
Retrieval Augmented Zero-Shot Enzyme Generation for Specified Substrate

Jiahe Du 1 Kaixiong Zhou 2 Xinyu Hong 3 Zhaozhuo Xu 4 Jinbo Xu 3 Xiao Huang 1

Abstract
Generating novel enzymes for target molecules
in zero-shot scenarios is a fundamental challenge
in biomaterial synthesis and chemical production.
Without known enzymes for a target molecule,
training generative models becomes difficult due
to the lack of direct supervision. To address
this, we propose a retrieval-augmented generation
method that uses existing enzyme-substrate data
to guide enzyme design. Our method retrieves
enzymes with substrates that share structural sim-
ilarities with the target molecule, leveraging func-
tional similarities in catalytic activity. Since none
of the retrieved enzymes directly catalyze the tar-
get molecule, we use a conditioned discrete dif-
fusion model to generate new enzymes based on
the retrieved examples. An enzyme-substrate re-
lationship classifier guides the generation process
to ensure optimal protein sequence distributions.
We evaluate our model on enzyme design tasks
with diverse real-world substrates and show that it
outperforms existing protein generation methods
in catalytic capability, foldability, and docking
accuracy. Additionally, we define the zero-shot
substrate-specified enzyme generation task and
introduce a dataset with evaluation benchmarks.

1. Introduction
Substrate-specified enzyme generation aims to design new
proteins that catalyze reactions to specific new molecules
and benefits a wide array of scientific fields, including
biomaterials synthesis and chemical production innova-
tion (Meghwanshi et al., 2020; Robinson, 2015; Jegannathan
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& Nielsen, 2013; Paraschiv et al., 2022; Nam et al., 2024).
Taking the artificial compound of 1,2,3-trichloropropane
(TCP) as an example, it is extensively utilized as a chemical
intermediate and solvent despite its toxicity and resistance to
biodegradation (Agency for Toxic Substances and Disease
Registry, 2021; Cheremisinoff & Rosenfeld, 2011), which
leads to persistent groundwater contaminant. Researchers
are actively engaged in discovering or engineering enzymes
capable of biodegrading TCP (Bogale et al., 2020; Samin &
Janssen, 2012). Since there is no existing natural enzymes
for TCP, the synthesis paradigm only relies on the expertise
of replicating molecular structure of other natural heme-
proteins (Zambrano et al., 2022) and lacks the efficiency
to discover novel and effective enzymes for the specific
substrate.

The recent emergence of deep learning based protein gener-
ation shows great potential for enzyme design due to their
unprecedented accuracy in structure and function prediction.
A portion of these methods falls under the category of uncon-
ditional generation, such as ProGen2 (Nijkamp et al., 2023)
and ProtGPT2 (Ferruz et al., 2022), possessing the capabil-
ity to generate protein sequences that fold into stable and
functional structures and resemble real proteins, without re-
lying on the predefined substrate. The other subset of these
methods is characterized by conditional generation, con-
sisting of ligand-conditioned sequence design and structure
generation. The ligand-conditioned sequence design mod-
els (Gruver et al., 2023; Martinkus et al., 2023) are proposed
to synthesize therapeutic antibodies treating well to the anti-
gen ligands. On the other hand, the ligand-conditioned
structure generation methods, like LigandMPNN (Dauparas
et al., 2025) and RFdiffusionAA (Krishna et al., 2024), gen-
erate proteins structurally docking to a given target. By
ensuring spatial compatibility, these methods generate effec-
tive proteins associated with enhanced biological function
and stability in complex cellular environments.

While the unconditional approaches fail to match require-
ments, existing work of conditional generation cannot be re-
purposed directly to generate desired enzymes that catalyze
specific substrates represented as small molecules. Partic-
ularly, the ligand condition of these models is amino acid
sequences of antigens but our substrates are small molecules.
The enzyme substrates exhibit a vast chemical space with
high structural diversity, including variations in functional
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groups, stereochemistry, and electronic properties, which
make it challenging to learn the interactions with enzymes.
In addition, the catalytic capability of an enzyme is not
solely determined by how it structurally interacts with the
substrate molecule, so these models are not yet capable of
synthesizing functional enzymes. The label-conditioned
generative method, i.e. ZymCTRL (Munsamy et al., 2022),
takes an Enzyme Commission (EC) number and outputs a
corresponding enzyme sequence. It requires prior knowl-
edge about the expected enzyme’s EC, which relays human
expertise heavily.

In this study, we formally define the task of zero-shot
substrate-specified enzyme generation and identify two pri-
mary challenges associated with it. The first challenge is
the complete absence of positive samples. For instance,
without any effective enzymes for TCP as training data, it is
difficult to train or fine-tune a model to generate enzymes
that catalyze TCP. A potential solution to this challenge is
the Retrieval-Augmented Generation (RAG). Specifically,
RAG-based methods sample protein sequences as prompts
and subsequently instruct models to generate sequences that
are structurally and/or functionally similar (Ma et al., 2024;
Alamdari et al., 2023; Lewis et al., 2020). However, the
problem of retrieving proteins without relying on an ex-
emplar enzyme needs to be addressed, as the only input is
the target substrate. The second challenge is the generation
of proteins that diverge from training data. The generated
TCP enzyme must differ from recorded enzymes, as none
in the record can effectively catalyze TCP molecules. This
divergence requirement extends to enzymes for other new
substrates. Since the mainstream training methods focus on
recovering recorded data, a new approach is required—one
that trains models to generate enzymes that are both di-
vergent from existing records and capable of catalyzing
different target molecules. Furthermore, there is currently
no comprehensive evaluation framework for zero-shot en-
zyme generations. While Johnson et al. (2025) and Song
et al. (2024a) introduced certain metrics for computationally
designed enzymes, there is a lack of refined datasets for
zero-shot settings and multiple-perspective evaluations, as
the substrate-specified enzyme generation task has not yet
been fully formulated.

