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Abstract
Imputation is a popular technique for handling missing data. We address a nonpara-
metric imputation using the regularized M-estimation techniques in the reproducing 
kernel Hilbert space. Specifically, we first use kernel ridge regression to develop 
imputation for handling item nonresponse. Although this nonparametric approach 
is potentially promising for imputation, its statistical properties are not investigated 
in the literature. Under some conditions on the order of the tuning parameter, we 
first establish the root-n consistency of the kernel ridge regression imputation esti-
mator and show that it achieves the lower bound of the semiparametric asymptotic 
variance. A nonparametric propensity score estimator using the reproducing kernel 
Hilbert space is also developed by the linear expression of the projection estimator. 
We show that the resulting propensity score estimator is asymptotically equivalent to 
the kernel ridge regression imputation estimator. Results from a limited simulation 
study are also presented to confirm our theory. The proposed method is applied to 
analyze air pollution data measured in Beijing, China.

Keywords  Imputation · Kernel ridge regression · Missing at random · Propensity 
score

1  Introduction

Missing data is a universal problem in statistics. Ignoring cases with missing val-
ues can lead to misleading results (Kim and Shao 2021; Little and Rubin 2019). 
Two popular approaches for handling missing data are imputation and propensity 
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score weighting. Both approaches are based on some assumptions about the data 
structure and the response mechanism. To avoid potential biases due to model 
misspecification, instead of using strong parametric model assumptions, non-
parametric approaches are preferred as they do not depend on explicit model 
assumptions.

In principle, any prediction technique can be used to impute missing values using 
the responding units as a training sample. However, statistical inference with an 
imputed estimator is not straightforward. Treating the imputed data as if observed 
and applying the standard estimation procedure may result in misleading inference, 
leading to an underestimation of the variance of the imputed point estimators. How 
to incorporate the uncertainty of the estimated parameters in the final inference is 
challenging, especially for nonparametric imputation because the model parameter 
is implicitly defined.

For nonparametric imputation, Cheng (1994) used kernel-based nonparamet-
ric regression for imputation and established the root-n consistency of the imputed 
estimator. Chen and Shao (2001) considered nearest neighbor imputation and dis-
cuss its variance estimation. Wang and Chen (2009) employed the kernel smooth-
ing approach to make empirical likelihood inference with missing values. Yang and 
Kim (2020) considered predictive mean matching for imputation and established its 
asymptotic properties. Sang et al. (2022) proposed semiparametric fractional impu-
tation using Gaussian mixtures.

For nonparametric propensity score estimation, Hainmueller (2012) proposed 
so-called the entropy balancing method to find the propensity score weights using 
the Kullback-Leibler information criterion with a finite dimensional basis func-
tion. Chen et al. (2013) established the root-n consistency of the kernel-based non-
parametric propensity score estimator. Chan et  al. (2016) generalized the entropy 
balancing method of Hainmueller (2012) further to develop a general calibration 
weighting method that satisfies the covariance balancing property with increasing 
dimensions of the control variables. They further showed the global efficiency of the 
proposed calibration weighting estimator. Zhao (2019) generalized the idea further 
and developed a unified approach of covariate balancing propensity score method. 
Tan (2020) developed regularized calibrated estimation of propensity scores with 
high-dimensional covariates. Although nonparametric kernel regression can be used 
to construct a nonparametric propensity score estimation, as in Chen et al. (2013), it 
is not clear how to generalize it to a wider function space to obtain a nonparametric 
propensity score estimation.

In this paper, we consider regularized M-estimation as a tool for nonparamet-
ric imputation and also for the nonparametric propensity score function. The ker-
nel ridge regression Hastie et al. (2009); Shawe-Taylor and Cristianini (2004) is 
an example of regularized M-estimation for a modern regression technique. By 
using a regularized M-estimator in reproducing kernel Hilbert space (RKHS), 
kernel ridge regression can estimate the regression function with the complex 
reproducing Hilbert kernel space while a regularized term makes the original 
infinite-dimensional estimation problem viable (Wahba 1990). Due to its flex-
ibility in the choice of kernel functions, kernel ridge regression is very popu-
lar in machine learning. van de Geer (2000); Mendelson (2002); Zhang (2005); 
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Koltchinskii (2006); Steinwart et al. (2009); Zhang and Simon (2023) studied the 
error bounds for the estimates of the kernel ridge regression method.

