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ABSTRACT

Human mobility generation aims to synthesize plausible trajectory data, which
is widely used in urban system research. While Large Language Model-based
methods excel at generating routine trajectories, they struggle to capture devi-
ated mobility during large-scale societal events. This limitation stems from two
critical gaps: (1) the absence of event-annotated mobility datasets for design and
evaluation, and (2) the inability of current frameworks to reconcile competitions
between users’ habitual patterns and event-imposed constraints when making tra-
jectory decisions. This work addresses these gaps with a twofold contribution.
First, we construct the first event-annotated mobility dataset covering three major
events: Typhoon Hagibis, COVID-19, and the Tokyo 2021 Olympics. Second,
we propose ELLMob, a self-aligned LLM framework that first extracts competing
rationales between habitual patterns and event constraints, based on Fuzzy-Trace
Theory, and then iteratively aligns them to generate trajectories that are both habit-
ually grounded and event-responsive. Extensive experiments show that ELLMob
wins state-of-the-art baselines across all events, demonstrating its effectiveness.

1 INTRODUCTION

Human mobility generation aims to synthesize plausible spatio-temporal trajectories of human
movement (Kim et al., 2024). The study of such trajectories offers deep insights for urban plan-
ning, transportation management, and public health (Duan et al., 2023; Chen et al., 2023; Li et al.,
2024). Moreover, synthetic trajectories provide a privacy-preserving alternative that permits broader
access and usage than sensitive real-world data. The emergence of Large Language Models (LLMs)
has modeled trajectories as a “spatio-temporal language on a map,” shifting the task from data dis-
tribution learning of traditional methods to instruction-based text generation (Choi et al., 2020; Feng
et al., 2025). They leverage powerful contextual understanding and reasoning capabilities, offering
advantages in semantic interpretability and versatility to different scenarios (Wang et al., 2024).

Current LLM-based methods explore various modeling strategies for generating realistic trajecto-
ries. One line of work studies single-stage direct prompting. For example, Wang et al. (2023); Feng
et al. (2024) concatenate available information such as long and short-term check-ins and instruct
an LLM to jointly model user preferences, geospatial distance, and sequential dynamics, yielding
coherent trajectories. Profile augmented modeling with a multi-stage pipeline is also a prominent
research direction. For instance, Wang et al. (2024); Gong et al. (2024); Ju et al. (2025) first apply
an LLM to infer semantic profiles from user histories such as personas and travel motivations, and
then condition generation on these high-level abstractions to produce personalized trajectories.

Although these methods achieve remarkable success, they still suffer from two key weaknesses. The
first is data scarcity leading to evaluation bias. These methods are developed and evaluated pri-
marily on datasets dominated by non-event days (stable period), resulting in questionable reliability
when modeling non-routine deviations caused by large-scale societal events (e.g., natural disasters,
public-health emergencies) (Zhong et al., 2024). As Figure 1 (a) illustrates, during a typhoon, travel
shifts away from coastal areas and unnecessary commutes are eliminated. Without reliable data to
evaluate their performance in modeling these dynamics, the reliability of these models for down-
stream applications, such as emergency response planning and transportation management under
stress, is severely reduced (Li et al., 2017). Another limitation is lack of a mechanism to reconcile
competing decisions. In these events, real-world human mobility combines habitual regularities
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Figure 1: Event-driven mobility generation by LLMs, which incorporates event context to capture
real-world human mobility on three different events: (1) Typhoon: evacuation from seaside, (2)
COVID-19 Pandemic: self-restraint, and (3) Olympics: restricted zones and traffic jam.

with shock-induced deviation (Song et al., 2014). As Figure 1 (b) and (c) show, while overall mobil-
ity patterns are altered, event-adapted trajectories preserve visits to essential anchor points (shared
nodes for both lines) of a user’s routine, such as workplaces. Current methods struggle to navigate
this duality, producing trajectories that either default to habitual patterns or are dominated by event
constraints. Thus, an explicit reconciliation mechanism is needed to generate plausible trajectories.

To tackle these challenges, we first develop an event-centric dataset to provide the necessary em-
pirical foundation for studying non-routine mobility. It covers trajectories from over a thousand
users in the Tokyo metropolitan area cross three large-scale societal events (COVID-19 Pandemic,
Typhoon Hagibis, Tokyo Olympics) with distinct mobility effects, in addition to a normal period for
baseline comparison. Second, we introduce ELLMob, a self-aligned LLM framework that incorpo-
rates cognitive theory to shift generic self-alignment from error correction to conflict reconciliation,
explicitly arbitrating between these competing decisions. Our key insight draws from Fuzzy-Trace
Theory (FTT) (Reyna & Brainerd, 1995), which posits that gist, the essential meaning distilled
from information, guides decisions under uncertainty. Event-driven mobility naturally fits this per-
spective, as individuals weigh habitual patterns against event-imposed constraints. Crucially, FTT
reveals that gist can be linguistically expressed, enabling us to analyze the decision basis of LLMs.
Building on these insights, ELLMob extracts three forms of gist to capture competing decision ra-
tionales: pattern gist (habitual tendencies) and event gist (constraint requirements), along with the
action gist (LLM’s current trajectory decision). Through iterative alignment of these gists, ELLMob
transforms trajectory decision into a traceable process where competitions are explicitly identified
and reconciled, generating habitually grounded and event-responsive trajectories.

Experiments show that on our event-centric dataset, existing methods often produce trajectories that
either default to routine patterns or overfit to event shocks (Figure 4), leading to poor generation
quality. In contrast, ELLMob effectively reconciles this duality, achieving the best performance
across four widely used metrics and surpasses strongest baselines with an average improvement
of 46.9% across all three events (Table 5). Ablation studies confirm the critical role of gist-level
reconciliation: incorporating cognitive-based self-alignment improves performance by an average
of 69.5% over non-aligned variants, highlighting its necessity for event-driven mobility modeling.
Main contributions of this work are summarized as:

• We construct the first event-centric human mobility dataset with detailed semantic information,
providing a foundation for studying the non-routine deviations caused by societal events.

• We provide the first empirical evidence that current LLM-based methods struggle to model human
mobility under societal events, revealing a critical research gap.

• We propose an FTT-inspired framework that constructs decision variables to explicitly reconcile
conflicts between habitual patterns and event constraints, enabling traceable decision-making.

• ELLMob achieves state-of-the-art (SOTA) performance across all evaluated scenarios, demon-
strating its effectiveness in generating plausible human mobility behaviors.
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2 RELATED WORK

2.1 HUMAN MOBILITY GENERATION

The task of human mobility generation focuses on synthesizing realistic trajectories (Sun et al.,
2023; Gong et al., 2023). Early deep learning methods applied sequential models like LSTMs and
attention-based RNNs to predict temporal dependencies and personal preferences (Hochreiter &
Schmidhuber, 1997; Kulkarni & Garbinato, 2017; Gao et al., 2017; 2018; Wang et al., 2018; Feng
et al., 2018; Luo et al., 2021). To improve trajectory fidelity, subsequent research shifted to deep
generative models, including GANs (Choi et al., 2020; Wang et al., 2021; Zhao & Wang, 2023; Jia
et al., 2024) and, more recently, diffusion models (Zhu et al., 2023b;a; Chu et al., 2024), which
excel at generating high-resolution location sequences. The emergence of LLMs introduced a new
approach, re-framing trajectory generation as a sequence generation task conditioned on contextual
prompts (Xue et al., 2022; Wang et al., 2023; Feng et al., 2024). However, the defined task for all
these preceding models has been to simulate the routine activity trajectories of users. Their ability
to generate faithful trajectories under sudden, non-stationary conditions such as disasters or public
health crises therefore remains unknown, compromising their real-world application. Our work
addresses this deficiency by defining the task of event-driven human mobility generation.

2.2 LLM FOR HUMAN MOBILITY MODELING

LLMs are currently applied across a range of human mobility modeling strategies (Wang et al., 2023;
Feng et al., 2024; Wang et al., 2024; Tang et al., 2024; Zhang et al., 2024; Beneduce et al., 2025).
For example, Wang et al. (2023) incorporated both long- and short-term dependencies from histori-
cal mobility data into LLMs to generate the next visiting location. Liang et al. (2024) used an LLM
with historical mobility Origin-Destination data to generate travel demand during public events at
the Barclays Center. Wang et al. (2024) integrated diverse user contexts, such as activity patterns,
motivations, and profiles, into an LLM to generate more interpretable daily trajectories. Existing
LLM-based methods fail to reconcile competing objectives during events: they either blindly follow
habitual patterns or event constraints, making them unable to effectively adapt to sharp mobility be-
havioral changes driven by events (Luo et al., 2024). In contrast, ELLMob is cognitive theory-driven
and incorporates a self-aligned mechanism that iteratively adjusts generated trajectories, shifting the
generation goal from maximizing statistical likelihood to cognitive plausibility.