To address these two challenges, we propose Substrate-
specified enzyme generator (SENZ). Our main contributions
are as follows:

• We formally define the task of substrate-specified en-
zyme generation and present a curated dataset. This
dataset consists of the substrate-enzyme pairs that are
extracted from the known enzymes. We further par-
tition it into training and test subsets without overlap
in terms of proteins and small molecules to secure the
zero-shot setting.

• We propose a substrate-indexed retrieval method to
search the functionally-similar enzymes as prompt-
ing signals. The key merit is the enzymes associated
with the structurally close substrates exhibit similar
catalyzing properties. Considering a query substrate,
we compare the structural closeness with other stored
molecules and retrieve the pairwise enzyme data of
top-ranking molecules. This approach is distinct from
traditional protein retrieval since it retrieves based on
substrate similarity instead of protein similarity, as tra-
ditional protein retrieval does.

• We employ a discrete diffusion model to generate new
enzymes based on the retrieved ones and utilize a
substrate-enzyme catalyzing classifier as guidance for
the generative process. The classifier transforms the
complicated catalytic relationship into a continuous
and differentiable function for optimizing the generator.
With different substrates, it guides the generation to-
ward different directions distinct from the whole record
data distribution.

• Experimental results in designing enzymes for particu-
lar substrates demonstrate that our model can generate
novel enzymes of superior quality. Compared with
rule-, unconditioned-, sequence-, and structure-based
methods, our framework generates proteins showing
high enzymatic capability and high foldability.

2. Substrate-Specified Enzyme Generation
Task

We define the substrate-specified enzyme generation task
by specifying the model’s input and output, along with the
training and testing data and evaluation methods.

Problem definition. The task involves generating a pro-
tein that serves as the enzyme for the target molecule. Let
m denote the Simplified Molecular-Input Line-Entry Sys-
tem (SMILES) (Weininger, 1988) string representation of
the molecule and let x denote the protein sequence. We
have x = (a1, a2, a3, ..., al) ∈ Al where ai is an amino
acid and A is the vocabulary of amino acids together with
related tokens including gap ("-"). Henceforth, the amino
acid a can be represented as a one-hot vector, and we do
not differentiate between the protein sequence and the se-
quence of one-hot vectors, which means x ∈ Al is a matrix
with shape l × |A|. Let P denote the domain of all protein
sequences and let M denote the domain of all molecular
SMILES strings. The function G : M→ P means the task
of substrate-specified enzyme generation, which can be de-
fined as x = G(m;θ) where θ is the set of G’s parameters.
If G is a machine-learning model, the training process is
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given by:

θ∗ = argmin
θ

L(G(mD;θ),xD,mD). (1)

xD and mD are the enzyme and molecule in training set
D, respectively, θ∗ is the optimal parameters, and L is
the loss function. The input can include various types of
data: Enzyme Commission (EC) label of string sEC =
N1.N2.N3.N4, three-dimensional conformation structure
of the target substrate Cm or an existing enzyme Cx. The
generative function can be extended as below:

x = G(m, sEC,Cm,Cx), (2)

where sEC,Cm,Cx are all optional input parameters for
G(·), but m is the required input.

Data construction. For this task, we construct a dataset
of substrate-enzyme pairwise relationships extracted from
public raw data, as illustrated in Fig. 1(a). Each record
in raw data comprises the SMILES representations of a
chemical reaction with a specific enzyme. To identify the
specific substrate in each chemical reaction, we select the
least common reactant among all reactants in the database,
treating it as the specific substrate for the enzymes involved
in that reaction. This approach is grounded in the established
observation of substrate specificity (Jackson et al., 2010).
Consequently, we define the "substrate-enzyme" relation
(m,x) as protein x being the enzyme of molecule m, and
the training dataset D can be defined as follows:

D = {(m,x)}, x is the enzyme of m. (3)

The substrate-enzyme pair (m,x) is the element of the
dataset as in Eq. (3).

Zero-shot data split. All substrate-enzyme pairs (m,x)
are split into D for training, Dvalid for validation and Dtest

for testing. To avoid of data leakage, two rules are designed
for any two (m1,x1) and (m2,x2) in different subsets: 1.
Molecules from different subsets should not be the same,
i.e. m1 ̸= m2; 2. Any two protein sequences from different
subsets, i.e., x1 and x2, should not have an overlap of more
than 30% (with an identity exceeding 30%). The split forms
a zero-shot setting. Take the target molecule TCP as an
example. TCP is in Dtest and the model G is generating
enzyme for TCP. G has never trained with TCP because
TCP is not in D. G has never seen proteins similar to TCP’s
ground truth enzymes because all of them are only in Dtest,
and all proteins in D have at least 70% different from them.
Therefore generating enzyme for TCP and any molecules in
Dtest is zero-shot.

Evaluation. Regardless of the input data, models should
be evaluated using consistent metrics. An evaluation model
feval scores the generated protein x as follows:

y = feval(x,m), (4)

where m is optional. If the evaluation focuses solely on the
generated protein, m is not required. Given different func-
tions of feval, the ideal training process should be framed
as a multi-objective optimization problem. However, in the
substrate-specified enzyme generation task, we prioritize
catalytic capability above all and thus focus primarily on
the corresponding feval.