While the kernel ridge regression (KRR) is a promising tool for handling missing 
data, its statistical inference is not investigated in the literature. We aim to fill this 
important research gap in the missing data literature by establishing the statistical 
properties of the KRR imputation estimator. Specifically, we obtain root-n consist-
ency of the KRR imputation estimator in some popular functional Hilbert spaces.

Because the KRR is a general tool for nonparametric regression with flexible 
assumptions, the proposed imputation method can be widely used to handle miss-
ing data without employing parametric model assumptions. Variance estimation 
after the KRR imputation is a challenging but important problem. To our knowl-
edge, this is the first paper to consider the kernel ridge regression technique for 
imputation and to discuss its variance estimation rigorously.

The regularized M-estimation technique in RKHS is also used to obtain a non-
parametric propensity score function to handle missing data. By utilizing the 
linear smoother form of the KRR imputation, we can easily find the propensity 
score weights for the responding units. The resulting propensity score estimator is 
equivalent to projection estimation using kernel ridge regression. The propensity 
score weights approximately satisfy the model calibration. The resulting estima-
tor achieves optimality in the sense of Robins (1994) and the propensity weights 
are constructed from the same kernel functions for nonparametric imputation. 
The propensity weights can also be used to estimate the influence function for 
variance estimation.

The paper is organized as follows. In Sect.  2, the basic setup and the KRR 
method are introduced. In Sect. 3, the root-n consistency of the KRR imputation 
estimator is established. The propensity score estimation is discussed in Sect. 4. 
Results from a limited simulation study are presented in Sect. 5. An illustration 
of the proposed method to a real data example is presented in Sect. 6. Some con-
cluding remarks are made in Sect. 7.

2 � Basic setup

Consider the problem of estimating � = E(Y) from an independent and identically 
distributed sample {(xi, yi), i = 1,… , n} of random vector (X, Y) , where Y is a real-
valued random variable and X is a d-dimensional random variable that serves as 
auxiliary information. Instead of always observing yi , suppose that we observe yi 
only if �i = 1 , where �i is the response indicator function of the unit i taking val-
ues in {0, 1} . The auxiliary variables xi are always observed. We assume that the 
response mechanism is missing at random (MAR) in the sense of Rubin (1976). 
Specifically, given the auxiliary information X , the response variable Y and the 
missing indicator variable � are conditionally independent, that is, Y ⟂ � ∣ X.

Under MAR, we can develop a nonparametric estimator m̂(x) of m(x) = E(Y ∣ x) 
and construct the following imputation estimator for �:
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If m̂(x) is constructed using the kernel-based nonparametric regression method, we 
can express

where Kh(⋅, ⋅) is the kernel function with bandwidth h. Specifically, 
Kh(xi, x) = K(xi∕h, x)∕h . Under some suitable choice of bandwidth h, Cheng (1994) 
first established the root-n consistency of the imputation estimator (1) with nonpara-
metric function in (2). However, kernel-based regression imputation in (2) is appli-
cable only when the dimension of x is small.

In this paper, we extend the work of Cheng (1994) by considering a more general 
type of nonparametric imputation, called kernel ridge regression imputation. The ker-
nel ridge regression (KRR) can be understood using the reproducing kernel Hilbert 
space theory (Aronszajn 1950) and can be described as

where ‖m‖2
H

 is the norm of m in the reproducing kernel Hilbert space H and 𝜆(> 0) 
is a tuning parameter for regularization. Here, the inner product ⟨⋅, ⋅⟩H is induced by 
a kernel function, i.e.,

for any x ∈ X ⊂ ℝ
d, f ∈ H , namely, the reproducing property of H . Naturally, this 

reproducing property implies the H norm of f: ‖f‖H = ⟨f , f ⟩1∕2
H

 . Schölkopf et  al. 
(2002) provides a comprehensive overview of machine learning techniques using 
reproducing kernel functions.

One canonical example of such a functional Hilbert space is the Sobolev space. Spe-
cifically, assuming that the domain of such functional space is [0, 1], the Sobolev space 
of order � can be denoted as

where ℂ[0, 1] denotes the absolutely continuous function on [0,  1]. One possible 
norm for this space can be

In this section, we employ the Sobolev space of second order as the approximation 
function space. For a Sobolev space of order � , we have the kernel function.

