG latent.
Then, we establish conditions under which the resulting score-matching loss is locally strongly convex
for each setting. Finally, we provide the convergence guarantee for the optimization.

6.1 2-MODAL LATENT MOG HESSIAN ANALYSIS AND OPTIMIZATION

In this section, we show that, under sufficient cluster separation, the Hessian matrix near 6* simplifies
to a block-diagonal form, yielding local strong convexity, which derives a linear convergence rate.
As discussed in Section[3.1] following the real-world setting, we consider the optimization dynamic
in the k-th latent subspace. While our modeling contains K encoders and decoders, facing an input
image x, we can first determine which cluster image « belongs to, and then use the corresponding Ay
to encode it into the corresponding latent space. Then, we only use data belonging to k clustering
to train the k-th latent MoG score. This operation matches our experimental settings, and [Wang
et al.| (2024) also adopts this operation. When considering the optimization problem, to simplify the
calculation of the Hessian matrix, we set d, ; = 1.

Similar to|Shah et al.|(2023)), we start from a latent 2-modal MoG with the same covariance matrix

Y} and py | = pp, Hy o = —, Which leads to the following score:
1 IN (5 sepl, 25) 00 (2) + SN (x5 —sepf, BF) en(z
Vlog pyi(z) = —— 3N 1th k) *k( 2 21 ( t/jk *k) k( )7 )
Vi SN (x5 sepap, T3) + 5 (25 —se 1, 2

52 T . 52 T
where ¢, (z) = x—stuZ—WUEUI’: (x—sepy),and 6 (v) = z+sepp,— WU:U; (x+s¢per).
Before providing the convergence guarantee, we make an assumption on the 2-MoG latent distribution.
Assumption 6.1. [Separation within a cluster] Within each cluster k, the two symmetric peaks are

well separated in the sense that ||s.p; — (—sef)|| > Aintra, for some Ajpgra > v;. Consequently,
if a sample z is drawn from the “+” peak then its responsibility under the “—” peak satisfies

LN (@5 —seut, %) 2 2
rm(z) = o N5 Zsupg, 2 — Ofe B/ D) < 1,
< T N s, 50 & EN @ —s 5) ( )

2
+
k

[T

and symmetrically r; (z) < 1 when « is drawn from the peak.

The above assumption means that the separation of the two modals is sufficient. For each symmetric
sub-peak, if the distance between them is relatively small, we can view them as having a mean of 0.
Since they are the same distribution (¢ = 0 and ¥ = U U kT + ~21), they are the same regardless
of how they mix, which indicates that we can assume r,:r ~ 1l orr, = 1. Moreover, in practice, if
raw data do not exhibit such clear gaps, one can always apply a simple linear embedding to magnify
inter-mean distances relative to noise, thereby enforcing the same hard-assignment regime.

Lemma 6.2. [Jacobian Simplification] Under Assumption in a neighborhood of 0* the first
derivatives simplify to their “self-cluster” terms: J|!(x) = O, s0 ~ s¢(I — aPy) /v and

252 _
i (a) ~ m(rk (@) (U} (z+sppe) T+ (@+sepu) Uy )+rif (@) (U) (z=sepi) I+Up(@—sepn) 7)) -
ACH t
Lemma 6.3. [Eigenvalues of the Hessian blocks] Under the same conditions, H is convex. If
Vz € R4, rf(2) = 1 orr; (x) = 1 are strictly satisfied, the eigenvalues of the Hessian at 6* are

2
St

————— ,and
(s7 +17)?

)‘min(Hka) =

AU, 11))? + U3 k13 — HUk||2HMkH2\/8(Ul;er))2 + 1 Ukl3 M 113
5 :

)\min(HUkUk) =

Since the ground truth score function has a closed-form under the MoLR-MoG modeling, we focus
on the score matching objective function Lgy(6) instead of Lpgn(6) and abbreviate Loy (6) as
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L(6). We note that Lgn(0) and Lpgm (6) are equivalent up to a constant independent of 6, which
indicates the optimization landscape is the same. Furthermore, when considering the convergence
guarantee under a 2-layer wide ReLU NN, |Li et al.| (2023) also adopt score matching objective Lgng
instead of Lpgn. Then, we provide the local strongly convexity parameters for the objective function.

Lemma 6.4. [Local Strong Convexity] Combining Lemma with continuity of V2L, there exist
o > 0 and neighborhood U of 0* such that V2L(0) = al,V0 € ©.If Vx € R¥% r}(z) = 1 or

), (x) = 1 are strictly satisfied,
2 A0 ) + U313 — ||UkH2||/~Lk||2\/8(UkTNk))2 + 1Okl 1121113
(s7 +18)% 2

a = min

Theorem 6.5. [Local Linear Convergence] Under Assumptions[5.1|and if we take 0, =n =
2/(n+ L"), and k = L' |, then there exists a neighborhood U of 0* such that

t
160 — 642 < (252 190 — 6%,

where m is the number of gradient descent iteration.

This result gives a lower bound on the convergence rate near 8*. Due to its strongly convex property,
the convergence rate is fast, which explains the fast and stable optimization process.

Proof Overview. Assumption [6.]justifies the Jacobian simplification (Lemma[6.2)), which in turn
yields the Hessian block structure (Lemma[6.3)). By Schur complement, this result gives local strong
convexity (Lemmal6.4). Combining with the Lipschitz constant, we finish the proof.

6.2 GENERAL MOG LATENT HESSIAN ANALYSIS AND OPTIMIZATION

We now extend our analysis to the case where each subspace k carries an asymmetric Gaussian
mixture (Equation [3). As before, we first state the key separation assumption and show that on each
subspace, the individual Gaussian distributions in the mixture of Gaussian are highly separated from
each other. Then, we simplify the Hessian and prove local convexity. Finally, we conclude a linear
convergence rate based on the strongly convex and smooth property.

Assumption 6.6. [Highly separated Gaussian] Consider the Gaussian mixture

Tha N (25 eyt Xt

ng
pe(x) =) ma N(; pg, X)), re(x) = . -
) ; M ) (@) Z:L:]H Wk,iN(JU;Mk,iaEk,i)

There exist constants ¢ < 1 and § < 1 such that when z ~ p;, we have

Pr (Hle{l,...,nk}withrw(x)21—6) > 1-6.

T~Pr

Justification. With MoLR-MoG modeling, after adding diffusion noise of scale ~;, each point
a remains within O(v;) of the subspace’s moment-matched center fir. Concretely, the subspace
structure (or a preliminary projection onto principal components) ensures ||z — k|2 < A = Cw,
with high probability, for some moderate constant C'. Hence, any third-order Taylor term o< ||z — fig ||
is O(}), which vanishes compared to the leading Hessian scale O(+7). In the following corollary,
we further show the approximation effect of equivalent Gaussians.