3 PROBLEM DEFINITION

In this section, we define the terminology and formulate the event-driven trajectory genera-
tion problem. A trajectory τ is a time-ordered sequence of visited places, represented as
{(p0, t0), (p1, t1), . . . , (pn, tn)}, where each tuple (pi, ti) denotes a visit to place pi at time ti. Event
Context, denoted Ectx, is structured data describing the exogenous shock associated with a specific
event c. For a user u, we partition their historical trajectories within a pre-event window W pre(c)
into two disjoint sets based on a short-term duration Tshort−term relative to the start time of event
tc: long-term trajectories D

(u)
long−term = {τ (u,d) | d < tc −Tshort−term} and short-term trajectories

D
(u)
short−term = {τ (u,d) | d ≥ tc − Tshort−term}. These two datasets jointly characterize the prior mo-

bility patterns of the user. The objective of this task is to develop a generative model that generates
the event-driven trajectory: F : (D

(u)
long−term, D

(u)
short−term, Ectx) 7→ τ .

4 EVENT HUMAN MOBILITY DATA

To develop and evaluate the performance of models in capturing mobility shifts under varying events,
we construct a dataset from Tokyo trajectories collected via Twitter and Foursquare APIs (2019-
2021). It encompasses three distinct events selected to represent a spectrum of societal conditions,
as well as a normal period to establish a baseline. Detailed specifications are provided in Table 1.

For prolonged events (COVID-19 Pandemic and Tokyo Olympics), we focus on the first seven days
to capture pronounced behavioral shifts. COVID-19 Pandemic began with the State of Emergency
of Japan. 30-day window for normal period is used to establish a robust baseline of typical mo-
bility, averaging out weekly fluctuations. Pre-event period (two months) acts as training data for
deep learning baselines and a source for user pattern extraction for LLM-based baselines. Follow-
ing collection process described in Appendix B, we curated a dataset of 1,100 users who exhibited
consistently dense check-in activity throughout the study period. Each sample includes user ID, geo-
graphical coordinates, subcategory, subcategory ID, category, timestamp, and a comment, as shown
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Table 1: Specifications for experimental evaluation scenarios.

Event Event Period Pre-Event Period Description

Typhoon Hagibis 2019-10-12 ∼ 10-13 2019-08-13 ∼ 10-11 Natural disaster.
COVID-19 Pandemic 2020-04-07 ∼ 04-13 2020-02-07 ∼ 04-06 Public health emergency.
Tokyo 2021 Olympics 2021-07-23 ∼ 07-29 2021-05-24 ∼ 07-22 Pandemic-era large event.
Normal Period 2019-09-01 ∼ 09-30 2019-07-03 ∼ 08-31 Regular urban mobility.

in Appendix C. Table 2 shows key statistics of this dataset. Table 3 compares data dimensions across
major mobility datasets (GeoLife (Zheng et al., 2009), Gowalla (Cho et al., 2011), Foursquare (Yang
et al., 2015), and Yelp (Asghar, 2016)), revealing that ours cover all standard mobility dimensions.
To the best of our knowledge, our dataset is the first to cover a broad spectrum of distinct event
types (long-term vs. short-term, diverse semantics) with continuous, dense pre- and during-event
trajectories, enabling the precise analysis of behavioral transitions during societal shifts.

Table 2: Dataset statistics by scenario, detailing
the counts of check-ins, unique POIs, and POI
categories, with per-scenario totals.

Event Check-ins POIs Subcat.
Typhoon Hagibis 4,330 2,768 333
COVID-19 Pandemic 8,444 3,887 330
Tokyo 2021 Olympics 16,071 8,103 466
Normal Period 104,792 30,635 654
Agg. Pre-Event 643,027 90,832 763

Table 3: T, L, C, TC, N, and E denote time, lo-
cation, subcategory, comments, normal period
and explicit event annotation, respectively.

Dataset T L (lat,lon) C TC N E
GeoLife ✓ ✓ ✗ ✗ ✓ ✗
Gowalla ✓ ✓ ✗ ✗ ✓ ✗
Foursquare ✓ ✓ ✓ ✗ ✓ ✗
Yelp ✓ ✓ ✓ ✓ ✓ ✗
Ours ✓ ✓ ✓ ✓ ✓ ✓

To quantitatively ground this study, we present a statistical analysis to reveal distinct impacts of each
event on collective mobility. We adopt four widely-used metrics from the human mobility work
(Pappalardo et al., 2015; Alessandretti et al., 2020): daily check-ins, capturing activity intensity, the
radius of gyration and total travel distance, measuring spatial extent and volume, respectively, and
the daily activity duration, quantifying the temporal span. Results are shown in Figure 2. Specifi-
cally, COVID-19 Pandemic and Typhoon Hagibis significantly suppressed the scope and frequency
of movement. In contrast, Olympics reversed suppressive trend in activity of COVID-19 Pandemic.

Daily Travel
Distance

Normal Period Typhoon Hagibis Tokyo 2021 Olympics

Radius of Gyration

Daily 
Check-ins

Daily Activity Duration

25%
50%

75%
100%

During event
Pre-event

COVID-19 Pandemic

Figure 2: Normalized radar charts of four mobility metrics on pre-event and during-event patterns.

5 METHODOLOGY

5.1 EVENT SCHEMA CONSTRUCTION

A challenge in event-driven mobility generation is that real-world events are typically described in
lengthy, free-form text (e.g., news reports and policy documents), which often leads the LLM to
overlook critical information during trajectory generation (Liu et al., 2024; An et al., 2024). To
address this, an event schema construction step is introduced to transform raw event narratives into a
structured representation that explicitly outlines the event’s impact on population mobility patterns.
The event schema is designed around four distinct but complementary aspects that collectively cover
the key information required to assess mobility changes:

4
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Gist Extraction2

Gist extraction

Action gistEvent gist Pattern gist

Analyze the event... go beyond surface-level facts... 
state the gist... to provide a unified explanation for the 
observed behaviors of the public…

Synthesize pattern gist by capturing the points
of inertia … the points of failure; the gist should
be the underlying purpose or narrative...

Analyze the planned trajectory and planned
reason ... to explicitly state the action gist.

Evaluate if action gist is rational 
and mature for specific person in 
specific context.

Internal alignment
(Action gist vs. Pattern gist)
• Evaluate if action is contextually 

appropriate adaptation.
• Apply commonsense reasoning 

to tendencies not rigid rules.
• Accept context-justified 

temporary behaviors.
External alignment
(Action gist vs. Event gist)
• Conduct comprehensive risk 

assessment beyond venue.
• Assess if plan responds to 

event requirements and risks.
• Consider immediate safety and 

contingency planning.

Guidance Approved
R
eject

Alignment 
detection

Gist

Final 
trajectory

Data

Trajectory generation

Planned trajectory

Long-term traj.Short-term traj.Event Context

Reflection3Trajectory Generation1

The task is to generate user’s trajectory using [Long-
term traj.], [Short-term traj.], and [Event]… Provide
analytical justification by explaining how used the
input... state the core pattern identified... mention
the influence of the event.

Event schema 
construction

Regenerate

Figure 3: The ELLMob framework architecture comprising three interconnected modules: Trajec-
tory Generation, Gist Extraction, and Reflection-based alignment.

• Event profile: Records the fundamental elements of the event (e.g., type, name, occurrence time,
and affected regions). This provides an anchor for spatio-temporal alignment.

• Intensity and scale: Quantifies key metrics of the event’s severity, such as wind speed and amount
of precipitation, to inform travel risk assessment.

• Infrastructure and service impact: Describes the operational status of critical resources (e.g.,
transportation, public venues), defining the physical constraints on mobility.

• Official directives: Captures governmental orders and recommendations (e.g., a request for resi-
dents to avoid non-essential travel), including their applicable populations and geographic scope,
ensuring generated trajectories refer to policy mandates.

An LLM is leveraged to process the raw event text Ec into a structured key-value format, referred to
as event context Ectx, which subsequently serves as the input to the trajectory generation task. The
prompt is provided in Figure A6 and the generated contents are presented in Appendix E.

5.2 SELF-ALIGNED LLM FRAMEWORK

In Figure 3, we propose ELLMob, a cognitive theory-driven framework that employs an iterative
refinement process to reconcile competition between a user’s habitual patterns and event constraints.