(1)�̂I =
1

n

n∑

i=1

{
�iyi + (1 − �i)m̂(xi)

}
.

(2)m̂(x) =

∑n

i=1
�iKh(xi, x)yi∑n

i=1
�iKh(xi, x)

(3)m̂ = argmin
m∈H

�
n�

i=1

�i
�
yi − m(xi)

�2
+ �‖m‖2

H

�
,

⟨f ,K(⋅, x)⟩H = f (x),

W
�

2
=
{
f ∶ [0, 1] → ℝ ∣ f , f (1),… , f (�−1) ∈ ℂ[0, 1], f (�) ∈ L2[0, 1]

}
,

‖f‖2
W

�

2

=

�−1�

q=0

�

∫
1

0

f (q)(t)dt

�2

+ ∫
1

0

�
f (�)(t)

�2
dt.
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where kq(x) = (q!)−1Bq(x) and Bq(⋅) is the Bernoulli polynomial of order q. The 
smoothing spline method is a special case of the kernel ridge regression method.

By the representer theorem for reproducing kernel Hilbert space (Wahba 1990), 
the estimate in (3) lies in the linear span of {K(⋅, xi), i = 1,… , n} . Specifically, we 
have

where

where �n = diag (�1,… , �n),K = (K(xi, xj))ij ∈ ℝ
n×n , y = (y1,… , yn)

T and In is the 
n × n identity matrix.

The tuning parameter � is selected through generalized cross-validation in kernel 
ridge regression, where the criterion for � is

and A(�) = �nK(�nK + �In)
−1
�n . The value of � that minimizes the criterion (5) is 

used to select the tuning parameter.
Using the kernel ridge regression imputation in (3), we can obtain the imputed 

estimator in (1). Because m̂(x) in (4) is a nonparametric regression estimator of 
m(x) = E(Y ∣ x) , we can expect that this imputation estimator in (1) is consistent for 
� = E(Y) under missing at random, as long as m̂(x) is a consistent estimator of m(x) . 
Surprisingly, it turns out that the consistency of �̂I to � is of order Op(n

−1∕2) , while 
the pointwise convergence rate for m̂(x) to m(x) is slower. This phenomenon is con-
sistent with the result of Cheng (1994) for kernel-based nonparametric regression 
imputation.

We aim to establish two goals: (i) find sufficient conditions for the root-n consist-
ency of the KRR imputation estimator and give a formal proof; (ii) find a lineariza-
tion variance formula for the KRR imputation estimator. The first part is presented 
formally in Theorem 1 in Sect. 3. For the second part, we employ a simple algebra 
to obtain a consistent estimator of �(x) = {�(x)}−1 in the linearized version of �̂I , 
where �(x) = E(� ∣ x) . The estimation of �(x) will be presented in Sect. 4.

3 � Main theory

Before we develop our main theory, we first introduce Mercer’s Theorem.

K(x, y) =

�−1∑

q=0

kq(x)kq(y) + k
�
(x)k

�
(y) + (−1)�k2�(|x − y|),

(4)m̂(⋅) =

r∑

i=1

�̂i,�K(⋅, xi),

�̂� =
(
�nK + �In

)−1
y,

(5)GCV (�) =
n−1

‖‖‖
{
In − A(�)

}
y
‖‖‖
2

2

n−1tr(In − A(�))
,
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Lemma 1  (Mercer’s theorem) Given a continuous, symmetric, positive definite ker-
nel function K ∶ X × X ↦ ℝ . For x, z ∈ X  , under some regularity conditions, Mer-
cer’s theorem characterizes K by the following expansion

where �1 ≥ �2 ≥ … ≥ 0 is a non-negative sequence of eigenvalues, {�j}
∞
j=1

 is an 
orthonormal basis (eigenfunctions) for L2(ℙ) and ℙ is the given distribution of X on 
X  . The eigenvalues and the eigenfunctions satisfy

Furthermore, we make the following assumptions. 

[A1]	 For some k ≥ 2 , there is a constant 𝜌 < ∞ such that E[�j(X)
2k] ≤ �2k for all 

j ∈ ℕ , where {�j}
∞
j=1

 are orthonormal basis by Karhunen-Loève expansion of 
Mercer’s theorem.