Corollary 6.7. Assume that ||y ; — iy, ;ll2 < 6, [|[Ug; — Uy Sll2 < eand ||z — g ll2 < A. We have

| log p(a) — log p(x)l|z = O + 62 + A%)

Remark 6.8 (Separated Gaussian simplification). For simplicity of description, we assume the
individual Gaussian distributions in the mixture of Gaussians are highly separated. Actually, if there
are nj, Gaussians that are not separated from each other, we can employ clustering techniques to
transform them into n; mutually independent Gaussian distributions. The error caused by such an
operation can be calculated using corollary The core intuition is that the modals should not have
much influence on each other. Hence, we can also use the idea of recursion to first cluster the general
MoG into a 2-modal MoG latent. Then, we can use the analysis of Section[6.1] with Assumption
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Then, similar to the above section, we also calculate the Hessian matrix and show the local strong
convex parameters. Finally, we provide the convergence guarantee for general MoLR-MoG modeling.

Lemma 6.9. [Eigenvalues of the Hessian] Assume Assumption the Hessian at the k-th subspace
is convex on a neighborhood of 0*. IfVx € R%, r,j (x) = 1 or 1 are strictly satisfied, we have

2
Tk, 1S¢
Amin(HMk,LlJ«k,l> = W7

and Amin(Huy, ,v,,,) has the following form:

(Wk,l‘l(UzIsz,l))Q + Uk al3 w115 — ||Uk,z||2|\ﬂk,l||2\/8(U1I,zuk,l))2 + ||Uk,l||§||uk,l||§) /2.

Lemma 6.10. [Local Strong Convexity] Assume Assumption in a neighborhood of 0*, V2L (0) =
I,0/ > 0,0 € ©. IfVz € R¥*, 31 € [ng], r1(x) = 1 are strictly satisfied, o' = min{\1, A2},

4
— 3 Ck,17Y _ 3 —
where Ay = miti=1 . n, Gz dye A2 = Mili=12 0y = Amin(Hu,, U5, )-

Thus, even without symmetry, equivalent Gaussians and sufficient subspace separation recover the
same local convexity and linear convergence guarantees as in the asymmetric case. Similar to
Theorem [6.5] under Assumption[6.6] we can obtain a convergence guarantee.

Remark 6.11 (Previous MoG Learning through Score Matching). Shah et al.|(2023)) and [Chen et al.
(2024) consider MoG data and analyze the optimization process of diffusion models at the full space.
However, these works aim to design a specific algorithm to learn the MoG distribution instead of
using a standard optimization algorithm. On the contrary, by using the MoLR-MoG property to
calculate the Hessian matrix, we adopt the GD algorithm and obtain the convergence guarantee.
Remark 6.12 (Initialization). Since the multi-modal GMM latent leads to a highly non-convex
landscape, Theorem [6.5] and the corresponding asymmetric variant require the initialization to be
around 0* to guarantee local strong convexity and obtain a local convergence guarantee. As the
MoLR-MoG is the first step to model the multi low-dimensional and multi-modal property, we leave
the analysis of the global convergence guarantee as an interesting future work.

7 CONCLUSION

In this work, we provide a mixture of low-rank mixture of Gaussian (MoLR-MoG) modeling for
target data, which reflects the low-dimensional and multi-modal property of real-world data. Through
the real-world experiments, we first show that the MoLR-MoG is a suitable modeling for the real-
world data. Then, we analyze the estimation error and optimization process under the MoLR-MoG
modeling and explain why diffusion models can achieve great performance with a small training
dataset and a fast optimization process.

For the estimation error, we show that with the MoLR-MoG modeling, the estimation error is

R* \/Zszlnk \/Zlenkdk/\/ﬁ, which means diffusion models can take fully use of the multi

subspace, low-dimensional and multi-modal information to escape the curse of dimensionality. For
the optimization process, we conducted a detailed analysis of the score-matching loss landscape.
By formulating the exact score in both symmetric and asymmetric mixture settings, we derived
explicit expressions for the parameter Jacobians and identified the dominant components under
standard separation assumptions. Then, we prove that the population loss becomes strongly convex
in a neighborhood of the ground truth score function, by estimating the Hessian and presenting
lower bounds on both its minimal eigenvalue and the convergence rate. Then, we provide the local
convergence guarantee for the score matching objective function, which explains the fast and stable
training process of diffusion models.

Future work and limitation. Though we have extended the situation to multi-manifold MoG, how
to extend the analysis to more general non-Gaussian sub-manifolds (e.g. heavy-tailed or multi-modal
beyond second moments) by higher-order moment matching is still unknown. Meanwhile, we wish
to design optimization algorithms or network architectures that explicitly leverage the block-diagonal
Hessian structure for faster training. For example, we can perform a natural-gradient step separately
in each block with a block-diagonal Hessian with decomposed data, which will accelerate the
optimization process.
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Ethics statement. Our work aims to deepen the understanding of the modeling of diffusion models
and explain the success of diffusion models from a theoretical perspective. The MoLR-MoG modeling
has the potential to achieve a great performance with fewer parameters. Hence, this work can be
viewed as an important step in understanding diffusion models, and the societal impact is similar to
general generative models (Mirsky and Leel 2021)).

Reproducibility statement. The detail and description of the real-world experiments are provided
in Appendix [E] We detail the model, hyperparameters and data.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

As this work mainly focus on the new modeling of diffusion models from a theoretical perspective,
large language models were only used for minor language editing to check grammar. All ideas, new
modelings, experiments, theoretical guarantee, discussion and writing decisions were made entirely
by the authors.

B SCORE FUNCTION ERROR ESTIMATION

B.1 CALCULATE V log p;(x) AND DECOMPOSITION

Consider the k-th subspace

pri(z Zﬂ'kl-j\/ (Hret, Biet)

=1

where Zk,l = S%Uk,lU]Il + %52[.

We know that
1 s7
2_1:(1— ¢ UklU )
kT2 247 k.l
52
Vp (@ QZWMN e 1 Xkt) (I -3 UklUkl) (@ — pwa)
st +7

which indicates

n S?
Vper(z) 1 Do TN (e, Xiet) (I - WUk,zU;L)(CC - Mk,z)

Vio =2 Tk
gpek(z) = pin(@) A Yo TN (e, Xe)

We want to learn the parameters of the score function:
sp(z,t) = Vlogpy i (),
where the parameters are {u; ,, Uy}, k=1,..., K.
And
s (z,t) = (s7(z, 1), 85(x, 1), ..., 85 (2, 1))

Define
R(si) = E [||sk(z, ) — sp(x, 0[], Z sk (2, ti) — si (i, t3) ]|

We have the following decomposition:

R(3,5.) = Bu(s,5.) = R(3,5.) — R(sp) + R(s}) — R(sk00) + Bn(sk0-) — RBn(3,5,)
—_—

n

Estimation Approximation optimization
‘We can also obtain that
K
s) =Y R(sk)
k=1

Since Estimation and Approximation reflect the fitting ability of the network, we analyze the first
term first. Then, in the next section, we analyze the optimization dynamic.

