
Pointwise Information Measures as Confidence Estimators
in Deep Neural Networks: A Comparative Study

Shelvia Wongso 1 Rohan Ghosh 1 Mehul Motani 1 2

Abstract

Estimating the confidence of deep neural network
predictions is crucial for safe deployment in high-
stakes applications. While softmax probabilities
are commonly used, they are often poorly cal-
ibrated, and existing calibration methods have
been shown to be detrimental to failure predic-
tion. In this paper, we propose using information-
theoretic measures to estimate prediction confi-
dence in a post-hoc manner, without modifying
network architecture or training. Specifically, we
compare three pointwise information (PI) mea-
sures: pointwise mutual information (PMI), point-
wise V-information (PVI), and the recently pro-
posed pointwise sliced mutual information (PSI).
These measures are theoretically grounded in their
relevance to predictive uncertainty, with proper-
ties such as invariance, convergence rates, and
sensitivity to geometric attributes like margin and
intrinsic dimensionality. Through extensive ex-
periments on benchmark computer vision models
and datasets, we find that PVI consistently outper-
forms PMI, PSI and existing post-hoc baselines
in failure prediction across metrics. For confi-
dence calibration, PVI matches the performance
of temperature-scaled softmax, which is already
regarded as a highly effective baseline. This in-
dicates that PVI achieves superior failure predic-
tion without compromising its calibration perfor-
mance. This aligns with our theoretical insights,
which suggest that PVI offers the most balanced
trade-offs.

1Department of Electrical and Computer Engineering,
National University of Singapore, Singapore. 2N.1 Institute
for Health, Institute for Digital Medicine, Institute of Data
Science, National University of Singapore, Singapore. Cor-
respondence to: Shevia Wongso <shelvia.w@u.nus.edu>,
Rohan Ghosh <rghosh92@gmail.com>, Mehul Motani
<motani@nus.edu.sg>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
As deep neural networks (DNNs) are increasingly being de-
ployed in high-stakes areas like healthcare and autonomous
driving, the focus has shifted from achieving good accuracy
to also ensuring trustworthiness for safe deployment (Kaur
et al., 2023). An important aspect of a trustworthy model
is its ability to accurately quantify prediction confidence,
enabling users to judge when to trust its outputs (Jiang et al.,
2018). The standard way to estimate confidence is via soft-
max outputs, but they can be overconfident on misclassified
samples (Guo et al., 2017). Many existing approaches that
address this issue involve modifying the network architec-
ture (Corbière et al., 2019) or training procedure (Gal &
Ghahramani, 2016), which may not always be feasible in
practice. Meanwhile, popular confidence calibration meth-
ods have been shown to be useless or harmful for failure
prediction tasks (Zhu et al., 2022). This study addresses both
failure prediction and confidence calibration by analyzing
information-theoretic measures to estimate the confidence
of predictions from trained networks in a post-hoc manner,
without altering their architecture or training process.

Mutual Information (MI) is the conventional information
measure used to capture statistical dependence between
two random variables (Cover & Thomas, 2001). However,
accurately estimating MI in high-dimensional spaces, typ-
ically encountered in the context of DNNs, is challenging
due to an exponentially large sample complexity (Battiti,
1994). In recent years, there have been proposals for al-
ternative measures of informativeness that scale well with
dimensions. The first is the V-information (VI) which mea-
sures the amount of usable information under computational
constraints (Xu et al., 2020). The second is sliced mutual
information (SMI) which is the average of the MI between
one-dimensional projections of the random variables (Gold-
feld & Greenewald, 2021). Unlike MI, both VI and SMI can
be estimated reliably from data, even in high dimensions.

To apply the three information-theoretic measures (MI, VI,
and SMI) for confidence estimation, we use their point-
wise variants: pointwise MI (PMI), pointwise VI (PVI), and
pointwise SMI (PSI). Specifically, we use these pointwise
information (PI) measures to quantify the degree of rele-
vance between feature representation and predicted output

1

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

of a model for each individual sample. We analyze their the-
oretical properties, including invariance, convergence rates,
dependence on margin and intrinsic dimensionality, and
discuss their relevance to confidence estimation problem.
Empirically, we compare their effectiveness in estimating
confidence scores on benchmark image classification tasks
for failure prediction and calibration. For a review of related
work on confidence estimation and the three PI measures,
please refer to Appendix A.1.