3. Substrate-Specified Enzyme Generator
We present Substrate-specified enzyme generator (SENZ),
a novel approach designed to retrieve enzymes based on
a new target substrate and subsequently generate new en-
zymes from the retrieved ones with the help of a guidance
training method.

3.1. Substrate-Indexed Enzyme Retrieval Module

Since there are no existing enzymes for a target substrate
in the zero-shot generation setting, it is crucial to retrieve
the related data record without relying on the ground truth
enzyme sequence as an anchor. In order to retrieve a set of
related proteins P(m) for the target molecule m, a relational
database is constructed and a substrate-similarity based
retrieval rule is designed. The superiority is demonstrated
by only querying with molecule m, while traditional protein
retrieval methods require an anchor sequence to search for
similar sequences.

Substrate-enzyme relational database. We adopt training
set D in Eq. (3) as a relational database of substrate-enzyme
pairs (m,x). D contains substrate-indexed enzymes, in
which substrates are non-unique indices for corresponding
protein sequences as shown in Fig. 1(b) green part.

Retrieval by substrate-similarity. Based on relational
database D, we then retrieve enzymes whose substrates ex-
hibit high similarity to the target molecule, with the expec-
tation that the generated enzyme will incorporate beneficial
features from the retrieved ones. This approach is based
on the observation that enzymes catalyzing highly similar
substrates may also share some similarities (Goldman et al.,
2022). We denote all molecules in D as set Dm. Querying
D with a molecule m gets a protein set P(m) as follows:

P(m) =


{x|(m,x) ∈ D}, m ∈ Dm, (5)
d⋃

i=1

P(mi) where mi ∈ Dm, m ̸∈ Dm. (6)

We consider two cases to retrieve the related enzymes. On
one hand, if m is stored in the relational database as shown
in Eq. (5), all protein indexed with m, i.e., m’s enzymes, are
obtained by table-checking; otherwise, if m is not stored
(m ̸∈ Dm) as in Eq. (6), which is the case in the zero-
shot enzyme generation, P(m) consists of a number of d
enzymes selected from D according to following rules.
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Figure 1: (a) Database extraction. Extracting substrate-enzyme relation from records and constructing a relational database
indexing with substrates. (b) Sample pipeline. Retrieve enzymes from the database based on their substrates’ similarity
to the target molecule. Align them in MSA for the generator and insert a fully masked sequence on top. Predict masks of
the top sequence every iteration until the full sequence is unmasked. (c) Training pipeline. A partly masked ground truth
enzyme sequence is inserted on top of the retrieved sequences’ MSA, and the generator outputs the distribution of amino
acids on masked positions. The reconstruction loss measures the distribution difference between the generated and ground
truth sequence of one timestep before. The guided loss is the gap between the score of the generated sequence given by a
discriminator and the maximum score of 1.

First, all the substrates mi in D are compared with target
molecule m to determine the Tanimoto similarity of their
one-hot Morgan fingerprint. The top-d mi are selected in
descending order based on the similarity to m, represented
as m1, ...,md. Finally a number of d enzymes are gathered
from P(m1), ...,P(md) to form the retrieval result P(m).

3.2. MSA-based Generator Module

With retrieved enzyme sequences, we transform them into
Multiple Sequence Alignment (MSA) format as input and
employ a discrete diffusion model generator to derive
a new enzyme. MSAs are matrices of protein sequences
aligned to uniform length through strategic gap insertions,
facilitating the comparative analysis of homologous posi-
tions across related sequences.

Discrete noising for enzyme generator. Our generator G,
depicted in Fig. 1(b), is an order-agnostic autoregressive dif-
fusion model (Hoogeboom et al., 2022) with an MSA trans-
former (Rao et al., 2021) backbone. G generates protein se-
quence by gradually denoising from a fully noised sequence.
To begin with, a number of d enzymes within P(m) are
aligned into MSA matrix by ClustalW algorithm (Thomp-
son et al., 1994): X(m) = ClustalW(P(m)) ∈ Ad×l. A
partly noised sequence xt = (a1, a2, ..., al) is inserted on

the top of X(m) as a new row to formulate data point Xt at
time step t ≤ T in the diffusion model:

Xt =

[
xt

X(m)

]
∈ A(d+1)×l, and

l∑
i=1

1{ai=#} = kt. (7)

where ai = # means position i of xt is masked. 1{ai=#} = 1
if ai = # otherwise 0. There are k · t masks in xt. k is the
number of increasing masked positions from xt to xt+1, so
k · T = l. Therefore xT = #l is a totally noised (masked)
sequence, and x0 is the finally generated sequence.

Discrete denoising at the generative process. We adopt
matrix p ∈ [0, 1]l×|A| to represent the probability of select-
ing each vocabulary on each position in a length l sequence,
and p(xt−1|xt) to represent the conditional probability dis-
tribution of xt−1 from unmasking k positions of xt. Appar-
ently xt−1 ∼ p(xt−1|xt) when xt is fixed. Our generator
G is defined as follows:

z = G(Xt,m) = G(xt,m). (8)
p(xt−1|xt) = softmax(z). (9)

The Eq. (8)’s second equation holds because Xt =
[xt;X

(m)] and X(m) is decided by m. z is the model output
log-likelihood. Eq. (9) outputs distribution p(xt−1|xt) for
sampling by time step. The fully masked sequence xT can
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be denoised step by step to the final result x0: xT−1 can be
sampled from p(xT−1|xT ), and so on x0 can be sampled
from p(x0|x1). Those are the denoising steps.