12
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B.2 ESTIMATION
First, we show that f and loss function are Lipschitz. We will first prove that sy, is Lipschitz for VE,
then we can know that s is Lipschitz.

Lemma B.1. [Lipschitz Continuity] Let L,, and Ly, be the Lipschitz constant w.r.t. sg. With
MoLR-MoG modeling and Assumption[5.1] there is a constant

L <2 m(L3, + 13,) = 0 () Cu)

such that for any 6, ¢’, (z,t) — sgr(x,t) ||2 < L|o—¢

t
HllcalXHMk’l”Z For sg and s*, we have that 2||sg(z,t) — s*(z,t)||2 < 2(R + s:B,,)/7¢ = L.

(R+5:B,
9, Where C,, = +S;7)Sf B, =

Proof. Since we analyze the estimation error at a fixed time ¢, we ignore subscript ¢ for Xy, ; ¢, Wy ¢,
wy ¢ and dy, ; » and define by
Sk = s;Ur Uy + 721
wy(x) = 3% 7 N (@5 Seir1s Bkt)
1

Wg,1 = Mﬂk,l/\/(fﬁstﬂl@bzk’l)
52
5k,l(55) =T+ Sk, — 2+’y Uszkl( + Stpn,1) -

Assume that ||Uy ;||2 < By, ||pk,ill2 < By, max{By,B,} = C, and ||z||s < R forVz € X.

For X, ;, we know that
1
Skt = UkaU; 971 = %1 = Anin(Skt) 277 = 155112 < 2
t

Osk,0(x,t)

Osp,0(x,t)
k Uk 1

To obtain the first L in this lemma, we need to bound ‘

and ‘
2

2.

The bound of ‘ %:?t) H2 For the latent score of the k-th subspace, we have that
1 Xk )
(1) = - St D)
A/t w ()
n ow T 00 owy (x ng
Osea(r,t) 1 Sy (gt (e) + 25 (@) )wp () — S (51w (2)01,(x)
Ok, % ( ) ’
n Owy,; (x 06,1 (x ow n
e | Sl a0 Rty ] N el S GG
Oty ~ F wy(z) , wj ()
To bound this term, we separately show that
(1)wg () has a lower bound.
0 00
(2)wg,i(x), dki(x), ugﬂl (x)’ k() have upper bounds.
k
Owy (w) 6 ( ) an OOy, l(ac) wy, l(x) Owy (x) Enk wy, l( )5k l(x)
3) O R == D ’ [P L : have upper bounds.
2 2 2

(1) wg(x) has a lower bound.

wy(x) = X% 7 N (@5 Sefik,1, Xk, ), which is continuous.

13
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Since continuous function has maximum and minimum in a closed internal and ||z||2 < R, we can
assume that wy (x) > my.,. And for any x, wg(z) > 0, so m,, > 0 holds.

(2) w1 (x), g (), Mg’#lim), %”:m have upper bounds.

We already know that continuous function has maximum and minimum in a closed internal and
[|z]l2 < R. Thus, we can assume that wy(z) < M,,, . We also have that

_n _1
w () < My, < Xm0 (2m) 72 | S |2
For the second term, we have that

57 52
opi(z)=x—s 55Uk Uy (v — s I— t U U T — 8 ,
ket () it = Ui i thk1) = ( T4 7 Uk kl)( thk,1)

whose Ly norm is bounded by

s
‘ (I - UklUk z) (© — s¢fin,1)

< lzllz + lsepnallz < R+ 5By, -

Pty 2
Then, for the thlrd term, we know that
&Sk l(ac) S? T 2
— =5+ 5——=5Up U, = — I - Uk lU .
b, T R s7 n A
For the last term, we have we have the following expression
owy 1 (x s _
%(l) = —5/\/(93; S¢fk,l Zk,l)zk}(gc — S¢fik) -

For term ||Z,;}(x — Stlik,1)||2, we have that

IS5 (@ = sep)ll2 < IS5 ll2ll = sepnill2 = ,ng <3 (R+H5tukz|| )5

which indicates

8wk l 1 1
H 3 < s N (@5 sppie, Bet) =5 (R4 | sepintll2) < seN (@5 sepip, Br) — (R + 508),)
“kl 2 Vi Vi
3wk 1
H 3 < B s N (@ s pinet, Biet) —5 (R4 5¢By).
Bt o Vi
dwy, (x) ny 9k (=) Bwy, (x) n
3) 8:“ () , aE azéklx)ww(z) ) v Z;lu:;)l(x)ék 1) have upper bounds.
2 2 " 2
For the first two term,
dwk(:c)é 1(z)
8ukl o S%(R—’-StB )
Wk Vi
2
and
ny 00k, (x)
Haékl(m) = Constant < s; T wi () < s¢
O |l - wy () -

For the third term, we know that

Gl s w1 (@) 01 () siwd ()25 (R + 5,B,)

§2
Ok, 7 _ St (R
< = < (R+5B,).
w}(z) 2 w} () R A
Combined with the above three, we obtain the bound for ’ %}Ef” :
; 2
n Owp OOy, Owyg (x n
H sno(w,t)|| _ 1 (|| S Tgei + T )oka(x) ) (57w ()3 (x))
Opry |y — 2 wy, () w(z)
2 2
52 s2(R+ s:B,,)?
< L(R+ sBy)? +o ot 5(R+s:B,) = O(W).
Vi ’Yt Vi
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The bound of ‘ %}Ei’ﬂ H . Now we compute the part about Uy, ;. Through some simple algebra,
: 2
we know that
DI 9701«,1(1)5 00y 1 () _ Owg(@) (e 5
Osuo(z,t) 1 Z%(Tau, Owa(@) + g P wka(@))wi() — Tp o (5 wia (2)dk,(2))
OUk, 7 wi(z) '
Then, we have the following inequality
n, (Ow T 00y, Owy (x
Osea(r,t) 1 S (o (e) + 2wy y(w))wi () — SGED (S wi i (2)0 ()
Uk, Vi w(z)
n 19] a4 Owy (x ng
H Osno(wst)| . 1 (|| B CoREE ea(@) + T Puna@)) | T+ (S (@) (@)
ks |y~ 7 w () wi ()
2 2
Similar with ’ %}Ef’w , we need to provide:
' 2
(1) The upper bound of 7 w’“ L and gg’;’)ll ,
2?j1<8‘;5;jf,j’)5m< )+ 2w (2) 3 (S, w1 ()00 ()
(2) The upper bound of T on @) and )
2 2
(1) The upper bound of 3 dw’” and ggi‘fl.
For the first term, we have the following form
Owy,1 _ ﬂkzaN(x; Stk Dkl
aUk’l ’ aUk
1 3 B
= 257 N (5 50ttt Sa0) (B (@ = sepnn) (@ = sepined) " St — S )| Uk -
Then, we know that
Owg,; o (R+sllprall2)® 1
=\ < 2m N (@5 sepue g, Bip)sg (——————— + —
H Ukl bt Bt )33 7 2
R+sB,)> 1
< 2mp N (5 sepge 1, Em)ﬁ(% +—)-
"t Vi
For the second term, we have that
(%k l(x) St2 T T
: =-2 U, (x—s k_lI-i-Uk’liL’—S k,l s
5t = 2y Ol = sk )T+ Vol = suma) ")
which indicates
0,1 () 57
. 2 R+ ||s <2(R+|s
22| <2y (e uale) < 200+ sl
2R+ 5,B,) .
o, (Tl 5y 1 () + 295 D w1 (2) O ) (578, w1 (), 1 ()
(2) The upper bound of || ——— 27! k;k(m) Pkt ™ and ||kt }(;)l o
2 2
E;L:kl(awk’l(z)(sk,( )_|_ ka,l(x)) R+sB 3 1
Uk, Uk, < S?(( ; /L) + 72) + 2(R+ StBu)
w(x) Vi Vi
2