[A2]	 The function m ∈ H , and for x ∈ X  , we have E[{Y − m(x)}2 ∣ x] ≤ �2 , for 
some 𝜎2 < ∞.

[A3]	 The response mechanism is missing at random. Furthermore, the propensity 
score �(x) = P(� = 1 ∣ x) is uniformly bounded away from zero. In particular, 
there exists a positive constant c > 0 such that �(xi) ≥ c , for i = 1,… , n.

The first assumption is a technical assumption that controls the tail behavior of 
{�j}

∞
j=1

 . Assumption 3 indicates that the noise has a bounded variance. Assumption 
3 and Assumption 3 together aim to control the error bound of the kernel ridge 
regression estimate m̂ . Furthermore, Assumption 3 means that the support for the 
respondents should be the same as the support of the original sample. Assumption 3 
is a standard assumption for missing data analysis.

We further introduce the following lemma. Let S� = (In + �K−1)−1 be the linear 
smoother for the KRR method. That is, m̂ = S��ny be the best predictor of y using 
the kernel ridge regression method, where �n = diag (�1,… , �n) . We now present 
the following lemma without proof, which is modified from Lemma 7 in Zhang 
et al. (2013).

Lemma 2  Under [A1]-[A2], for a random vector z = E(z) + �� , we have

where an = (a1,… , an)
T and

for i = 1,… , n , as long as E(‖‖zi‖‖H) and �2 is bounded from above, for i = 1,… , n , 
where � = (�1,… , �n)

T are noise vector with mean zero and bounded variance and

K(x, z) =

∞∑

j=1

�j�j(x)�j(z),

�j�j(x) = ∫
X

K(x, z)�j(z)ℙ(dz), for j = 1, 2,… .

S�z = E(z ∣ x) + an,

(6)ai = Op

(
�1∕2 + {�(�)}1∕2n−1∕2

)
,
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is the effective dimension and {�j}
∞
j=1

 are the eigenvalues of the kernel K used in 
m̂(x).

The first term in (6) denotes the order of the bias term, and the second term 
denotes the square root of the variance term. Specifically, we have the asymptotic 
mean square error for m̂,

For the �-th order of Sobolev space, we have �j ≤ Cj−2� and

Note that (7) is minimized when � ≍ �(�)∕n, which is equivalent to � ≍ n−2�∕(2�+1) 
under (8). The optimal rate � ≍ n−2�∕(2�+1) leads to

which is the optimal rate in Sobolev space, as discussed by Stone (1982).
To investigate the asymptotic properties of the kernel ridge regression imputation 

estimator, we express

Therefore, as long as we can show

then we can establish the root-n consistency. The following theorem formally states 
the theoretical result. A proof of Theorem  1 is presented in the supplementary 
material.

Theorem 1  Suppose Assumption [A1]-[A3] hold for a Sobolev kernel of order � , as 
long as

�(�) =
∞∑

j=1

�j

�j + �
,

(7)AMSE (m̂) = O(1) ×
�
�‖m‖2

H
+ n−1�(�)

�
.

(8)�(�) =
∞∑

j=1

(1 + j2��)−1 ≤ O
(
�−1∕(2�)

)
.

(9)AMSE (m̂) = O(n−2�∕(2�+1))

�̂I =
1

n

n∑

i=1

{
�iyi + (1 − �i)m̂(xi)

}

=
1

n

n∑

i=1

m(xi)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
Rn

+
1

n

n∑

i=1

�i
{
yi − m(xi)

}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Sn

+
1

n

n∑

i=1

(1 − �i)
{
m̂(xi) − m(xi)

}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Tn

.

(10)Tn =
1

n

n∑

i=1

�i

{
1

�(xi)
− 1

}{
yi − m(xi)

}
+ op(n

−1∕2),

(11)n� → 0, n�1∕2� → ∞,
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we have

where

with

Remark 1  Note that the optimal rate � ≍ n−2�∕(2�+1) does not satisfy the first part of 
(11). To control the bias part, we need a smaller � such as � = n−� with 𝜅 > 1 . Simi-
lar conditions are used for bandwidth selection for nonparametric kernel regression 
with bandwidth h:

for dim (x) = 1 . See Wang and Chen (2009) for details.