Molecule and protein representation fusion: To inject the
target substrate m into the generative learning process, we
adopt a learnable molecule encoder (Ahmad et al., 2023).
Specifically, a Graph Attention Network (GAT) (Veličković
et al., 2018) is used to encode the molecule’s graph struc-
ture to embedding hm, which has the same shape as token
embedding in generative function G. hm is appended at
the end of each row in the MSA representation as an addi-
tional token, as illustrated in red in Fig. 1(b). This design
respects the relative size relationship in terms of atom num-
bers between an amino acid and the substrate in the real
world. Since the MSA transformer in G performs row-wise
attention and tied column-wise attention on the MSA matrix,
the integration allows m to influence the generation in G
together with the retrieved MSA X(m).

Training to mimic distribution. With ground truth
substrate-enzyme pair (m,xm) in training set, G output dis-
tribution p(xt−1|xm

t ) = softmax(G(xm
t ,m)) from xm

t is
trained to consist with training set distribution p(xm

t−1|xm
t ).

Ground truth protein xm is the enzyme of molecule m.
xm
t is partly noised (masked) xm at time step t with kt

masks. Denoting P = p(xm
t−1|xm

t ) and Q = p(xt−1|xm
t ),

KL-divergence is used to measure the difference:

DKL(p(x
m
t−1|xm

t )||p(xt−1|xm
t ))

= DKL(P ||Q) = H(P,Q)−H(P ). (10)
Lr = H(P,Q) = −

∑
|A| P (i) logQ(i)

= CE(xm
t−1, softmax(G(xm

t ,m))). (11)

DKL is performed on the vocabulary probability dimen-
sion of p. The second equation in Eq. (11) is derived
from P = p(xm

t−1|xm
t ) = xm

t−1 and Q = p(xt−1|xm
t ) =

softmax(G(xm
t ,m)). Since H(P ) is a constant given xm,

H(P,Q) can measure the difference of our model’s distri-
bution to the training set and is adopted as reconstruction
loss Lr.

Variable sequence length: Although xt−1 has a fixed length
l, the represented protein sequence may have a different
length. MSA inserts gap tokens ("-") into the origin protein
sequence of amino acids to align them. xm

t−1 and xm
t are

masked from sequence in MSA X(m), so there are also
many "-" in xm

t−1. Based on Eq. (11), G is learned to out-
put the training set sequence distribution p(xm

t−1|xm
t ). As

a result, the probability of "-" can be high in some posi-
tions in G’s output p(xt−1|xm

t ), just as the training target
p(xm

t−1|xm
t ). Then "-" will probably be sampled at some

position in xt−1. Gaps "-" in the fully sampled sequence x0

will be removed and thus x0 is shorter than l.

3.3. Guided Training Method

We employ guidance from a catalyzing discriminator to
train generator G. The discriminator D evaluates whether
a molecule m and a protein x are a substrate-enzyme pair
with a score y = D(x,m). D is pre-trained on training set
D and remains frozen during the generator’s training.

Gradient guidance from discriminator. To generate
enzyme x containing catalytic capability to a molecule m,
the frozen D guides the training of G by constructing guided
loss Lg as follow:

x∗ = p(xt−1|xm
t ) = g(z), (12)

y∗ = D(x∗,m), (13)
Lg = 1− y∗, (14)

−∂Lg/∂θG = ∂D(x∗,m)/∂θG

= ∂D(x∗,m)/∂x∗ · ∂x∗/∂θG

= ∇x∗D(x∗,m) · ∂p(xt−1|xm
t )/∂θG. (15)

z is the model output log-likelihood in Eq. (8), g(·) is
Gumbel-softmax function (Jang et al., 2017) and θG is
the parameters of G. The gradients derived from the dis-
criminator can be decoupled into three steps: soft protein
sequence generation, loss construction, and gradient deriva-
tion. First, Eq. (12) transforms the output of G into dis-
tribution p(xt−1|xm

t ) associated with differentiable noises.
The p(xt−1|xm

t ) can be regarded as a "soft" protein se-
quence, i.e., x∗, at which each token is a continuous amino
acid probability instead of one-hot vector. Second, let y∗

denote the predicted catalyzing score for x∗ as shown in
Eq. (13). We thus construct the guided loss Lg as the dif-
ference between y∗ and maximum score 1. By minimizing
loss Lg, generator G should be supervised to synthesize
soft enzyme sequence x∗ with a score close to 1. Third,
when updating generator via θG ← θG − η · ∂Lg/∂θG,
two items needed to be computed according to Eq. (15):
∇x∗D(x∗,m) means the gradient direction of x∗, to which
the soft distribution changes can lead to an effective enzyme
functioning higher catalyzing probability for target molecule
m; ∂p(xt−1|xm

t )/∂θG is the Jacobian matrix describing
if the soft sequence changes, how should the parameters
within model G correspondingly updates in order to synthe-
size proteins adhere to the desired distribution of molecule
m’s enzymes.

Therefore, both Lg and Lr function by providing a changing
direction for the output distribution p(xt−1|xm

t ), except
they are for different purposes: the former one pursues
an effective enzyme for m while the later regularize the
generative enzymes to be close to training set p(xm

t−1|xm
t ).