We also have

Owy (x n
o Ciho@da@) | (R4 s | 1
wk(a:) ) Tt ’Yt2
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0sp.0(z,1t) 9 <(R+stBu)2 1 > 9 ((R+stB#)2 1 )
o <8P ——— S )+ 2(R+s¢By) + 57 | ————+ = | (R+s:B
H Ukt =" v 7 ) TARE B s v 7)) )
-0 ((R‘FStB#)SS%) '
"
Therefore, sg j; is Ly-lipshiz, where
1(R+ s,B,)3s?
L < \foull, + 15,,) = 0 (nf S

Furthermore, we know that

K
Is0() = s0(v)l, = (Z

. C2\? K _ .
s9,.:(z') — So,i(y(l)))H ) < (Z Lif|(z® — y@|2)% <
i=1

k
S L2 -yl
=1

Thus,

After obtaining the Lipschitz constant for sy, we bound the gap between sy and s*:

2
ng, ) 2 T 2 s T
1 I kN (@5 sepie, spUg Ui g + 7 1) (96 = sepkt = Ui Uiy (o = Stﬂk,l))

Viog pi k(x) = —
)= ST TN (@3 et UL UE] +120)

With the following bound

2
S
& — sepns — 55Uk Ukl (& — sppw)|l2 < R+ 5By,
s+ W

we have that
1 1
[Vlog pt .k (2)[]2 < ?(R + s:By) and ||sg,0(2)[|2 < ?(R + s1By) ,
t t
which indicates

2
l[sk.0(x) = Viogpei(x)]2 < ?(R +5:B,).
t

Hence, we obtain that
L; <2|sg,e(x) — Viogps r(x)||2 = O(R+ s:By) .
[ |

Lemma B.2. [Rademacher Complexity] Let F = {{(0;-,-): 0 € ©} and suppose O has diameter
Ro. Then the empirical Rademacher complexity satisfies

R (F) = O(L’\/g).

Proof. Let function class F = {Sp(z) : 0 = ({{un1, Uki}}%, 1)) € O}, where py; €
Rd, Uk,l S R4

We know that the number of parameters

p = Biznn(d + d) = 255 ndy.
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And the covering number of the parameter space is
C
N, - ) < ()7

If f is L-lipschitz, we know that
€
V01,02 c @, ||fg1 - f92HL2(p) S L||01 — 02“2 and VG, Elﬁj, st||t9 — 9j||2 S Z

= \Ifo = fo, L.y < LIIO —05]l2 <€
Thus, assume that ||0; — 6,||» < C for any 0;,0; € ©
C
N0, 1) = (S
CiL
;‘N( 0, [+ ll2) < ( i

»
S N F - ) SN0, 1) < (CEyr < (B

€
We also know that diam(F) g L diam(©) = C4 L, with Dudley integral, we have

12 diam(F)
R (F) < T/ \/logN (e, F, | - HLz(p))

C1L /

< % pCLV exp(—t)dt = Wg’m - 0(01L\/§>.

We take the squared loss functlon.

Ro(L) < LRy (F) = O(ClLlL\/g).
|

Theorem 5.3. Denote by En(G) the empirical loss on n i.i.d. samples and by L(0) its population
counterpart. Then there exist constants C1, Co such that with probability at least 1 — 0, for all § € ©,

= (R+ s:B,) YK ng 2K p a1
|£(0) — Ln(0)] < O<C1 t \/71 il 1nk % \/W

where C1 = maxHG — 0|2, Co = JlogQ o2 = sup Var[((0; X, t))].
0co

Proof. Since
LiR,(F)= O(ClLlL\/g).
We have

A = sup|L(0) — L(9)| = O(ClLlL\/g)

0€©

By Bernstein inequality,let 02 = supVar[l(X; 6)],we know that
0co
2 ne
<2 ——).
) < 2exp(— )

Pr(gggﬁ)(ﬁ) — L) > E[A] +¢) < 2exp(—2(a2 T LIC3)

Let 2 exp(—35 ) < 4, we can obtain that

Pr(sup|L(0) — L(0)| > C’lLLl\/> Co| ——— Log 1/5
0co

17
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B.3 APPROXIMATION

Since our network can represent V log p(x) strictly, we have

Approximation Error = 0

C 2-MODE M0G OPTIMIZATION

C.1 SETTING
In this section, we analyze

1 2rrapraT 2 s? —
sN(@;sepn,si UL UR  +: 1) w*Stﬂk*WUkUk (z—s¢pr)

( ) Vp: k(l') 1 + 3N (z3—sepr,s; UL UL T +421) (IJFSth*%UﬁU%T(WFSth))
Viogpip(z) = ——~- = —— )
’ Pek () VP SN (@5 sepue, sSEUFUET +21) + SN (w5 —sepn, sEUFUET +471)

which can be reduced to

Vlogpsk(z) = 1 g N (550, Bg) 07, (x) + 3N (25 =50k, T ()
t,k -2
" SN (@5 sepr, ) + 5 (@3 —sepue, Bie)

; (&)

2 2
where e (z) = x—stuk—S%‘:—‘V?U;U,’f(a:—stuk),and 8 (x) = x+stuk—sgi—*ﬁU;‘UgT(I+stu;€).

C.2 OPTIMIZATION

Assumption C.1. [Separation within a cluster] Within each cluster k, the two symmetric peaks are
well separated in the sense that ||s.uf — (—sif)|| > Aingra, for some Ajpgra > v;. Consequently,
if a sample x is drawn from the “+” peak then its responsibility under the “—” peak satisfies
7‘_(33) _ %N(LL‘, _StM;;’ZZ)
’ SN (s, B5) + 5 N (@5 —semy, 3)

= Oe Bt/ @D < 1,

and symmetrically ;" (z) < 1 when x is drawn from the “—” peak.

