Radiomics Initialized Deep Embedding Network
(RIDE-Net) to Prognosticate Survival
in Renal Cancers

Abstract—Popularly used machine learning approaches for
medical imaging offer complementary advantages for disease
characterization. Hand-crafted computational features (or ra-
diomic features) offers generalizable quantitative measures which
can be intricately linked to disease phenotypes, while iteratively
optimized convolutional neural networks (CNNs) offer complex
features with robust performance to imaging variations. To
address the question of how best to exploit the relative advan-
tages of both approaches, we introduce Radiomics Initialized
Deep Embedding Network (RIDE-Net) which leverages intuitive
radiomic descriptors to enhance the performance of a CNN
model. Our approach involves: (1) identifying disease-specific
radiomics features associated with an end-point of interest, (2)
pre-training a residual learning network to directly predict these
specialized radiomic features, and (3) optimizing this primed
RIDE-Net to predict the outcome of interest. We evaluate RIDE-
Net in the context of prognosticating overall survival for renal
cancers using a multi-institutional cohort of 510 patients and a
pre-training cohort of 5195 patients with CT volumes. A RIDE-
Net based survival model achieved c-indices of 0.67 and 0.66 in
testing and holdout validation, respectively, which significantly
outperformed a standard radiomics based Cox regression model
(0.56, 0.62) as well as a standard ResNet based survival model
(0.60, 0.62) with significantly less variation across training runs.
We also found that RIDE-Net deep features achieve increased
reproducibility compared to standard radiomic features in terms
of intra-class correlation coefficient and can achieve similar
prognostic performance even when utilizing 5% of the training
data (c-index of 0.66 in validation via few shot analysis). RIDE-
Net thus represents a novel integrated approach to combining the
strengths of radiomics and deep learning for robust, accurate,
and reproducible predictions in medical imaging tasks.

Index Terms—deep learning, radiomics, computed tomography

I. INTRODUCTION

Recent advances in machine learning (ML) have leveraged
hand-crafted computational intensity, shape, or texture features
(also known as radiomics) as well as convolutional neural net-
works (CNNs) toward improved disease classification [1], [2],
response prediction [3], as well as prognosticating survival [4],
[5]. When provided with sufficient training data, CNNs have
achieved high inference accuracy, often surpassing traditional
machine learning methods [6] based on extracting disease-
related features without manual specification. With the use
of image augmentations during training, CNNs demonstrate
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resilience to input differences based on scanners, institutions,
or other batch effects [7]. By contrast, well-designed and
specialized radiomic features have achieved generalizable per-
formance even when utilizing limited data cohorts [8], as
well as demonstrating associations with specific biological
phenotypes [2]. The contrasting approaches by which radiomic
descriptors and deep learned features are optimized suggest
they may be inherently complementary to each other. In fact,
only weak to moderate correlation has been observed between
radiomic and deep features in previous empirical analyses [5],
[9], indicating these approaches may indeed quantify distinct
information with regard to disease characteristics. This in turn
suggests an intelligent approach to exploiting and integrating
these techniques could yield more generalizable, accurate, and
reproducible ML models.

A. Previous Work and Novel Contributions

Broadly speaking, previous work on integrating radiomics
and convolutional neural network (CNN) approaches can
be categorized as feature-level or decision-level approaches.
Feature-level fusion involves concatenating or merging ra-
diomics and deep features into a unified representation prior to
feeding them into a separate classification or prognostication
DL network [3], [6], [10]-[14]. By contrast, decision-level
fusion involves training separate radiomics and deep learning
models, followed by ensembling their predictions to enable
improved classification or prognostication [15], [16]. An
alternative approach has also been to simply utilize deep CNN
features as inputs for traditional ML models such as support
vector machines (SVMs) or decision trees [17]. Unfortunately,
such decision-level fusion may be prone to overfitting, in
addition to not explicitly accounting for complementary in-
formation between radiomics and deep features, thus limiting
the predictive power of the ensembled model.