The final loss L is the sum of reconstruction loss Lr from
Eq. (11) and the guidance loss Lg from Eq. (14), expressed
as L = Lr + Lg , which are used to update the generator.
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4. Experiment
4.1. Dataset for Substrate-Specified Enzyme Generation

Table 1: Enzyme distribution in the split of Enzyme-
Substrate Relation Dataset

dataset #entry #mol #enzyme #enzyme/mol #EC25% 50% 75% max

training 26757 2294 8179 2 4 10 868 819
validation 4279 366 2617 1 3 6 501 381

testing 3946 389 2432 1 2 7 316 553
total 34982 3049 13228 1 4 9 868 1746

We provide a substrate-enzyme relationship dataset ex-
tracted from RHEA1 database to better evaluate model per-
formance on the substrate-specified enzyme generation task.
Statistics of the dataset are shown in Table. 1. The two rules
in Sec. 2 are strictly followed to avoid data overlap.

4.2. Catalytic Activity Evaluation

Research question: Can SENZ generate proteins with
catalytic capability for specified target molecules? This
section compares our model with eight baselines and the
ground truth enzymes to evaluate the generated proteins’
catalytic capability. Ten sequences are generated in each
design task.

Baselines. We compare our model with 4 kinds of base-
lines. The rule-based methods include: a) the ground
truth proteins that are recorded to be the enzymes of target
molecule; b) randomly generated amino acids sequences as
random proteins; c) single position mutation of the ground
truth enzymes; and d) the retrieved enzymes based on our
substrate-index enzyme retrieval method. The unconditional
generation models include ProtGPT2 (Ferruz et al., 2022)
and ProGen2 (Nijkamp et al., 2023), which generates pro-
tein sequences with a distribution like natural ones while
having some distance. The Sequence generation models
include: ZymCTRL (Munsamy et al., 2022), which takes
an Enzyme Commission (EC) number and outputs a corre-
sponding enzyme; and NOS (Gruver et al., 2023), which is a
guided diffusion model for antibody infilling with our modi-
fied guided function same as our model for enzyme genera-
tion. The structure-based model is LigandMPNN (Dauparas
et al., 2025), which refines proteins based on the binding of
small molecules.

Metric. We adopt the turnover number of the enzyme
(kcat) to measure its catalytic capability. A well-accepted
predictor, UniKP (Yu et al., 2023), is used to predict
log10(kcat) value for the generated enzyme on the target
molecule. UniKP is trained on the dataset of enzyme-
substrate reaction kcat.

1https://www.rhea-db.org

▷ Table 2 shows the log10(kcat) of different methods’ gen-
erated enzymes with targets, from which we observe our
model generated proteins have the highest catalytic capabil-
ity among all. The predicted log10(kcat) of Ground Truth
enzymes are much higher than those of random protein
sequences, suggesting the effectiveness of the evaluation
metric. Our model generated enzymes have the highest aver-
age turnover number among all the compared methods in the
designing tasks. The result shows our model is able to gen-
erate enzymes with high turnover numbers when evaluated
in silico. Table 2 also suggests that generated enzymes can
outperform Ground Truth natural enzymes, which suggests
the natural enzymes are possibly not the most efficient.

4.3. Protein Properties Evaluation

Research question: Can SENZ generate proteins with
good quality as well as catalytic capability? We evaluate
the generated sequences for all 389 substrates in the test set
with six feval to validate our model’s generated sequence in
different protein properties. 10 enzymes are generated for
each substrate.

Metric. Protein property predictors feval are adopted in
the evaluation, including: a) the predicted local distance dif-
ference test (pLDDT) of ESMFold (Lin et al., 2023), which
is the confidence score of protein structure prediction in [1,
100]; b) identity with the nearest different known sequence
got by BLASTp2 in SwissProt database3; c) the number
of clusters with identity over 30%; d) the length of repeat
amino acids (Johnson et al., 2025); and e) the successful rate,
which quantifies the proportion of successfully generated
sequences relative to the total desired number of sequences.
Wasserstein distance is used following (Martinkus et al.,
2023) in b), and d), and the absolute difference is calculated
in c), aiming to describe the distribution difference between
the test set and generated enzymes for each target molecule
individually.

▷ Table 3 presents the properties of our method-generated
enzymes, highlighting their superior catalytic capability
(log10(kcat)) and foldability (pLDDT) compared to other
neural network methods. Notably, ZymCTRL exhibits sim-
ilar properties, but it relies on ground truth EC numbers
as input. The process of mapping the target substrate to
the correct EC number requires more human expertise than
our model. The Wasserstein distance with the test set on
BLASTp and the difference in cluster number shows that
our model can generate new proteins that have a similar dis-
tribution with the test set, suggesting our generated proteins
cluster properly to be specific for each target substrate, just
like natural enzymes.

2https://blast.ncbi.nlm.nih.gov/doc/blast-
help/downloadblastdata.html

3https://ftp.ncbi.nlm.nih.gov/blast/db/swissprot.tar.gz
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Table 2: Average log10(kcat) of generated enzymes towards different targets of 7 tasks.

Type Model Sepiap-
terin

Propylene
oxide

Levo- glu-
cosan

cGMP L-Pro Pyri-
doxine

leukotriene
A4(1-)

Rule

Ground Truth 0.247 0.785 0.719 0.132 0.107 0.508 0.371
Random -0.056 0.076 0.359 -0.203 0.037 0.269 -0.215
Mutation 0.387 0.752 0.740 0.006 0.030 0.480 0.316
Retrieved 0.139 0.701 0.728 -0.004 0.039 0.234 0.575

Uncond ProtGPT2 0.410 0.441 0.491 0.194 0.244 0.432 0.302
ProGen2 0.234 0.423 0.529 0.410 0.385 0.517 0.351

Sequence ZymCTRL -0.091 0.444 0.505 0.174 0.109 0.549 0.268
NOS 0.066 0.331 0.370 -0.071 0.193 0.265 0.229

Structure LigandMPNN 0.125 0.641 0.707 0.079 0.358 0.333 0.429

Ours 0.705 0.802 0.788 0.464 0.462 0.745 1.288

Table 3: Different properties predicted by their feval of the generated enzymes for test set.