In the following discussion, we assume that © € k-th manifold, which means that w;(z) = 0 if i # k.
Lemma C.2. [Jacobian Simplification] Under Assumption in a neighborhood of 0* the first
derivatives simplify to their “self-cluster” terms: J}'(x) = 0,80 ~ s:(I — aPy)/v} and

252

JV(x) %
H N T

(i @)UY (+seun) I+ (a+seun) Uy )+ (2) (U (2= sepne) I+Uk (z=se00) 7)) -

Proof.
w; (z wi (= ! (x — e (x wy, (z — ’
L P D 57 )+ L e () + 25 D o () + 2 o ()RS wn () Sy 2L (wy (2)8) () 4wy ()en ()
P wi ()
., 85, o dw,, (x) ow} (x)
| wp (2) 2w () 2] T 0e) + T (o)
Y wg(x) Y w (x)
TermA
Owg _
) S (e (2)0 (x) + wi ek (@)
Y wi (@)
TermB

We will now prove that term B can be ignored compared to term A under our assumptions.

18
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For term B, we have

Ll . Ow, (z ow; (x
%(wk (z)0),(x) + wy ex(z)) - #’E)(y( )+ k( ) ex ()

Yiwi () viwy(z )

1 Owg(z), _ ow, () ow; ()
= oy o @) + i ()en(e) = wee)(“e o @) + T e ()

1 8w,‘:(1’) _ , ow, (x) +, 0w, (x) _ Gw,':(x)
= ’Ytzwi(x)( o ;. (2)0(z) + E wy (v)e(z) — wy () T () —wy, (z) PN ex(z))

1 ow _ dwy | ,
= -4

%2“%(33) ( P Wy, P wy, ) (ex () k()
B 2 owf _ dwy n s?
S e ] —OUPQH\HM>
- ’yfw,%(m)tk kE“k 5t+7 kU | bk = 'Y? tIIHE|2 2).
And for term A, we have
— 96, (x Oer (x
wy, (z) au(k) 4w ( ) 82(;6) 0 <St||u;€|2|w+ —w|)
Vi we () ook TR

Thus,

.
(psMMIN)_O<¢meM>
|

] G R

86 x er(x St —
Thus, Jf & — L (i (2) 252 + 75 (2) 2842) = 25 (v () = v () (1 = U0 ).

o (tirEulelz) g

Vi

We will analyze J now.

v Lt 2 57 )+ 2w () 2w () 2 () s () — 2L o ()81 () + i e ()
’Yt w,%(x)
1 e+ St @
V7 w(x)
. 20 ) 5y () + o 2ol e, (x) 2« (wy, ()3 () +w,jek(x)))
wi() wi (@) '

By calculating, we have

ow;. (x ow; (x wr (xz —
ﬁﬁﬁu>+ D) (2) Q) o () (2))(x) + wf ex (@)

w,. (2 wi (z w (T
=U%@w%uﬁza)%m L) ) - 2D i () ) + i en(0)
w;. (T ’U)+ x WE\T
= oy ) T )+ o) - 22 ()0 o) + (o)
w; w,.
= e (B = G esle) = ()
83
_ w2,2€(;3) [N(:r Sepn, X)) M (2) — N(z;—sppp, X) M~ ( )} Up (I —aU,UY)
e

.
(58 + %)

19
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where Mt (z) = Sz — spup)(z — sepr) ' 87 — DL M~ (2) = S Yo + sgup)(z +

2
Ty—1 -1, _ _st
Sipg) X=Xt a= e

‘We also know that

00 () — Oey (x
B (gt wi (@) + el @) _ (sfnxnz) 0 <s§||uk||z>
zK - 2 2 - 2 2
o1 Wk (2) St T St T

.3
O(rr; —s—t—s
(i 7y, 73(5%73))

3 — 0.
(k)
Thus,
252 _
~ W(T’“ (@) (U} (x + soui) T+ (2 + s Uy ) + 38 (@) (U (2 = sopur) T+ Up(@ = sepr) 1))
i 5t i
[ |

Before we provide the simplification of Hessian, we first prove that for a,b € R” M = a'bl,, +
baT ,M M7 is positive-definite if and only if b" a # 0. At the same time, we provide the minimum
eigenvalue of M M T, which will be used later.

Lemma C.3. Let a,b € R” and M = a'bl,, + ba". MM is positive-definite if and only if
bla #0.

Moreover,

4(ab)? + [lal3l[b]3 — llal2[1b]2+/8(aTb)* + [lall3]BlI3

Proof. Let M =a'bl,, +ba', c=a'b. We know that Vz € R”,
e MM z=(M"2z)"(M"z)
= M7 xll3 > 0.
Thus, MM T is semi-positive definite.
We can also have that
1
M| =|a"bl, +ba"| = c"|I, + —ba' | = 2¢" >0,
c
where ¢" = 0 if and only if b" a = 0.
The last equation holds because

I, +uw'|=140v"u

Thus, [MMT| >0, MM is positive definite.
We can further get the eigenvalues of MM .

Expanding gives the convenient representation
MM" =(a"b)’I, +a"b(ba” +ab") +a'abb’. (©6)
Ve e R, ifx"a=0and z'b =0, we have:
MM "z = (a"b)?z.
Thus, (a'b)? is an eigenvalue of M, and its eigenspace contains the orthogonal complement of

span{a, b}.If a and b are linearly independent then dim(span{a,b}) = 2, so the multiplicity of the
eigenvalue o? is at least n — 2.

20
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To find the remaining eigenvalues we restrict M to the subspace S := span{a, b}. Assume first that
a and b are linearly independent so that S is two-dimensional.

Using equation@ we can compute tr(M M "), which is
tr(MM") =tr((a"b)*I, +a"b(ba" +ab") +a"abb")
=n(a"b)” +2(a’b)” + [|a|3]b]I3
= (n+2)(a’b)” + [lall3[1blI3.

The second equation holds because of tr(zy") =tr(y'z) =y 'z
We set the other two eigenvalues are g1 and po.Thus

tr(MMT) =%\

= (n—2)(a"0)” + pu1 + po

= (n+2)(a"b)* + |lal3[0]3,
and

IMMT| =17\

— (aTb)Q(n—Q)MIMQ
_ 4(aTb)2n
So w1 and po are the two solutions of
2

2% — (4(a" ) + ||a3]b]13) = + 4(a"b)* = 0.
Solving equation[7] we have

oty = 4(a"b)? + llal3]1b113 £ llall2/1bll2/8(aTb)2 + [[all3]613

2
Now we obtain all eigenvalues.Moreover, we can calculate the minimum of eigenvalues

)

4(aTb)2 + ||a||2]b]|2 = ||al|2||b 8(a'h)2 + ||all2]||b||?
i UAET) o = T IEIVE Lol /ST T TETOE

]
Lemma C.4. [Eigenvalues of the Hessian blocks] Under the same conditions, H is convex. If
+

Vo € R rf(2) = 1 orr; (x) = 1 are strictly satisfied, the eigenvalues of the Hessian at 9* are

2
S
)\min(Huk,uk) = W ,and

AU ) + 10113 13 — HUk||2HMkH2\/8(UI;er))2 + U311 13
)\min(HUkUk) = 2

Proof. We first state the convexity of the loss function near the true value 6*
Let§ = 6* + A6

so(x,t) = Sp- (2,) + (Vo Sg(w,t)]o-) " [A6] + O(||AY[3).