Motivation. We provide four factors that motivate the use
of PI measures for confidence estimation:

1. Recent Applications of PI Measures: PI measures have
recently found application in diverse domains of DNNs,
showcasing their versatility and effectiveness. For in-
stance, the significant work by (Ethayarajh et al., 2022)
showcases the applicability of PVI to the problem of
dataset difficulty, which relates to confidence as net-
works are naturally less confident in their predictions
when the datasets are harder. While PI measures are
more commonly applied in natural language, we focus
on their potential in computer vision, an area still rela-
tively under-explored from an information-theoretic per-
spective. More closely aligned with our work is the
study by (Wongso et al., 2023b) which proposed PSI
for confidence estimation and explainability. We extend
their research by comparing the performance of PSI with
PMI and PVI, providing deeper theoretical insights, and
conducting extensive evaluations.

2. Theoretical Foundations: Despite the increasing appli-
cations of the PI measures, there has been a notable lack
of research devoted to exploring their theoretical proper-
ties. To the best of our knowledge, only PMI has been
theoretically studied (Fano & Hawkins, 1961b), though
largely in a more general context. In this work, we de-
rive and compare theoretical properties of PMI, PVI, and
PSI that are relevant to this setting, including invariance,
convergence rates, margin and intrinsic dimensionality.
We find that these measures exhibit some properties that
can be relevant in the context of confidence estimation.

3. Information Theoretic Connection: Another interpre-
tation of the PI measures comes from the notion of in-
formation gain in information theory. In its standard
(aggregate) form, information gain measures how much
knowing one variable X reduces uncertainty about an-
other variable Y , i.e., H(Y) − H(Y |X). PI measures
can be seen as a pointwise version of this information
gain, computing the logarithm of the probability density
ratio p(ŷ|x)/p(ŷ) (and its variant), where x is the feature
and ŷ is the predicted output. In contrast, a typical neural
network output approximates the conditional probabili-
ties of each class p(ŷ|x) from logits, which themselves
lack direct probabilistic meaning. PI measures, being
grounded in information theory, offer a more principled

alternative to the softmax output computed from logits
for confidence estimation. They quantify the relative
increase in confidence for the predicted class compared
to its prior occurrence probability. By focusing on this
relative change, PI measures can help mitigate biases in
p(ŷ|x), which can arise due to underrepresentation of
certain classes in the data.

4. Relationship to Probabilistic Causation: We find that
PI measures can be also interpreted via the lens of proba-
bilistic causation. This perspective on causality, as out-
lined by (Hitchcock, 1997), argues that X causes Y if
P (Y |X) > P (Y). In the context of confidence esti-
mation, the goal is to quantify how strongly a feature x
supports the predicted class ŷ: the model should natu-
rally assign higher confidence to predictions where x has
a strong influence on y. We argue that this problem can
be mathematically formulated by measuring the quantity
p(ŷ|x)/p(ŷ) which indicates the degree to which a cer-
tain feature x influences the decision made for a single
instance. This directly connects to PI measures which
compute the logarithm of the probability density ratio.

Contributions. The specific contributions of this paper are
as follows:

1. Information-Theory Grounded Measures. We pro-
pose to use information-theoretic pointwise measures
(PMI, PSI and PVI) for confidence estimation. These
measures capture different aspects of the relationship
between model predictions and true labels, providing
alternative perspectives beyond conventional softmax-
based confidence scores.

2. Theoretical Analysis of PI Measures. We perform an
in-depth study of the theoretical properties of the three
PI measures, including invariance properties, conver-
gence rates, and geometric characteristics such as margin
and intrinsic dimensionality (Section 3 and Appendix
B.3). We explain how each of these properties relates
to confidence in neural networks and highlight several
noteworthy caveats. In particular, we observe that mar-
gin sensitivity is a less critical property for confidence
estimation tasks (failure prediction and confidence cali-
bration) compared to invariance and convergence rates.

3. Empirical Evaluation of PI Measures. We evaluate the
three PI measures for both failure prediction and confi-
dence estimation tasks across a diverse range of datasets
and architectures. (Section 4). We find that PVI consis-
tently outperforms both PMI and PSI, as well as standard
post-hoc methods, in failure prediction across all met-
rics, with particularly notable gains on larger models and
more complex datasets. For confidence calibration, PVI
matches temperature-scaled softmax, which is already
regarded as a highly effective baseline, indicating that
PVI achieves superior failure prediction without compro-
mising its calibration performance.