Type Model kcat ↑ pLDDT
↑

WD↓
(BLASTp)

Absolute
difference ↓
(#cluster)

WD↓ (#re-
peat AA)

success
rate↑(%)

Rule

Test set 0.363 - - - - -
Random 0.185 20.2 38.3 8.59 - -
Mutation 0.354 - - - - -
Retrieved 0.351 85.9 19.6 1.87 - -

Uncond ProtGPT2 0.322 55.2 31.5 8.58 1.41 100
ProGen2 0.352 55.5 26.7 8.47 161.04 100

Sequence ZymCTRL 0.375 62.5 23.0 4.12 0.78 99.2
NOS 0.224 23.1 36.5 8.59 0.65 100

Structure LigandMPNN 0.342 31.0 33.6 8.52 3.14 99.5

Ours 0.380 62.8 20.8 1.74 0.90 100
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Figure 2: (a) and (b): The distribution of kcat value and pLDDT of our model with different numbers of retrieved enzymes.
(c) and (d): Those of our model with or without discriminator guidance.
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4.4. Retrieval Effectiveness

Research question: Does the retrieval of enzymes con-
tribute to enzyme generation? We modified the number
of retrieved enzymes and generated 10 enzymes for each of
the 389 target substrates to evaluate the effectiveness of the
retrieval method. Results are shown in Fig. 2(a-b).

▷ Comparing generation with 0 and 1 retrieved protein
in Fig. 2(a) and Fig. 2(b), it can be concluded that even
a single retrieved enzyme is crucial to the generation of
enzymes with catalytic capability and foldability. It shows
the effectiveness of the retrieval method.

▷ Comparing generation with 1 or more retrieved proteins
in Fig. 2(a) and Fig. 2(b), it can be concluded that retrieval
enhances the generated enzymes’ catalytic capability by
a small concession of foldability. Fig. 2(a) of kcat shows
that the increase in retrieved sequences improves the perfor-
mance in terms of catalyzing. In Fig. 2(b) of pLDDT, the
foldability decreases with the increase of retrieved enzymes.
The reason is that structure prediction examines the full se-
quence pattern with existing proteins. The retrieved proteins
do not resemble each other in full sequence, making the
derived generated sequence less similar to existing proteins.
In fact, several short periods (enzymatic active site) in the
retrieved sequences dominate the proteins’ catalytic capa-
bility, which is different from foldability’s requirement on
the full sequence. Therefore, there’s a trade-off between the
enzyme’s folding stability and catalytic capability. In fact,
the trade-off has been reported in other literature (Vanella
et al., 2024), which is the same case in our generated se-
quences. With more retrieved sequences, our model gives
up sequence foldability for better catalytic performance.

4.5. Guidance Effectiveness

Research question: Does the discriminator guidance con-
tribute to enzyme generation? We removed the discrimi-
nator in our model and generated 10 enzymes for each of the
389 target substrates to evaluate the guidance effectiveness.
The results are shown in Fig. 2(c) and Fig. 2(d).

▷ Fig. 2(c) shows the necessity of guidance to generate
the enzymes with high kcat. Fig. 2(c) and Fig. 2(d) also
suggest that our model performs the same trade-off in two
circumstances with or without guidance. Comparing the
kcat value of rule-based retrieved sequence in Table. 3 with
w/o guidance column in Fig. 2(c), it can be seen that the
generated enzymes’ kcat is almost the same as the retrieved
ones. The reason is that the generator only learns to generate
sequences resembling the retrieved ones.

It is natural that adopting guidance decreases the foldability
of generated enzymes. The discriminator guides the genera-
tor to output proteins with a high score, which has a different
distribution from natural-like proteins. The pLDDT given

by the structure prediction model suggests confidence, and it
is low when the evaluated sequence is not very natural-like.

4.6. Case Study Targeting Methylphosphonate(1-)

Research question: Why proteins generated by SENZ
are predicted to have the better catalytic capability? We
perform docking between a substrate, methylphosphonate(1-
) (Gama et al., 2019; von Arx et al., 2023), and generated
enzymes with AutoDock-Vina4 (Eberhardt et al., 2021) to
closely examine the generated enzyme’s structure and its
interaction with the target substrate. The docking result is
presented in Fig. 3.

▷ From Fig. 3(f), it is evident that the enzyme generated by
our model achieves the lowest AutoDock-Vina score, indicat-
ing the highest likelihood of binding between the molecule
and the protein. This result is likely due to our generated
protein possessing more side chains that extend toward the
substrate, resulting in a tighter binding. Although a favor-
able docking score does not necessarily ensure catalytic
activity, it does demonstrate that our generated enzyme can
effectively capture the substrate, which is a crucial prerequi-
site for the subsequent chemical reaction.

5. Related Work
Unconditional protein generation. Some research fo-
cuses on generating proteins that resemble natural ones.
Within this scope, the protein language model-based
sequence-only approaches include ProGen2 (Nijkamp et al.,
2023), ProtGPT2 (Ferruz et al., 2022), and ESM-2 (Lin
et al., 2023). These models are trained to predict masked
amino acids in natural protein sequences, thus learning to
generate proteins that mimic natural ones. The discrete
diffusion models approach, aimed at this target, includes
EvoDiff (Alamdari et al., 2023), which performs corrup-
tion and reconstruction on multiple sequence alignments
(MSA). Generative adversarial networks (GAN) approaches,
such as ProteinGAN (Repecka et al., 2021), use a discrim-
inator to guide the generated protein to resemble natural
ones, enabling the generation of natural-like enzymes when
a template is provided. Structure-based methods include
ProteinMPNN (Dauparas et al., 2022), which seeks to gen-
erate a protein sequence likely to fold into a given structure.
These methods do not target external generation objectives
or rely heavily on human-selected input templates to achieve
specific functions.