Eorop () [(s0(2,1) — Viog pe(2)) " (sp(x, 1) — Vg pi())]
= Earop, (a) [(So+ (2, 1) + (Vo So(, 1)) T[A0] + O(|| A0]|3) — V log pi(2)) "
(S (1) + (Vo Sa(, 1)]o+) T[A0] + O(|AG]]3) — V1og pi())]
= Eorp (@) [((VaSa (@, 1)|o+) T [AB]) T (Vo Se(,)]a- [AG])] + O(]| A6]3)
= (A0) "By, () [(VoSo (@, 1) |0-) (Vo Sa(x,t)]g-) ]AO
2 (A0)THAS.

L(0) =

21
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82L(6)

We then analyze the convexity of E,p, 1) [(VoSo(x,t)|o+) (Vo Se(x,t)]g+) ] 2 H. We can divide
H into 4 parts: H,,,,, Hyy, H,u and Hyy,, where Hyy, = (H,u) |

Let J]l;|9 = gZi lg.

H =Eoyrop () [(VoSa (@, )9+ ) (VaSo(,1)]g+) "]
= Eszt(m) [Jo+ (2, t) Jo- (, t)T'
Term H,,,

We will show that H,,, ,,, is a-convex, where a: > 0.

Huk/tk = EmNpt(m) [JI/:JIQLT]

82 _ 52
H#k#k ~ Eprt(w) [J/’f‘];]f—r] ~ T%Ezwptu)[(r:(x) — T (I))Q](I - ﬁUkUJ)z

Let P, = UkU,;r,Oé =

St
<2 2
si+i’

(I —aPy)(I —aPy)" = (I —aPy)? =1—2aP, +a*P? = (I — aPy)%

We then prove that A,,in, (I — aPy)?) = (521?72 )2.

First, we calculate the eigenvalue of P.
P?=P=)\ =1\ =0.

Then we take subspace Col(P) = {v ;v = Pz, x € RP} corresponding to \;, and subspace
Ker(P) = {v;Pv =0, z € RP} corresponding to \s.
If w € Col(P), Pw = w:

(I-aPw=(1-a)w

(I —aP)*w=(1-a)’w

=\ =(1-a)

If w e Ker(P), Pw=0:

(I—-aPw=w
(I —aP)*w=w
=N\, =1.

Hy, = E[JJQL(JIQL)T]

2
St

N

2
Therefore, Apin (I — aPy)?) = ( al ) .Hence, we have

537

2 2
CLS S
) > t ~ t

(T (P

where ¢i, = Ezwt(m)[(rl—:(“f) —rg (@)’ = L

HrHE
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Term Hy, v,
-EI-UICU)C ~ Eert(I) [JSJST]

45}
~ ﬁExwpp(w)[(Ulj(x +spp) ]+ (@ + s) U (UL (@ + som) T + (2 + son) Uy ) ']
Ve (8§ + 1)
45}
=~ (STUL el Ul + 53 U (iU + Unpal) + prUy Uil + M (2),)
Ve (st +%)
where M () is semi-positive for E, ., 2)[z] = 0.
Using lemma|[C.3] we can take a = Uy, and b = p, and obtain that

Hy, v, is positive definite and

AU 1)) + 103113 — IIUkHzllukllz\/S(Uz;ruk))2 + U131l 2£]13
5 :

Amin(Huu,) =

Term H,, y, and Term Hy, ,,

: —gT
Since Hyypy, = H,,, 17,

, we just analyze H,,, 7, . We want to analyze the Hessian block
— U B\ T
Hyv,, = Eanp, [Jk () (Ji (z)) ] )
and show that under symmetric assumptions, this cross-term is zero.

The first-order derivative with respect to p is approximately:

2
St _ s
JHz) ~ =22 (rf () — i (2) (I — aUU,) a= 1t
Fw) =5 ()~ ric @) J) P
The first-order derivative with respect to Uy, is approximately:
1 [ _, [ 06(x) Oey(x)
U\ s k + k
T @)~ i) g+ @) |
with ) ,
Do (z) t Oey(x) S3
=— U =-2 Uk(x — .
U Fypzosle ). p Ty g Ok sun)

combining terms:
(@) = C - U [ry, (@) (@ + sep) + 7 (@) (@ — sepr)]

2
where €' = — = 3 Assume that the underlying component distribution py () is symmetric:

SH G )
Pk(x) = pk(—$)7

and the weights satisfy:

Then we have:

(a) J}/(x) is an odd function:

T (=) = = =5 (i (=) =, (=2))(I — aUxUy)

I
!
=
s
N—

23
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(b) JY (z) is an odd function:

Iy (—x) = CUy [7';:( ) (=@ + sepg) + 1y (—x) (- x—st,uk)]
=C U [rf () (—x + supw) + 1 (@) (=2 — sype)]
= —CUy [r}, (z)(x + sepr) + i (2) (@ — sepn)]
= —J (x).

Now compute:

Hyv, = / JY (&) (TE @) pi(e) de.

Using symmetry:

- / TV (—2) (T ()T prl(—) di = / (—JY (@) (~TE @) pile) de = Hyp,.
Thus,
Hy, = B U = B [ (rf () — 1 ()1 =
prUx — Lx~pgara [YE YK — Lx~paata ’yf(s%-l—"/?) k k +

(i @)UY (@ + sepn) ] + Ur(@ + sepre) ") + 138 (@) (U (2 = sep) T + U (SC = seur) )]

UkUk)

Ay = By, (w7

)\HUU = E$~Pdata [(’U’TJI]})Q]

)\H“U - Eaprdata[(u—r‘];’f)(u—r‘]g)} < \/ )\le )\H;LU'

H— Hﬂkuk Huk Uk
Hltk Uy HUk' Uy
. If we can prove that H,,, ,,, — Hy, ., H @ v, H Jk 1, 18 positive-definite, then H is positive-definite
for Schur’s Theorem.

Analyze H

T2/\H /\H 82
A > e >\ ke TURUR (] p2) ) >(1—r))—2t _ >0.
H ZAS Z AHyy g AHUkUk ( ) Hyppy = ( )(5% +7§)2
r = u HﬂkUk <1.
llull= 1|\v U /uTHpp - v Hyopv] —
r=1ifand only if u" J§ = cv" Jf;, ¢ # 0, which is almost impossible to happen.