2

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

2. Information-Theoretic Measures
Notation. We use uppercase letters for random variables
(e.g., X), corresponding lowercase letters for their val-
ues/outcomes (e.g., x), and calligraphic letters for their
domains (e.g., X). The joint probability distribution of
X,Y is denoted by PXY = P (X,Y) and their marginal
distributions are denoted by PX = P (X) and PY = P (Y).
For specific outcomes x and y, we have p(x, y) = P (X =
x, Y = y), p(x) = P (X = x), and p(y) = P (Y = y).
Here, we provide the formal definitions of the three PI mea-
sures (more details on their properties and estimators are
given in the Appendix A.2 and Appendix A.3).

MI and Pointwise MI. MI measures the statistical depen-
dence between two random variables (Cover & Thomas,
2001), while PMI measures the association between specific
realizations of these random variables (Fano & Hawkins,
1961a). They are defined as follows:
Definition 1 (MI and PMI). Let (x, y) ∼ PXY . The MI
and PMI are defined as follows:

I(X;Y) := EX,Y

[
log

P (X,Y)

P (X)P (Y)

]
, (1)

pmi(x; y) := log
p(x, y)

p(x)p(y)
. (2)

PMI Estimator: (Tsai et al., 2020) proposed three methods
to compute the probability density ratio p(x, y)/p(x)p(y)
using neural networks: the probabilistic classifier method,
the density-ratio fitting method and the variational JS bound
method. We compare the three methods in the Appendix
D.2.1 and choose the variational JS bound method as the
default estimator. This estimator relies on the variational
form of MI, and in particular the Jensen-Shannon divergence
between PXY and PXPY (Poole et al., 2019). We note that
although our method for estimating PMI incorporates neural
networks, we utilize only a shallow 2-layer neural network,
which is often considered well-calibrated (Guo et al., 2017).

SMI and pointwise SMI. SMI was proposed by (Goldfeld
& Greenewald, 2021) as an alternative measure to MI, which
can be hard to estimate in high dimensions. Similarly, its
pointwise variant, PSI, was proposed as an alternative mea-
sure to PMI (Wongso et al., 2023b). Both SMI and PSI can
easily scale to high dimensions by taking one-dimensional
projections.
Definition 2 (SMI and PSI). Let (x, y) ∼ PXY ∈
P(Rdx × Rdy). Let Θ ∼ Unif(Sdx−1) and Φ ∼
Unif(Sdy−1) be independent of each other and (X,Y). The
SMI and PSI are defined as follows:

SI(X;Y) := Eθ∈Θ,
ϕ∈Φ

[I(θTX;ϕTY)], (3)

psi(x; y) := Eθ∈Θ,
ϕ∈Φ

[
pmi(θTx;ϕT y)

]
. (4)

PSI Estimator. The estimation of PSI for supervised learn-
ing tasks requires projecting only the feature vector x to
one dimension, while labels y are typically discrete and
therefore not projected. Using Bayes’ Theorem, it can be re-
written as follows: psi(x; y) := Eθ∈Θ

[
log p(θT x|y)

p(θT x)

]
. To

estimate p(θTx|y), we use a binning method or assume a
Gaussian distribution. We compare the two estimators in
the Appendix D.2.2 and use the Gaussian-based estimator
(with 500 projections) in our experiments.

VI and Pointwise VI. VI was introduced to relax the un-
bounded computation assumption of Shannon information,
which may not be realistic in practice (Xu et al., 2020). It
was later extended to its pointwise version, PVI, in (Etha-
yarajh et al., 2022), for individual samples.