Conditioned protein generation. Non-protein data is
adopted to guide protein generation. ZymCTRL (Munsamy
et al., 2022) uses an Enzyme Commission (EC) number
as a prompt to generate enzymes categorized in the corre-
sponding EC. ProGen (Madani et al., 2023) takes natural

4https://vina.scripps.edu
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(a) ProtGPT2
Score=-2.607

(b) ProGen2
Score=-2.445

(c) ZymCTRL
Score=-2.726

(d) NOS
Score=-2.574

(e) LigandMPNN
Score=-2.133

(f) Ours
Score=-3.075

(g) Ground Truth
Score=-2.991

Figure 3: Docking result and the corresponding AutoDock-Vina scores of 6 neural network generated proteins for
methylphosphonate(1-) and the ground truth. The molecule with 5 atoms in red, orange, and green is methylphosphonate(1-).
The generated protein is in blue. Proteins’ side chains within 5 Å to the substrate are shown. A lower score denotes a better
binding position.

language protein labels to output corresponding protein se-
quence. ProCALM (Yang et al., 2024a) embeds taxonomy
and EC number as conditions and use the condition embed-
ding to generate related proteins. EnzyGen (Song et al.,
2024b) integrates EC numbers and alignment-based iden-
tification of functionally important sites, thereby relying
on both external label information and intrinsic sequence
properties. LigandMPNN (Dauparas et al., 2025) and RFd-
iffusionAA (Krishna et al., 2024) can recover a protein
sequence and structure based on a binding molecule, which
is derived from their prediction ability on the ligand-protein
complex. GENZYME (Hua et al., 2024a) generates pocket
structures and subsequently derives the corresponding se-
quences through pocket inverse folding, relying on structural
training data and the performance of inverse folding models,
particularly at functionally important sites.

Protein guided protein generation. Some research aims
to generate new proteins that bind to a given protein. The se-
quence approach includes NOS (Gruver et al., 2023), which
merges antibody and antigen in one sequence and uses the
diffusion method to train a transformer, while some prop-
erty prediction models can be used in sampling to make
the generated protein tend to have certain properties. The
structure approach includes AbDiffuser (Martinkus et al.,
2023), which uses a SE(3) equivariant neural network to
model residue-to-residue relations. The generation target
and output protein are both in the same protein modality.

Enzyme evaluation. Enzyme evaluation models can help
with enzyme design. ProSmith (Kroll et al., 2024) predicts
protein-small molecule interactions. UniKP (Yu et al., 2023)
predicts the kcat and Km value of enzyme and substrate.
NeuralPLexer (Qiao et al., 2024) and AlphaFold 3 (Abram-
son et al., 2024) can predict the protein-ligand complex
structures. Johnson et al. (2025) proposes comprehensive
methods for evaluating neural network-generated enzymes
but does not include metrics related to catalytic activity.
Several enzyme-related datasets have been developed (Heid
et al., 2023; Hua et al., 2024b; Yang et al., 2024b), though
their primary focus on reaction prediction makes them less

suited for direct application to enzyme generation tasks.

Retrieval method. Retrieval-augmented generation (RAG)
is widely adopted in a variety of domains (Shi et al., 2024;
Shu et al., 2025; Zhang et al., 2025). Some research devel-
ops retrieval methods to help with generation or prediction.
RetMol (Wang et al., 2023) retrieves molecules based on
similarity and desired properties to refine molecules. MSA
transformer (Rao et al., 2021) and AlphaFold 2 (Jumper
et al., 2021) uses evolutionary-based MSA to enhance struc-
ture prediction accuracy. They retrieve proteins with pro-
teins by sequence similarity only. RSA (Ma et al., 2024)
retrieves proteins based on the embedding distance derived
from sequences, thereby making it a method that also de-
pends on the intrinsic properties of the protein sequences
themselves.

6. Conclusion
In this paper, we have formally defined the task of zero-shot
substrate-specified enzyme generation, wherein models are
provided solely with a new target molecule and are required
to output a protein sequence possessing catalytic capabilities
specific to that molecule. To address this task, we introduce
the Substrate-specified enzyme generator (SENZ), an RAG
method. SENZ utilizes a single molecule as a query to
retrieve enzymes based on their substrate similarity to the
target, thereby enabling the retrieval of known proteins from
new molecules. This retrieval strategy capitalizes on the
functional similarity of enzymes as indicated by their sub-
strates. To generate enzymes from the retrieved sequences,
we employ multiple sequence alignment (MSA) on them
and introduce a diffusion model generator guided by an
enzyme-substrate classifier. This classifier guides the gen-
erated protein distribution for different substrates, serving
as the objective for the generator during training. In experi-
ments involving the generation of enzymes for real-world
target molecules, evaluation functions assessed turnover rate
and foldability together with other properties, demonstrating
the superiority of our model in enzyme generation.
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Impact Statement
This paper presents a method for zero-shot substrate-
specified enzyme generation, contributing to advancements
in machine learning for protein design. Our approach has
potential applications in biomaterial synthesis and industrial
biocatalysis, with possible benefits for sustainable chemistry
and pharmaceutical development. While generative models
in biological design require careful validation and ethical
oversight, our work is grounded in established biochemical
principles and evaluation frameworks. We do not foresee im-
mediate risks associated with misuse, as our method relies
on controlled training data.
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A. Experiment Details
A.1. Source of the 7 substrates used in the experiments and reason of selection

The seven substrates presented in Table 2 were chosen for their commonality and importance in enzymatic processes,
highlighting their relevance as candidates for novel enzyme design.

