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ABSTRACT

Recently, diffusion models have achieved a great performance with a small dataset
of size n and a fast optimization process. Despite the impressive performance, the
estimation error suffers from the curse of dimensionality n−1/D, where D is the
data dimension. Since images are usually a union of low-dimensional manifolds,
current works model the data as a union of linear subspaces with Gaussian latent and
achieve a 1/

√
n bound. Though this modeling reflects the multi-manifold property

of data, the Gaussian latent can not capture the multi-modal property of the latent
manifold. To bridge this gap, we propose the mixture subspace of low-rank mixture
of Gaussian (MoLR-MoG) modeling, which models the target data as a union of K
linear subspaces, and each subspace admits a mixture of Gaussian latent (nk modals
with dimension dk). With this modeling, the corresponding score function naturally
has a mixture of expert (MoE) structure, captures the multi-modal information, and
contains nonlinear properties since each expert is a nonlinear latent MoG score.
We first conduct real-world experiments to show that the generation results of
MoE-latent MoG NN are much better than the results of MoE-latent Gaussian
score. Furthermore, MoE-latent MoG NN achieves a comparable performance with
MoE-latent Unet with 10× parameters. These results indicate that the MoLR-MoG
modeling is reasonable and suitable for real-world data. After that, based on such

MoE-latent MoG score, we provide a R4
√
ΣK

k=1nk

√
ΣK

k=1nkdk/
√
n estimation

error, which escapes the curse of dimensionality by using data structure. Finally,
we study the optimization process and prove the convergence guarantee under the
MoLR-MoG modeling. Combined with these results, under a setting close to real-
world data, this work explains why diffusion models only require a small training
sample and enjoy a fast optimization process to achieve a great performance.

1 INTRODUCTION

Recently, diffusion models have achieved impressive performance in many areas, such as 2D, 3D,
and video generation (Rombach et al., 2022; Ho et al., 2022; Chen et al., 2023a; Ma et al., 2024; Liu
et al., 2024). Due to the score matching technique, diffusion models enjoy a more stable training
process and can achieve great performance with a small training dataset.

Despite the empirical success, the theoretical guarantee for the estimation and optimization error
of the score matching process is lacking. For estimation error, current results suffer from the curse
of dimensionality. More specifically, given training dataset {xi}ni=1 with xi ∈ RD, the estimation
error of the score function achieve the minimax n−s′/D results for (conditional) diffusion models
with deep ReLU NN and diffusion transformer, where s′ is the smoothness parameter of the score
function (Oko et al., 2023; Hu et al., 2024b;a; Fu et al., 2024). It is clear that this estimation error is
heavily influenced by the external dimension D, which can not explain why diffusion models can
generate great images with a small training dataset. Hence, a series of works studies estimation errors
under specific target data structures and reduces the curse of dimensionality. There are two notable
ways to model the target data: the multi-modal modeling and the low-dimensional modeling. For the
multi-modal modeling, as the real-world target data is usually multi-modal, some works study the
mixture of Gaussian (MOG) target data and improve the estimation error (Shah et al., 2023; Cui et al.,
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2023; Chen et al., 2024b). When we delve deeper into the images and text data, a key feature is that
the image and text data usually admit a low-dimensional structure (Pope et al., 2021; Brown et al.,
2023; Kamkari et al., 2024). Hence, one notable way is to assume the data admits a low-dimensional
structure. More specifically, some works assume the data admits a linear subspace x = Az, where
A ∈ RD×d to convert data to the latent space and z ∈ Rd is a bounded support (Chen et al., 2023b;
Yuan et al., 2023; Guo et al., 2024). Then, they reduce the estimation error to n−2/d, which removes
the dependence of D. However, as shown in Brown et al. (2023) and Kamkari et al. (2024), though
the image dataset admits low dimension, it is a union of manifolds instead of one manifold. Inspired
by this observation, Wang et al. (2024) model the image data as a union of linear subspaces, assume
each subspace admits a low-dimensional Gaussian (mixture of low-rank Gaussians (MoLRG)), and
achieve a 1/

√
n estimation error. Though the union of the linear subspace is closer to the real-world

image dataset, the latent Gaussian assumption is far away from the low-dimensional multi-modal
manifold Brown et al. (2023). Hence, the following two natural questions remain open:

Can we propose a modeling that reflects the multi-manifold multi-modal property of real-world data?

Can we escape the curse of dimensionality and enjoy a fast convergence rate based on this modeling?

In this work, for the first time, we propose and analyze the mixture of low-rank mixture of Gaussian
(MoLR-MoG) distribution, which is more realistic than MoLRG since it captures the multi-modal
property of real-world distribution and has a nonlinear score function. Based on this modeling, we
first induce a MoE-latent nonlinear score function and conduct experiments to show that MoLR-MoG
modeling is closer to the real-world data. After that, we simultaneously analyze the estimation and
optimization error of diffusion models and explain why diffusion models achieve great performance.

1.1 OUR CONTRIBUTION

MoLR-MoG modeling and MoE Structure Nonlinear Score. We propose the MoLR-MoG
modeling for the target data, which captures the multi low-dimensional manifold and multi-modal
property of real-world data and naturally introduces the MoE-latent MoG score. Through the real-
world experiments, we show that with this score, diffusion models can generate images that is
comparable with the deep neural network MoE-latent Unet and only has 10× smaller parameters.
On the contrary, the MoE-latent Gaussian score induced by previous MoLRG modeling can only
generate blurry images, which indicates MoLR-MoG is a suitable modeling for the real-world data.

Take Advantage of MoLR-MoG to Escape the Curse of Dimensionality. For the estimation error,
we show that by taking advantage of the union of a low-dimensional linear subspace and the latent
MoG property, diffusion models escape the curse of dimensionality. More specifically, we achieve

the R4
√
ΣK

k=1nk

√
ΣK

k=1nkdk/
√
n estimation error, where R is the diameter of the target data, dk

is the latent dimension and nk is the number of the modal in the k-the subspace. This result clearly
shows the dependence on the number of linear subspaces, modal, and the latent dimensions R, dk.

Strongly Convex Property and Convergence Guarantee. After directly analyzing the estimation
error, we study how to optimize the highly non-convex score-matching objective function. Facing
nonlinear latent MoG scores, we use the gradient descent (GD) algorithm to optimize the objective
function. To obtain the convergence guarantee, we take advantage of the closed form of nonlinear
MoG score and show that the landscape around the ground truth parameter is strongly convex. Then,
with a great initialization area, we prove the convergence guarantee when considering MoLR-MoG.

2 RELATED WORK

Estimation Error Analysis for Diffusion Models. As shown in Section 1, a series of works Oko et al.
(2023) study the general target data with a deep NN and achieve the minimax n−s′/D result. Then,
some works analyze the general target data with a 2-layer wide NN and achieve n−2/5 estimation
error with exp (n) NN size (Li et al., 2023; Han et al., 2024). For the multi-modal modeling, some
works study MoG data and improve the estimation error (Shah et al., 2023; Cui et al., 2023; Chen
et al., 2024b). Except for the MoG modeling, Cole and Lu (2024) assume data is close to Gaussian
and then prove the model escapes the curse of dimensionality. Mei and Wu (2023) analyze Ising
models and prove that the term corresponds to n is 1/

√
n. For the low-dimensional modeling, some

works assume the target data admits a linear subspace (Chen et al., 2023b; Yuan et al., 2023). Chen
et al. (2023b) assume data admit a linear subspace x = Az with z ∈ Rd and achieve a n−2/d. As the
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image is a union of low-dimensional manifolds, Wang et al. (2024) models the target data as a union
of linear subspaces with Gaussian latent and achieve 1/

√
n estimation error for each subspace.

Optimization Analysis for Diffusion Models. Since the score is highly nonlinear (except for
Gaussian), only a few works analyze the optimization process, and most of them focus on the external
dimensional space (Bruno et al., 2023; Cui and Zdeborová, 2023; Shah et al., 2023; Chen et al.,
2024b; Li et al., 2023; Han et al., 2024). Since the score function of MoG has a nonlinear closed-form,
a series of works design algorithms for diffusion models to learn the MoG (Bruno et al., 2023; Cui
and Zdeborová, 2023; Shah et al., 2023; Chen et al., 2024b). For the general target data, Li et al.
(2023) and Han et al. (2024) adopt a wide 2-layer ReLU NN to simplify the problem to a convex
optimization. However, as discussed above, their NN has exp (n) size. For the latent space, only
two works provide the optimization guarantee under the Gaussian latent (Yang et al., 2024a; Wang
et al., 2024). Yang et al. (2024a) assume target data adopts a linear subspace with Gaussian latent
and provide the closed-form minimizer. Wang et al. (2024) analyze the optimization process of each
linear subspace separately, which is also reduced to the optimization for the Gaussian.

3 PRELIMINARIES

First, we introduce the basic knowledge and notation of diffusion models. Let p0 be the data
distribution. Given x0 ∼ p0 ∈ RD, the forward process is defined by:

dxt = f(t)xt dt+ g(t) dBt,

where {Bt}t∈[0,T ] is a D-dimensional Brownian motion, f(t) is the coefficient of the drift term and
g(t) is the coefficient of the diffusion term. Let pt be the density function of the forward process.
After determining the forward process, the conditional distribution pt(xt|x0) has a closed-form

pt (xt|x0) = N
(
xt; stx0, s

2
tσ

2
t ID

)
,

where st = exp
(∫ t

0
f(ξ)dξ

)
, σt =

√∫ t

0
g2(ξ)/s2(ξ)dξ. To generate samples from p0, diffusion

models reverse the given forward process and obtain the following reverse process (Song et al., 2020):

dyt =
[
f(t)yt − g(t)2∇ log pt(yt)

]
dt+ g(t)dB̄t, y0 ∼ p0

where B̄t is a reverse-time Brownian motion. A conceptual way to approximate the score function is
to minimize the score matching (SM) objective function:

min
sθ∈NN

LSM =

∫ T

δ

Ext∼qt ∥∇ log pt (xt)− sθ(xt, t)∥22 dt , (1)

where NN is a given function class and δ > 0 is the early stopping parameter to avoid a blow-up score.
Since the ground truth score ∇ log pt is unknown, this objective function can not be calculated. To
avoid this problem, Vincent (2011) propose the denoised score matching (DSM) objective function:

minsθ∈NN LDSM =
∫ T

δ
Ex0∼q0Ext|x0

∥∇ log pt (xt|x0)− sθ(xt, t)∥22 dt .

As shown in Vincent (2011), the DSM and SM objective functions differ up to a constant independent
of optimized parameters, which indicates these objective functions have the same landscape.

3.1 MIXTURE OF LOW-RANK MIXTURE OF GAUSSIAN (MOLR-MOG) MODELING

This part shows our MoLR-MoG modeling, which reflects the low-dimensional (Gong et al., 2019)
and multi-modal property (Brown et al., 2023; Kamkari et al., 2024) of real-world data. More
specifically, we assume the data distribution lives near a union of K linear subspaces rather than
arbitrary manifolds. Concretely, for the k-th subspace of dimension dk (represented by a orthonormal
basic matrix A∗

k ∈ RD×dk with orthonormal columns for the k-th manifold), we place a nk-modal
MoG within that subspace:

wk(x) =

nk∑
l=1

πk,l N
(
x;A∗

kµ
∗
k,l, A

∗
kΣ

∗
k,lA

∗⊤
k

)
,

where covariance Σ∗
k,l = U∗

k,lU
∗⊤
k,l , l = 1, . . . , nk with U∗

k,l ∈ Rdk×dk,l (dk,l ≤ dk) and µ∗
k,l is the

mean of the l-th modal of the k-th subspace. As shown in (Brown et al., 2023), the different manifold
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has different dk and we do not require that dk is exactly the same for each manifold. Then, the target
distribution has the following form

p0 =

K∑
k=1

1

K

nk∑
l=1

πk,l N
(
x;A∗

kµ
∗
k,l, A

∗
kΣ

∗
k,lA

∗⊤
k

)
. (2)

From the universal approximation perspective, by placing enough components and choosing parame-
ters {πk,l, µ

∗
k,l,Σ

∗
k,l}, a MoG can approximate any smooth density arbitrarily well, which is more

general than the Gaussian latent of Yang et al. (2024a) and Wang et al. (2024).

Nonlinear Mixture of Experts (MoE)-latent MoG score. Let γt = stσt, Σk,l,t,A =

s2tA
∗
kU

∗
k,lU

∗⊤
k,l A

∗⊤
k + γ2

t I and δk,l,t,A(x) = x − stµ
∗
k,l −

s2t
s2t+γ2

t
A∗

kU
∗
k,lU

∗⊤
k,l A

∗⊤
k (x − stµ

∗
k,lA

∗
k).

Under the MoLR-MoG modeling, the score function has the following form:

∇ log pt(x) = − 1
γ2
t

K∑
k=1

1

K

nk∑
l=1

πk,l N (x; stµ
∗
k,lA

∗
k, A

∗
kΣ

∗
k,l,t,AA

∗⊤
k ) δk,l,t,A(x)

K∑
k=1

1

K

nk∑
l=1

πk,l N (x; stµ
∗
k,lA

∗
k, A

∗
kΣk,l,t,AA

∗⊤
k )

,

This score function has a MoE structure, where each expert is the latent nonlinear MoG score. The
linear encoder Ak first encodes images to the k-th manifold, and diffusion models run the denoising
process. After that, the linear decoder A⊤

k decodes the denoised latent to the full-dimensional images.
Since the estimation error introduced by the linear encoder and decoder has the order Dd3k/

√
n

(Yang et al., 2024a) and is not the dominant term, we assume the linear encoder and decoder are
perfectly learned and focus on the more difficult latent MoG diffusion part in this work. From the
empirical part, this operation is similar to using the pretrained stable diffusion VAE and only training
the diffusion models in the latent space. For the k-th low-dimensional manifold, the score function is

∇ log pt,k(x
LD) = − 1

γ2
t

nk∑
l=1

πk,l N (xLD; stµ
∗
k,l,Σ

∗
k,l,t) δk,l,t(x

LD)

nk∑
l=1

πk,l N (x; stµ
∗
k,l,Σ

∗
k,l,t)

, (3)

where xLD ∈ Rdk is a variable in the k-th low-dimensional subspace, Σk,l,t = s2tU
∗
k,lU

∗⊤
k,l + γ2

t I

and δk,l,t(x
LD) = xLD − stµ

∗
k,l −

s2t
s2t+γ2

t
U∗
k,lU

∗⊤
k,l (x

LD − stµ
∗
k,l). Let

s∗k(x
LD, t) = ∇ log pt,k(x

LD) , s∗(xLD, t) = (s∗1(x
LD, t), s∗2(x

LD, t), . . . , s∗K(xLD, t)) ,

where the parameters are θ∗ = {µ∗
k,l , U

∗
k,l}k=1,...,K . In this work, we want to learn the pa-

rameters of the ground truth score function. Hence, we construct a NN function class sθ =
(s1(·, ·), s2(·, ·), ..., sK(·, ·)) according to the above closed-from of MoE-latent MoG score. Let
θ is the union of µk,l and Uk,l. Since we mainly focus on the estimation and optimization in the latent
subspace, we omit the superscript LD of the latent subspace when there is no ambiguity.