Definition 3 (VI and PVI). Let (x, y) ∼ PXY ∈
P(X × Y) and ∅ represent a null input that provides
no information about Y . We are given predictive family
V ⊆ Ω = {f : X ∪ ∅ → P (Y)}. We first define the
V-entropy and conditional V-entropy as follows:

HV(Y) := inf
f∈V

EY [− log f [∅](Y)], (5)

HV(Y |X) := inf
f∈V

EX,Y [− log f [X](Y)] (6)

Let g = argminf∈V EY [− log f [∅](Y)] and g′ =
argminf∈V EX,Y [− log f [X](Y)]. The VI and PVI are
defined as follows:

IV(X → Y) := HV(Y)−HV(Y |X), (7)

pvi(x→ y) := − log g[∅](y) + log g′[x](y) (8)

PVI Estimator. The estimation of PVI requires training
two neural networks: f for estimating HV(Y) and f ′ for es-
timating the conditional HV(Y |X) (Ethayarajh et al., 2022).
f ′ is trained with the input-label pairs from the training
data (xtrain, ytrain) while f is trained with the null input-label
pairs from the training data (xnull, ytrain). For computer
vision tasks, images composed entirely of zeros can be
treated as null inputs. The PVI can then be computed as:
pvi(x → y) = − log f [∅](y) + log f ′[x](y) where (x, y)
is an input-label pair from a held-out set. To ensure that
the probabilities for computing PVI are properly calibrated,
we consider using temperature scaling. We consider three
different approaches: using the original trained network as
f , using the same architecture but trained with different ini-
tialization as f and using a one-hidden layer neural network
as f trained using penultimate features as inputs. We com-
pare the three approaches in the Appendix D.2.3 and use the
second approach (same architecture, different initialization)
as the default estimator for PVI.

3

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

3. Theoretical Properties
In this section, we analyze the theoretical properties of the
three PI measures, focusing on their invariance and conver-
gence rate analyses. Results on their geometric properties
are provided in Appendix B.3. Proofs and additional re-
marks are given in Appendix B.

3.1. Invariance Properties of PI measures

We argue that confidence estimates should remain stable
under certain transformations of the data distribution, e.g.,
translation or rotation. Intuitively, if a distribution is trans-
formed and a point x is mapped accordingly, the confidence
assigned to x should be preserved in the transformed space.
This is essential for ensuring that confidence measures re-
flect intrinsic uncertainty and are not confounded by bijec-
tive transformations of the input space.

In what follows, we consider the case where X ∈ Rdx are
the features and Y ∈ {0, 1} are the labels, and (x, y) is a
feature-label instance sampled from PXY . Note that in what
follows, other than Theorem 1, all other theoretical results
can be trivially extended to the multi-label setting.

For convenience of notation, when (x, y) ∼ PXY , we de-
note pmi(x; y), psi(x; y) and pvi(x → y) by pmiP (x, y),
psiP (x, y) and pviP (x, y) respectively. For estimating
pviP (x, y), we assume that V refers to a fully connected
neural network of arbitrary depth and fixed architecture,
where each layer contains weights and biases. For any
transformation T : Rd → Rd, we denote the probability dis-
tribution P (T X,Y) by T P . We have the following results.

Proposition 1 (Invariance to shift, scale, and rotation).
Let T x = αRx+ p, where p ∈ Rdx represents the extent
to which the distribution is shifted, and α ∈ R is a scalar
that represents how much the distribution is scaled. Fur-
thermore, R ∼ Rdx×dx is a rotation matrix, such that
we have RRT = I and det(R) = 1, where I is the
identity matrix and det represents the determinant oper-
ator. Then, we have: pmiP (x, y) = pmiT P (αRx+ p, y),
psiP (x, y) = psiT P (αRx + p, y) and pviP (x, y) =
pviT P (αRx+ p, y).

Next, we have the following results for more general linear
transformations and homeomorphic (continuous and invert-
ible) transformations.

Proposition 2 (Invariance to general linear transforma-
tions). Let T x = Mx, where M ∼ Rdx×dx is invert-
ible. Then, we have: pviP (x, y) = pviT P (Mx, y) and
pmiP (x, y) = pmiT P (Mx, y).

Proposition 3 (Invariance to homeomorphic transfor-
mations). Let T x = f(x), where f : Rdx → Rdx repre-
sents any homeomorphism. Then, we have: pmiP (x, y) =
pmiT P (f(x), y).