5.2.1 THEORY OF PLANNED MOBILITY BEHAVIOR

Fuzzy-Trace Theory (FTT) (Reyna & Brainerd, 1995) provides a cognitive perspective on decision-
making under uncertainty, emphasizing that decisions are driven by gist, which refers to the bottom-
line (essential) meaning of information rather than verbatim details. A classic example is evacuation,
where the action is driven not by the exact probability that a tsunami will strike (e.g., 15%) but by
the gist that the risk is “high.” According to FTT, gist can be linguistically expressed, making the
decision-making basis transparent. In event-driven mobility generation, uncertain disruptions such
as natural disasters or epidemics require the model to navigate between two independent decision
bases: adhering to habitual mobility routines or complying with event-imposed constraints. Existing
LLM-based methods lack an explicit mechanism for arbitrating between these competing decisions,
leaving their rationale difficult to audit or control and tending to follow only one gist. By extracting
the gist underlying these decisions, we expose the model’s decision basis and resolve competition in
a transparent manner. We extract relevant gists: Pattern Gist and Event Gist, corresponding to two
independent decision bases, and Action Gist, representing LLM’s tentative plan.

• Pattern gist: A representation of the essential tendencies distilled from the user’s habitual mobility
patterns, reflecting stable movement routines.

• Event gist: A representation of the essential tendencies distilled from contextual constraints, cap-
turing constraints or incentives imposed by external events.

• Action gist: A representation of LLM’s immature mobility decision, extracted from the candidate
trajectory during planning.

We heuristically formalize these concepts as structured representations, where each gist is derived
by assessing the relevant source data along a set of core attributes, which is illustrated in Table 4.
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Building on this, we propose a reflection module in which the LLM audits the alignment of these
gist. This alignment process explicitly identifies conflicts that are then resolved through guided re-
finement to ensure that the final generated trajectory is grounded in a unified decision basis. Notably,
FTT offers a architecture design basis. It motivates a multi-gist decision framework, guides mapping
heterogeneous inputs into a unified gist space for consistent alignment, and drives the use of inter-
pretable bottom-line attributes over arbitrary features. Ablation study is provided in Appendix F.

Table 4: A set of defined core attributes that guide the gist extraction from source information.
Gist Type Attribute Description Example

Pattern Gist

Core Behavior The dominant pattern of action. Daily commute to a office.

Points of Inertia Deeply embedded,
non-negotiable components.

Returning home to a specific
neighborhood at night.

Points of Fracture Critical dependencies and
single points of failure.

Reliance on a single train line
that might be suspended.

Event Gist

Primary Intent Core implication of the event
for mobility decisions.

High risk outdoors, strong
incentive to stay home.

Behavioral Implications Survival, social dynamics, and
compliance.

Evacuation from coastal areas,
seeking indoor shelter.

Risk-Reward Calculus A cost-benefit analysis of the
response to event risks.

Risk of injury outweighs reward
of a non-essential outing.

Action Gist

Primary Intent Main purpose driving this
trajectory choice.

To get essential supplies from a
nearby store.

Habit Adherence Degree of preservation in
habitual patterns.

Low; this trip deviates from the
usual work commute.

Event Compliance Trajectory’s level of adherence
to event constraints.

High; the trip is short and
avoids dangerous areas.

5.2.2 REFLECTION-BASED ALIGNMENT

We replace single-pass decoding with an iterative reflect-refine loop that externalizes the model’s
decision basis for transparent reasoning. Moreover, unlike generic self-alignment approaches that
primarily correct errors such as hallucinations, our mechanism targets the decision-making dilemma
inherent in event-driven mobility scenarios. Our alignment performs in two stages:

Alignment Auditing. This process is dedicated to rigorously auditing the plausibility of a planned
trajectory. Each candidate trajectory is checked along two binary dimensions: Internal alignment
is to ascertain whether the planned trajectory reflects a coherent expression of the user’s intrinsic
habitual mobility patterns and current behavioral tendencies. External alignment determines if the
planned trajectory represents a rational and compliant response to the constraints and implications of
the event. A trajectory is accepted only if both criteria are satisfied. The auditor outputs two binary
judgments, accompanied by concise rationales that indicate any violated criterion and its cause.

Corrective Refinement. Should a planned trajectory fail to satisfy the criteria of either the internal
or external alignment audit, ELLMob initiates a corrective refinement loop. During this loop, the
precise reasons for the audit failure are provided as feedback to the trajectory generator, guiding it
to regenerate a revised trajectory that explicitly addresses the identified semantic misalignments and
logical flaws. This loop repeats up to a maximum of K iterations. A trajectory that satisfies both
criteria within the K-step budget is accepted as a final trajectory. In the rare event that constraints
remain unmet after K iterations, the system executes a fallback strategy. It accepts the last planned
trajectory as a best-effort result and explicitly reports the unmet constraints to ensure transparency.

To clearly understand the ELLMob, we show the overall procedure in pseudo-code form Appendix G
with complete contents of all related prompts provided in Appendix M.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Baselines. ELLMob is evaluated against two types of baselines: 1) deep learning-based meth-
ods which include predictive models: LSTM (Hochreiter & Schmidhuber, 1997), DeepMove (Feng
et al., 2018), GETNext (Yang et al., 2022), and MHSA (Hong et al., 2023); and generative models:
TrajGAIL (Choi et al., 2020) and DiffTraj (Zhu et al., 2023b). 2) LLM-based models: LLM-MOB
(Wang et al., 2023), LLM-Move (Feng et al., 2024), LLMOB (Wang et al., 2024), LLM-ZS (Bene-
duce et al., 2025). For fairness, the input event information remains consistent across all LLM-based

6
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Table 5: Comparison of different methods under three events. Performance is evaluated by JSD
across four dimensions with the best performance highlighted in bold.

Models Typhoon Hagibis COVID-19 Pandemic Tokyo 2021 Olympics
SI↓ SD↓ CD↓ SGD↓ SI↓ SD↓ CD↓ SGD↓ SI↓ SD↓ CD↓ SGD↓

LSTM 0.1336 0.1039 0.0555 0.1111 0.1928 0.1047 0.1300 0.2571 0.1147 0.0651 0.0598 0.0634
DeepMove 0.1697 0.0826 0.0266 0.0759 0.1838 0.0834 0.0423 0.1688 0.1667 0.0492 0.0587 0.0555
GETNext 0.3031 0.2007 0.0274 0.1037 0.2891 0.2241 0.0142 0.1354 0.2701 0.1473 0.0176 0.1204
MHSA 0.1430 0.1815 0.0118 0.0711 0.2180 0.3083 0.0254 0.0437 0.1815 0.2013 0.0120 0.0525
TrajGAIL 0.1034 0.3591 0.0155 0.0275 0.1600 0.3557 0.0195 0.0444 0.0863 0.2913 0.0121 0.0104
DiffTraj 0.1271 0.2450 0.0385 0.0761 0.1405 0.2766 0.0554 0.0454 0.0732 0.2171 0.0342 0.0282
LLMOB 0.0949 0.1195 0.0123 0.0256 0.1013 0.1051 0.0186 0.0286 0.0973 0.0274 0.0110 0.0051
LLM-MOB 0.1214 0.0468 0.0285 0.0344 0.1166 0.0532 0.0234 0.0353 0.1047 0.0286 0.0085 0.0052
LLM-Move 0.1267 0.0392 0.0136 0.0303 0.1408 0.0567 0.0127 0.0503 0.1967 0.0298 0.0101 0.0057
LLM-ZS 0.1574 0.1348 0.0153 0.0724 0.1146 0.0576 0.0552 0.0570 0.0938 0.0330 0.0132 0.0052

ELLMob 0.0642 0.0200 0.0041 0.0173 0.1003 0.0444 0.0080 0.0268 0.0617 0.0061 0.0022 0.0035
w/o I.A.&E.A. 0.1304 0.1270 0.0139 0.0723 0.2331 0.1077 0.1190 0.0733 0.1465 0.0340 0.0093 0.0095
w/o I.A. 0.0835 0.0720 0.0135 0.0436 0.1235 0.0950 0.1053 0.0300 0.1355 0.0316 0.0088 0.0086
w/o E.A. 0.0680 0.0258 0.0077 0.0229 0.2237 0.0860 0.0283 0.0430 0.1392 0.0291 0.0083 0.0064
w/o Eve. Ext. 0.0736 0.0273 0.0045 0.0227 0.2037 0.0741 0.0269 0.0405 0.0686 0.0213 0.0030 0.0041

methods. Specifically, detailed event descriptions (including type, time, location, and constraints)
are integrated as natural language context at the beginning of each prompt, ensuring that all baselines
have equal access to the event information despite differences in their specific prompt designs.

Evaluation Metrics. Step Interval (SI). The time between consecutive activities, defined as
SIt = τt+1−τt, where τt denotes the timestamp at step t; Step Distance (SD). The distance between
consecutive locations, defined as SDt = ∥lt+1 − lt∥2, where lt ∈ R2 denotes the location at step
t. Category Distribution (CD). This metric captures the distribution of activity types. To calculate
it, we aggregate the total number of visits N(ck) for each location category ck. Spatial Grid Dis-
tribution (SGD). It captures the population-level spatial footprint of activities. All visited locations
are discretized onto a fixed S × S grid covering the Tokyo metropolitan area, with visit counts ac-
cumulated per grid cell. To mitigate sparsity, following Ouyang et al. (2018); Feng et al. (2020), the
top 25% frequently visited cells are retained for evaluation. For each of the four metrics, we form
a distribution from the generated trajectories and compare it against the ground truth distribution
using the Jensen-Shannon Divergence (JSD), following Zhu et al. (2023b); Wang et al. (2024).