Figure 1: MoLR-MoG Modeling and Corresponding Nonlinear Score

We note that this modeling
can capture the information
of each low-dimensional man-
ifold and the multi-modal
property of each latent dis-
tribution. In the next sec-
tion, through the real-world
experiments, we show that the
MoE-latent MoG score has a
better performance compared
with the MoE-latent Gaussian
score induced by MoLRG modeling and compatible with the results of the MoE-latent Unet. In
Section 5 and 6, we prove that by using the property of MoLR-MoG modeling, diffusion models can
escape the curse of dimensionality and enjoy a fast convergence rate.
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Figure 2: Results of Different Modeling on Real-world Data.

Remark 3.1 (Comparison with MoLRG modeling). Wang et al. (2024) provide the first multi-subspace
modeling, which is an important and meaningful step. However, they assume a Gaussian latent with
0 mean, which can not capture the multi-modal property of real-world data. We also note that the
MoLR-MoG modeling can not be viewed as MoLRG with

∑K
k=1 nk subspace since this modeling

assumes there are
∑K

k=1 nk VAE, which is not reasonable in the real-world setting.

4 EXPERIMENTS FOR MOE-LATENT MOG SCORE

In this section, we conduct experiments using neural networks based on different modeling approaches
(MoLR-MoG, MoLRG) as well as a general U-Net architecture. The goal is to demonstrate that
MoLR-MoG provides a suitable modeling for real-world data, and that the MoE-latent MoG score is
sufficient to generate images with clear semantic content. Specifically, we first show that training
with MoLR-MoG yields significantly better results than the MoLRG model. Then, we show that the
MoE-latent MoG network achieves performance comparable to that of the MoLR-U-Net, while using
10× fewer parameters for MNIST, CIFAR-10, ImageNet 256. (Figure 2)

Following Brown et al. (2023), we train 10 VAEs for each number in the MNIST, which represents
our K low-dimensional manifold. In this part, we adopt nonlinear VAEs to achieve a good perfor-
mance in real-world datasets. However, we still note that a series of theoretical works adopt linear
subspaces, and our MoLR-MoG modeling with linear VAEs makes a step toward explaining the good
performance of diffusion models. After obtaining these 10 VAE, we train diffusion models with
different parametrized NNs. We adopt three different parameterizations: latent U-net, latent MoG
NN, and latent Gaussian NN. For the latent MoG, we adopt the form of Eq. 3 with nk = 4, 8, 40 in
MNIST, CIFAR-10, and ImageNet256 for k ∈ [K]. For the latent Gaussian, we adopt the form of the
closed-form score (Wang et al., 2024), which leads to a linear NN.

Figure 3: Loss Curve for CIFAR-10

Discussion. From a qualitative perspective, as shown
in Figure 2, the generation results with MoLRG model-
ing are difficult to distinguish specific numbers. On the
contrary, the MoE-latent MoG can generate clean im-
ages comparable with the images generated by MoLR-
Unet, which means this modeling captures the multi-
modal property of each low-dimensional manifold. The
training loss curve (Figure 3) shows that the loss of
MoE-MoG NN is significantly smaller than the MoE-
Gaussian and close to MoE-Uet, which indicates MoE-
MoG NN efficiently approximates the ground-truth
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score and supports our theoretical results. From a quantitative perspective, we calculate the CLIP
score for the parachute class of ImageNet with text prompts "a photo of parachute". The Clip score for
MoLR with Unet, MoG, and Gaussian NN is 0.304, 0.293, and 0.254, which indicates MoLR-MoG
achieves almost comparable text-to-image alignment with MoE-Unet. Furthermore, the MoLR-MoG
NN contains many fewer parameters compared to Unet since it uses the prior of latent MoG.

Discussion on Expert-Specific VAE. As shown in the score of MoLR-MoG, different from latent
diffusion models with a single VAE, there are K VAEs to encode the input to the corresponding
manifold. We note that this operation is important for MoLR-MoG with small MoG experts. As
shown in Figure 4, with a unified VAE, the unified latent is complex, and a MoG expert can not
learn a meaningful image with the target class. Hence, with a unified VAE, latent diffusion models
require a large latent Unet. However, with an expert-specific VAE (for example, we fine-tune the
pretrained VAE with the parachute class dataset), the latent manifold becomes simple, and latent
MoG experts are enough to generate clear models, which also supports our theoretical modeling.

Figure 4: MoLR-MoG with Different VAE

We note that these experiments aim to show that
the MoLR-MoG modeling is reasonable instead of
achieving the SOTA performance. It is possible to
achieve great performance with a small-sized NN
using MoLR-MoG modeling in the application. For
large-scale datasets without labels, we can use a
clustering algorithm to divide the data into different
clusters. Then, we can train a VAE encoder, de-
coder, and latent MoG score for each cluster. For
the VAE training, we do not require training the
VAE from a sketch. We can LoRA fine-tune a VAE
pretrained on large-scale datasets (for example, DC-
AE (Chen et al., 2024a) for our ImageNet experi-
ments) for each expert, which shares a pretrained
VAE backbone and has a smaller model size. When
generating images, we activate different VAE LoRA according to the clustering weight, which
matches the spirit of MoE. We leave it as an interesting future work.

5 ESCAPE THE CURSE OF DIMENSIONALITY WITH MOLR-MOG MODELING

This section shows that diffusion models can escape the curse of dimensionality by using MoLR-MoG
properties. Before introducing our results, we first introduce the assumption on the target data.
Assumption 5.1. For x ∼ p0, we have that ∥x∥2 ≤ R.

The bounded-support assumption is widely used in theoretical works (Chen et al., 2022; Yang et al.,
2024a;b) and is naturally satisfied by image datasets. For a latent MoG, each component concentrates
almost all mass within a few standard deviations of its mean, so by taking the most component means
and variances, one can choose R large enough that ∥x∥2 ≤ R holds with high probability.

Since Moe-latent MoG score has a closed-form, we only need to learn the parameters µk,l and Uk,l

at a fixed time t. As a result, we consider the estimation error at a fixed time t. Let ℓ(θ;x, t) =∥∥sθ(x, t)− s∗(x, t)
∥∥2
2

be the per-sample squared error at time t. In this part, we study the estimation
error with a limited training dataset {xi}ni=1:∣∣∣L(θ)− L̂n(θ)

∣∣∣ ,with L̂n(θ) =
1

n
Σn

i=1ℓ(θ;xi, t) .

To obtain the estimation error, we first provide the Lipschitz constant for sθ and the loss function by
fully using the property of MoLR-MoG modeling and MoE-latent MoG score.
Lemma 5.2. [Lipschitz Continuity] Let Lµl

and LUk
be the Lipschitz constant w.r.t. sθ. With

MoLR-MoG modeling and Assumption 5.1, there is a constant

L ≤
√
ΣK

i=1nk(L2
µl

+ L2
Uk

) = O
(
(ΣK

k=1nk)
1
2Cw

)
such that for any θ, θ′,

∥∥sθ(x, t) − sθ′(x, t)
∥∥
2

≤ L ∥θ − θ′∥2, where Cw =
(R+stBµ)

3s2t
γ4
t

,Bµ =

max
k,l

∥µk,l∥2. For sθ and s∗, we have that 2∥sθ(x, t)− s∗(x, t)∥2 ≤ 2(R+ stBµ)/γ
2
t := Ll.

6
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Then, we obtain the Lipschitz constant L′ = LlL for the whole loss function. With this Lipschitz
property, the next step is to argue that fitting the network on n samples generalizes to the true
population loss. We do so by controlling the Rademacher complexity of the loss class and then using
a Bernstein concentration argument to obtain the following theorem.

Theorem 5.3. Denote by L̂n(θ) the empirical loss on n i.i.d. samples and by L(θ) its population
counterpart. Then there exist constants C1, C2 such that with probability at least 1− δ, for all θ ∈ Θ,

∣∣L(θ)− L̂n(θ)
∣∣ ≤ O

(
C1

(R+ stBµ)
4s2t

√
ΣK

k=1nk

γ6
t

√
ΣK

k=1nkdk
n

+ C2

√
log(1/δ)

n

)
.

where C1 = max
θ∈Θ

∥θi − θj∥2, C2 = σ log 2, σ2 = sup
θ∈Θ

Var[ℓ(θ;X, t)].

This result removes the exponential dependence on D with the number of latent subspace K, the
latent dimension dk, and the number of modalities nk at each linear subspace, which reflects the key
feature of the real-world data and escape the curse of dimensionality. The remaining question is why
diffusion models enjoy a fast and stable optimization process. In the next part, we show that with
MoLR-MoG modeling, the objective function is locally strongly convex and answer this question.

6 STRONGLY CONVEX PROPERTY AND CONVERGENCE GUARANTEE

In this part, by using the property of MoLR-MoG modeling, we derive explicit expressions for the
Jacobian and Hessian of the objective function for 2-modal MoG latent and general MoG latent.
Then, we establish conditions under which the resulting score-matching loss is locally strongly convex
for each setting. Finally, we provide the convergence guarantee for the optimization.

6.1 2-MODAL LATENT MOG HESSIAN ANALYSIS AND OPTIMIZATION

In this section, we show that, under sufficient cluster separation, the Hessian matrix near θ∗ simplifies
to a block-diagonal form, yielding local strong convexity, which derives a linear convergence rate.
As discussed in Section 3.1, following the real-world setting, we consider the optimization dynamic
in the k-th latent subspace. While our modeling contains K encoders and decoders, facing an input
image x, we can first determine which cluster image x belongs to, and then use the corresponding Ak

to encode it into the corresponding latent space. Then, we only use data belonging to k clustering
to train the k-th latent MoG score. This operation matches our experimental settings, and Wang
et al. (2024) also adopts this operation. When considering the optimization problem, to simplify the
calculation of the Hessian matrix, we set dk,l = 1.

Similar to Shah et al. (2023), we start from a latent 2-modal MoG with the same covariance matrix
Σ∗

k and µ∗
k,1 = µ∗

k, µ
∗
k,2 = −µ∗

k, which leads to the following score:

∇ log pt,k(x) = − 1

γ2
t

1
2N (x; stµ

∗
k,Σ

∗
k) δ

′
k(x) +

1
2N (x;−stµ

∗
k,Σ

∗
k) ϵk(x)

1
2N (x; stµ

∗
k,Σ

∗
k) +

1
2 (x;−stµ

∗
k,Σ

∗
k)

, (4)

where ϵk(x) = x−stµ
∗
k−

s2t
s2t+γ2

t
U∗
kU

∗⊤
k (x−stµ

∗
k), and δ′k(x) = x+stµ

∗
k−

s2t
s2t+γ2

t
U∗
kU

∗⊤
k (x+stµ

∗
k).

Before providing the convergence guarantee, we make an assumption on the 2-MoG latent distribution.
Assumption 6.1. [Separation within a cluster] Within each cluster k, the two symmetric peaks are
well separated in the sense that ∥stµ∗

k − (−stµ
∗
k)∥ ≥ ∆intra, for some ∆intra ≫ γt. Consequently,

if a sample x is drawn from the “+” peak then its responsibility under the “−” peak satisfies

r−k (x) =
1
2 N (x;−stµ

∗
k,Σ

∗
k)

1
2 N (x; stµ∗

k,Σ
∗
k) +

1
2 N (x;−stµ∗

k,Σ
∗
k)

= O
(
e−∆2

intra/(2γ
2
t )
)

≪ 1,

and symmetrically r+k (x) ≪ 1 when x is drawn from the “−” peak.

The above assumption means that the separation of the two modals is sufficient. For each symmetric
sub-peak, if the distance between them is relatively small, we can view them as having a mean of 0.
Since they are the same distribution (µ = 0 and Σ = UkU

⊤
k + γ2

t I), they are the same regardless
of how they mix, which indicates that we can assume r+k ≈ 1 or r−k ≈ 1. Moreover, in practice, if

7
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raw data do not exhibit such clear gaps, one can always apply a simple linear embedding to magnify
inter-mean distances relative to noise, thereby enforcing the same hard-assignment regime.

Since the ground truth score function has a closed-form under the MoLR-MoG modeling, we focus
on the score matching objective function LSM(θ) instead of LDSM(θ) and abbreviate LSM(θ) as
L(θ). We note that LSM(θ) and LDSM(θ) are equivalent up to a constant independent of θ, which
indicates the optimization landscape is the same. Furthermore, when considering the convergence
guarantee under a 2-layer wide ReLU NN, Li et al. (2023) also adopt score matching objective LSM

instead of LDSM. Though calculating the bound of Jacobian Jµ
k (x) = ∂µk

sθ, J
U
k (x) and the Hessian

matrix w.r.t. L, we provide the local strongly convexity parameters for the objective function.

Lemma 6.2. [Local Strong Convexity] Combining Lemma C.4 with continuity of ∇2L, there exist
α > 0 and neighborhood U of θ∗ such that ∇2L(θ) ⪰ αI, ∀θ ∈ Θ.If ∀x ∈ Rdk ,r+k (x) = 1 or
r−k (x) = 1 are strictly satisfied,

α = min

 s2t
(s2t + γ2

t )
2
,
4(U⊤

k µk))
2 + ∥Uk∥22∥µk∥22 − ∥Uk∥2∥µk∥2

√
8(U⊤

k µk))2 + ∥Uk∥22∥µk∥22
2

 .

Theorem 6.3. [Local Linear Convergence] Under Assumptions 5.1 and 6.1, if we take ηm = η =
2/(η + L′), and κ = L′/α, then there exists a neighborhood U of θ∗ such that

∥θ(m) − θ⋆∥2 ≤
(

κ−1
κ+1

)m
∥θ(0) − θ⋆∥2 ,

where m is the number of gradient descent iterations.