Remark 1 (Invariance and confidence estimation). We
note that invariance to bijective transformations T is im-
portant in the context of confidence estimation; otherwise,
the PI measures will confound T in their estimates. Us-
ing the terminology from (1) in (Mukhoti et al., 2023), this
can be expressed as: H[Y |x,D] = H[Y |T x, T D], where
H[Y |T x, T D] denotes the conditional entropy of the output
labels given both the transformed input T x and the trans-
formed dataset T D = {(T x1, y1), ..., (T xn, yn)}, which
implies that the underlying distribution has been trans-
formed as well. Ideally, this property should hold for any
invertible, and thus information-preserving, transformation
T . However, as we cannot ignore the constraints of the
model involved in the decision-making process, we restrict
T to invertible linear transformations on x. In the following
remark, we argue that invariance to the broader class of
homeomorphic transformations may be counterproductive.

Remark 2 (Caveat on invariance to homeomorphic trans-
formations). In neural network architectures, feature repre-
sentations at a given layer typically undergo complex trans-
formations through multiple nonlinear activations, making
them highly unlikely to remain invertible. Consider the case
where features at a given layer appear as transformed ver-
sions of themselves across different training iterations. This
can occur due to random weight initializations, where fea-
tures T from one run may correspond to WT ′ from another,
with T ′ being the feature from a different initialization and
W being an invertible matrix. Since all such versions of T
encode the same underlying information up to a linear map,
pointwise measures between T and the output labels should
remain unchanged, thereby emphasizing the need for in-
variance to rotational and random matrix transformations.
However, extending this invariance to general invertible
transformations, as seen in the case of PMI, can be coun-
terproductive. The degree of non-linearity between T and
Y can be indicative of the network’s confidence in estimat-
ing Y from T . Intuitively, more complex, non-linear maps
are less likely to yield confident predictions and vice-versa.
Consequently, while PMI’s invariance holds under broader
homeomorphic transformations, we hypothesize that this
property may not always be beneficial, which is also seen in
our experiments.

3.2. Convergence Rates

We provide convergence rates analysis for the estimators
studied here. We note that PMI’s convergence rates will
depend on the choice of probability estimator, as differ-
ent estimators give different convergence rates. Here, we
mainly focus on the Kernel Density Estimator (KDE) for
estimating the densities p(x|y) and p(x). We consider the
case of binary classification, thus, Y ∈ {0, 1}. For the KDE
estimator studied in (Jiang, 2017), we have the following
convergence bound for PMI.

4

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

Proposition 4 (PMI convergence rate). Let P (X) be
α-Holder continuous and let (x, y) ∼ PXY where
X ∈ Rdx and Y ∈ {0, 1}. Let p̂min represent
the KDE estimate of PMI using n samples. Assuming
min {P (Y = 0), P (Y = 1)} ̸= 0 when the probabilities
are estimated on the training data, for large enough n, we
can bound the estimation error as∣∣∣pmi(x; y)− p̂min∣∣∣ ≤ O(n−α/(2α+dx)

min {p(x), p(x|y)}

)
(9)

In the following result, we provide convergence rate for PSI,
when the KDE approach (Jiang, 2017) is used to estimate
p(θTx) and p(θTx|y).
Proposition 5 (PSI convergence rate). Let P (θTX) be
α-Holder continuous for all θ and let (x, y) ∼ PXY

where X ∈ Rdx and Y ∈ {0, 1}. Let p̂sin,m represent
the KDE estimate of PSI using n samples and m projec-
tions. Furthermore, let minθ pmi(θ

Tx; y) ≥ ρ. Assuming
min {P (Y = 0), P (Y = 1)} ̸= 0 when the probabilities
are estimated on the training data, for large enough n, we
can bound the estimation error as

EX,Y

[∣∣∣ψ(x; y)− ψ̂n,m

∣∣∣] ≤ 1− ρ
2
√
m

+O
(

n−α/(2α+1)

minθ min {p(θ⊤x), p(θ⊤x | y)}

)
(10)

For PVI, we have the following bound on the expected
deviation of the PVI estimates.