Implementation Details. We primarily use GPT-4o-mini (2025-01-01-preview) (Achiam et al.,
2023) as the backbone for its capability–cost balance, with additional LLM evaluations reported in
Appendix H. Following Wang et al. (2024), we set the temperature to 0.1 to curb randomness, Top-p
to 1, and model trajectories at a 10-minute resolution. Grid size parameter S is set to 10. K is set to
3 to balance refinement quality and inference cost based on the parameter study in Appendix K. A
stability analysis verifying result consistency is provided in Appendix L.

6.2 QUANTITATIVE RESULTS

Table 5 summarizes our main results, demonstrating ELLMob’s consistent superiority across all
event-driven settings. For instance, it improves the SI score by 32.3% for Typhoon Hagibis and the
SD score by 16.5% for the COVID-19 Pandemic compared to the strongest baselines. We observe
that LLM-based approaches generally outperform traditional deep learning models, particularly on
spatial coherence metrics (SD, SGD), benefiting from their ability to integrate event context. Fur-
thermore, to verify spatial generalizability beyond the Tokyo area, we extended evaluations to Osaka
during the COVID-19 pandemic, with detailed results provided in Appendix I.

The ablation study further dissects our ELLMob’s performance. Removing either the reflection mod-
ule (w/o I.A.&E.A.) or the event schema (w/o Eve. Ext.) consistently degrades performance. The
two components of the reflection module show distinct roles: Internal alignment (w/o E.A.) provides
foundational plausibility and external alignment (w/o I.A.) acts as a scenario-specific corrective. The
importance of external alignment is particularly evident during the COVID-19 Pandemic, where its
removal causes a catastrophic 132.4% performance degradation in the SI score. This highlights its
critical role in aligning with rational behaviors that substantially deviate from habitual patterns.
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(a) (c)

(b)

Figure 4: (a) Comparison of generated activity proportions (relative to the total number of activities)
during the COVID-19 Pandemic. Each chart contrasts the ground truth (G.T.), distribution with:
Without internal alignment (w/o I.A.), without external alignment (w/o E.A.), and the complete
model (Comp.). (b) Comparison of three key activity categories distributions generated by ELLMob
with various LLM-based baselines. (c) Performance comparison on the active user prediction task.

6.3 MODEL ANALYSIS

Analysis of Self-alignment. To dissect the distinct roles of internal and external alignment, we
analyze the generated distributions of three sensitive top-categories (Arts & Entertainment, Din-
ing & Drinking, and Health & Medicine) within the COVID-19 Pandemic. As shown in Figure 4
(a), removing either alignment leads to distinct failures. Lacking internal alignment, the model
over-corrects for the event, generating an unrealistic surge in Health & Medicine while excessively
suppressing Arts & Entertainment and Dining & Drinking activities. Conversely, without external
alignment, the model rigidly adheres to habitual patterns, producing the opposite failure. Further-
more, Figure 4 (b) reveals that most LLM-based baselines default to habitual patterns (PreEvent)
such as overestimating entertainment/dining while ignoring health-related travel, while LLM-ZS
overcorrects by suppressing social activities entirely. Both extremes demonstrate that these base-
lines are unable to reconcile habitual patterns with event constraints in trajectory decision. The
complete ELLMob successfully considers these two forces to produce a distribution that closely
matches the ground truth, demonstrating the effectiveness of the self-alignment mechanism.

Fundamental Decisions in Disasters. Accurately identifying individuals who travel during extreme
weather is critical for targeted early warnings and effective emergency response. We frame this as a
binary classification task to identify a potentially high-risk cohort, which we define as the positive
class of “active” users (at least one trip) during the typhoon. We evaluate LLM-based baselines
for their strong ability to incorporate event context. As shown in Figure 4 (c), ELLMob achieves
the highest F1-Score, driven by its superior recall of 59.3% in identifying this “active” high-risk
population. This effectiveness is likely attributed to the iterative alignment process, which enhances
LLM’s joint understanding of individual user mobility patterns and event constraints.

Case Study. To illustrate ELLMob’s reasoning process, Figure 5 presents a case study of a user
with a strong culinary exploration pattern during the COVID-19 Pandemic. The initially planned
trajectory (stay at home) over-aligns with the event’s public health constraints and is flagged by our
reflection module for conflicting with the user’s habitual patterns. Guided by this internal feedback,
the model iteratively refines the plan into a plausible trajectory that weighs both factors, ultimately
limiting rather than eliminating dining outings. This case highlights the ELLMob’s ability to recon-
cile user patterns with event constraints to generate realistic behaviors that match the ground truth.

6.4 EVALUATION ON ROUTINE MOBILITY

To assess ELLMob’s generality, we evaluate its performance in routine scenarios. Since ELLMob is
inherently event-driven, this evaluation requires defining a context for the normal period. We there-
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Activities at 2020-04-10: Home (Private) #3, ‘reason’: ‘Given the COVID-
19 emergency, the model recognizes that while essential activities are
permitted, leisure and non-essential outings should be minimized.”Generator

Auditor
(Reflection)

‘coherence_with_pattern’: False, ‘coherence_with_event’: True, ‘reason’:
“The planned trajectory of ‘stay at home’ conflicts with the individual‘s core
behavior pattern. This individual has a strong preference for dining out
and engaging in culinary experiences, which is a significant aspect of their
lifestyle. The abrupt shift to staying at home represents a deviation from
their established routine, potentially leading to feelings of dissatisfaction or
distress due to the lack of culinary exploration and self-care activities.
However, this action is contextually appropriate given the current self-
restraint requirement of a COVID-19 state of emergency…’

‘coherence_with_pattern’: True, ‘coherence_with_event’: True, ‘reason’:
“The user‘s planned trajectory reflects a balanced approach to their
established routine of culinary exploration while adhering to the current
COVID-19 state of emergency. The core behavior pattern indicates a
strong preference for dining out and exploring different cuisines, which is
maintained in the plan by limiting outings to two key meals. This
demonstrates a contextually appropriate adaptation to the current situation,
as the user is still engaging in their preferred activities while being mindful
of health guidelines. It shows a mature decision to prioritize health and
safety without completely abandoning their culinary interests…"

Generator

Activities at 2020-04-10: Fast Food Restaurant#583 at 09:00‘, ’Chinese
Restaurant#21 at 18:10, ‘reason’: ’ The new plan reflects a balanced
adaptation to the current COVID-19 Emergency while respecting the
user‘s established culinary exploration habits. The user typically enjoys
visiting restaurants, and the plan incorporates two of their preferred dining
locations within the constraints of essential outings…’

Ground Truth: Activities at 2020-04-10: Fast Food Restaurant#583 at 
09:00', 'Chinese Restaurant#21 at 18:10

Auditor
(Reflection)

Figure 5: A case study of ELLMob’s workflow
on the mobility of User No.003.

Table 6: Comparison of different methods under
the Normal period with the best in bold.

Models Normal period
SI↓ SD↓ CD↓ SGD↓

LSTM 0.1140 0.0696 0.0746 0.1499
DeepMove 0.1423 0.0428 0.0300 0.0742
GETNext 0.3071 0.1628 0.0126 0.0502
MHSA 0.1546 0.2346 0.0069 0.0269
TrajGAIL 0.0953 0.3432 0.0035 0.0104
DiffTraj 0.0748 0.1832 0.0361 0.0393
LLMOB 0.1460 0.1007 0.0051 0.0045
LLM-MOB 0.0654 0.0186 0.0059 0.0030
LLM-Move 0.1836 0.0261 0.0067 0.0036
LLM-ZS 0.0746 0.0311 0.0164 0.0027

ELLMob 0.0496 0.0164 0.0025 0.0025
w/o I.A.&E.A. 0.0639 0.0210 0.0041 0.0032
w/o I.A. 0.0545 0.0198 0.0026 0.0028
w/o E.A. 0.0556 0.0201 0.0037 0.0028

fore classify target days as either weekdays or weekends, defining their respective contexts by the
typical societal operating status (e.g., differences in business hours, public transport schedules). As
shown in Table 6, ELLMob outperforms all baselines. This confirms that the ELLMob’s alignment
mechanisms are not narrowly tailored to disruptive events, but instead constitute a robust foundation
that also excels in standard scenarios.