This result gives a lower bound on the convergence rate near θ⋆. Due to its strongly convex property,
the convergence rate is fast, which explains the fast and stable optimization process.

Proof Overview. Assumption 6.1 justifies the Jacobian simplification (Lemma C.2), which in turn
yields the Hessian block structure (Lemma C.4). By Schur complement, this result gives local strong
convexity (Lemma 6.2). Combining with the Lipschitz constant, we finish the proof.

6.2 GENERAL MOG LATENT HESSIAN ANALYSIS AND OPTIMIZATION

We now extend our analysis to the case where each subspace k carries an asymmetric Gaussian
mixture (Equation 3). As before, we first state the key separation assumption and show that on each
subspace, the individual Gaussian distributions in the mixture of Gaussian are highly separated from
each other. Then, we simplify the Hessian and prove local convexity. Finally, we conclude a linear
convergence rate based on the strongly convex and smooth property.

Assumption 6.4. [Highly Separated Gaussian] Consider the Gaussian mixture

pk(x) =

nk∑
l=1

πk,l N (x;µk,l,Σk,l), rk,l(x) :=
πk,l N (x;µk,l,Σk,l)∑nk

i=1 πk,i N (x;µk,i,Σk,i)
.

There exist constants ε ≪ 1 and δ ≪ 1 such that when x ∼ pk we have

Pr
x∼pk

(
∃ l ∈ {1, . . . , nk} with rk,l(x) ≥ 1− ε

)
≥ 1− δ.

Justification. With MoLR-MoG modeling, after adding diffusion noise of scale γt, each point
x remains within O(γt) of the subspace’s moment-matched center µ̄k. Concretely, the subspace
structure (or a preliminary projection onto principal components) ensures ∥x− µ̄k∥2 ≤ ∆ = Cγt
with high probability, for some moderate constant C. Hence, any third-order Taylor term ∝ ∥x−µ̄k∥3
is O(γ3

t ), which vanishes compared to the leading Hessian scale O(γ2
t ). In the following corollary,

we further show the approximation effect of equivalent Gaussians.

Corollary 6.5. Assume that ∥µ∗
k,i − µ∗

k,j∥2 ≤ δ, ∥U∗
k,i − U∗

k,j∥2 ≤ ϵ and ∥x− µ̄∗
k∥2 ≤ ∆. We have

∥ log p(x)− log p̄(x)∥2 = O(ϵ+ δ∆+∆3)

8
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Remark 6.6 (Separated Gaussian simplification). For simplicity of description, we assume the
individual Gaussian distributions in the mixture of Gaussians are highly separated. Actually, if there
are n′

k Gaussians that are not separated from each other, we can employ clustering techniques to
transform them into nk mutually independent Gaussian distributions. The error caused by such an
operation can be calculated using corollary 6.5. The core intuition is that the modals should not have
much influence on each other. Hence, we can also use the idea of recursion to first cluster the general
MoG into a 2-modal MoG latent. Then, we can use the analysis of Section 6.1 with Assumption 6.1.

Then, similar to the above section, we also calculate the Hessian matrix and show the local strong
convex parameters. Finally, we provide the convergence guarantee for general MoLR-MoG modeling.

Lemma 6.7. [Eigenvalues of the Hessian] Assume Assumption 6.4, the Hessian at the k-th subspace
is convex on a neighborhood of θ∗. If ∀x ∈ Rdk , r+k (x) = 1 or −1 are strictly satisfied, we have

λmin(Hµk,lµk,l
) =

πk,ls
2
t

(s2t + γ2
t )

2
,

and λmin(HUk,lUk,l
) has the following form:(

πk,l4(U
⊤
k,lµk,l))

2 + ∥Uk,l∥22∥µk,l∥22 − ∥Uk,l∥2∥µk,l∥2
√
8(U⊤

k,lµk,l))2 + ∥Uk,l∥22∥µk,l∥22
)
/2.

Lemma 6.8. [Local Strong Convexity] Assume Assumption 6.4, in a neighborhood of θ∗, ∇2L(θ) ⪰
α′I, α′ > 0,∀θ ∈ Θ. If ∀x ∈ Rdk , ∃l ∈ [nk], rk,l(x) = 1 are strictly satisfied, α′ = min{λ1, λ2},

where λ1 = minl=1 ... ,nk

ck,lγ
4
t

(s2t+γ2
t )

2 , λ2 = minl=1,2,...,nk
= λmin(HUk,lUk,l

).

Thus, even without symmetry, equivalent Gaussians and sufficient subspace separation recover the
same local convexity and linear convergence guarantees as in the asymmetric case. Similar to
Theorem 6.3, under Assumption 6.4, we can obtain a convergence guarantee.
Remark 6.9 (Previous MoG Learning through Score Matching). Shah et al. (2023) and Chen et al.
(2024b) consider MoG data and analyze the optimization process of diffusion models at the full
space. However, these works aim to design a specific algorithm to learn the MoG distribution instead
of using a standard optimization algorithm. On the contrary, by using the MoLR-MoG property to
calculate the Hessian matrix, we adopt the GD algorithm and obtain the convergence guarantee.
Remark 6.10 (Initialization). Since the multi-modal GMM latent leads to a highly non-convex
landscape, Theorem 6.3 and the corresponding asymmetric variant require the initialization to be
around θ∗ to guarantee local strong convexity and obtain a local convergence guarantee. As the
MoLR-MoG is the first step to model the multi low-dimensional and multi-modal property, we leave
the analysis of the global convergence guarantee as an interesting future work.

6.3 ANALYSIS WITHOUT HIGHLY SEPARATED CONDITION

In this part, we extend our analysis to latent MoG with overlap, which is closer to the real-world
datasets. We define the pairwise overlap factor ξi,j(x) between components i and j at the k-th
manifold

ξi,j(x) ≜ rk,i(x)rk,j(x) .

and the maximum expected overlap for the manifold as: ϵoverlap = maxi
∑

j ̸=i E_x ∼ pt[ξi,j(x)].

Without the high-separation assumption, our analysis proceeds in two steps. With the overlap factor
ϵoverlap, we first examine the block-diagonal Hessian, deriving a refined lower bound α. Second,
we analyze the full Hessian by treating off-diagonal interference as a perturbation bounded by the
overlap factor. Applying Weyl’s Inequality, we prove that the global matrix remains positive definite
provided the perturbation (introduced by the overlap) is smaller than the effective diagonal curvature
α, thus guaranteeing linear convergence.
Lemma 6.11 (Minimum Curvature for 2-Mode Mixture). Consider a mixture of two Gaussian
components. Let ϵoverlap = supx r

+
k (x)r

−
k (x) denote the maximum pointwise overlap factor. The

minimum eigenvalue of the ideal Hessian matrix, denoted as α2-mode, is bounded below by:

α2-mode ≜ (1− 4ϵoverlap)min (λmin(Hµkµk
), λmin(HUkUk

)) ,

9
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and

λmin(H) ≥ α2-mode − C ′ϵoverlap > 0 ,

where C ′ is defined in E.1.3.

Lemma 6.12 (Minimum Curvature for Multi-Modal). Let ϵtotal
k,l =

∑
j ̸=l E[ξj,l(x)] represent the total

probability mass leaking from the l-th component due to overlap. The minimum eigenvalue of the
block-diagonal Hessian, denoted as αMulti-Modal, is determined by the component with the minimum
effective mass:

αMulti-Modal ≜ min
l∈{1,...,nk}

[
(πk,l − ϵtotal

k,l )min (λmin(Hµk,lµk,l
), λmin(HUk,lUk,l

))
]
,

and

λmin(H) ≥ αMulti-Modal − C̃ · ϵoverlap ,

where C̃ is defined in E.2.4.

For the Hessian to remain positive definite, the intrinsic weight of every cluster must exceed its total
confusion with other clusters (i.e., πk,l > ϵtotal

k,l for all l).

7 CONCLUSION

In this work, we provide a mixture of low-rank mixture of Gaussian (MoLR-MoG) modeling for
target data, which reflects the low-dimensional and multi-modal property of real-world data. Through
the real-world experiments, we first show that the MoLR-MoG is a suitable modeling for the real-
world data. Then, we analyze the estimation error and optimization process under the MoLR-MoG
modeling and explain why diffusion models can achieve great performance with a small training
dataset and a fast optimization process.

For the estimation error, we show that with the MoLR-MoG modeling, the estimation error is

R4
√

ΣK
k=1nk

√
ΣK

k=1nkdk/
√
n, which means diffusion models can take fully use of the multi

subspace, low-dimensional and multi-modal information to escape the curse of dimensionality. For
the optimization process, we conducted a detailed analysis of the score-matching loss landscape.
By formulating the exact score in both symmetric and asymmetric mixture settings, we derived
explicit expressions for the parameter Jacobians and identified the dominant components under
standard separation assumptions. Then, we prove that the population loss becomes strongly convex
in a neighborhood of the ground truth score function, by estimating the Hessian and presenting
lower bounds on both its minimal eigenvalue and the convergence rate. Then, we provide the local
convergence guarantee for the score matching objective function, which explains the fast and stable
training process of diffusion models.

Future work and limitation. Though we have extended the situation to multi-manifold MoG, how
to extend the analysis to more general non-Gaussian sub-manifolds (e.g. heavy-tailed or multi-modal
beyond second moments) by higher-order moment matching is still unknown. Meanwhile, we wish
to design optimization algorithms or network architectures that explicitly leverage the block-diagonal
Hessian structure for faster training. For example, we can perform a natural-gradient step separately
in each block with a block-diagonal Hessian with decomposed data, which will accelerate the
optimization process.

Ethics statement. Our work aims to deepen the understanding of the modeling of diffusion models
and explain the success of diffusion models from a theoretical perspective. The MoLR-MoG modeling
has the potential to achieve a great performance with fewer parameters. Hence, this work can be
viewed as an important step in understanding diffusion models, and the societal impact is similar to
general generative models (Mirsky and Lee, 2021).

Reproducibility statement. The detail and description of the real-world experiments are provided
in Appendix F. We detail the model, hyperparameters and data.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

As this work mainly focus on the new modeling of diffusion models from a theoretical perspective,
large language models were only used for minor language editing to check grammar. All ideas, new
modelings, experiments, theoretical guarantee, discussion and writing decisions were made entirely
by the authors.

B SCORE FUNCTION ERROR ESTIMATION

B.1 CALCULATE ∇ log pt(x) AND DECOMPOSITION

Consider the k-th subspace

pt,k(x) =

nk∑
l=1

πk,lN (µk,l,Σk,l)

where Σk,l = s2tUk,lU
⊤
k,l + γ2

t I .

We know that

Σ−1
k,l =

1

γ2
t

(
I − s2t

s2t + γ2
t

Uk,lU
⊤
k,l

)
,

∇pt,k(x) =
1

γ2
t

nk∑
l=1

πk,lN (µk,l,Σk,l)

(
I − s2t

s2t + γ2
t

Uk,lU
⊤
k,l

)
(x− µk,l) ,

which indicates

∇ log pt,k(x) =
∇pt,k(x)

pt,k(x)
=

1

γ2
t

∑nk

l=1 πk,lN (µk,l,Σk,l)
(
I − s2t

s2t+γ2
t
Uk,lU

⊤
k,l)(x− µk,l

)
∑nk

l=1 πk,lN (µk,l,Σk,l)
.

We want to learn the parameters of the score function:

s∗k(x, t) = ∇ log pt,k(x),

where the parameters are {µ∗
k,l , U

∗
k,l}, k = 1, ...,K.

And
s∗(x, t) = (s∗1(x, t), s

∗
2(x, t), . . . , s

∗
K(x, t))

Define

R(sk) = E
[
∥sk(x, t)− s∗k(x, t)∥2

]
, R̂n(sk) =

1

n

n∑
i=1

∥sk(xi, ti)− s∗k(xi, ti)∥2

We have the following decomposition:

R(ŝk,θ̂n)− R̂n(sk,θ̂n) = R(ŝk,θ̂n)− R̂(s∗k)︸ ︷︷ ︸
Estimation

+ R̂(s∗k)− R̂(sk,θ∗)︸ ︷︷ ︸
Approximation

+ R̂n(sk,θ∗)− R̂n(ŝk,θ̂n)︸ ︷︷ ︸
optimization

We can also obtain that

R(s) =

K∑
k=1

R(sk)

Since Estimation and Approximation reflect the fitting ability of the network, we analyze the first
term first. Then, in the next section, we analyze the optimization dynamic.
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B.2 ESTIMATION

First, we show that f and loss function are Lipschitz. We will first prove that sk is Lipschitz for ∀k,
then we can know that s is Lipschitz.

Lemma B.1. [Lipschitz Continuity] Let Lµl
and LUk

be the Lipschitz constant w.r.t. sθ. With
MoLR-MoG modeling and Assumption 5.1, there is a constant

L ≤
√
ΣK

i=1nk(L2
µl

+ L2
Uk

) = O
(
(ΣK

k=1nk)
1
2Cw

)
such that for any θ, θ′,

∥∥sθ(x, t) − sθ′(x, t)
∥∥
2

≤ L ∥θ − θ′∥2, where Cw =
(R+stBµ)

3s2t
γ4
t

,Bµ =

max
k,l

∥µk,l∥2. For sθ and s∗, we have that 2∥sθ(x, t)− s∗(x, t)∥2 ≤ 2(R+ stBµ)/γ
2
t := Ll.

Proof. Since we analyze the estimation error at a fixed time t, we ignore subscript t for Σk,l,t, wk,t,
wl,k,t and δk,l,t and define by

Σk,l = s2tUk,lU
⊤
k,l + γ2

t I

wk(x) = Σnk

l=1πk,lN (x; stµk,l,Σk,l)

wk,l =
1

M
πk,lN (x; stµk,l,Σk,l)

δk,l(x) = x+ stµk,l −
s2t

s2t + γ2
t

Uk,lU
⊤
k,l(x+ stµk,l) .

Assume that ∥Uk,l∥2 ≤ BU , ∥µk,l∥2 ≤ Bµ,max{BU , Bµ} = C, and ∥x∥2 ≤ R for ∀x ∈ X .

For Σk,l, we know that

Σk,l = Uk,lU
⊤
k,l + γ2

t I ≻ γ2
t I ⇒ λmin(Σk,l) ≥ γ2

t ⇒ ∥Σ−1
k,l∥2 ≤ 1

γ2
t

.

To obtain the first L in this lemma, we need to bound
∥∥∥∂sk,θ(x,t)

∂µk,l

∥∥∥
2

and
∥∥∥∂sk,θ(x,t)

∂Uk,l

∥∥∥
2
.