Sepiapterin (Thöny et al., 2000). Reason for Designing Enzymes: Enhancing the efficiency and specificity of sepiapterin
reductase can improve tetrahydrobiopterin (BH4) production, which is crucial for neurotransmitter synthesis and nitric oxide
production.

Propylene Oxide (de Vries & Janssen, 2003). Reason for Designing Enzymes: Engineering epoxide hydrolases or
monooxygenases can provide higher enantioselectivity and stability under industrial conditions for the production of chiral
intermediates in pharmaceuticals.

Levoglucosan (Layton et al., 2011). Reason for Designing Enzymes: Developing specific glucosidases can enable efficient
hydrolysis of levoglucosan into fermentable sugars, facilitating biofuel production from biomass pyrolysis products.

cGMP (Lucas et al., 2000). Reason for Designing Enzymes: Developing specific glucosidases can enable efficient hydrolysis
of levoglucosan into fermentable sugars, facilitating biofuel production from biomass pyrolysis products.

L-Proline (L-Pro) (Tanner, 2008). Reason for Designing Enzymes: Engineering proline racemase or proline dehydrogenase
can enhance the production of D-proline, a valuable chiral building block in pharmaceutical synthesis.

Pyridoxine (Bilski et al., 2000). Reason for Designing Enzymes: Designing enzymes for pyridoxine is important for
enhancing its role in oxidative stress resistance by modulating its singlet oxygen quenching properties, which can be applied
to improving fungal resilience, developing antioxidant therapies, and advancing fluorescence-based imaging techniques.

Leukotriene A4(1-) (Haeggstrom, 2000). Reason for Designing Enzymes: Developing selective leukotriene A4 hydrolase
inhibitors can lead to new anti-inflammatory drugs with fewer side effects.

A.2. More Details about baselines

ProGen2 (Nijkamp et al., 2023) and ProtGPT2 (Ferruz et al., 2022): We utilized the pre-trained weights for both models
to generate sequences with a maximum length of 1024. These models serve as benchmarks for the capability of protein
language models to generate sequences without specific functional guidance.

ZymCTRL (Munsamy et al., 2022): This model employs pre-trained weights and uses the Enzyme Commission (EC)
number as a prompt for the autoregressive generation process. It is worth noting that the EC number provides more detailed
information about enzymatic function compared to the substrate alone, offering this baseline an advantage in generating
enzyme sequences for the given tasks.

NOS (Gruver et al., 2023): We trained NOS following the methodology of its original paper. The original NOS framework
uses a discriminator to score the binding affinity between an antibody and an antigen (two protein sequences). We replaced
the original discriminator with our enzyme-substrate probability scoring model in our adaptation. Furthermore, we replaced
the target protein sequence input with the target substrate molecule. During inference, the NOS generator is updated
iteratively for 10 steps using the test set input before sampling, following a discrete diffusion model for sequence generation,
as described in the original paper. These adjustments allow NOS to generate enzymes in our setting while preserving its
original generative framework.

LigandMPNN (Dauparas et al., 2025): This reverse folding model generates a protein sequence based on a protein-ligand
complex structure. To adapt it for our task, we randomly generated protein sequences (length: 1024) and predicted
their structures using ESMFold (Lin et al., 2023). Using RDKit, we generated the structure of the target substrate, and
NeuralPLexer (Qiao et al., 2024) was employed to dock the substrate with the predicted protein structure, creating a complex
structure. The resulting complex was then input into LigandMPNN for sequence redesign.

A.3. Computation Resources

All the experiments are conducted within 200 GB memory, 2 Intel Xeon Gold 6426Y CPUs, and 4 NVIDIA 4090D GPUs
with 24 GB memory each. All used data in the experiment requires storage of less than 500 GB.
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The total training time of the models is less than 40 hours.

B. Additional Related Work
Graph Neural Networks for Molecular Modeling. Graph Neural Networks (GNNs) have been extensively applied across
various domains (Kipf & Welling, 2017; Veličković et al., 2018; Zhou et al., 2020a; 2021b; 2020b; Sun et al., 2022; Tan et al.,
2023; Zhou et al., 2021a; Liu et al., 2023), and have shown particular promise in molecular representation learning. Guo et al.
(2023) provide a comprehensive review of molecular graph modeling approaches, including 2D-based and 3D-based graph
modeling methods. Fang et al. (2022) incorporate three-dimensional molecular geometry by constructing graphs informed
by spatial structure and applying GNNs to capture geometric dependencies effectively. In the context of enhancing molecular
representations, Tsubaki & Mizoguchi (2020) integrate atomic orbital features with graph convolutional networks (Kipf &
Welling, 2017) to improve performance on downstream tasks. Beyond representation, GNNs have also been utilized for
molecule generation; for instance, Therrien et al. (2025) employ gradient ascent on a trained GNN-based molecular property
predictor to design novel molecules.

C. Limitation
Currently, the implementation of our method can only deal with small molecule substrates. If users want to generate enzymes
for polymer substrates like DNA, RNA, protein, or polysaccharides with our model, they have to derive the SMILES of the
corresponding monomer or dimer manually for input.
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