6.5 COMPARATIVE ABLATION ON ALIGNMENT STRATEGIES

Iterative-reflection methods such as Reflexion (Shinn et al., 2023), SELF-REFINE (Madaan et al.,
2023), and Air (Liu et al., 2025) enhance LLM reasoning via self-correction, mainly targeting hal-
lucinations or logical flaws in unstructured text. However, event-driven mobility requires resolving
conflicts between habitual inertia and event-induced constraints. ELLMob introduces a method-
ological shift by grounding alignment in cognitive theory. At representation level, it replaces un-
structured trajectories with structured decision variables to disentangle drivers. At decision level,
rather than prompting the model to “improve” an answer, ELLMob employs dual-axis alignment to
arbitrate competing objectives. This ensures trajectory adjustments are cognitively grounded rather
than surface-level, locally reasonable fixes. To isolate the effectiveness of this design, we replaced
ELLMob’s alignment module with each baseline strategy, while keeping all other settings identical.
As the results shown in Table 7, ELLMob outperforms these variants in all metrics. This validates
the necessity of the proposed alignment strategy for event-driven human mobility generation.

Table 7: Comparison with iterative-reflection baselines with the best performance in bold.

Models Typhoon Hagibis COVID-19 Pandemic Tokyo 2021 Olympics
SI↓ SD↓ CD↓ SGD↓ SI↓ SD↓ CD↓ SGD↓ SI↓ SD↓ CD↓ SGD↓

Reflexion 0.1106 0.1282 0.0841 0.0855 0.1685 0.0588 0.0146 0.0269 0.1741 0.0308 0.0378 0.0704
SELF-REFINE 0.1979 0.0637 0.0135 0.0193 0.2122 0.1053 0.0344 0.0294 0.0826 0.0320 0.0073 0.0058
Air 0.0764 0.0710 0.0198 0.0204 0.1858 0.0454 0.0256 0.0291 0.0774 0.0441 0.0053 0.0035
ELLMob 0.0642 0.0200 0.0041 0.0173 0.1003 0.0444 0.0080 0.0268 0.0617 0.0061 0.0022 0.0035

6.6 COMPUTATIONAL EFFICIENCY

We evaluated computational overhead via token consumption and inference latency on a per person
per day basis, with results in Table 8. Under GPT-4o-mini pricing, ELLMob uses 9,569 tokens and
18.68 seconds to generate one-day mobility for a single person, at $0.00170. While this multi-stage
architecture entails additional overhead compared to single-pass models, it demonstrates superior
efficiency relative to generic reflection baselines like Reflexion (Shinn et al., 2023). This efficiency
might stem from the integration of FTT, where structured alignment provides targeted guidance to
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Table 8: Computational Efficiency Analysis. The reported total token count includes both input and
output tokens, and the overall cost is computed by accounting for their respective pricing rates.

Model Token Count Inference Time (s) Cost (USD)
LLMOB 1,271 10.12 0.00030
LLM-MOB 3,954 3.72 0.00064
LLM-MOVE 4,954 4.05 0.00078
LLM-ZS 5,184 3.34 0.00080

Reflexion 26,057 27.12 0.00417
SELF-REFINE 15,382 21.16 0.00258
Air 15,514 20.50 0.00260
ELLMob 9,569 18.68 0.00170

accelerate convergence and avoids the excessive resource cost of open-ended iterative refinement.
Independent user-level generation allows parallelization, ensuring city-scale simulations feasible.

6.7 VISUALIZATION OF SPATIAL MOBILITY PATTERNS

Figure 6 presents heatmaps of the spatial mobility distribution during two high-impact events (Ty-
phoon Hagibis and the COVID-19 Pandemic), comparing ground truth against ELLMob, its ablated
version without the reflection module, and the strongest baseline LLMOB. Both our ablated model
and the strongest baseline LLMOB exhibit the core limitations of single-pass generation with im-
plicit trajectory decision, producing flawed spatial patterns: Excessive contraction during the ty-
phoon and incomplete decentralization during the COVID-19 Pandemic. In contrast, ELLMob’s
reflection module uses iterative alignment to achieve a fine-grained understanding of both user pat-
terns and event constraints, enabling it to reproduce realistic mobility patterns.

Typhoon

Covid

Ground truth No reflection Complete
1.00%

0.75%

0.50%

0.25%

0.00%

1.00%

0.75%

0.50%

0.25%

0.00%

LLMOB

Figure 6: Spatial mobility patterns. Darker red in the heatmaps indicates higher visit frequency.

7 CONCLUSION

This work addresses the critical challenge of modeling human mobility during large-scale soci-
etal events. We contribute a comprehensive event-centric dataset covering three major events in
Tokyo and introduce ELLMob, a framework that explicitly reconciles competing mobility decisions
through gist-based alignment. Through extensive experiments, ELLMob demonstrates substantial
improvements over existing methods, enabling more reliable mobility generation for emergency
planning and urban management applications. However, we acknowledge that data from these plat-
forms may introduce demographic biases, such as skewing towards younger users, which is a com-
mon limitation in LBSN research. Future work will aim to incorporate more diverse data sources.
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ETHICS STATEMENT

All data used in our study is fully anonymized. The dataset was collected through Twitter Inc.’s Aca-
demic Research Product Track and Foursquare APIs in strict compliance with their privacy policies
and terms of service. Our data collection and preprocessing methodology follows the established
work (Yang et al., 2016). While the data sources are legitimate, we recognize that cross-referencing
with original Twitter posts can potentially enable re-identification. To mitigate this risk, we imple-
mented the following anonymization measures: (1) User IDs are replaced with random numbers;
(2) Specific venue names are generalized to categories; (3) Exact timestamps are discretized into
time intervals; and (4) User-generated comments are provided only in translated form to prevent
linguistic fingerprinting. These comprehensive measures ensure that reverse identification is com-
putationally infeasible even with access to the original platforms. Detailed descriptions of these
privacy-preserving processes are included in the Appendix B.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have made our code and data publicly available in
the supplementary materials. Our experimental setup, including evaluation metrics and parame-
ter settings, are described in Section 6.1. Our data collection and filtering criteria are detailed in
Appendix B.
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A USE OF LARGE LANGUAGE MODELS

We employed LLMs for grammar checking and polishing the English expression throughout this
manuscript. It is important to note that while our research focuses on leveraging LLMs for human
mobility modeling, the LLMs studied in this work are the subject of our research rather than tools for
research ideation or scientific writing. All experimental design, analysis, and scientific conclusions
were developed independently by the authors.

B DATA COLLECTION, CLEANING AND ANONYMIZATION

Data Collection. The raw data used in this study are derived from Foursquare check-in records
that users publicly synced to Twitter, which are accessible through the Twitter API. We first used
the Twitter API to identify users who were active within a 100 km radius of Tokyo Station during
April 2021, and then retrieved all of their tweets from 2019 to 2021. We subsequently identified
Foursquare check-in tweets (auto-posted via the Foursquare→Twitter integration) and extracted the
associated metadata, including the Point-of-Interest (POI) name, category, and subcategory1, geo-
graphic coordinates (latitude & longitude), timestamp, and user-provided comment text. The ex-
tracted check-ins served as the raw dataset for this study. Importantly, these user-level records span
2019 to 2021, providing a longitudinal dataset that captures diverse social and environmental con-
texts, including but not limited to the Typhoon Hagibis, COVID-19 pandemic, and the Tokyo 2021
Olympics, which collectively form the foundation of this study.

Data Cleaning. After obtaining the raw dataset, we performed several cleaning steps to improve
data quality. First, we discarded users with missing check-ins for an entire year. Next, we parsed
geographic coordinates to obtain prefecture information and assigned each user to their most fre-
quently visited one. For example, users whose check-ins were primarily in Tokyo were labeled as
“Tokyo users”. We filtered the dataset to include only Tokyo users for two primary reasons: To
ensure a homogeneous dataset by mitigating confounding variables from adjacent prefectures and to
leverage the wide spectrum of mobility behaviors characteristic of a global mega city. Furthermore,
check-ins showing abrupt, unrealistic location changes (e.g., from Tokyo to Okinawa within a short
time frame) were removed to mitigate data drift, following the criteria adopted by Yang et al. (2016).
Finally, we retained only users with consistently dense check-in activity throughout the study pe-
riod, yielding a final dataset of 1,100 users and 567,080 check-ins. As illustrated in Figure A2, the
check-in distribution of these sampled users follows a power-law characteristic, which is consistent
with real-world human activity patterns (Yang et al., 2019).

Figure A2: Log-log plots of the Complementary Cumulative Distribution Function (CCDF) of
check-in counts. Left part of the figure shows the distribution of check-ins per POI. Left part of
the figure shows the distribution of check-ins per user. Both distributions exhibit a linear trend,
characteristic of a power-law.