The bound of
∥∥∥∂sk,θ(x,t)

∂µk,l

∥∥∥
2
. For the latent score of the k-th subspace, we have that

sk,θ(x, t) = − 1

γ2
t

Σnk

l=1wk,l(x)δk,l(x)

wk(x)
,

∂sk,θ(x, t)

∂µk,l
= − 1

γ2
t

Σnk

l=1(
∂wk,l(x)
∂µk,l

δk,l(x) +
∂δk,l(x)
∂µk,l

wk,l(x))wk(x)− ∂wk(x)
∂µk,l

(Σnk

l=1wk,l(x)δk,l(x))

w2
k(x)

,

∥∥∥∥∂sk,θ(x, t)∂µk,l

∥∥∥∥
2

≤ 1

γ2
t

∥∥∥∥∥∥
Σnk

l=1(
∂wk,l(x)
∂µk,l

δk,l(x) +
∂δk,l(x)
∂µk,l

wk,l(x))

wk(x)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∂wk(x)
∂µk,l

(Σnk

l=1wk,l(x)δk,l(x))

w2
k(x)

∥∥∥∥∥∥
2

 .

To bound this term, we separately show that

(1)wk(x) has a lower bound.

(2)wk,l(x), δk,l(x),
∂wk,l(x)

∂µk
,
∂δk,l(x)

∂µk
have upper bounds.

(3)

∥∥∥∥∥∥
∂wk(x)
∂µk,l

δk,l(x)

wk

∥∥∥∥∥∥
2

,

∥∥∥∥∥∥
Σnk

l=1
∂δk,l(x)
∂µk,l

wk,l(x)

wk(x)

∥∥∥∥∥∥
2

,

∥∥∥∥∥∥
∂wk(x)
∂µk,l

Σnk

l=1wk,l(x)δk,l(x)

w2
k(x)

∥∥∥∥∥∥
2

have upper bounds.

(1) wk(x) has a lower bound.

wk(x) = Σnk

l=1πk,lN (x; stµk,l,Σk,l),which is continuous.

14
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Since continuous function has maximum and minimum in a closed internal and ∥x∥2 ≤ R, we can
assume that wk(x) ≥ mw. And for any x, wk(x) > 0, so mw > 0 holds.

(2) wk,l(x), δk,l(x),
∂δk,l(x)

∂µk
,

∂wk,l(x)
∂µk

have upper bounds.

We already know that continuous function has maximum and minimum in a closed internal and
∥x∥2 ≤ R. Thus, we can assume that wk(x) ≤ Mwk

. We also have that

wk(x) ≤ Mwk
≤ Σnk

l=1πk,l(2π)
−n

2 |Σk,l|−
1
2 .

For the second term, we have that

δk,l(x) = x− stµk,l −
s2t

s2t + γ2
t

Uk,lU
⊤
k,l(x− stµk,l) =

(
I − s2t

s2t + γ2
t

Uk,lU
⊤
k,l

)
(x− stµk,l) ,

whose L2 norm is bounded by∥∥∥∥(I − s2t
s2t + γ2

t

Uk,lU
⊤
k,l

)
(x− stµk,l)

∥∥∥∥
2

≤ ∥x− stµk,l∥2 ≤ ∥x∥2 + ∥stµk,l∥2 ≤ R+ stBµ .

Then, for the third term, we know that
∂δk,l(x)

∂µk,l
= −st +

s3t
s2t + γ2

t

Uk,lU
⊤
k,l = −st

(
I − s2t

s2t + γ2
t

Uk,lU
⊤
k,l

)
.

For the last term, we have we have the following expression
∂wk,l(x)

∂µk,l
= −st

2
N (x; stµk,l,Σk,l)Σ

−1
k,l (x− stµk,l) .

For term ∥Σ−1
k,l (x− stµk,l)∥2, we have that

∥Σ−1
k,l (x− stµk,l)∥2 ≤ ∥Σ−1

k,l∥2∥x− stµk,l∥2 =
1

γ2
t

∥x− stµk,l∥2 ≤ 1

γ2
t

(R+ ∥stµk,l∥2) ,

which indicates∥∥∥∥∂wk,l(x)

∂µk,l

∥∥∥∥
2

≤ stN (x; stµk,l,Σk,l)
1

γ2
t

(R+ ∥stµk,l∥2) ≤ stN (x; stµk,l,Σk,l)
1

γ2
t

(R+ stBµ)∥∥∥∥∂wk(x)

∂µk,l

∥∥∥∥
2

≤ Σnk

l=1stN (x; stµk,l,Σk,l)
1

γ2
t

(R+ stBµ).

(3)

∥∥∥∥∥
∂wk(x)

∂µk,l
δk,l(x)

wk

∥∥∥∥∥
2

,

∥∥∥∥∥Σ
nk
l=1

∂δk,l(x)

∂µk,l
wk,l(x)

wk(x)

∥∥∥∥∥
2

,

∥∥∥∥∥
∂wk(x)

∂µk,l
Σ

nk
l=1wk,l(x)δk,l(x)

w2
k(x)

∥∥∥∥∥
2

have upper bounds.

For the first two term, ∥∥∥∥∥∥
∂wk(x)
∂µk,l

δk,l(x)

wk

∥∥∥∥∥∥
2

≤ st
γ2
t

(R+ stBµ)
2 ,

and ∥∥∥∥∂δk,l(x)∂µk,l

∥∥∥∥
2

= Constant ≤ st ,

∥∥∥∥∥∥
Σnk

l=1
∂δk,l(x)
∂µk,l

wk,l(x)

wk(x)

∥∥∥∥∥∥
2

≤ st .

For the third term, we know that∥∥∥∥∥∥
∂wk(x)
∂µk,l

Σnk

l=1wk,l(x)δk,l(x)

w2
k(x)

∥∥∥∥∥∥
2

≤

∥∥∥∥∥stw
2
k(x)

st
γ2
t
(R+ stBµ)

w2
k(x)

∥∥∥∥∥
2

=
s2t
γ2
t

(R+ stBµ) .

Combined with the above three, we obtain the bound for
∥∥∥∂sk,θ(x,t)

∂µk,l

∥∥∥
2
:∥∥∥∥∂sk,θ(x, t)∂µk,l

∥∥∥∥
2

≤ 1

γ2
t

∥∥∥∥∥∥
Σnk

l=1(
∂wk,l(x)
∂µk,l

+
∂δk,l(x)
∂µk,l

)δk,l(x)

wk(x)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∂wk(x)
∂µk,l

(Σnk

l=1wk,l(x)δk,l(x))

w2
k(x)

∥∥∥∥∥∥
2


≤ s2t

γ2
t

(R+ stBµ)
2 + st +

st
γ2
t

(R+ stBµ) = O

(
s2t (R+ stBµ)

2

γ2
t

)
.
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The bound of
∥∥∥∂sk,θ(x,t)

∂Uk,l

∥∥∥
2
. Now we compute the part about Uk,l. Through some simple algebra,

we know that

∂sk,θ(x, t)

∂Uk,l
= − 1

γ2
t

Σnk

l=1(
∂wk,l(x)
∂Uk,l

δk,l(x) +
∂δk,l(x)
∂Uk,l

wk,l(x))wk(x)− ∂wk(x)
∂Uk,l

(Σnk

l=1wk,l(x)δk,l(x))

w2
k(x)

.

Then, we have the following inequality

∂sk,θ(x, t)

∂Uk,l
= − 1

γ2
t

Σnk

l=1(
∂wk,l(x)
∂Uk,l

δk,l(x) +
∂δk,l(x)
∂Uk,l

wk,l(x))wk(x)− ∂wk(x)
∂Uk,l

(Σnk

l=1wk,l(x)δk,l(x))

w2
k(x)∥∥∥∥∂sk,θ(x, t)∂Uk,l

∥∥∥∥
2

≤ 1

γ2
t

∥∥∥∥∥∥
Σnk

l=1(
∂wk,l(x)
∂Uk,l

δk,l(x) +
∂δk,l(x)
∂Uk,l

wk,l(x))

wk(x)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∂wk(x)
∂Uk,l

∗ (Σnk

l=1wk,l(x)δk,l(x))

w2
k(x)

∥∥∥∥∥∥
2

 .

Similar with
∥∥∥∂sk,θ(x,t)

∂µk,l

∥∥∥
2
, we need to provide:

(1) The upper bound of ∂wk,l

∂Uk,l
and ∂δk,l

∂Uk,l
,

(2) The upper bound of

∥∥∥∥∥Σ
nk
l=1(

∂wk,l(x)

∂Uk,l
δk,l(x)+

∂δk,l(x)

∂Uk,l
wk,l(x))

wk(x)

∥∥∥∥∥
2

and

∥∥∥∥∥
∂wk(x)

∂Uk,l
∗(Σnk

l=1wk,l(x)δk,l(x))

w2
k(x)

∥∥∥∥∥
2

.

(1) The upper bound of ∂wk,l

∂Uk,l
and ∂δk,l

∂Uk,l
.

For the first term, we have the following form

∂wk,l

∂Uk,l
= πk,l

∂N (x; stµk,l,Σk,l)

∂Uk

= 2πk,ls
2
t [N (x; stµk,l,Σk,l)(Σ

l−1

k (x− stµk,l)(x− stµk,l)
⊤Σ−1

k,l − Σ−1
k,l )]Uk,l .

Then, we know that∥∥∥∥∂wk,l

∂Uk,l

∥∥∥∥
2

≤ 2πk,lN (x; stµk,l,Σk,l)s
2
t (
(R+ st∥µk,l∥2)2

γ4
t

+
1

γ2
t

)

≤ 2πk,lN (x; stµk,l,Σk,l)s
2
t (
(R+ stBµ)

2

γ4
t

+
1

γ2
t

) .

For the second term, we have that

∂δk,l(x)

∂Uk,l
= −2

s2t
s2t + γ2

t

(U⊤
k,l(x− stµk,l)I + Uk,l(x− stµk,l)

⊤) ,

which indicates ∥∥∥∥∂δk,l(x)∂Uk,l

∥∥∥∥
2

≤ 2
s2t

s2t + γ2
t

(R+ ∥stµk,l∥2) ≤ 2(R+ ∥stµk,l∥2)

≤ 2(R+ stBµ) .

(2) The upper bound of

∥∥∥∥∥Σ
nk
l=1(

∂wk,l(x)

∂Uk,l
δk,l(x)+

∂δk,l(x)

∂Uk,l
wk,l(x))

wk(x)

∥∥∥∥∥
2

and

∥∥∥∥∥
∂wk(x)

∂Uk,l
∗(Σnk

l=1wk,l(x)δk,l(x))

w2
j (x)

∥∥∥∥∥
2

.

∥∥∥∥∥∥
Σnk

l=1(
∂wk,l(x)
∂Uk,l

δk,l(x) +
∂δk,l(x)
∂Uk,l

wk,l(x))

wk(x)

∥∥∥∥∥∥
2

≤ s2t (
(R+ stBµ)

3

γ4
t

+
1

γ2
t

) + 2(R+ stBµ)

We also have∥∥∥∥∥∥
∂wk(x)
∂Uk,l

(Σnk

l=1wk,l(x)δk,l(x))

w2
k(x)

∥∥∥∥∥∥
2

≤ s2t (
(R+ stBµ)

2

γ4
t

+
1

γ2
t

)(R+ stBµ)
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∥∥∥∥∂sk,θ(x, t)∂Uk,l

∥∥∥∥
2

≤ s2t

(
(R+ stBµ)

2

γ4
t

+
1

γ2
t

)
+ 2(R+ stBµ) + s2t

(
(R+ stBµ)

2

γ4
t

+
1

γ2
t

)
(R+ stBµ)

= O

(
(R+ stBµ)

3s2t
γ4
t

)
.

Therefore, sθ,k is Lk-lipshiz, where

Lk ≤
√
nk(L2

µk,l
+ L2

Uk,l
) = O

(
n

1
2

k

(R+ stBµ)
3s2t

γ4
t

)
.

Furthermore, we know that

∥sθ(x)− sθ(y)∥2 =

(
K∑
i=1

∥∥∥sθ,i(x(i))− sθ,i(y
(i)))

∥∥∥2)
1
2

≤ (

K∑
i=1

Li∥(x(i) − y(i)∥22)
1
2 ≤

√√√√ k∑
i=1

L2
i ∥x− y∥2 .

Thus,

L =

√√√√ k∑
i=1

L2
i = O


√√√√ k∑

i=1

n
1
2
i

(R+ stBµ)
3s2t

γ4
t

 .

After obtaining the Lipschitz constant for sθ, we bound the gap between sθ and s∗:

∇log pt,k(x) = − 1

γ2
t

Σnk

l=1πk,lN (x; stµk,l, s
2
tU

⋆
k,lU

⋆⊤
k,l + γ2

t I)
(
x− stµk,l − s2t

s2t+γ2
t
U⋆
k,lU

⋆⊤
k,l (x− stµk,l)

)
Σnk

l=1πk,lN (x; stµk,l, s2tU
⋆
k,lU

⋆⊤
k,l + γ2

t I)
.

With the following bound

∥x− stµk,l −
s2t

s2t + γ2
t

U⋆
k,lU

⋆⊤
k,l (x− stµk,l)∥2 ≤ R+ stBµ ,

we have that

∥∇log pt,k(x)∥2 ≤ 1

γ2
t

(R+ stBµ) , and ∥sk,θ(x)∥2 ≤ 1

γ2
t

(R+ stBµ) ,

which indicates

∥sk,θ(x)−∇ log pt,k(x)∥2 ≤ 2

γ2
t

(R+ stBµ) .

Hence, we obtain that

Ll ≤ 2∥sk,θ(x)−∇ log pt,k(x)∥2 = O(R+ stBµ) .

■

Lemma B.2. [Rademacher Complexity] Let F = {ℓ(θ; ·, ·) : θ ∈ Θ} and suppose Θ has diameter
RΘ. Then the empirical Rademacher complexity satisfies

R̂n(F) = O
(
L′
√

p

n

)
.