While feature-level fusion partially addresses this limitation
by enabling individual feature types to be weighted, it may
actually amplify weaknesses of the individual methodologies.
For instance, CNN performance is known to be highly de-
pendent on the composition of the training dataset, typically
requiring large amounts of balanced data to achieve robust
generalization [8], [17]. Similarly, multiple radiomics studies
have suggested reproducibility challenges [8], [18], [19] due
to variations in scanner manufacturers, acquisition parameters,
and imaging protocols across data cohorts. In other words,
integrating these methods will need to exploit the interpretable



aspects of radiomics features (i.e., which capture generalizable
biological associations) while also leveraging the reliability
and robustness of CNNs to imaging variations and batch
effects (through optimization over image augmentations).

B. Study Goal

In this work, we propose a novel Radiomics Intialized Deep
Embedding Network (RIDE-Net), which exploits radiomic
descriptors as a pre-training objective for a residual learning
network, followed by later optimization for robust and accurate
performance in downstream tasks. The RIDE-Net architecture
involves first priming a ResNet model to predict specialized
radiomic descriptors that have been selected for their associa-
tion with a specific end-point, thus yielding a deep embedding
that is intricately linked to the target disease. We evaluated the
predictive power of RIDE-Net deep features in the context of
prognosticating overall survival of renal cancers via diagnostic
CT scans, with multi-institutional validation (N=520 patients,
10 institutions). In addition to comprehensively comparing
RIDE-Net performance to radiomic and CNN model perfor-
mance individually, we also examine few-shot performance
compared to a standard ResNet, as well as a detailed analyses
of RIDE-Net feature reproducibility and model variability.

II. METHODS

RIDE-Net encodes domain knowledge via radiomic features
into neural network weights using an integrated and label-
agnostic pre-training process. This is accomplished through
three distinct steps:

Step 1. Radiomics Initialization: A subset of M radiomic
features, denoted FI*,i € {1,...,M}, are first selected
based on their association with a specific outcome of interest,
denoted Y (e.g. cancer grade or stage, time to an event).
Feature selection is typically implemented via methods such as
LASSO [20] or mRMR to distill a much larger feature space to
a subset of outcome-specific radiomic descriptors (Fig. 1A).

Step 2. RIDE-Net Training: A separate unlabeled pre-
training cohort without outcome information is utilized to
train RIDE-Net to output a corresponding set of M deep
features, denoted FP i € {1,..., M}. Pre-training allows for
model refinement from a diverse pool of data with extensive
imaging variability, thus encoding information contained in
FP® into RIDE-Net. Robustness of F'© to input variability
can be enhanced by leveraging image augmentations during
pre-training. RIDE-Net is optimized over multiple epochs,
iteratively embedding outcome-specific radiomic descriptors
into DL model weights based on the loss function: Ly;sp =
LS M (FF - FP)?. (Fig. 1B)

Step 3. RIDE-Net Optimization: A linear layer is added
to the pre-trained RIDE-Net, which is optimized for pre-
dicting the outcome Y directly, thus adapting the radiomics-
based model weights within RIDE-Net for the desired task.
Using only a single additional layer provides flexibility for
optimization without susceptibility to overfitting. Optimization
is implemented using a task appropriate loss function (e.g.

mean squared error for regression, binary cross entropy for
classification, Cox loss for survival) (Fig. 1C).

III. EXPERIMENTAL DESIGN

Data Description: RIDE-Net was evaluated for the task of
prognosticating overall survival for renal cancers in a multi-
institutional setting, utilizing:

1) Survival cohort (denoted C°) included contrast CT
scans curated from the publicly available KITS19
(N=210), Kidney Renal Clear Cell Carcinoma (KIRC,
N=267), Kidney Chromophobe (KICH, N=15), and Kid-
ney Renal Papillary Cell Carcinoma (KIRP, N=33) col-
lections from The Cancer Imaging Archive. All patients
had a confirmed diagnosis of renal cancer, together
with last followup time and death status (30% of the
patients experienced death events). C° encompassed
diverse imaging protocols and kidney cancer phenotypes
(primarily clear cell renal carcinoma) from 10 institu-
tions. The survival dataset was split into 60% training
(C3), 20% testing (C7.), and 20% holdout validation
(C3,)-

2) Pre-training cohort (denoted C?) comprised CT scans
from the public Abdomen Atlas collection (N=5195)
[21] comprising a variety of contrast enhancements
and acquisition times, accrued from 76 institutions. No
outcome or disease status information was available for
these patients. The pre-training dataset was randomly
split into 80% training and 20% testing.