Data Anonymization. To protect privacy, we applied deterministic, one-way pseudonymization to
all identifiers. Twitter user IDs were irreversibly mapped to integer surrogates, and POI identifiers
were processed in the same manner. POI names (e.g., “Yoshinoya Shinjuku”) were removed while

1https://docs.foursquare.com/data-products/docs/categories
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retaining only category information (e.g., major category “Dining and Drinking” and subcategory
“Donburi Restaurant”).

Further details are available in the supplementary materials, which include a portion of the raw data
and the source code.

C MOBILITY DATA SAMPLE

To provide a concrete illustration of the processed user activity trajectories used in our analysis,
Table A2 presents an exemplary sequence from a single user. This sample highlights the data struc-
ture, integrating precise spatio-temporal features (latitude, longitude, time) with functional seman-
tics (Location Name, Category), which forms the foundation for our mobility analysis.

Table A2: A user’s mobility sample, showcasing activity trajectories with spatio-temporal features
and comments.

User Lat. Long. Subcategory Sub. ID Category Timestamp Comments (Translated)

0022 35.652 139.543 Home Appliance Store 65 Retail 2020-04-07 18:40 Done with work! Chofu tan says a state
of emergency has been declared.

0022 35.633 139.578 Clothing Store 542 Retail 2020-04-10 19:20 For coronavirus prevention, credit cards
are now self-scan (this is ideal).

0022 35.632 139.578 Rail Station 2422 Travel & Transport 2020-04-10 19:30 But wait, isn’t this still considered close
contact?

D BEHAVIOR DISTRIBUTION

Figure A3 shows that different events impose distinct mobility behavior. For instance, Typhoon
Hagibis disrupts transportation, leading to widespread cancellations. Similarly, the declaration of
COVID-19 Pandemic canceled nearly all entertainment activities due to self-quarantine require-
ments.

42.84%

14.74%
9.33%

18.77%

6.87%

Typhoon Hagibis

18.09% 46.80%

16.10%

8.95%

COVID-19 Pandemic

47.86%

5.60%

12.25%

9.93%

16.87%

Tokyo 2021 Olympics

49.85%

5.80%

17.13%

12.01%

7.42%

Normal Period

Figure A3: A visualization of category distributions across four event scenarios. Each data point
represents the percentage share of the category out of the total activities in that scenario.

E EVENT SCHEMA

This section provides three complete instances of the event schema introduced in the main paper
(Typhoon Hagibis, Tokyo 2021 Olympics, and COVID-19 Pandemic). Each instance follows the
same four aspect structure used to derive the event context Ectx from raw text Ec. The content is
shown in Figure A4. Furthermore, this structured approach is highly extensible, allowing for the
integration of custom information to generate tailored outputs for any given event.
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Event Profile: The COVID-19 state of emergency declared by Prime Minister Shinzo Abe under Article 32 of the 
Act on Special Measures for Pandemic Influenza and New Infectious Diseases. The state of emergency covered 
Tokyo, Saitama, Chiba, Kanagawa, Osaka, Hyogo, and Fukuoka. 
Intensity & Scale: It did not entail a full lockdown but allowed prefectural governors to request residents to stay 
home for essential activities.
Infrastructure & Service Impact: Essential services like grocery stores, pharmacies, banks, public transport, and 
utilities were asked to continue operating with infection-control measures. Large commercial and entertainment 
facilities were requested to suspend or restrict operations.
Official Directives: Prefectural governors were authorized to request residents to stay home except for essentials 
like medical visits, shopping, or commuting. Non-compliant businesses could have their names disclosed.

Event Schema of COVID-19 Pandemic:

Event Profile: Typhoon Hagibis struck the Tokyo metropolitan area on October 12, 2019. 
Intensity & Scale: The typhoon reached Category 5 strength, bringing violent winds and heavy rainfall, with Tokyo 
recording over 240 mm of rain in 24 hours.
Infrastructure & Service Impact: More than 370,000 homes experienced power outages, leading to the 
suspension of all major transportation services and closure of popular attractions.
Official Directives: Authorities issued evacuation orders to over 800,000 households and urged approximately six 
million residents to stay indoors and monitor official advisories.

Event Schema of Typhoon Hagibis:

Event Profile: The 'Tokyo 2021 Olympics', starting from July 23, in Tokyo, Japan. 
Intensity & Scale: Significant traffic jams occurred in and around central Tokyo and Olympic venues due to with 
separate area lockdowns imposed by organizers and construction restricted access near venues. A notable but 
limited increase in travel to regional tourist destinations during the holiday period.
Infrastructure & Service Impact: Public transportation saw reduced usage, while regional tourist infrastructure 
experienced a temporary uptick in visitors.  However, overall tourism sector recovery remained incomplete 
compared to pre-pandemic levels.
Official Directives: Government advisories ‘stay at home’ measures during the COVID-19 state of emergency, 
targeting the population of Tokyo and surrounding areas.

Event Schema of Tokyo 2021 Olympics:

Figure A4: This figure shows three event schema instances (Typhoon Hagibis, COVID-19 pandemic,
and Tokyo 2021 Olympics), serving as structured contexts for event-driven mobility generation.

Algorithm 1 ELLMob: trajectory generation under event

Require: long-term data Dhist, short-term data Dshort-term, event context Ec, max iters Nmax

Ensure: Event-aware trajectory τfinal
1: Ectx ← EVENTSCHEMACONSTRUCTION(Ec)
2: Gpat ← EXTRACTPATTERNGIST(Dhist, Dshort-term)
3: Gevt ← EXTRACTEVENTGIST(E)ctx
4: Feedback ← NONE, τprev ← NONE
5: for i = 1 to Nmax do
6: if Feedback = NONE then
7: (τ, Justification)← GENERATEINITIALTRAJECTORY(Dhist, Dshort-term, Ectx)
8: else
9: (τ, Justification)←

REGENERATETRAJECTORY(Dhist, Dshort-term, Ectx, τprev, Feedback)
10: end if
11: Gact ← EXTRACTACTIONGIST(τ, Justification)
12: (Alignment, Feedback)← AUDITALIGNMENT(Gact, Gpat, Gevt)
13: if Alignment then
14: τfinal ← τ ▷ Accept
15: return τfinal
16: end if
17: τprev ← τ
18: end for
19: τfinal ← τ ▷ Last candidate
20: return τfinal
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F COMPONENT ANALYSIS OF FTT

To verify the concrete impact of FTT-guided design choices, we conducted additional ablation stud-
ies: A variant that relies mainly on raw features (verbatim) without gist abstraction (w/ verbatim),
and a variant that removes the bottom-line gist component, using generic summaries instead (w/o
bottom-line). As shown in Table A3, ELLMob consistently outperforms these variants across all
event scenarios. These results confirm that the FTT-guided framework concretely improves genera-
tion quality under event-driven mobility.

Table A3: Ablation study on the effectiveness of different FTT components with the best perfor-
mance highlighted in bold.

Models Typhoon Hagibis COVID-19 Pandemic Tokyo 2021 Olympics
SI↓ SD↓ CD↓ SGD↓ SI↓ SD↓ CD↓ SGD↓ SI↓ SD↓ CD↓ SGD↓

w/ verbatim 0.1511 0.0724 0.0230 0.0595 0.2071 0.0713 0.0324 0.0422 0.1030 0.0452 0.0054 0.0189
w/o bottom 0.0978 0.0443 0.0101 0.0327 0.1687 0.0690 0.0305 0.0333 0.0892 0.0364 0.0036 0.0082
ELLMob 0.0642 0.0200 0.0041 0.0173 0.1003 0.0444 0.0080 0.0268 0.0617 0.0061 0.0022 0.0035

G ALGORITHM PSEUDO-CODES

To clearly present the proposed framework, we outline the event-driven trajectory generation process
of ELLMob. This procedure integrates long-term and short-term mobility records with structured
event contexts, iteratively generating and auditing candidate trajectories until a satisfactory align-
ment with mobility patterns and event-specific constraints is achieved. Algorithm 1 summarizes
the key steps, from constructing the event schema and extracting representative gists to producing,
evaluating, and refining trajectories under feedback-guided auditing.

H ROBUSTNESS ACROSS ARCHITECTURES

To verify that the superior performance of ELLMob is intrinsic to our cognitive framework rather
than dependent on the specific LLM, we conducted a comparative evaluation using Gemini Flash 2.0
as the uniform backbone for all methods. As detailed in Table A4, ELLMob maintains the lowest
JSD scores across all event scenarios, mirroring its superior performance on previous benchmarks.
In contrast, baseline methods exhibit volatility when subjected to this backbone shift. For instance,
the SI of LLM-MOB deteriorates markedly from 0.1214 to 0.3180 in the Typhoon Hagibis, indi-
cating a strong dependency of the specific backbone. This divergence highlights that while baseline
performance is often contingent on model-specific characteristics, ELLMob effectively captures mo-
bility patterns through explicit cognitive alignment, ensuring consistent superiority independent of
the proprietary backbone.