Proof. Let function class F = {sθ(x) : θ = ({{µk,l, Uk,l}nk

l=1}Kk=1) ∈ Θ}, where µk,l ∈ Rd, Uk,l ∈
Rd

We know that the number of parameters

p = ΣK
k=1nk(d+ d) = 2ΣK

k=1nkdk.
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And the covering number of the parameter space is

N (ϵ,Θ, ∥ · ∥2) ≤
(
C

ϵ

)p

If f is L-lipschitz, we know that

∀θ1, θ2 ∈ Θ, ∥fθ1 − fθ2∥L2(p) ≤ L∥θ1 − θ2∥2 and ∀θ, ∃θj , s.t.∥θ − θj∥2 ≤ ϵ

L
⇒ ∥fθ − fθj∥L2(p) ≤ L∥θ − θj∥2 ≤ ϵ.

Thus, assume that ∥θi − θj∥2 ≤ C1 for any θi,θj ∈ Θ

N (ϵ,Θ, ∥ · ∥2) ≤ (
C1

ϵ
)p

⇒ N (
ϵ

L
,Θ, ∥ · ∥2) ≤ (

C1L

ϵ
)p

⇒ N (ϵ,F , ∥ · ∥L2(p)) ≤ N (
ϵ

L
,Θ, ∥ · ∥2) ≤ (

C1L

ϵ
)p ≤ (

C1L

ϵ
)p, logN (

ϵ

L
,F , ∥ · ∥L2(p)) ≤ p log(

C1L

ϵ
).

We also know that diam(F) ≤ Ldiam(Θ) = C1L, with Dudley integral, we have

Rn(F) ≤ 12√
n

∫ diam(F)

0

√
logN(ϵ,F , ∥ · ∥L2(p))dϵ

≤ 12√
n

∫ C1L

0

√
p log(

C1L

ϵ
)dϵ

≤ 12√
n

∫ ∞

0

pCL
√
t exp(−t)dt =

6
√
πp

√
n

C1L = O(C1L

√
p

n
).

We take the squared loss function.

Rn(L) ≤ LlRn(F) = O(C1LlL

√
p

n
).

■

Theorem 5.3. Denote by L̂n(θ) the empirical loss on n i.i.d. samples and by L(θ) its population
counterpart. Then there exist constants C1, C2 such that with probability at least 1− δ, for all θ ∈ Θ,

∣∣L(θ)− L̂n(θ)
∣∣ ≤ O

(
C1

(R+ stBµ)
4s2t

√
ΣK

k=1nk

γ6
t

√
ΣK

k=1nkdk
n

+ C2

√
log(1/δ)

n

)
.

where C1 = max
θ∈Θ

∥θi − θj∥2, C2 = σ log 2, σ2 = sup
θ∈Θ

Var[ℓ(θ;X, t)].

Proof. Since

LlRn(F) = O(C1LlL

√
p

n
).

We have

∆ = sup
θ∈Θ

|L̂(θ)− L(θ)| = O(C1LlL

√
p

n
)

⇒ E[∆] = O(C1LlL

√
p

n
).

By Bernstein inequality,let σ2 = sup
θ∈Θ

V ar[l(X; θ)],we know that

Pr(sup
θ∈Θ

|L̂(θ)− L(θ)| ≥ E[∆] + ϵ) ≤ 2 exp(− nϵ2

2(σ2 + LlLC1ϵ/3)
) ≤ 2 exp(−nϵ2

3σ2
).

Let 2 exp(− nϵ2

3σ2 ) < δ, we can obtain that

Pr(sup
θ∈Θ

|L̂(θ)− L(θ)| ≥ C1LLl

√
p

n
+ C2

√
log(1/δ)

n
) ≤ δ.

■
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B.3 APPROXIMATION

Since our network can represent ∇ log p(x) strictly, we have

Approximation Error = 0

C 2-MODE MOG OPTIMIZATION

C.1 SETTING

In this section, we analyze

∇log pt,k(x) =
∇pt,k(x)

pt,k(x)
= − 1

γ2
t

1
2N (x;stµk,s

2
tU

⋆
kU

⋆⊤
k +γ2

t I)

(
x−stµk−

s2t
s2t+γ2

t
U⋆

kU
⋆⊤
k (x−stµk)

)
+ 1

2N (x;−stµk,s
2
tU

⋆
kU

⋆⊤
k +γ2

t I)

(
x+stµk−

s2t
s2t+γ2

t
U⋆

KU⋆⊤
K (x+stµk)

)
1
2N (x; stµk, s2tU

⋆
kU

⋆⊤
k + γ2

t I) +
1
2N (x;−stµk, s2tU

⋆
kU

⋆⊤
k + γ2

t I)
,

which can be reduced to

∇ log pt,k(x) = − 1

γ2
t

1
2N (x; stµk,Σk) δ

′
k(x) +

1
2N (x;−stµk,Σk) ϵk(x)

1
2N (x; stµk,Σk) +

1
2 (x;−stµk,Σk)

, (5)

where ϵk(x) = x−stµk− s2t
s2t+γ2

t
U∗
kU

∗⊤
k (x−stµk), and δ′k(x) = x+stµk− s2t

s2t+γ2
t
U∗
kU

∗⊤
k (x+stµk).

C.2 OPTIMIZATION

Assumption C.1. [Separation within a cluster] Within each cluster k, the two symmetric peaks are
well separated in the sense that ∥stµ∗

k − (−stµ
∗
k)∥ ≥ ∆intra, for some ∆intra ≫ γt. Consequently,

if a sample x is drawn from the “+” peak then its responsibility under the “−” peak satisfies

r−k (x) =
1
2 N (x;−stµ

∗
k,Σ

∗
k)

1
2 N (x; stµ∗

k,Σ
∗
k) +

1
2 N (x;−stµ∗

k,Σ
∗
k)

= O
(
e−∆2

intra/(2γ
2
t )
)

≪ 1,

and symmetrically r+k (x) ≪ 1 when x is drawn from the “−” peak.

In the following discussion, we assume that x ∈ k-th manifold, which means that wi(x) = 0 if i ̸= k.

Lemma C.2. [Jacobian Simplification] Under Assumption 6.1, in a neighborhood of θ∗ the first
derivatives simplify to their “self-cluster” terms: Jµ

k (x) = ∂µk
sθ ≈ st(I − αPk)/γ

2
t , and

JU
k (x) ≈ 2s2t

γ2
t (s

2
t + γ2

t )
(r−k (x)(U

⊤
k (x+stµk)I+(x+stµk)U

⊤
k )+r+k (x)(U

⊤
k (x−stµk)I+Uk(x−stµk)

⊤)) .

Proof.

Jµ
k = − 1

γ2
t

∂w
−
k

(x)

∂µk
δ′k(x)+

∂w
+
k

(x)

∂µk
ϵk(x)+

∂δ′k(x)

∂µk
w−

k (x)+
∂ϵk(x)

∂µk
w+

k (x))∗ΣK
k=1wk(x)−ΣK

k=1
∂wk(x)

∂µk
∗ΣK

k=1(w
−
k (x)δ′k(x)+w+

k (x)ϵk(x)

w2
k(x)

=
w−

k (x)
∂δ′k(x)
∂µk

+ w+
k (x)

∂ϵk(x)
∂µk

γ2
twk(x)

−
∂w−

k (x)

∂µk
δ′k(x) +

∂w+
k (x)

∂µk
ϵk(x)

γ2
twk(x)︸ ︷︷ ︸

TermA

+

∂wk(x)
∂µk

(w−
k (x)δ

′
k(x) + w+

k ϵk(x))

γ2
tw

2
k(x)︸ ︷︷ ︸

TermB

.

We will now prove that term B can be ignored compared to term A under our assumptions.
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For term B, we have

∂wk(x)
∂µk

(w−
k (x)δ

′
k(x) + w+

k ϵk(x))

γ2
tw

2
k(x)

−
∂w−

k (x)

∂µk
δ′k(x) +

∂w+
k (x)

∂µk
ϵk(x)

γ2
twk(x)

=
1

γ2
tw

2
k(x)

(
∂wk(x)

∂µk
(w−

k (x)δ
′
k(x) + w+

k (x)ϵk(x))− wk(x)(
∂w−

k (x)

∂µk
δ′k(x) +

∂w+
k (x)

∂µk
ϵk(x)))

=
1

γ2
tw

2
k(x)

(
∂w+

k (x)

∂µk
w−

k (x)δ
′
k(x) +

∂w−
k (x)

∂µk
w+

k (x)ϵk(x)− w+
k (x)

∂w−
k (x)

∂µk
δ′k(x)− w−

k (x)
∂w+

k (x)

∂µk
ϵk(x))

=
1

γ2
tw

2
k(x)

(
∂w+

k

∂µk
w−

k −
∂w−

k

∂µk
w+

k )(ϵk(x)− δ′k(x))

= − 2

γ2
tw

2
k(x)

(
∂w+

k

∂µk
w−

k −
∂w−

k

∂µk
w+

k )

(
I +

s2t
s2t + γ2

t

UkU
⊤
k

)
stµk

= − 4

γ2
tw

2
k(x)

s2tw
−
k w

+
k Σ

−1
k x

(
I +

s2t
s2t + γ2

t

UkU
⊤
k

)
µk = O(

r+k r
−
k

γ4
t

st∥µk∥2∥x∥2).

And for term A, we have

w−
k (x)

∂δ′k(x)
∂µk

+ w+
k (x)

∂ϵk(x)
∂µk

γ2
twk(x)

= O

(
st∥µk∥2

γ2
t

|w+
k − w−

k |
)
.

Thus,

O
(

r+k r−k
γ4
t

st∥µk∥2∥x∥2
)

O
(

st∥µk∥2

γ2
t

|w+
k − w−

k |
) = O

(
r+k r

−
k wk∥x∥2

γ2
t |r+k − r−k |

)
= O

(
r+k r

−
k wk∥x∥2
γ2
t

)
→ 0.

Thus, Jµ
k ≈ − 1

γ2
t
(r+k (x)

∂δ′k(x)
∂µk

+ r−k (x)
∂ϵk(x)
∂µk

) = − st
γ2
t
(r+k (x)− r−k (x))

(
I − s2t

s2t+γ2
t
UkU

⊤
k

)
.

We will analyze JU
k now.

JU
k = − 1

γ2
t

(
∂w

−
k

(x)

∂Uk
δ′k(x)+

∂δ′k(x)

∂Uk
w−

k (x)+
∂ϵk(x)

∂Uk
w+

k (x)+
∂w

+
k

(x)

∂Uk
ϵk(x))wk(x)−

∂wk(x)

∂Uk
∗(w−

k (x)δ′k(x)+w+
k ϵk(x))

w2
k(x)

= − 1

γ2
t

(

∂δ′k(x)
∂Uk

w−
k (x) +

∂ϵk(x)
∂Uk

w+
k (x)

wk(x)

+

∂w−
k (x)

∂Uk
δ′k(x) +

∂w+
k (x)

∂Uk
ϵk(x)

wk(x)
−

∂wk(x)
∂Uk

(w−
k (x)δ

′
k(x) + w+

k ϵk(x))

w2
k(x)

).

By calculating, we have

∂w−
k (x)

∂Uk
δk(x) +

∂w+
k (x)

∂Uk
ϵk(x)

wk(x)
−

∂wk(x)
∂Uk

∗ (w−
k (x)δ

′
k(x) + w+

k ϵk(x))

w2
k(x)

=
1

w2
k(x)

((wk(x)(
∂w−

k (x)

∂Uk
δ′k(x) +

∂w+
k (x)

∂Uk
ϵk(x))−

∂wk(x)

∂Uk
(w−

k (x)δ
′
k(x) + w+

k ϵk(x)))

=
1

w2
k(x)

(wk(x)(
∂w−

k (x)

∂Uk
δ′k(x) +

∂w+
k (x)

∂Uk
ϵk(x))−

∂wk(x)

∂Uk
(w−

k (x)δ
′
k(x) + w+

k ϵk(x)))

=
1

w2
k(x)

(
∂w+

k

∂Uk
w−

k −
∂w−

k

∂Uk
w+

k )(ϵk(x)− δ′k(x))

= − 2 s3t
w2

k(x)

[
N (x; stµk,Σ)M

+(x) − N (x;−stµk,Σ)M
−(x)

]
Uk (I − αUkU

⊤
k )µk

= O(r+k r
−
k

s3t
γ2
t (s

2
t + γ2

t )
).
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where M+(x) = Σ−1(x − stµk)(x − stµk)
⊤Σ−1 − Σ−1,M−(x) = Σ−1(x + stµk)(x +

stµk)
⊤Σ−1 − Σ−1, α =

s2t
s2t+γ2

t
.

We also know that

ΣK
k=1(

∂δk(x)
∂Uk

w−
k (x) +

∂ϵk(x)
∂Uk

w+
k (x))

ΣK
k=1wk(x)

= O

(
s2t∥x∥2
s2t + γ2

t

)
= O

(
s3t∥µk∥2
s2t + γ2

t

)
O(r+k r

−
k

s3t
γ2
t (s

2
t+γ2

t )
)

O(
s3t∥µk∥2

s2t+γ2
t
)

→ 0.

Thus,

JU
k ≈

2s2t
γ2
t (s

2
t + γ2

t )
(r−k (x)(U

⊤
k (x+ stµk)I + (x+ stµk)U

⊤
k ) + r+k (x)(U

⊤
k (x− stµk)I + Uk(x− stµk)

⊤)).

■

Before we provide the simplification of Hessian, we first prove that for a, b ∈ Rn M = a⊤bIn +
ba⊤,MM⊤ is positive-definite if and only if b⊤a ̸= 0. At the same time, we provide the minimum
eigenvalue of MM⊤, which will be used later.
Lemma C.3. Let a, b ∈ Rn and M = a⊤bIn + ba⊤. MM⊤ is positive-definite if and only if
b⊤a ̸= 0.

Moreover,

λmin(MM⊤) = µ2 =
4(a⊤b)2 + ∥a∥22∥b∥22 − ∥a∥2∥b∥2

√
8(a⊤b)2 + ∥a∥22∥b∥22

2
.

Proof. Let M = a⊤bIn + ba⊤, c = a⊤b. We know that ∀x ∈ Rn,

x⊤MM⊤x = (M⊤x)⊤(M⊤x)

= ∥M⊤x∥22 ≥ 0.

Thus, MM⊤ is semi-positive definite.

We can also have that

|M | = |a⊤bIn + ba⊤| = cn|In +
1

c
ba⊤| = 2cn ≥ 0,

where cn = 0 if and only if b⊤a = 0.

The last equation holds because

|In + uv⊤| = 1 + v⊤u

Thus, |MM⊤| > 0, MM⊤ is positive definite.

We can further get the eigenvalues of MM⊤.