Remark 2  Theorem 1 is presented for a Sobolev kernel, and any kernel whose eigen-
values have the same tail behavior as Sobolev of order � also has the result as Theo-
rem 1. For sub-Gaussian kernel whose eigenvalues satisfy

where c1, c2 are positive constants, we can establish similar results. To see this, note 
that

where the second term in the last equation can be obtained by the Gaussian tail 
bound inequality. Therefore, as long as n� → 0 and n{− log(�)}−1∕2 → ∞ , we have 
n−11T

n
a = op(n

−1∕2) and the root-n consistency can be established.

Remark 3  Using m̂(xi) , we can also construct the projection estimator 
�̂p = n−1

∑n

i=1
m̂(xi) . It can be shown that the projection estimator is asymptotically 

equivalent to the imputation estimator �̂I in (1) under the assumptions of Theorem 1.

Note that the asymptotic variance of the imputation estimator is equal to n−1�2 , 
which is the lower bound of the semiparametric asymptotic variance discussed in 

n1∕2
(
�̂I − �

)
→N(0, �2),

�2 = Var{E(Y ∣ x)} + E{Var(Y ∣ x)∕�(x)} = Var(�)

(12)� = m(x) + �
1

�(x)
{y − m(x)}.

nh → ∞ and n1∕2h2 → 0

�j ≤ c1 exp(−c2j
2),

�(�) =
∞∑

j=1

�j

�j + �

≤ c
−1∕2

2
{− log(�)}1∕2 +

1

� �c
−1∕2

2
{− log(�)}1∕2

exp(−c2z
2)dz

≤ c
−1∕2

2
{− log(�)}1∕2 + O(1),
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Robins et al. (1994). Thus, the kernel ridge regression imputation is asymptotically 
optimal. The main term (12) in the linearization in Theorem 1 is called the influence 
function (Hampel 1974). The term influence function is motivated by the fact that 
to the first order �i = m(xi) + �i{�(xi)}

−1
{
yi − m(xi)

}
 is the influence of a single 

observation on the estimator �̂I.
The influence function in (12) can be used for variance estimation of the 

KRR imputation estimator �̂I . The idea is to estimate the influence function 
�i = m(xi) + �i{�(xi)}

−1
{
yi − m(xi)

}
 and apply the standard variance estimator 

using �̂i . To estimate �i , we need an estimator of {�(x)}−1 , or namely, �(xi) . Once 
�̂(x) is constructed, we can use

as a variance estimator of �̂I in (1), where

and 𝜂̄n = n−1
∑n

i=1
�𝜂i . How to estimate the propensity score function �(x) = {�(x)}−1 

will be discussed in the next section.

4 � Propensity score estimation

We now consider the estimation of the propensity weight function �(x) = {�(x)}−1 
using kernel ridge regression.

To motivate the proposed propensity weight function, note that m̂(x) is a linear 
function of yi . Let S� = (In + �K−1)−1 = (sij) ∈ ℝ

n×n . We can express

Now, the result (10) can be expressed as

We use (13) as a key condition to find �̂(x) . If �̂(x) satisfies the model calibration 
approximately

�V =
1

n

1

n − 1

n∑

i=1

(
�𝜂i − 𝜂̄n

)2

�̂i = m̂(xi) + �i�̂i

{
yi − m̂(xi)

}
,

m̂(xi) =

n∑

j=1

�jsijyj.

(13)

1

n

n∑

i=1

(
1 − �i

)
{

n∑

j=1

�jsijyj − m(xi)

}

=
1

n

n∑

i=1

�i
{
�(xi) − 1

}{
yi − m(xi)

}
+ op(n

−1∕2).

(14)n−1
n∑

i=1

�i�̂im(xi) = n−1
n∑

i=1

m(xi) + op(n
−1∕2),
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then (13) can be written as

Using n−1
∑n

i=1
�i{yi − m̂(xi)} = op(n

−1∕2) , we can express (15) as

Thus, we can construct �̂(x) from (16) by ignoring the op(n−1∕2) term. That is, we 
obtain

as the final propensity score weights where sij is the (i, j)-th element in the smooth-
ing matrix S� = (In + �K−1)−1 of the kernel ridge regression. Thus, the result-
ing propensity score function uses the same RKHS to construct the nonparametric 
imputation.