To further substantiate the robustness and reproducibility of our framework, we extended the exper-
imental evaluation to include three representative open-source large language models: LLaMA3-8B
(Grattafiori et al., 2024), Qwen-2.5-14B (Yang et al., 2024), and DeepSeek-R1-Distill-Qwen-7B
(R1-Q7B) (DeepSeek-AI et al., 2025). This expansion mitigates concerns regarding the reliance on
proprietary APIs and confirms the adaptability of the method to local computing environments. As
presented in Table A5, ELLMob achieves consistent alignment performance across these diverse
backbones. The effectiveness on open-source LLMs confirms that the capability of ELLMob stems
from the cognitive alignment strategy rather than the inherent capacity of the underlying model.

I REGIONAL GENERALIZABILITY EVALUATION

The primary experiments in the main text focus on the Tokyo metropolitan area. To verify that
ELLMob generalizes to other geographical contexts and is not overfitted to a specific urban layout,
we extended our evaluation to Osaka. We constructed a new dataset comprising 1,100 users during
the COVID-19 pandemic, maintaining a scale consistent with the Tokyo dataset. Table A6 presents
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Table A4: Performance comparison of different methods using Gemini Flash 2.0. Performance is
evaluated by JSD across four dimensions with the best performance highlighted in bold.

Models Typhoon Hagibis COVID-19 Pandemic Tokyo 2021 Olympics
SI↓ SD↓ CD↓ SGD↓ SI↓ SD↓ CD↓ SGD↓ SI↓ SD↓ CD↓ SGD↓

LLMOB 0.1069 0.0743 0.0126 0.0196 0.0846 0.0693 0.0105 0.0292 0.0572 0.0281 0.0031 0.0087
LLM-MOB 0.3180 0.1726 0.2004 0.0968 0.1428 0.0660 0.0280 0.0459 0.0379 0.0154 0.0053 0.0065
LLM-Move 0.2383 0.0721 0.0887 0.0465 0.3683 0.0644 0.0378 0.0353 0.1979 0.0287 0.0097 0.0063
LLM-ZS 0.3466 0.1537 0.2556 0.1084 0.2788 0.1344 0.2489 0.1479 0.0967 0.0313 0.0137 0.0057

ELLMob 0.0850 0.0267 0.0087 0.0160 0.0546 0.0586 0.0069 0.0210 0.0113 0.0074 0.0016 0.0048

Table A5: Performance comparison of ELLMob across different open-source LLM backbones. Per-
formance is evaluated by JSD across four dimensions

Models Typhoon Hagibis COVID-19 Pandemic Tokyo 2021 Olympics
SI↓ SD↓ CD↓ SGD↓ SI↓ SD↓ CD↓ SGD↓ SI↓ SD↓ CD↓ SGD↓

LLaMA3-8B 0.0663 0.0512 0.0004 0.0132 0.0669 0.0624 0.0087 0.0263 0.0407 0.0322 0.0023 0.0030
Qwen-2.5-14B 0.1594 0.0607 0.0091 0.0115 0.0836 0.0646 0.0016 0.0225 0.0530 0.0238 0.0035 0.0021
R1-Q7B 0.0881 0.0516 0.0033 0.0203 0.1104 0.0993 0.0163 0.0392 0.0570 0.0251 0.0015 0.0071

the performance comparison against baseline methods, where ELLMob consistently outperforms all
competitors. This result demonstrates its adaptability to diverse urban layouts beyond Tokyo.

J EVENT GENERALIZABILITY EVALUATION

The primary experiments in the main text focus on events characterized by external restrictions or
exogenous shocks. To verify that ELLMob generalizes to traditional cultural festivities that induce
distinct, voluntarily driven deviation patterns, we extended our evaluation to the New Year scenario.
Table A7 presents the performance comparison against baseline methods. ELLMob consistently
outperforms baselines across all metrics, demonstrating its capability to model diverse event types.

Discussion of Event Scalability. The scalability of ELLMob stems from its ability to generalize
across distinct event semantics rather than overfitting to specific scenarios. The Event Schema mod-
ule converts diverse narratives into standardized semantic descriptors (e.g., traffic impact), creating a
universal conflict-resolution logic via the FTT-based alignment. To rigorously verify this generaliza-
tion, selected four events represent diverse and contrasting typologies along three key dimensions:

• Restrictive vs. Promotive: COVID-19 Pandemic and Typhoon Hagibis restrict movement, whereas
the New Year scenario promotes social gatherings.

• Stochastic vs. Periodic: Typhoon Hagibis is unpredictable and sudden, while New Year’s is peri-
odic and cyclic.

• Global vs. Local (Hybrid): The COVID-19 Pandemic affects the entire city globally, whereas the
Tokyo 2021 Olympics imposes hybrid constraints concentrated in specific zones.

Notably, we applied the identical framework and parameter settings across all scenarios. The consis-
tent performance across these contrasting types confirms that ELLMob can capture the underlying
logic of event-driven mobility. While extensive empirical validation is currently constrained by the
scarcity of high-quality event-mobility data in the community, this work, to the best of our knowl-
edge, is the first attempt to validate scalability across a wide spectrum of distinct event types.

K PARAMETER SENSITIVE STUDY OF ITERATION

As shown in Figure A5, performance improves substantially in the first three iterations with only
marginal gains thereafter, justifying our choice of K=3 as an effective trade-off between refinement
quality and computational cost.
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Table A6: Regional generalizability analysis on the Osaka data during the COVID-19 Pandemic.
Performance is evaluated by JSD across four dimensions with the best performance in bold.

Model SI SD CD SGD

LLMOB 0.1934 0.1589 0.0344 0.1201
LLM-MOB 0.1732 0.1617 0.0304 0.0988
LLM-MOVE 0.2134 0.1555 0.0698 0.1227
LLM-ZS 0.1531 0.1788 0.0299 0.1161
ELLMob 0.1131 0.1001 0.0120 0.0556

Table A7: Event generalizability analysis on the New Year scenario in Tokyo. Performance is
evaluated by JSD across four dimensions with the best performance in bold.

Model SI SD CD SGD

LLMOB 0.0776 0.0391 0.0230 0.0422
LLM-MOB 0.1061 0.0413 0.0318 0.0379
LLM-MOVE 0.2248 0.0493 0.0272 0.0550
LLM-ZS 0.0996 0.0497 0.0230 0.0481
ELLMob 0.0598 0.0250 0.0200 0.0317
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Typhoon Hagibis COVID-19 Pandemic Tokyo 2021 Olympics

Figure A5: Performance comparison across iteration numbers K = 1 to 5 for three major events:
Typhoon Hagibis, COVID-19 Pandemic, and Tokyo 2021 Olympics. Performance is measured using
Jensen-Shannon Divergence (JSD), where lower values indicate better performance.

L STABILITY ANALYSIS

Given the inherent stochastic nature of LLMs, generated outputs may vary across different runs with
the same input. To verify the robustness of our approach, we conducted repeated experiments across
5 distinct random seeds with the results shown in Table A8, Table A9, Table A10. As indicated by the
standard deviations, ELLMob consistently maintains high stability across different initializations.
These results demonstrate that while absolute performance may vary, ELLMob provides statistically
consistent predictions and is less sensitive to random seed variations.

M PROMPT

This appendix details the sequence of prompts utilized within the ELLMob framework. These
prompts work in concert to guide the LLM through the entire process, from initial data process-
ing to the final reflective generation of mobility trajectories.

Event context generation. To enable the LLM to interpret unstructured event descriptions, the
following prompt is used to transform raw text into a structured intelligence brief. It instructs the
model to act as an analyst, extracting key details and their implications for public behavior.
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Table A8: Stability analysis on the Typhoon Hagibis dataset. Results are reported as Mean ±
Standard Deviation across 5 independent runs.

Model SI SD CD SGD

LLMOB 0.1057±0.0277 0.1509±0.0386 0.0497±0.0243 0.0319±0.0170
LLM-MOB 0.1501±0.0170 0.0558±0.0208 0.0352±0.0096 0.0532±0.0430
LLM-MOVE 0.1242±0.0035 0.0407±0.0021 0.0131±0.0007 0.0290±0.0014
LLM-ZS 0.1601±0.0071 0.1335±0.0055 0.0155±0.0008 0.0750±0.0025
ELLMob 0.0649±0.0030 0.0220±0.0044 0.0046±0.0012 0.0162±0.0018

Table A9: Stability analysis on the COVID-19 Pandemic dataset. Results are reported as Mean ±
Standard Deviation across 5 independent runs.