Expanding gives the convenient representation

MM⊤ = (a⊤b)2In + a⊤b
(
ba⊤ + ab⊤

)
+ a⊤abb⊤. (6)

∀x ∈ Rn, if x⊤a = 0 and x⊤b = 0, we have:

MM⊤x = (a⊤b)2x.

Thus, (a⊤b)2 is an eigenvalue of M , and its eigenspace contains the orthogonal complement of
span{a, b}.If a and b are linearly independent then dim(span{a, b}) = 2, so the multiplicity of the
eigenvalue α2 is at least n− 2.
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To find the remaining eigenvalues we restrict M to the subspace S := span{a, b}. Assume first that
a and b are linearly independent so that S is two-dimensional.

Using equation 6, we can compute tr(MM⊤), which is

tr(MM⊤) = tr((a⊤b)2In + a⊤b
(
ba⊤ + ab⊤

)
+ a⊤abb⊤)

= n(a⊤b)2 + 2(a⊤b)2 + ∥a∥22∥b∥22
= (n+ 2)(a⊤b)2 + ∥a∥22∥b∥22.

The second equation holds because of tr(xy⊤) = tr(y⊤x) = y⊤x.

We set the other two eigenvalues are µ1 and µ2.Thus

tr(MM⊤) = Σn
i=1λi = (n− 2)(a⊤b)2 + µ1 + µ2 = (n+ 2)(a⊤b)2 + ∥a∥22∥b∥22,

and

|MM⊤| = Πn
i=1λi = (a⊤b)2(n−2)µ1µ2 = 4(a⊤b)2n.

So µ1 and µ2 are the two solutions of

x2 −
(
4(a⊤b)2 + ∥a∥22∥b∥22

)
x+ 4(a⊤b)4 = 0. (7)

Solving equation 7, we have

µ1, µ2 =
4(a⊤b)2 + ∥a∥22∥b∥22 ± ∥a∥2∥b∥2

√
8(a⊤b)2 + ∥a∥22∥b∥22

2
.

Now we obtain all eigenvalues.Moreover, we can calculate the minimum of eigenvalues.

λmin(MM⊤) = µ2 =
4(a⊤b)2 + ∥a∥22∥b∥22 − ∥a∥2∥b∥2

√
8(a⊤b)2 + ∥a∥22∥b∥22

2
.

■

Lemma C.4. [Eigenvalues of the Hessian blocks] Under the same conditions, H is convex. If
∀x ∈ Rdk ,r+k (x) = 1 or r−k (x) = 1 are strictly satisfied, the eigenvalues of the Hessian at θ∗ are

λmin(Hµkµk
) =

s2t
(s2t + γ2

t )
2
, and

λmin(HUkUk
) =

4(U⊤
k µk))

2 + ∥Uk∥22∥µk∥22 − ∥Uk∥2∥µk∥2
√

8(U⊤
k µk))2 + ∥Uk∥22∥µk∥22

2
.

Proof. We first state the convexity of the loss function near the true value θ⋆.

Let θ = θ⋆ +∆θ

sθ(x, t) = sθ⋆(x, t) + (∇θsθ(x, t)|θ⋆)⊤[∆θ] +O(∥∆θ∥22).

L(θ) = Ex∼pt(x)[(sθ(x, t)−∇ log pt(x))
⊤(sθ(x, t)−∇ log pt(x))]

= Ex∼pt(x)[(sθ⋆(x, t) + (∇θsθ(x, t)|θ⋆)⊤[∆θ] +O(∥∆θ∥22)−∇ log pt(x))
⊤

(sθ⋆(x, t) + (∇θsθ(x, t)|θ⋆)⊤[∆θ] +O(∥∆θ∥22)−∇ log pt(x))]

= Ex∼pt(x)[((∇θsθ(x, t)|θ⋆)⊤[∆θ])⊤(∇θsθ(x, t)|θ⋆ [∆θ])] +O(∥∆θ∥32)
= (∆θ)⊤Ex∼pt(x)[(∇θsθ(x, t)|θ⋆)(∇θsθ(x, t)|θ⋆)⊤]∆θ

∆
= (∆θ)⊤H∆θ.
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∂2L(θ)

∂θ2
= 2H.

We then analyze the convexity of Ex∼pt(x)[(∇θsθ(x, t)|θ⋆)(∇θsθ(x, t)|θ⋆)⊤]
△
= H . We can divide

H into 4 parts:Hµµ, HUU , HµU and HUµ, where HUµ = (HµU )
⊤.

Let Jµ
k |θ = ∂sθ

∂µk
|θ.

H = Ex∼pt(x)[(∇θsθ(x, t)|θ⋆)(∇θsθ(x, t)|θ⋆)⊤]

= Ex∼pt(x)[Jθ⋆(x, t)Jθ⋆(x, t)⊤.

Term Hµµ

We will show that Hµkµk
is α-convex, where α > 0.

Hµkµk
= Ex∼pt(x)[J

µ
k J

µ⊤
k ]

Hµkµk
≈ Ex∼pt(x)[J

k
µJ

k⊤
µ ] ≈ s2t

γ4
t

Ex∼pt(x)[(r
+
k (x)− r−k (x))

2](I − s2t
s2t + γ2

t

UkU
⊤
k )2.

Let Pk = UkU
⊤
k , α =

s2t
s2t+γ2

t
,

(I − αPk)(I − αPk)
⊤ = (I − αPk)

2 = I − 2αPk + α2P 2
k = (I − αPk)

2.

We then prove that λmin((I − αPk)
2) = (

γ2
t

s2t+γ2
t
)2.

First, we calculate the eigenvalue of P .

P 2 = P ⇒ λ1 = 1, λ2 = 0.

Then we take subspace Col(P ) = {v ; v = Px, x ∈ RD} corresponding to λ1, and subspace
Ker(P ) = {v ;Pv = 0, x ∈ RD} corresponding to λ2.

If w ∈ Col(P ), Pw = w:

(I − αP )w = (1− α)w

(I − αP )2w = (1− α)2w

⇒ λ′
1 = (1− α)2.

If w ∈ Ker(P ), Pw = 0:

(I − αP )w = w

(I − αP )2w = w

⇒ λ′
2 = 1.

Hµµ = E[Jµ
k (J

µ
k )

⊤]

λmin(Hµµ) ≈
s2t

(s2t + γ2
t )

2
.

Therefore, λmin((I − αPk)
2) =

(
γ2
t

s2t+γ2
t

)2
.Hence, we have

λmin(Hµkµk
) ≥ cks

2
t

(s2t + γ2
t )

2
≈ s2t

(s2t + γ2
t )

2
,

where ck = Ex∼pt(x)[(r
+
k (x)− r−k (x))

2] ≈ 1.
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Term HUkUk

HUkUk
≈ Ex∼pt(x)[J

k
UJ

k⊤
U ]

≈ 4s4t
γ4
t (s

2
t + γ2

t )
2
Ex∼pt(x)[(U

⊤
k (x+ stµk)I + (x+ stµk)U

⊤
k )(U⊤

k (x+ stµk)I + (x+ stµk)U
⊤
k )⊤]

=
4s4t

γ4
t (s

2
t + γ2

t )
2
(s2tU

⊤
k µkµ

⊤
k UkI + s2tµ

⊤
k Uk(µkU

⊤
k + Ukµ

⊤
k ) + µkU

⊤
k Ukµ

⊤
k +M(x), )

where M(x) is semi-positive for Ex∼pt(x)[x] = 0.

Using lemma C.3, we can take a = Uk and b = µk and obtain that

HUkUk
is positive definite and

λmin(HUkUk
) =

4(U⊤
k µk))

2 + ∥Uk∥22∥µk∥22 − ∥Uk∥2∥µk∥2
√

8(U⊤
k µk))2 + ∥Uk∥22∥µk∥22

2
.

Term HµkUk
and Term HUkµk

Since HUkµk
= H⊤

µkUk
, we just analyze HµkUk

. We want to analyze the Hessian block

HµkUk
= Ex∼pt

[
JU
k (x) (Jµ

k (x))
⊤] ,

and show that under symmetric assumptions, this cross-term is zero.

The first-order derivative with respect to µk is approximately:

Jµ
k (x) ≈ − st

γ2
t

(r+k (x)− r−k (x))
(
I − αUkU

⊤
k

)
, α =

s2t
s2t + γ2

t

.

The first-order derivative with respect to Uk is approximately:

JU
k (x) ≈ − 1

γ2
t

[
r−k (x)

∂δk(x)

∂Uk
+ r+k (x)

∂ϵk(x)

∂Uk

]
,

with
∂δk(x)

∂Uk
= −2

s2t
s2t + γ2

t

Uk(x+ stµk),
∂ϵk(x)

∂Uk
= −2

s2t
s2t + γ2

t

Uk(x− stµk).

combining terms:

JU
k (x) = C · Uk

[
r−k (x)(x+ stµk) + r+k (x)(x− stµk)

]
,

where C =
2s2t

γ2
t (s

2
t+γ2

t )
. Assume that the underlying component distribution pk(x) is symmetric:

pk(x) = pk(−x),

and the weights satisfy:

r+k (−x) = r−k (x), r−k (−x) = r+k (x).

Then we have:

(a) Jµ
k (x) is an odd function:

Jµ
k (−x) = − st

γ2
t

(r+k (−x)− r−k (−x))(I − αUkU
⊤
k )

= − st
γ2
t

(r−k (x)− r+k (x))(I − αUkU
⊤
k )

= −Jµ
k (x).
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(b) JU
k (x) is an odd function:

JU
k (−x) = C Uk

[
r−k (−x)(−x+ stµk) + r+k (−x)(−x− stµk)

]
= C Uk

[
r+k (x)(−x+ stµk) + r−k (x)(−x− stµk)

]
= −C Uk

[
r−k (x)(x+ stµk) + r+k (x)(x− stµk)

]
= −JU

k (x).

Now compute:

HµkUk
=

∫
JU
k (x) (Jµ

k (x))
⊤ pk(x) dx.

Using symmetry:

=

∫
JU
k (−x) (Jµ

k (−x))⊤ pk(−x) dx =

∫
(−JU

k (x)) (−Jµ
k (x))

⊤ pk(x) dx = HµkUk
.

Thus,

HµkUk
= Ex∼pdata

[Jµ
k (J

U
k )⊤] = Ex∼pdata

[
2s3t

γ4
t (s

2
t + γ2

t )
(r+k (x)− r−k (x))(1−

s2t
s2t + γ2

t

UkU
⊤
k )

(r−k (x)(U
⊤
k (x+ stµk)I + Uk(x+ stµk)

⊤) + r+k (x)(U
⊤
k (x− stµk)I + Uk(x− stµk)

⊤))].

λHµµ = Ex∼pdata
[(u⊤Jk

µ)
2]

λHUU
= Ex∼pdata

[(u⊤Jk
U )

2]

λHµU
= Ex∼pdata

[(u⊤Jk
µ)(u

⊤Jk
U )] ≤

√
λHµµ

λHµU
.

■

Analyze H

H =

(
Hµkµk

HµkUk

HµkUk
HUkUk

)
. If we can prove that Hµkµk

−HUkµk
H−1

UkUk
H⊤

Ukµk
is positive-definite, then H is positive-definite

for Schur’s Theorem.

λH ≥ λS ≥ λHµkµk
−

r2λHµkµk
λHUkUk

λHUkUk

= (1− r2)λHµkµk
≥ (1− r2)

s2t
(s2t + γ2

t )
2
> 0.

r = max
∥u∥=1,∥v=1∥

u⊤HµkUk
v√

u⊤Hµkµk
u · v⊤HUkUk

v]
≤ 1.

r = 1 if and only if u⊤Jk
µ = cv⊤Jk

U , c ̸= 0, which is almost impossible to happen.

More specially, if we assume that ∀x ∈ Rdk ,r+k = 1 or r−k = 1, for

HµkUk
= Ex∼pdata

[Jµ
k (J

U
k )⊤] = Ex∼pdata

[
2s3t

γ4
t (s

2
t + γ2

t )
(r+k (x)− r−k (x))(1−

s2t
s2t + γ2

t

UkU
⊤
k )

(r−k (x)(U
⊤
k (x+ stµk)I + Uk(x+ stµk)

⊤) + r+k (x)(U
⊤
k (x− stµk)I + Uk(x− stµk)

⊤))]

= Ex∼N (stµk,Σk)[
2s3t

γ4
t (s

2
t + γ2

t )
(r+k (x)− r−k (x))

(
1− s2t

s2t + γ2
t

UkU
⊤
k

)
(r−k (x)(U

⊤
k (x+ stµk)I + Uk(x+ stµk)

⊤) + r+k (x)(U
⊤
k (x− stµk)I + Uk(x− stµk)

⊤))]

= Ex∼N (stµk,Σk)[
2s3t

γ4
t (s

2
t + γ2

t )

(
1− s2t

s2t + γ2
t

UkU
⊤
k

)
+ (U⊤

k (x− stµk)I + Uk(x− stµk)
⊤))]

= 0.
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We have r = 0,

α = min{ s2t
(s2t + γ2

t )
2
,
4(U⊤

k µk))
2 + ∥Uk∥22∥µk∥22 − ∥Uk∥2∥µk∥2

√
8(U⊤

k µk))2 + ∥Uk∥22∥µk∥22
2

}.

Utill now, We have shown that H is α-convex and L-lipschiz, where α = (1− r2)λHµkµk
. And we

can know that L(θ) is exponentially convergent.

Theorem C.5. If we take ηt = η = 2
η+L , and κ = L

α , then

∥θt − θ⋆∥2 ≤
(
κ− 1

κ+ 1

)t

∥θ(0) − θ⋆∥2.

D K-MODE MOG OPTIMIZATION

D.1 SETTING

In this section, we analyze

∇log pt,k(x) =
∇pt,k(x)

pt,k(x)

= − 1

γ2
t

Σnk

l=1πk,lN (x; stµk,l, s
2
tU

⋆
k,lU

⋆⊤
k,l + γ2

t I)
(
x− stµk,l − s2t

s2t+γ2
t
U⋆
k,lU

⋆⊤
k,l (x− stµk,l)

)
Σnk

l=1πk,lN (x; stµk,l, s2tU
⋆
k,lU

⋆⊤
k,l + γ2

t I)
.

D.2 OPTIMIZATION

Assumption D.1. [Highly Separated Gaussian] Consider the Gaussian mixture

pk(x) =

nk∑
l=1

πk,l N (x;µk,l,Σk,l), rk,l(x) :=
πk,l N (x;µk,l,Σk,l)∑nk

i=1 πk,i N (x;µk,i,Σk,i)
.