By construction, we have the following.

Condition (18) is called the self-efficiency condition. Thus, by self-consistency, the 
PS estimator �̂PS = n−1

∑n

i=1
�i�̂(xi)yi is equivalent to the projection estimator and, 

by Remark 3, satisfies

under the assumptions in Theorem 1.
It remains to show that the propensity score function satisfies the approxi-

mate model calibration in (14). The model calibration was first discussed by Wu 
and Sitter (2001) when the mean function m(x) = �(Y ∣ x) is known. A sketched 
proof for (14) is presented in Appendix.

If an explicit form of m(x) is known, then we can directly use the function in 
the calibration constraint, as in Wu and Sitter (2001). Our proposed estimator 
does not require the knowledge of the mean function. The only requirement is 
that the mean function lies in the reproducing kernel Hilbert space that the ker-
nel function is generating. Also, the uniform function calibration considered in 
Wong and Chan (2018) achieves Op(n

−1∕2) which is higher than our convergence 
rate in (14). By imposing a function calibration that has nothing to do with Y, 
the uniform function calibration pays the price.

(15)
1

n

n∑

i=1

(
1 − �i

) n∑

j=1

�jsijyj =
1

n

n∑

i=1

�i
{
�(xi) − 1

}
yi + op(n

−1∕2).

(16)
1

n

n∑

i=1

n∑

j=1

�jsijyj =
1

n

n∑

i=1

�i�(xi)yi + op(n
−1∕2).

(17)�̂(xj) =
n∑

i=1

sij

(18)
n∑

i=1

�i�̂(xi)yi =
n∑

i=1

n∑

j=1

�isjiyi =
n∑

j=1

m̂(xj).

�̂PS =
1

n

n∑

i=1

[
m(xi) +

�i
�(xi)

{
yi − m(xi)

}]
+ op(n

−1∕2)
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5 � Simulation study

To compare with existing methods and to evaluate the finite-sample perfor-
mance of the proposed imputation method and its variance estimator, we con-
ducted a limited simulation study. In this simulation, we consider the con-
tinuous study variable with three different data-generating models. In the 
three models, we keep the response rate around 60% and Var(Y) ≈ 10 . Also, 
xi = (xi1, xi2, xi3, xi4)

T are generated independently element-wise from the uni-
form distribution on the support (1,  3). In model A, we use a linear regression 
model yi = 3 + 2.5xi1 + 2.75xi2 + 2.5xi3 + 2.25xi4 + ��i to obtain yi , where {�i}ni=1 
are generated from standard normal distribution and � = 31∕2 . In model B, we use 
yi = 3 + (1∕35)x2

i1
x3
i2
xi3 + 0.1xi4 + ��i to generate data with a nonlinear structure. 

The model C for generating the study variable is yi = 3 + (1∕180)x2
i1
x3
i2
xi3x

2
i4
+ ��i.

In addition to {(xi, yi), i = 1,… , n} , we consider two response mecha-
nisms. The response indicator variable � ’s for each mechanism are indepen-
dently generated from different Bernoulli distributions. In the first response 
mechanism, the probability for the Bernoulli distribution is logit(xT

i
� + 2.5) , 

where � = (−1.1, 0.5,−0.25,−0.1)T and logit (p) = log{p∕(1 − p)} . In the sec-
ond response mechanism, the probability for the Bernoulli distribution is 
logit(−0.3 + 0.7x2

1
− 0.5x2 − 0.25x3 − 0.25x4) . We consider two sample sizes 

n = 500 and n = 1, 000.
The reproducing kernel Hilbert space we employed in the simulation study is 

the second-order Sobolev space. In particular, we used the tensor product RKHS 
to extend a one-dimensional Sobolev space to the multidimensional space. From 
each sample, we consider four imputation methods: kernel ridge regression 
(KRR), and the others are the kernel imputation method (Cheng 1994), B-spline, 
and linear regression. For the kernel imputation method (KI), we use the Gauss-
ian kernel, and the bandwidth selection method is the expected Kullback–Lei-
bler cross-validation (Hurvich et al. 1998). The kernel imputation method is per-
formed with the aid of ‘np’ package in R Hayfield and Racine (2008). For the 
B-spline method, we employ the generalized additive model by R package ‘mgcv’ 
(Wood 2017). Specifically, we used a cubic spline with 15 knots for each coor-
dinate with a restricted maximum likelihood estimation method. We used 
B = 1, 000 Monte Carlo samples in the simulation study.