Model SI SD CD SGD

LLMOB 0.1128±0.0173 0.1221±0.0298 0.0158±0.0038 0.0295±0.0047
LLM-MOB 0.1099±0.0107 0.0613±0.0263 0.0191±0.0072 0.0359±0.0066
LLM-MOVE 0.1789±0.0241 0.0511±0.0044 0.0457±0.0185 0.0544±0.0067
LLM-ZS 0.1108±0.0103 0.0551±0.0025 0.0442±0.0074 0.0605±0.0056
ELLMob 0.1002±0.0094 0.0443±0.0037 0.0079±0.0015 0.0279±0.0027

Table A10: Stability analysis on the Tokyo 2021 Olympics dataset. Results are reported as Mean ±
Standard Deviation across 5 independent runs.

Model SI SD CD SGD

LLMOB 0.1042±0.0131 0.0291±0.0036 0.0115±0.0017 0.0054±0.0006
LLM-MOB 0.1123±0.0067 0.0338±0.0083 0.0157±0.0084 0.0172±0.0127
LLM-MOVE 0.2027±0.0050 0.0304±0.0014 0.0111±0.0009 0.0053±0.0004
LLM-ZS 0.0953±0.0021 0.0320±0.0014 0.0147±0.0021 0.0060±0.0011
ELLMob 0.0606±0.0016 0.0063±0.0002 0.0021±0.0002 0.0037±0.0002

Initial trajectory generation. Once the event context is established, this prompt generates an
initial trajectory. It takes the user’s long-term and short-term trajectories, and the structured event
context as input, instructing the model to synthesize this information into a plausible daily plan and
provide an analytical justification for its reasoning.

To facilitate the reflection module, the framework extracts three distinct forms of gist: Event Gist,
Action Gist, and Pattern Gist.

Event Gist Generation. This prompt distills the core behavioral takeaway for the public from the
event information.

Action Gist Generation. This prompt infers the underlying intent from the generated trajectory
and its accompanying justification.

Pattern Gist Generation. This prompt analyzes the user’s long-term and short-term trajectory
logs to synthesize their core behavioral patterns, including strengths (points of inertia) and weak-
nesses (points of fracture).

Conflict Judgment. This prompt serves as the core of the auditing mechanism. It instructs the
model to act as a Critical Trajectory Auditor to evaluate the coherence between the Action Gist, the
user’s Pattern Gist, and the situational Event Gist.

Trajectory Regeneration. If the planned trajectory fails the conflict audit, this prompt is invoked.
It instructs the model to act as a Trajectory Plan Corrector, using the auditor’s feedback to regenerate
a revised plan that specifically resolves all identified inconsistencies.
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Figure A6: The details of event schema under three different events.

# SYSTEM ROLE
Your task is to generate a user's trajectory based on activity patterns.

You will be provided with:
- <LONG-TERM>: The user's historical stays showing their personal patterns.
- <SHORT-TERM>: Recent contextual information about the user's activities.
- <EVENT>: Current day event information (holidays, emergencies, or normal operations)
- <DAY_TYPE>: Indicates whether the current day is a weekday or a weekend

# CONTEXT & GOAL
Please generate the trajectory considering:
1. Event Impact Assessment: Check <EVENT> first to understand the day's context:
- Event: First, check the <EVENT> and it establishes the main context for the day. It should be treated as the 
reference for today's trajectory generation.
- During Holidays/Weekends: Expect an increase in leisure, social, and shopping activities. During Normal 
Weekdays: Assume regular routines.

2. Personal Patterns Priority: The user's individual patterns from <LONG-TERM> are the guide. Look for:
- Regular visits to specific places at certain times.
- Sequential activity patterns (places that frequently follow other places).

3. Recent-Aware Adaptation: Recent activities in <SHORT-TERM> may override personal if they indicate a 
change in routine.

4. Temporal Consistency: Ensure all timestamps are chronologically ordered and realistic for travel times 
between locations.

5. Analytical Justification (For the "reason" field): It must be a third-person, analytical summary explaining how 
you used the inputs to generate the plan. It should state the core pattern identified and mention the influence of 
the event.
a

The data are as follows:
<LONG-TERM>: !<INPUT 0>!
<SHORT-TERM>: !<INPUT 1>!
<EVENT>: !<INPUT 2>!
<DAY_TYPE> !<INPUT 3>!

# OUTPUT
Response STRICTLY to the prompt above in JSON in the *following* format:
{"plan": [<Location> at <Time>, <Location> at <Time>,...], "reason":...}

Initial trajectory generation

Figure A7: The prompt of initial trajectory generation.
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Figure A8: The prompt of event gist generation.

Figure A9: The prompt of action gist generation.
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# SYSTEM ROLE
You are an expert Behavioral Pattern Analyst. Your expertise is in synthesizing detailed activity logs into a high-
level understanding of a person's life structure, identifying both its core strengths and critical dependencies.
Your mission is to analyze an individual’s long-term and short-term activity data to derive their "Pattern Gist". 
You need to consider the routine's core points of inertia (strengths) and points of fracture (weaknesses).

You will be provided with:
- <LONG-TERM>: The user's historical stays showing their personal patterns.
- <SHORT-TERM>: Recent contextual information about the user's activities.

# INSTRUCTION
1. Synthesize the Core Behavior: Based on the [SHORT-TERM] and considering the [SHORT-TERM],
first synthesize and clearly state the initial Pattern Gist. This should be a high-level summary of their dominant 
pattern of action.
Critical guidance: Your analysis must go beyond simply listing the most frequent, generic locations.
The goal is to find the underlying purpose or narrative that connects these individual data points.
Focus on what makes this person‘s pattern specific and characteristic.
For example, is the combination of regular visits to a Government Office, an Elementary School, and a large 
Supermarket indicative of a "structured public servant's life",
"a parent’s daily routine" or "a mix of professional and family responsibilities"?
Your gist must capture this deeper meaning and consider points of inertia and fracture.

2. Identify Points of Inertia (Strengths):
Based on the Pattern Gist, what are the most deeply embedded, almost non-negotiable components of the 
routine?
Identify the rituals, obligations, or habits that create the strongest "pull" to maintain this pattern.

3. Identify Points of Fracture (Weaknesses):
What are the external dependencies required for the Pattern Gist to function?
Identify the single points of failure (e.g., reliance on public transport, specific store availability, power grid) that,
if disrupted, would make this pattern impossible to follow.

The data are as follows:
<LONG-TERM>: !<INPUT 0>!
<SHORT-TERM>: !<INPUT 1>!

# OUTPUT
**Pattern-Gist:**
Directly state the **gist** that embodies the core structure of the user's routine.

Pattern gist generation

Figure A10: The prompt of pattern gist generation.
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Figure A11: The prompt of conflict judgment.
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# SYSTEM ROLE
You are a “Trajectory Plan Corrector”. Your sole purpose is to fix a flawed plan based on an expert's audit 
report.

# CONTEXT & GOAL
A user’s initial plan <LAST_PLAN> was evaluated by a Rationality Auditor and deemed irrational. The 
auditor's report <FAILED_PLAN_REASON> explains what was wrong. Your task is to generate a new, revised 
plan that **specifically addresses and resolves every concern** raised in the auditor's report. The auditor's 
feedback should be followed.
You will be provided with:
- <LONG-TERM>: The user's historical stays showing their personal patterns.
- <SHORT-TERM>: Recent contextual information about the user's activities.
- <EVENT>: Current day event information (holidays, emergencies, or normal operations)
- <DAY_TYPE>: Indicates whether the current day is a weekday or a weekend
- <LAST_PLAN>: The previous plan JSON that failed checking
- < FAILED_LAST_PLAN_REASON>: The auditor’s failure report

# MANDATORY CORRECTION PROCESS
1. EXTRACT every failure point from <FAILED_PLAN_REASON>
2. MAP each failure to a specific correction
3. VERIFY no failure point is missed
4. VALIDATE the new plan against ALL criteria
The new "plan" should be the corrected trajectory.
Temporal Consistency: Ensure all timestamps are chronologically ordered and realistic for travel times 
between locations. The "reason" should be an overall justification for the new plan. Analytical Justification (For 
the "reason" field): It must be a third-person, analytical summary explaining how you used the inputs to 
generate the plan. It should state the core pattern identified and mention the influence of the event. Generate 
your response as a single JSON object.

The data are as follows:
<LONG-TERM>:  !<INPUT 0>!
<SHORT-TERM>:  !<INPUT 1>!
<EVENT>:    !<INPUT 2>!
<DAY_TYPE>:  !<INPUT 3>!
<LAST_PLAN>: !<INPUT 4>!
<FAILED_LAST_PLAN_REASON> !<INPUT 5>!

# OUTPUT
Response STRICTLY to the prompt above in JSON in the *following* format:
{"plan": [<Location> at <Time>, <Location> at <Time>,...], "reason":...}

Trajectory regeneration

Figure A12: The prompt of trajectory regeneration.
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