There exist constants ε ≪ 1 and δ ≪ 1 such that when x ∼ pk we have

Pr
x∼pk

(
∃ l ∈ {1, . . . , nk} with rk,l(x) ≥ 1− ε

)
≥ 1− δ.

We assume that the gap between the subspaces is large, and the gap within the subspace is relatively
small, and the equivalent Gaussian is used to replace the whole subspace.
Corollary D.2. Assume that ∥µ∗

k,i − µ∗
k,j∥2 ≤ δ, ∥U∗

k,i −U∗
k,j∥2 ≤ ϵ and ∥x− µ̄∗

k∥2 ≤ ∆. We have

∥ log p(x)− log p̄(x)∥2 = O(ϵ+ δ∆+∆3)

Proof. For k-th subspace, wk(x) = Σnk

l=1πk,lN (x; stµk,l,Σk,l), we take

w̃k(x) = N
(
x; µ̄k, Σ̄k

)
.

where

Ew̃k
[x] = µ̄k = Ewk

[x] = Σnk

l=1πk,lstµk,l

Covw̃k
(x) = Covwk

(x) = E[(x− µ̄k)(x− µ̄k)
⊤] = Σnk

l=1πk,l(Σk,l + s2tµk,lµ
⊤
k,l − s2t µ̄k,lµ̄

⊤
k,l)

⇒ Σ̄k = Σnk

l=1(Σk,l + s2tµk,lµ
⊤
k,l − s2t µ̄k,lµ̄

⊤
k,l).

We next show the order of the estimation under the condition that ∥µk,i − µk,j∥2 ≤ δ, ∥Uk,i −
Uk,j∥2 ≤ ϵ and ∥x− µ̄k∥2 ≤ ∆.Using Taylor’s Theorem and take x0 = µ̄k, we can obtain that

log p(x) = log p(x0) + (x− x0)
⊤∇ log p(x0) +

1

2
(x− x0)

⊤∇2 log p(x0)(x− x0) +O(∥x− x0∥3)

log p̃(x) = log p̃(x0) + (x− x0)
⊤∇ log p̃(x0) +

1

2
(x− x0)

⊤∇2 log p̃(x0)(x− x0) +O(∥x− x0∥3).
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log p(x0)− log p̃(x0) = log
Σnk

l=1πk,lN (x0;µk,l,Σk,l)

N (x0; µ̄k, Σ̄k)

= log

(
Σnk

l=1πk,l
1

|Σk,l|
1
2

exp(−1

2
(µ̄− µk,l)

⊤Σ−1
k,l (µ̄− µk,l))

)
+

1

2
log |Σ̄k|

= log

(
Σnk

l=1πk,l
1

|Σk,l|
1
2

(1 +O(δ2))

)
+

1

2
log |Σ̄k|

= log

(
Σnk

l=1πk,l
|Σ̄k|

1
2

|Σk,l|
1
2

+O(δ2)

)

= O

(
Σnk

l=1πk,l(
|Σ̄k|

1
2

|Σk,l|
1
2

− 1

)
+O(δ2).

∥ log p(x0)− log p̃(x0)∥2 = O(ϵ+ δ2).

∇ log p(x0)−∇ log p̃(x0) = ∇ log Σnk

l=1πk,lN (x;µk,l,Σk,l)|x0

=
Σnk

l=1πk,lN (x0;µk,l,Σk,l)(−Σ−1
k,l (µ̄− µk,l)))

p(x0)
.

∥∇ log p(x0)−∇ log p̃(x0)∥2 = O(δ).

∇2 log p(x0)−∇2 log p̃(x0) =
∇2p(x0)

p(x0)
− (

∇p(x0)

p(x0)
)(
∇p(x0)

p(x0)
)⊤ − ∇2p̃(x0)

p̃(x0)

= (
∇2p(x0)

p(x0)
− ∇2p̃(x0)

p̃(x0)
)− (

∇p(x0)

p(x0)
)(
∇p(x0)

p(x0)
)⊤.

∥∇2 log p(x0)−∇2 log p̃(x0)∥2 = O(ϵ2 + δ2).

Thus, ∥ log p(x)− log p̃(x)∥2 = O(ϵ+ δ∆+∆3). ■

Lemma D.3. [Eigenvalues of the Hessian] Assume Assumption 6.4, the Hessian at the k-th subspace
is convex on a neighborhood of θ∗. If ∀x ∈ Rdk , r+k (x) = 1 or −1 are strictly satisfied, we have

λmin(Hµk,lµk,l
) =

πk,ls
2
t

(s2t + γ2
t )

2
,

and λmin(HUk,lUk,l
) has the following form:(

πk,l4(U
⊤
k,lµk,l))

2 + ∥Uk,l∥22∥µk,l∥22 − ∥Uk,l∥2∥µk,l∥2
√
8(U⊤

k,lµk,l))2 + ∥Uk,l∥22∥µk,l∥22
)
/2.

Proof. According to the previous conclusion, we only need to calculate Jµ and JU .With these
assumptions and simplifications, similar to the symmetry case, we will prove that Jµ

k,l and JU
k,l have
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dominant terms.

Jµ
k,l(x)

= − 1

γ2
t

∂sθ(x, t)

∂µk,l

= − 1

γ2
t

Σnk

l=1

(
∂wk,l(x)
∂µk,l

δk,l(x) +
∂δk,l(x)
∂µk,l

wk,l(x)
)
wk(x)− ∂wk(x)

∂µk,l
Σnk

l=1wk,l(x)δk,l(x)

w2
k(x)

= − 1

γ2
t

Σnk

l=1
∂wk,l(x)
∂µk,l

δk,l(x)

wk(x)
+

Σnk

l=1
∂δk,l(x)
∂µk,l

wk,l(x)

wk(x)
−

∂wk(x)
∂µk,l

Σnk

l=1wk,l(x)δk,l(x)

w2
k(x)

 .

Let’s go ahead and do the calculation.

Σnk

l=1
∂wk,l(x)
∂µk,l

δk,l(x)

wk(x)
−

(∂wk(x)
∂µk,l

)Σnk

l=1wk,l(x)δk,l(x)

w2
k(x)

=

∂wk,l(x)
∂µk,l

wk(x)
(δk,l(x)− δ̄k(x))

Σnk

l=1
∂δk,l(x)
∂µk,l

wk,l(x)

wk(x)
≈ st

γ2
t

Σnk

l=1rk,l(x)

(
I − s2t

s2t + γ2
t

Uk,lU
⊤
k,l

)
.

where rk,l(x) =
πk,lN

(
x; µ̄k,Σ̄k

)
ΣK

j=1 N
(
x; µ̄j ,Σ̄j

) .

Therefore, we can obtain that

∥
Σnk

l=1
∂wk,l(x)
∂µk,l

δk,l(x)

wk(x)
−

∂wk(x)
∂µk,l

Σnk

l=1(wk,l(x)δk,l(x))

w2
k(x)

∥2 = O(δ(R+ stBµ)
s2t
γ2
t

)

∥
Σnk

l=1
∂δk,l(x)
∂µk,l

wk,l(x)

wk(x)
∥2 = O(st).

where δ ≤ ∥µk,i − µk,j∥2 ≪ 1.

Thus, we have

Jµ
k,l(x) =

∂sθ
∂µk,l

≈ st
γ2
t

rk,l(x)

(
I − s2t

s2t + γ2
t

Uk,lU
⊤
k,l

)
.

Hµk,lµk,l
= Ex∼pt

[
Jµ
k,l(x) J

µ
k,l(x)

⊤]
=

s2t
γ4
t

E
[
rk,l(x)

2
] (

I − s2t
s2t + γ2

t

Uk,lU
⊤
k,l

)(
I − s2t

s2t + γ2
t

Uk,lU
⊤
k,l

)⊤
.

For a given x, since we focus on the equivalent Gaussian distribution for each cluster,we have

Hµkµk
≈ diag(E[r2k,1]Hµk,1µk,1

, E[r2k,2]Hµk,2µk,2
, . . . , E[r2k,nk

]Hµk,nk
µk,nk

).

We first show that E[r2k,l]Hµk,lµk,l
is positive-definite, then we will further show that Hµkµk

is
positive-definite.

For Hµk,lµk,l
, we know that

λmin(Hµk,lµk,l
) = ck,lλmin(J

µ
k,l(J

µ
k,l)

⊤)

= ck,lλmin((I − αPk)
2)

=
ck,lγ

4
t

(s2t + γ2
t )

2
,
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where

ck,l =
s2t
γ4
t

E[r2k,l] ≈ πk,l
s2t
γ4
t

.

We know that for a block matrix A = diag(A1, A2, . . . , Ak),

λ(A) = ∪k
i=1λ(Ai).

Therefore,

λmin(Hµkµk
) = min

l=1 ... ,nk

ck,lγ
4
t

(s2t + γ2
t )

2
.

Thus, we take

λHµkµk
=

ck,nk
γ4
t

(s2t + γ2
t )

2
.

Similar to previous situation ,because

∥
Σ

nk
l=1(

∂δk,l(x)

∂Uk,l
wk,l(x))(wk(x))−(

∂wk(x)

∂Uk,l
)Σ

nk
l=1wk,l(x)δk,l(x)

w2
k(x)

∥2

∥
Σ

nk
l=1

∂δk,l(x)

∂Uk,l
wk,l(x)

wk(x)
∥2

→ 0.

we can obtain that

JU
k,l(x) = − 1

γ2
t

Σnk

l=1(
∂wk,l(x)
∂Uk,l

δk,l(x) + wk,l(x)
∂δk,l(x)
∂Uk,l

)wk(x)− (∂wk(x)
∂Uk,l

)Σnk

l=1wk,l(x)δk,l(x)

w2
k(x)

= − 1

γ2
t

Σnk

l=1wk,l(x)
∂δk,l(x)
∂Uk,l

wk(x)

≈ 1

γ2
t

s2t
s2t + γ2

t

rk,l(x)
[
Uk,l(x− µk,l)

⊤ + (x− µk,l)
⊤Uk,lI

]
.

HUkUk
≈ diag(E[r2k,1]HUk,1Uk,1

, E[r2k,2]HUk,2Uk,2
, . . . , E[r2k,nk

]HUk,nk
Uk,nk

).

HUk,lUk,l
= E[JU

k,l(x)(J
U
k,l(x))

⊤]

= E[(
α

γ2
t

)2
(
Uk,l(x− µk,l)

⊤(x− µk,l)U
⊤
k,l + U⊤

k,l(x− µk,l)Uk,l(x− µk,l)
⊤)]

+ E[(
α

γ2
t

)2
(
U⊤
k,l(x− µk,l)(x− µk,l)U

⊤
k,l + (U⊤

k,l(x− µk,l))
2
)
].

Similar to our calculation in C.4, we can use C.3 to calculate the minimum eigenvalue of HUk,lUk,l
.

HUk,lUk,l
is positive definite and

λmin(HUk,lUk,l
) =

4(U⊤
k,lµk,l))

2 + ∥Uk,l∥22∥µk,l∥22 − ∥Uk,l∥2∥µk,l∥2
√

8(U⊤
k,lµk,l))2 + ∥Uk,l∥22∥µk,l∥22

2
.

Recall that

HUkUk
≈ diag(E[r2k,1]HUk,1Uk,1

, E[r2k,2]HUk,2Uk,2
, . . . , E[r2k,nk

]HUk,nk
Uk,nk

).

and E[r2k,l] ≈ πk,l, we can obtain the minimum eigenvalue of HUkUk
, which is

min
l=1,2,...,nk

πk,l

4(U⊤
k,lµk,l))

2 + ∥Uk,l∥22∥µk,l∥22 − ∥Uk,l∥2∥µk,l∥2
√

8(U⊤
k,lµk,l))2 + ∥Uk,l∥22∥µk,l∥22

2
.

■
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Lemma D.4. [Local Strong Convexity] Assume Assumption 6.4, in a neighborhood of θ∗, ∇2L(θ) ⪰
α′I, α′ > 0,∀θ ∈ Θ. If ∀x ∈ Rdk , ∃l ∈ [nk], rk,l(x) = 1 are strictly satisfied, α′ = min{λ1, λ2},

where λ1 = minl=1 ... ,nk

ck,lγ
4
t

(s2t+γ2
t )

2 , λ2 = minl=1,2,...,nk
= λmin(HUk,lUk,l

).

Proof.

HµkUk
= diag(Hµk,1Uk,1

, Hµk,2Uk,2
, . . . ,Hµk,1nk

Uk,nk
).

∥HµkUk
∥ ≤

√
∥Hµkµk

∥ ∥HUkUk
∥ = O

( s3t
γ2
t (s

2
t + γ2

t )
2

)
.

H =

(
diag

(
Hµk,1µk,1

, . . . ,Hµk,nk
µk,nk

)
diag

(
Hµk,1Uk,1

, . . . ,Hµk,nk
Uk,nk

)

diag
(
Hµk,1Uk,1

, . . . ,Hµk,nk
Uk,nk

) diag
(
HUk,1Uk,1

, . . . ,HUk,nk
Uk,nk

)) .

Let
S = Hµµ −HµUH

−1
UUHUµ

we have

λH ≥ λS ≥ λHµkµk
−

r2λHµkµk
λHUkUk

λHUkUk

= (1− r2)λHµkµk
≥ (1− r2)

s2t
(s2t + γ2

t )
2
> 0.

r = max
∥u∥=1,∥v=1∥

u⊤HµkUk
v√

u⊤Hµkµk
u · v⊤HUkUk

v]
≤ 1.

r = 1 if and only if u⊤Jk
µ = cv⊤Jk

U , c ̸= 0, which is almost impossible to happen.

More specifically, if we assume that ∀x ∈ Rdk ,∃l ∈ [nk], rk,l(x) = 1, we have

Hµk,lUk,l
= Ex∼pk

[
JU
k,l(x) (J

µ
k,l(x))

⊤]
=

1

γ4
t

s3t
s2t + γ2

t

Ex∼pk

[
rk,l(x)

2((x− µk,l)U
⊤
k,l + (x− µk,l)

⊤Uk,lI)
](

I − s2t
s2t + γ2

t

Uk,lU
⊤
k,l

)
=

1

γ4
t

s3t
s2t + γ2

t

Ex∼πk,lNk,l

[
rk,l(x)

2((x− µk,l)U
⊤
k,l + (x− µk,l)

⊤Uk,lI)
](

I − s2t
s2t + γ2

t

Uk,lU
⊤
k,l

)
≈ 0

The second equation holds because ∀x, if x /∈ Nk,l(µk,l,Σk,l), rk,l(x) = 0. And the third equation
holds because if x ∼ Nk,l, (µk,l,Σk,l), ∀ Const C,

Ex∼πk,lNk,l
[C(x− µk,l)] = 0.