The simulation results of the four point estimators for the first response mech-
anism and for the second response mechanism are summarized in Figs.  1 and  2, 
respectively. The simulation results in Figs. 1 and  2 show that three methods show 
similar results under the linear model (model A) except for the KI method. The non-
parametric kernel regression using Nadaraya-Watson method is biased when the 
dimension of X is large. Also, the multi-dimensional bandwidth selection may lead 
to unstable estimation. Meanwhile, kernel ridge regression imputation estimators 
show robust performance under nonlinear models (models B and C). In addition, 
KRR imputation estimations provide negligible biases in all scenarios.

In addition, we have computed the proposed variance estimators under ker-
nel ridge regression imputation with the corresponding kernel. In Table 1, the 
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relative biases (in percentage) of the proposed variance estimator and the cover-
age rates of the proposed estimators under the nominal coverage rates 90% and 
95% are presented. The relative biases of the variance estimator are relatively 
low for all scenarios, which confirms the validity of the proposed variance esti-
mator. Furthermore, the interval estimators show good performances in terms of 
coverage rates.
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Fig. 1   Boxplots with four estimators for model A ((a) for n = 500 and (b) for n = 1000 ), model B ((c) 
for n = 500 and (d) for n = 1000 ) and model C ((e) for n = 500 and (f) for n = 1000 ) under first response 
mechanism with true values (dashes)
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6 � Application

We applied the kernel ridge regression with the kernel of second-order Sobolev 
space to study the PM2.5(�g∕m

3) concentration measured in Beijing, China Liang 
et  al. (2015). Hourly weather conditions: temperature, air pressure, cumulative 
wind speed, cumulative hours of snow and cumulative hours of rain are available 
from 2011 to 2015. Meanwhile, the averaged sensor response is subject to missing-
ness. In December 2012, the missing rate of PM2.5 is relatively high with missing 
rate 17.47% . We are interested in estimating the mean PM2.5 in December with the 
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Fig. 2   Boxplots with four estimators for model A ((a) for n = 500 and (b) for n = 1000 ), model B ((c) for 
n = 500 and (d) for n = 1000 ) and model C ((e) for n = 500 and (f) for n = 1000 ) under second response 
mechanism with true values (dashes)
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imputed kernel ridge regression estimate. The point estimates and their 95% confi-
dence intervals are presented in Table 2.

As a benchmark, the confidence interval computed from complete cases and con-
fidence intervals for the imputed estimator under linear model (Kim and Rao 2009) 
are also presented there.

As we can see, the performances of kernel ridge regression imputation estima-
tors are similar and created narrower 95% confidence intervals. Furthermore, the 
imputed PM2.5 concentration during the missing period is relatively lower than the 
fully observed weather conditions on average. Therefore, if we only utilize the com-
plete cases to estimate the mean of PM2.5 , the severeness of air pollution would be 
over-estimated.

7 � Concluding remarks

We consider kernel ridge regression as a tool for nonparametric imputation and pro-
pensity score function estimation. The proposed kernel ridge regression imputation 
can be used as a general tool for nonparametric imputation. By choosing different 
kernel functions, different nonparametric imputation methods can be developed. 
Asymptotic properties of the propensity score estimator are also established. The 
unified theory developed in this paper enables us to make valid nonparametric statis-
tical inferences about the population means under missing data.

Table 1   Relative biases (R.B.) 
of the proposed variance 
estimator, coverage rates (C.R.) 
of the 90% and 95% confidence 
intervals for imputed estimators 
under kernel ridge regression 
with second-order Sobolev 
kernel for continuous responses