All CT scans underwent trilinear interpolation to Imm x
Imm x Imm resolution. A U-net was trained for kidney
segmentation and used to identify a 100 x 100 x 100 pixel
ROI centered on each kidney for every patient. For C*, only
the kidney with the tumor lesion was included, while both
kidneys were included in CP.

Radiomics Initialization: A total of 1640 3D radiomic
features were extracted from each kidney ROI, based on
varying parameters associated with radiomic operators from
the Haralick [22], gradient [23], Gabor [24], statistical, and
Laws [25] feature families. The mean value of each feature
was computed within each ROI, followed by feature nor-
malization to ensure that all radiomic features lay within a
comparable range (mean 0O, std 1). Next, highly correlated
features were removed to yield 137 “uncorrelated” radiomic
features; followed by selecting the M most relevant radiomic
features (corresponding to Ff i € {1,..., M}) associated
with survival outcomes in Cj. using a Cox proportional
hazards model (H%M) with LASSO regression. Performance
was quantified via C}, and Cj, .

RIDE-Net Training: Radiomic features F}[,i €
{1,...,M}, were first extracted from the kidney ROI
for every scan in CP. A 3D ResNet-18 was trained to output
FP i € {1,..., M}, based on optimizing L5 over 200
epochs with a batch size of 8, learning rate of 0.001, and a
weight decay of 0.0001 with an Adam optimizer. The model
was evaluated on the testing set in CP after each epoch,
and the model with the lowest test loss was retained. The
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Fig. 1. Overall methodological workflow for constructing and optimizing RIDE-Net. (A) Radiomics features are chosen from a pool of 1640 features from
5 feature families measuring diverse aspects of radiological imaging presentation. Correlated features are removed before LASSO selects the defined number
of pre-training features. (B) The selected radiomics features are used as direct pre-training targets on a large unlabled cohort to prime a Resnetl8 network
for downstream survival prediction. (C) A single trainable MLP and activation function was added to the network to refine pre-trained features for survival

prediction.

final result was the pre-trained RIDE-net model, encoding
survival-specific radiomic features.

RIDE-Net Optimization and Survival Prediction: The
additional layer and hyperbolic tangent activation function
added to RIDE-Net utilizes F'” to output a survival prediction.
The resulting model, denoted HS, outputs a deep risk score
which indicates a patient’s risk for death. H° was optimized
through 5-fold cross validation within C;,, while using a Cox
proportional hazards inspired loss function over the course
of 200 epochs, a batch size of 16, learning rate of 0.001,
learning rate decay of 0.0001, and early stopping with an
Adam optimizer. H° was evaluated after each epoch on the
hold out test fold as well as on C;,, and the model with the
lowest test loss was saved. The best model across all 5 folds
was selected as the final optimized HS, which was evaluated
on Cj. . For comparison, a 3D Resnet-18 (denoted H%'8)
was implemented to utilize the kidney ROI on each CT scan
as an input for predicting survival which was optimized via
the same train/test setup within C*.

Model evaluation: 1M #° and H"'® were compared
in terms of concordance indices (c-index). One-way ANOVA
with post-hoc Tukey tests was used to compare perfor-
mance across different models, with p-values adjusted for
multiple comparisons using the Holm-Bonferroni correction
(o = 0.05). To compare the variability of survival prediction
accuracy, both 7 and H7'® were re-optimized with 50 differ-
ent random model weight initializations. Variance differences
between model configurations were assessed using pairwise
F-tests (« = 0.05), with corrected p-values. Reproducibility

of H° features were compared against H*M features by
first inducing small perturbations in the kidney ROI through
random image augmentation (using a subset of patients from
Cp), followed by evaluating feature reproducibility for each
feature set based on interclass-correlation coefficient (ICC).
Few-shot analysis for H° and HT'® were conducted by
limiting C. to 5, 10, or 30% of the total dataset when training
each model. To evaluate how the number of radiomic features
used in pre-training RIDE-Net impacted downstream survival
prediction performance two different RIDE-Net models, ’ng
(M =5) and ’H (M = 10), were constructed and evaluated.
Different approaches to RIDE-Net optimization were exam-
ined, by compari&’l—lfo, where only the added linear layer

was trainable, to ’Hfo, where every layer in RIDE-Net as well
as the added linear layer was trainable.