.

Thus, let α′ be the minimum eigenvalue of H ,

α′ = min{λ1, λ2}, (8)

where

λ1 = min
l=1 ... ,nk

ck,lγ
4
t

(s2t + γ2
t )

2
,

and

λ2 = min
l=1,2,...,nk

πk,l

4(U⊤
k,lµk,l))

2 + ∥Uk,l∥22∥µk,l∥22 − ∥Uk,l∥2∥µk,l∥2
√
8(U⊤

k,lµk,l))2 + ∥Uk,l∥22∥µk,l∥22
2

.

■
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E EXTENSION TO MOG LATENT WITHOUT SEPARATION ASSUMPTION

E.1 2-MODE ANALYSIS

In this section, we relax the high separation assumption (where r+k (x)r
−
k (x) ≈ 0). Instead, we treat

the overlap between manifold components as a bounded perturbation to the ideal system. We aim to
prove that the Hessian remains positive definite provided the overlap factor is sufficiently small.

E.1.1 DEFINITION OF OVERLAP FACTOR

We define the pointwise overlap factor ξk(x) as the product of the assignment probabilities for the
positive and negative components of the k-th manifold:

ξk(x) ≜ r+k (x)r
−
k (x). (9)

Since r+k (x), r
−
k (x) ∈ [0, 1] and r+k (x) + r−k (x) = 1, the overlap factor is naturally bounded:

0 ≤ ξk(x) ≤ 0.25.

We denote the maximum expected overlap magnitude as ϵoverlap:

ϵoverlap = sup
x∈supp(pt)

ξk(x). (10)

E.1.2 JACOBIAN ANALYSIS

We revisit the derivation of the Jacobian Jµ
k . In the original derivation, Jµ

k was decomposed into
Term A (dominant term) and Term B (previously ignored):

Jµ
k (x) = Jµ

ideal(x)︸ ︷︷ ︸
Term A

+Eµ(x)︸ ︷︷ ︸
Term B

.

When ξk(x) → 0, we can recover the ideal Jacobian derived previously:

Jµ
ideal(x) = − st

γ2
t

(r+k (x)− r−k (x))

(
I − s2t

s2t + γ2
t

UkU
⊤
k

)
.

Term B contains the cross-product of weights, which is exactly our overlap factor ξk(x). Specifically:

Eµ(x) = − 4s2t
γ2
tw

2
k(x)

· ξk(x) · Σ−1
k x

(
I +

s2t
s2t + γ2

t

UkU
⊤
k

)
µk.

We can bound the norm of this error term. Since terms like x
wk(x)

and projection matrices are bounded
within the support, there exists a constant C1 such that:

∥Eµ(x)∥2 ≤ C1 · ξk(x). (11)

Similarly, for the Jacobian with respect to Uk, we can decompose it into an ideal part and an error
part proportional to the overlap:

JU
k (x) = JU

ideal(x) + EU (x), where ∥EU (x)∥F ≤ C2 · ξk(x).

E.1.3 HESSIAN ANALYSIS

The Hessian matrix H is defined as the expected outer product of the Jacobians:

H = Ex∼pt(x)[J(x)J(x)
⊤].
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Let J(x) = Jideal(x) + E(x). Substituting this into the Hessian definition:

H = E
[
(Jideal + E)(Jideal + E)⊤

]
= E[JidealJ

⊤
ideal]︸ ︷︷ ︸

Hideal

+E[JidealE
⊤ + EJ⊤

ideal + EE⊤]︸ ︷︷ ︸
∆H

.

Here, Hideal is the Hessian matrix under the high separation assumption and ∆H is the perturbation
matrix induced by the overlap.

From the previous proof , we established that Hideal is block-diagonal (or has negligible off-diagonals
due to symmetry) and positive definite. Let α > 0 be its minimum eigenvalue:

λmin(Hideal) ≈ E[(r+k (x)− r−k (x))
2] min (λmin(Hµkµk

), λmin(HUkUk
))

= E[(1− 4ξk(x))]min (λmin(Hµkµk
), λmin(HUkUk

))

≥ (1− 4ϵoverlap)min (λmin(Hµkµk
), λmin(HUkUk

)) ≜ α.

We apply the Triangle Inequality and Cauchy-Schwarz inequality to bound the spectral norm of ∆H:

∥∆H∥2 ≤ 2∥E[JidealE
⊤]∥2 + ∥E[EE⊤]∥2

≤ 2
√

E[∥Jideal∥2]E[∥E∥2] + E[∥E∥2].

Since ∥Eµ(x)∥ ≤ C1 · ξk(x) and ∥EU (x)∥ ≤ C2 · ξk(x), the perturbation norm is dominated by the
overlap factor:

JU
k (x) = JU

ideal(x) + EU (x), where ∥EU (x)∥F ≤ C2 · ξk(x).

The Hessian perturbation matrix is given by ∆H ≈ E[JidealE
⊤ + EJ⊤

ideal]. To bound its spectral
norm ∥∆H∥2, we define the signal bounds

Sµ ≜ sup
x

∥Jµ
ideal(x)∥2 ≈ st

γ2
t

and

SU ≜ sup
x

∥JU
ideal(x)∥2 ≈ stR

2

γ2
t

.

We can define the composite perturbation constant C ′ as:

C ′ = 2(Sµ + SU )(C1 + C2).

And thus,

∥∆H∥2 ≤ C ′ · ϵoverlap.

E.1.4 POSITIVE DEFINITENESS VIA WEYL’S INEQUALITY

We now use Matrix Perturbation Theory to prove the convexity of the actual loss landscape. With
Weyl’s Inequality for Hermitian Matrices, we have: Let H = Hideal +∆H . The eigenvalues of H
are bounded by:

λmin(H) ≥ λmin(Hideal)− ∥∆H∥2. (12)

Substituting our bounds:

λmin(H) ≥ α− C ′ · ϵoverlap. (13)
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Condition for Convexity: For the Hessian H to remain positive definite (ensuring strong convexity),
we require:

α− C ′ · ϵoverlap > 0 =⇒ ϵoverlap <
α

C ′ . (14)

This physically implies that as long as the manifolds are not excessively overlapping , the loss function
remains locally strongly convex.

E.1.5 CONVERGENCE ANALYSIS

Based on the perturbation analysis, we state the revised convergence theorem.
Theorem E.1 (Linear Convergence under Bounded Overlap). Let L(θ) be the loss function. Assume
the overlap factor satisfies ϵoverlap < α

C′ . Then, the Hessian H at θ⋆ is positive definite with minimum
eigenvalue:

λmin(H) ≥ αeff = α− C ′ϵoverlap > 0.

Consequently, gradient descent with step size η converges linearly:

∥θt − θ⋆∥2 ≤
(
κeff − 1

κeff + 1

)t

∥θ(0) − θ⋆∥2,

where the effective condition number is degraded by the overlap:

κeff =
L

α− C ′ϵoverlap
.

Proof. The proof follows directly from the strong convexity of L(θ) established by Weyl’s inequality.
As ϵoverlap → 0, we recover the ideal convergence rate. ■

E.2 MULTI-MODAL ANALYSIS

In this section, we analyze the convergence properties for the K-Mode Mixture of Gaussians model.
We explicitly model the overlap between Gaussian components as a perturbation.

E.2.1 THE OVERLAP FACTOR

We formally define the Pairwise Overlap Factor ξi,j(x) between two components i and j:

ξi,j(x) ≜ rk,i(x)rk,j(x). (15)

And we define the Maximum Expected Overlap ϵoverlap for the manifold as:

ϵoverlap = max
i

∑
j ̸=i

Ex∼pt
[ξi,j(x)]. (16)

This scalar ϵoverlap quantifies the deviation from the ideal high separation regime. If components are
perfectly separated, ξi,j → 0 and ϵoverlap → 0.

E.2.2 JACOBIAN DERIVATION

We need to compute the Jacobian of the score matching error vector sθ(x, t) − ∇ log pt(x) with
respect to the parameter µk,l. Let Jµ

l (x) =
∂

∂µk,l
∇ log pt,k(x).

Similarly, we decompose the Jacobian for the l-th component into a Signal Term (Self) and a Noise
Term (Interference).
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J l
µ(x) = J l

µ,ideal(x)︸ ︷︷ ︸
Signal

+El
µ,cross(x)︸ ︷︷ ︸

Noise

.

This term arises when we ignore the change in weights of other clusters (j ̸= l). It dominates when
rk,l ≈ 1:

J l
µ,ideal(x) ≈ − st

γ2
t

rk,l(x)

(
I − s2t

s2t + γ2
t

Uk,lU
⊤
k,l

)
.

This term captures the gradient leaking into other clusters due to overlap:

El
µ,cross(x) =

nk∑
j=1

C ′
1(x) · rk,j(x)rk,l(x)︸ ︷︷ ︸

ξj,l(x)

, (17)

where C ′
1(x) collects bounded vector terms. The norm of the error term is strictly bounded by the

overlap:

∥El
µ,cross(x)∥2 ≤ C ′

1

∑
j ̸=l

ξj,l(x).

For the Jacobian with respect to Uk, we have Similar derivation.

∥El
U,cross(x)∥2 ≤ C ′

2

∑
j ̸=l

ξj,l(x).

E.2.3 HESSIAN BLOCK STRUCTURE

The Hessian H for the parameters µ = [µk,1, . . . , µk,nk
] is a block matrix composed of nk × nk

blocks, where each block is D ×D.

Hµµ =


H1,1 H1,2 · · · H1,nk

H2,1 H2,2 · · · H2,nk

...
...

. . .
...

Hnk,1 Hnk,2 · · · Hnk,nk

 .

The (i, j)-th block is defined as:

Hi,j = Ex[J
µ
i (x)(J

µ
j (x))

⊤].

For diagonal blocks (i = j = l), the curvature is strictly determined by the expectation of the squared
weights E[rk,l(x)2]. Crucially, overlap causes signal attenuation, as the weight rk,l(x) drops below
1 in transition regions.

Using the identity rk,l(x)
2 = rk,l(x)(1−

∑
j ̸=l rk,j(x)), we derive the exact expectation:

E[rk,l(x)2] = E[rk,l(x)]−
∑
j ̸=l

E[rk,l(x)rk,j(x)]

= πk,l −
∑
j ̸=l

E[ξj,l(x)]

= πk,l − ϵtotal
k,l .
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Thus, we lower-bound the diagonal curvature by accounting for the total overlap mass ϵtotal
k,l leaking

from cluster l:

Hl,l ≈ E[(J ideal
l )(J ideal

l )⊤] ⪰ λdiag,l · I,

where the effective base curvature is:

λdiag,l = (πk,l − ϵtotal
k,l )min (λmin(Hµk,lµk,l

), λmin(HUk,lUk,l
))

Here, the term (πk,l − ϵtotal
k,l ) represents the effective probability mass contributing to convexity. This

formulation explicitly shows that smaller clusters (small πk,l) are significantly more vulnerable to
instability, as the effective mass can vanish if the overlap ϵtotal

k,l becomes comparable to the cluster size
πk,l.

For i ̸= j, the block Hi,j represents the interference.

Hi,j ≈ Ex[J
ideal
i (J ideal

j )⊤] ∝ E[rk,i(x)rk,j(x)].

E.2.4 PERTURBATION ANALYSIS

We write the full Hessian as a sum of a block-diagonal matrix and a perturbation matrix:

Hµµ = Hdiag +∆Hoverlap.

For the minimum eigenvalue of Hdiag,

λmin(Hdiag) = min
l

λmin(Hl,l) = min
l

λdiag,l ≜ λbase.

For Spectral Norm of ∆Hoverlap, by Weyl’s Inequality, the minimum eigenvalue of the full Hessian
is:

λmin(H) ≥ λmin(Hdiag)− ∥∆Hoverlap∥2.
and

∆Hoverlap ≤ C̃ · E[ξi,j(x)], (18)

where
C̃ = 2 (SµC

′
1 + SUC

′
2)

Substituting the bounds:

λmin(H) ≥ λbase − C̃ · ϵoverlap.

Therefore, H is positive definite if and only if:

ϵoverlap <
λbase

C̃
.

Interpretation: The optimization landscape is locally strictly convex provided the overlap between
clusters is smaller than the intrinsic curvature of the individual Gaussians.

E.2.5 FULL CONVERGENCE THEOREM

Combining the analysis of µ and the similar decoupling argument for U (using Schur complements
to handle HµU terms which are also O(ϵ)), we arrive at the final result.

Theorem E.2. Let L(θ) be the score matching loss. Assume the maximum expected overlap ϵoverlap
satisfies the condition ϵoverlap < τ for some threshold τ ∝ λbase. Then the Hessian H(θ⋆) is strictly
positive definite.
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Linear Convergence: Gradient descent with step size η converges as:

∥θ(t) − θ⋆∥2 ≤ ρt∥θ(0) − θ⋆∥2,

where the convergence rate ρ < 1 is determined by the effective condition number:

κeff =
L

λbase − C̃ϵoverlap
.

This proves that the High Separation Assumption is not a binary requirement, but rather a continuum.
The algorithm is robust to finite overlap, with the convergence rate degrading gracefully as the overlap
increases.
Remark E.3. It is important to note that physically, ϵoverlap will not be arbitrarily large.

F THE DETAIL OF THE REAL-WORLD EXPERIMENTS

In the part, we provide the detail of the experiments, including dataset and training pipeline. We use
MNIST and CIFAR-10 as the datasets, and we adopt the mixture Gaussian distribution as the prior
distribution in both cases.

For MNIST, our model consists of MLP-based encoder and decoder networks, each with a single
hidden layer of 256 dimensions. The model is trained with the AdamW optimizer at a learning rate
of 0.0005. We train 10 VAEs with the numbers 1 to 10 as the ten clusters.

On CIFAR-10, we implement a 3-layer RNN encoder and decoder for CIFAR-10. The encoder
hidden dimensions are [64, 128, 256], and the decoder’s are [256, 128, 64].And we train 10 VAEs for
each of the ten clusters based on the classification by category. Each layer in both networks stacks 3
recurrent blocks.The model is trained with the AdamW optimizer at a learning rate of 0.0001.

Our experiment was conducted on RTX4090.
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