More specially, if we assume that Vo € R% ,r: =1lorr, =1,for

25} + - ;
W(Tk (z) =7y (@) (1 — I

H,uk,Uk = EINPd,a,f,a, [Jlg(‘]lg)—r] = EINPdam[ 2
(ris (@)UY (@ + sppr) T+ Up(x + seu) 1) + 7 (2)(U) (= sppn) I+ Uy, (l’ —sip) )]

UkUl;r)

283 2
= Ezw s e (17 -, U U, )
Mo 30 s (@)~ (@) (1= 20,
(ri, (@)UY (2 + sppr) T+ Up(x + sppn) ") +7if (2 )(UJ(I — sepe) ] + Ur(x — ser) 1))
253 s7
=E,~ — 7t (11— Tz — NI — T
x N(StHk,Zk)[,yzl(S% +%52) ( S% “l"Yt UkUk > + (Uk (x Stﬂk) + Uk(x St:uk) ))]
= 0.
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We have r = 0,

s? AU p))* + 1013 | |13 — ||UkH2||Mk||2\/8(U1IHk))2 + ||Uk||%||ﬂk||§}
(st +17)? 2 '

a = min{

Utill now, We have shown that H is a-convex and L-lipschiz, where o = (1 — r2)\ H,, ., - And we
can know that L(#) is exponentially convergent.

Theorem C.5. Ifwe take 1, = 1 = nJ%L and k = £, then
K—1\"
0t — 0|, < 0© — 6% |,.
o=l < (557 10 07l

D K-MODE M0OG OPTIMIZATION

D.1 SETTING

In this section, we analyze

Vp E\T
Viog pyp(x) = ti()
Pek(T)
2
1 2 e N (s st pn, st,:’lU,jI +~21) (33 — Stfbll — éfiifv?U,:lU,:T(x - stphl))
Vi S N (5 sk, 57U US T+ 2T .

D.2 OPTIMIZATION

Assumption D.1. [Highly separated Gaussian] Consider the Gaussian mixture

S T N (5 g1, Xkt)

E k.l § Mkl Ykl
Pr(T) = 7rlc,lN T3 kel 2k 1) TE1(T) 1= : ’ ’ .
) =1 ( ) (@) i T N (5 iy L)

There exist constants ¢ < 1 and § < 1 such that when z ~ p;, we have

Pr (EllG{l,...,nk}withrw(x)2175) > 1-0.

I~Pk

We assume that the gap between the subspaces is large, and the gap within the subspace is relatively
small, and the equivalent Gaussian is used to replace the whole subspace.

Ui = Usjll2 < eand ||z — || < A. We have

| log p(z) — log p(x)l2 = O(e + 5A + A?)

Corollary D.2. Assume that ||uj, ; — Bk j |2 <4,

Proof. For k-th subspace, wy(x) = X" 7 JN (25 S¢fuk,1, Xk 1), We take
Wi(z) = N (3 fig, S)-
where
Eg, [7] = fir. = B, [v] = S/ Tk 18ep
Covg, () = Covy, (z) = El(z — i) (z — fin) '] = T2 ma 1 (S + 87 ik — 57 0k,00,)
= B) = X% (Sh + 87 kg — Stk R)-

We next show the order of the estimation under the condition that || ; — pijll2 < 9, [|[Ug: —
Uk,jll2 < eand ||z — fig]]2 < A.Using Taylor’s Theorem and take o = [ij, we can obtain that

log p(x) = log p(o) + (z — w0) " Vlog (o) + %(m — x0) ' V?logp(z0)(x — w0) + O(||z — o*)

log p(z) = log f(x0) + (x — x0) " Vlog p(xo) + %(w — z0) " VZlog (x0)(x — x0) + O(||z — zol|*).
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~ S T N (203 ki, Dt
log p(zo) — log p(xo) = log == N(xo('uok =) )

n 1 1, o 1 _
= log (El—klﬂ'k,lw eXP(—i(M — k) " S (— Mk,l))) t3 log |2k

. 1 1 -
= log El:’“lm,lﬁ(l—i—O((ﬁ)) + —log |Xk|
|Ek,l|2 2

DAk
= log E?:’“lﬁk,lik T +O(52)
X2

L
=0 <27j1m€71( |zk| - - 1) +0(5%).

| k,z\2
|| log p(x0) — log p(z0) |2 = O(e + 62).

Vlogp(xo) — Viog p(xo) = Viog X% mi i N (5 fuke,is Xiot) |
S N (205 ikt Se) (S5 (B — i)
p(l’o) '

[V 1og p(xo) — Vlog p(xo)l2 = O(9).

V2 logp(zo) — V*log p(z0) = Veplao) V(o) Vp(a:o))T ~ V2p(xo)

p(xo) p(zo) " p(x0) p(wo)
_ (Vp(z0)  VZp(x0),  Vp(z0) VP(mO))T
p(7o) p(70) p(xo) " plxo) ~

IV*log p(o) — V?log p(xo)|2 = O(e* + 6%).
Thus, || log p(x) — log p(z)||2 = O(e + 6A + A3?). [ ]

Lemma D.3. [Eigenvalues of the Hessian] Assume Assumption[6.6] the Hessian at the k-th subspace
is convex on a neighborhood of 0*. If V. € R%, r,if (z) = 1 or 1 are strictly satisfied, we have

2
Wk,lst

)\min(HMk,Lle,z) = W’

and Ain(Hy, v, ;) has the following form:

(Rt UL a0 + 103t = WO la a2/ SO p1,0))2 + U3 al13) /2.

Proof. According to the previous conclusion, we only need to calculate J,, and Jy . With these
assumptions and simplifications, similar to the symmetry case, we will prove that J;', and J, ,g’ ; have
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dominant terms.

Jﬁl(w)
1 Osg(x,t)
VP Ok
n Owp, 00y wy (x ne
1 X ( EZ;‘,’”) Or(z) + %&wwk,l(xw wi(x) — %k()l)zlilwk,l(x)(sk,l(x)
v wi (@)
n, Ow T n. 00k 1 (x owy, ng.
_ 1 DM aZ’,i,(l)‘Sk,l(x) DM 6IILLFL)wk,l(x) _ ;;U;f,ff)zzilwk,l(x)ék,l(x)
Vi wy,(z) wy,(z) wj ()

Let’s go ahead and do the calculation.

Uk Bwk,L(z)(Sk’Kx) (awk(x))E;l:klwk’l(xygk)l(x) Qw1 (w)

1=1" Our,; Okl Ok 1 <
5 _ = . (5 - 6
e e wi(a) Ol = 0
- 00k 1 (x
S, T ()

2
St ng St T
~ =Xk Tk,l(it) <I - 7Ukle ) .
wi () v = st M
N (@5 g, =
where 7 () = M—mjf)
2K N (235.5,)

Therefore, we can obtain that

ne Owg i (x Owy (x n
IR | B @) s
wi () wi (o) e
ng 96k,1(x)
St ()
|2k 2 = O(s:).
w(x)

where § < [pk,i — pijll2 < 1.