 Model Criteria First missing mecha-
nism

Second missing 
mechanism

n=500 n=1000 n=500 n=1000

R.B(%) 0.09 −2.80 3.40 2.74
A C.R.(90%) 90.30 89.95 90.25 90.60

C.R.(95%) 95.50 94.95 95.20 95.45
R.B(%) −2.77 −5.42 −6.07 −3.42

B C.R.(90%) 89.55 89.70 88.05 90.05
C.R.(95%) 94.25 94.55 94.15 94.70
R.B(%) −7.43 −3.97 −9.38 −2.29

C C.R.(90%) 87.95 88.70 88.80 89.50
C.R.(95%) 93.35 94.20 93.95 95.15

Table 2   Point estimates (P.E.), 
standard error (S.E.) and 95% 
confidence intervals (C.I.) 
for imputed mean PM2.5 in 
December, 2012 under kernel 
ridge regression

Estimator P.E S.E 95% C.I

Complete 109.20 3.91 (101.53, 116.87)
Linear 99.61 3.68 (92.39, 106.83)
KRR 101.92 3.50 (95.06, 108.79)
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There are several possible extensions of the research. First, the theory can be 
extended to other nonparametric imputation methods, such as smoothing splines 
(Claeskens et al. 2009), thin plate spline (Wahba 1990), Gaussian process regression 
(Rasmussen and Williams 2006), or deep kernel learning (Bohn et al. 2019). The theo-
retical results in this paper can be used as building-blocks for establishing the statistical 
properties of these sophisticated nonparametric imputation methods. Second, instead 
of using ridge-type penalty term, one can also consider other penalty functions such 
as the smoothly clipped absolute deviation penalty (Fan and Li 2001) or adaptive lasso 
(Zou 2006). Such penalty functions can be potentially useful for handling high dimen-
sional covariate problems. Also, the proposed method can be used for causal inference, 
including estimation of average treatment effect from observational studies (Morgan 
and Winship, 2014; Yang and Ding, 2020). Developing tools for causal inference using 
the kernel ridge regression-based propensity score method will be an important exten-
sion of this research.

Appendix

This Appendix contains the technical proof for Theorem 1 and a sketched proof for 
(14).

A Proof for Theorem 1

To prove our main theorem, we write

Therefore, as long as we show

then the main theorem automatically holds.
To show (10), note that

�̂I =
1

n

n∑

i=1

{
�iyi + (1 − �i)m̂(xi)

}

=
1

n

n∑

i=1

m(xi)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
Rn

+
1

n

n∑

i=1

�i
{
yi − m(xi)

}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Sn

+
1

n

n∑

i=1

(1 − �i)
{
m̂(xi) − m(xi)

}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Tn

.

Tn =
1

n

n∑

i=1

�i

{
1

�(xi)
− 1

}{
yi − m(xi)

}
+ op(n

−1∕2),

m̂ = K
(
�nK + �In

)−1
�ny

= K
{(

�n + �K−1
)
K
}−1

�ny

=
(
�n + �K−1

)−1
�ny,
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where m̂ = (m̂(x1),… , m̂(xn))
T . Let S� = (In + �K−1)−1 , we have

where

By Lemma 2, we obtain

where � = diag (�(x1),… ,�(xn)) and �(�) is the effective dimension of kernel K. 
Similarly, we have

Now, writing

and using (19) and

by Taylor expansion, we have

where the last equality holds because

Therefore, we have

m̂ =
(
�n + �K−1

)−1
�ny = C−1

n
dn,

Cn = S�
(
�n + �K−1

)
,

dn = S��ny.

(19)

Cn = E(�n ∣ x) + an + �S�K
−1

= E(�n ∣ x) + an + S�{(In + �K−1) − In}

= � + Op(an),

dn = E(�ny ∣ x) + Op(an)

= �m + Op(an).

m̂ = m + C−1
n
(dn − Cnm)

dn − Cnm = Op(a) = op(1n),

m̂ = m + {� + Op(an)}
−1(dn − Cnm)

= m +�
−1
(
dn − Cnm

)
+ op

(
an
)

= m +�
−1
{
S��ny − S�

(
�n + �K−1

)
m
}
+ op

(
an
)

= m +�
−1S��n(y −m) + Op(an),

S��K
−1m = S�

{(
In + �K−1

)
− In

}
m

= m − S�m = Op(an).
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For �-th order of Sobolev space, we have

Additionally,

which implies that, as long as n� → 0 and n�1∕2� → ∞ , holds, we have 
n−11T

n
an = op(n

−1∕2) and (10) is established. 	� ◻

B Justification of equation (14)

Note that

where the third equality holds by Lemma 2. 	� ◻
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