IV. RESULTS AND DISCUSSION
The RIDE-Net based survival model, H{}, achieved the best

overall c-index of 0.66 on the C}, and 0.67 on Cj , repre-
senting a significant improvement over alternative strategies
(Fig. 2A: c-index of H 18 i5 0.60, 0,62 and c-index of HIM
is 0.56, 0.62). This indicates that RIDE-Net can consistently
outperform both standard deep learning and radiomics-based
approaches for prognosticating overall survival in renal can-
cers.

When comparing H{, to 7—[10, the latter achieved signif-
icantly lower c-indices of 0.62 and 0.63 on C;, and Cj,,
respectively. This suggests that freezing RIDE-Net weights
during downstream refinement serves as an effective initial-

ization strategy, preserving critical domain knowledge encoded
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Fig. 2. (A) Box plots of c-index across 50 different model initializations and optimizations for each of ’Hfo, HEL8, "Hg? , and Hfo, where * indicates the
means of the indicated distributions are significantly different (o« < 0.05 in one-way ANOVA and post-hoc Tukey testing) while A indicates the variances of
the distributions are significantly different (ov < 0.05 in pairwise F-testing). (B) Radial graphs comparing ICC values to examine reproducibility of radiomic

features FiR and deep features FiD ,ied{l,...,
when considered only 5%, 10%, or 30% of C;. during model optimization

during pre-training while allowing for targeted fine-tuning on
the task-specific dataset.

When the number of radiomic features were varied, ’Hg?
achieved significantly lower c-indices of 0.62 and 0.57 in
testing and validation, respectively, indicating that the perfor-
mance of RIDE-Net is sensitive to the number of radiomic fea-
tures used during pre-training. Interestingly, 7, outperformed
H$ on both C}, and Cj, , indicating the relative importance of
feature targets within RIDE-Net compared to re-optimization.

Significantly lower variability in c-index can be observed
for H{, compared to HF18. This suggests that RIDE-Net

M}, to small image perturbations . (C) Few-shot analysis comparing c-index performance of H° and H 18

exhibited substantially greater consistency in performance
compared to conventional deep learning methods across both
C}, and C} .

When considering feature reproducibility, the ten top fea-
tures comprising ' had a mean ICC of 0.83 (Fig. 2B) which
was markedly improved compared to F'% (mean ICC of 0.63).
In other words, deep radiomic features extracted via RIDE-
Net were markedly more reproducible compared to traditional
radiomics features.

Finally, when Hfo was trained with 5%, 10%, or 30% of
Cyg. in few-shot analysis, it achieved consistent validation c-



indices in the range of 0.65-0.66, which significantly surpassed
the standard ResNet with c-indices of 0.55-0.62 (Fig. 2C).
RIDE-Net thus demonstrated significantly higher predictive
accuracy than its counterparts while requiring only a small
fraction of the training data, underscoring how the domain
knowledge encoded in RIDE-Net during pre-training enables
reliable downstream task prediction even with limited data.

V. CONCLUDING REMARKS

In this study, we presented Radiomics Initialized Deep
Embedding Network (RIDE-Net), a truly integrated radiomics-
deep learning model which exploits radiomic descriptors
as a pre-training objective for a residual learning network.
Comprehensive evaluation of RIDE-Net demonstrated that
it can be refined for accurate, consistent, and reproducible
downstream predictions with a fraction of the data needed
for other methods, while maintaining feature reproducibility
and not suffering significant model variability. We demon-
strated the predictive power of a RIDE-Net-based model in
prognosticating overall survival in renal cancers relative to
baseline radiomics and DL methods, using a publicly available
multi-institutional cohort of CT scans. Future applications of
RIDE-Net will include applications to other diseases and other
imaging modalities. We will also consider testing alternative
feature selection methods for pre-training feature targets to
fully understand how to best encode disease related informa-
tion within a neural network.
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