Thus, we have

0sg St 52
J T)= —R —5Trp1\T (I—tUklUT .
k,l( ) a#k,l 71&2 ) ( ) S% + %2 NAE'N!
Hﬂk,l#k,l = Ezp, [Jll;,l(x) J]l:,l(l')—r]
57 2 ; T ; T\T
=—EK Tki\T - UkJU - UkJU .
i Bl U g Unilea) U= g Vi)

For a given z, since we focus on the equivalent Gaussian distribution for each cluster,we have

Hukuk ~ dia’g(E[Ti,l]Huk,luk,l’ ]E[r/%,Q}HHkJHkJ’ ) ]E[r]%,nk]Hﬂk,nka,nk )

We first show that E[r} ;|H,, ., , is positive-definite, then we will further show that H,,,,, is
positive-definite.
For Hy, ,u,.,» we know that
)‘min(Hﬂk,Luk,L) = Ck,l)‘min(‘]ll;,l(‘]llél)—r)
= k1A min((I — aPy)?)

_ ChUYE
(st +77)%
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where
2 2
St 2 5t
Ck,l = TE[TICJ] N Tkl g
t Ve

We know that for a block matrix A = diag(A1, Aa, ..., Ag),

A(A) = Ul A (A)).
Therefore,

4
Ck,17,
Amin (Hpgpy) = l,{I,l‘l‘nnk m
Thus, we take
A _ Ckny ’Y?

e = (707

Similar to previous situation ,because

95,1 (x) dwy, ()

|| i ( Lo w1 () (wi () —( Gl VS E Wi ()81 (%) ||
wi () 2
— 0.
zn:kl (%a]zf,i(y;‘) k.1 ()
l——e 2

we can obtain that
n. sO0w T 901 1 (x Owy (x n
1 22 ( a’ii,i,(l L5j.0(x) + wia(x) a’});(,l))wk(ﬂf) —( aUkk(,l))El:klwk,l(m)isk,l(x)

JU (z) = —=
i o3 wi(z)
Nk 001 (x

1 Ez:ﬁwk,l(x)%(‘l)
%2 wy(z)
1 sf T T

~ 7 P 5 Tk,1(7) [Uk,l(x*#k,l) + (= pr) Ugad|.
t

HUkUk ~ dia’g(E[T%,l}HUk,lUkJ? E[T%,Z}HngUk,zv SERE) E[rlz,nk]HUk,nkUk,nk)'

HUk,lUkl E[Jlgl( )(Jlg,l<x))—r]

:E[(%)Z (U@ — o) (@ = ) U + U (@ = i) U (2 — o) )]
+E[<%>2 (UL (@ = ) (@ — i) UL + (O (@ = a))?)]

Similar to our calculation in[6.3] we can use[C.3|to calculate the minimum eigenvalue of Hy;, v, -

Hy, v, , is positive definite and

AU 1)) + 11Uk a3 22113 1))+ |
)\min(HUk,lUk,l,) = 2
Recall that
HUkUk ~ dia’g(E[T]%,l}HUk,lUk,l’ E[T]%,2}HUk,2Uk,2’ SERE) E[T]%,nk]HUk,nkUk,nk)'

and IE[r,Qf 1) &= 7,1, we can obtain the minimum eigenvalue of Hy, 7, , which is

' AU 1)) + 10k 213 e 13 = ||Uk7z||2|\mc,l||2\/8(U1Izmc,l))2 + 1Uk,l13]] 2,213
=tat T 2 '
=1,2,...,np
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Lemma D.4. [Local Strong Convexity] Assume Assumption in a neighborhood of 0*, V2L (0) =
oI,/ > 0,0 € ©. IfVz € R¥*, 31 € [ng], r1(x) = 1 are strictly satisfied, o' = min{\1, A2},

4
o C,1Y o _
where Ay = minj—1 . n, (S?+7§)2 A2 = minj—12 . n, = Amin(Hu, ,u,,)-

Proof.

H,ukUk = dza’g(HHk,lUk,l ) HMk,ZUk,27 s 7HNk,1'rLkUk,nk )

83
H,, < \/ H, .. | |Hu. v, :O(it).
H #kUk” = H #k#kH ” UkUk” ’7t2 (5t2+7t2)2

(diag(Huk,mk,l, . ,HM,,%MM) diag (Hpy, ,Ug1s- - -5 Hpy o Uk, ))
diag(Hyy Uy s+ Hy v ) diag(Hu vy Hu v )
Let

S=Hy— H#UHglleU#
we have

2
At > As > Ay fM:(l,me > i/
AHUkUk - (St +7t)

T
u Hy o

max <1
lull=1,lv=1l \/uT Hpp pts - 0T Hyypo, 0]

r=1lifandonlyif u" J§ = cv" Jf;, ¢ # 0, which is almost impossible to happen.

More specifically, if we assume that Vo € R% 31 € [ng], rp.;(z) = 1, we have

HHk,LUk,L = EZNPk [Jlgj,l(x) (J]g,l(x))—r]
1 sf
R
1 53
T
~0

52
Epmpe |7 (2)2 (2 = ) ULy + (2 = i) U D) (I ~ 7y Uil l)
t t

2
5t

Epmmy s [P (222 = ) ULy + (2= i) Upa) (I - MUk,zU,Il)
t t

The second equation holds because Vz, if © ¢ Ny ;(pk.1, Xk.1), 7,1 (2) = 0. And the third equation
holds because if @ ~ Ny, 1, (1, Xk,1), V Const C,

]EJCNTrk,sz-.z [C(z - ,uk',l)] =0.

Thus, let o’ be the minimum eigenvalue of H,

O/ = min{)\l, )\2}, (8)
where
4
. Ck,17¢
)\ — 't
! l:{I.l.l.I?nk (s2 +~2)2’
and
_ AU ) + 10k a3 e 113 — IIUk,zlleuk,zllz\/S(U;Izuk,z))Q + 1 Uk 13l k1113
)\2 = . 11121111 Tk,l B .
=L,2,...,ng
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E THE DETAIL OF THE REAL-WORLD EXPERIMENTS

In the part, we provide the detail of the experiments, including dataset and training pipeline. We use
MNIST and CIFAR-10 as the datasets, and we adopt the mixture Gaussian distribution as the prior
distribution in both cases.

For MNIST, our model consists of MLP-based encoder and decoder networks, each with a single
hidden layer of 256 dimensions. The model is trained with the AdamW optimizer at a learning rate
of 0.0005. We train 10 VAEs with the numbers 1 to 10 as the ten clusters.

On CIFAR-10, we implement a 3-layer RNN encoder and decoder for CIFAR-10. The encoder
hidden dimensions are [64, 128, 256], and the decoder’s are [256, 128, 64].And we train 10 VAEs for
each of the ten clusters based on the classification by category. Each layer in both networks stacks 3
recurrent blocks.The model is trained with the AdamW optimizer at a learning rate of 0.0001.

Our experiment was conducted on RTX4090.
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