Theorem 1 (PVI convergence rate). Given (x, y) ∼
PXY where X ∈ Rdx and Y ∈ {0, 1}, we assume
that P (Y = 0) = P (Y = 1) = 0.5. Assume V
represents the set of all possible functions modelled by
a neural network having some fixed architecture. As-
sume ∀f ∈ V , log f [x](y) ∈ [−B,B]. Also, let
f∗ = argminf∈V EX,Y [− log f [X](Y)] represent the
ground truth function for estimating conditional V-entropy,
and f̂ represent the trained function given n datapoints
(x1, y1), ..., (xn, yn) sampled from Pn

XY . Let M =

max{var(f∗[x](y)), var(f̂ [x](y))} where var denotes the
variance. Let p̂vin represent the PVI estimated using this
neural network with n samples. Then, for any δ ∈ (0, 0.5),
with probability p ≥ 1− 2δ, we have

EX,Y

[∣∣∣pvi(x→ y)− p̂vin
∣∣∣] ≤ 2Rn(GV) + 2

√
M

+ 2B

√
2 log(1/δ)

n
(11)

where the function family GV = {g|g(x, y) =
log f [x](y), f ∈ V} andRn denotes the Rademacher com-
plexity with n sampled points.

Remark 3 (Convergence rates and confidence estima-
tion). Note that convergence rates are a critical factor in
determining the stability and accuracy of confidence es-
timates using these measures. If a measure has slower
convergence, then even if it has other desirable invariance
and geometric properties, the slower convergence implies
more estimation error, thereby decreasing the accuracy of
the confidence estimates.

3.3. Theoretical Takeaways

We present a summary of the key takeaways from the the-
oretical results and their implications for our subsequent
experiments. These takeaways will also be referenced in
our discussion of the experimental results later.

T1 We find that the different PI measures each have their
own strengths and weaknesses, with no single measure out-
performing the others across all scenarios.
T2 Invariance: PMI is the most invariant among the three,
as it exhibits invariance to any homeomorphic transforma-
tion, and thus is the most structure-preserving. However,
we note (in Remark 2) that this may not be a boon in the
context of confidence estimation, as the model’s constraints
matter significantly. PSI, on the other hand, is not invari-
ant to general invertible linear transformations, which can
hinder performance as neural networks can preserve output
function in response to invertible linear transformation on
the input, and thereby preserve the confidence as well. Thus,
since PVI is invariant to linear invertible transformations
but not to homeomorphic transformations, it appears to be
the most suitable measure for confidence estimation with
respect to invariance properties.
T3 Convergence Rates: When comparing PMI and PSI,
our theoretical results concretely find that PSI is likely to
have better convergence behaviour compared to PMI, fol-
lowing the differences in the order of the sample complexity
n. We find that PVI’s convergence rate depends on the com-
plexity of the predictive family V , thereby making direct
comparison with PSI and PMI more challenging. However,
in absolute terms, we find that the convergence of PMI and
PSI also depends on the spread of the distribution P (x)
and the amount of overlap between the class-wise distribu-
tions P (x|y = 1) and P (x|y = 0), primarily due to the
denominators in (9) and (10). In complex datasets, these
distributions are typically broader and exhibit greater over-
lap, resulting in slower convergence. In contrast, for simpler,
more separable datasets such as MNIST, PSI and PMI con-
verge more quickly, as reflected in PMI outperforming the
other methods on MNIST for failure prediction (Table 1).
T4 Margin Sensitivity: We provide a detailed analysis of
the three PI measures with respect to their sensitivity to the
classifier’s sample-wise margin in Appendix B.3. Ideally,
samples closer to the decision boundary should be assigned
lower confidence scores. Overall, our results point to PSI

5

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

potentially being the most sensitive to sample-wise margin
(hard and soft), although we found direct comparisons are
not very straightforward. However, we do note that PMI is
invariant to hard margin (when the classes are clearly sepa-
rated), whereas PSI remains sensitive to it. Empirically, we
found that PSI exhibits the strongest correlation with margin,
as shown in Table 4. However, since PSI performs poorly
in failure prediction experiments, this raises an important
observation: margin sensitivity alone may not be a sufficient
criterion for identifying good confidence measures.

4. Experiments
We performed two types of experiments related to confi-
dence estimation: (1) failure prediction and (2) confidence
calibration. In all experiments, the PI measures are trained
with true labels of the training dataset and evaluated with
predicted labels of the test dataset. We also normalize these
PI measures with a softmax function to ensure their values
lie between 0 and 1. For all experiments, we calibrate all
methods using temperature scaling (including the PI mea-
sures), except for max logits and logits margin since their
values are not in the [0,1] range, to ensure a fair comparison.
All experiments are conducted using benchmark datasets
and architectures readily available in TensorFlow. More
details on the datasets, architectures and training algorithms
used in all experiments are provided in Appendix C.

For PVI, we compute it between the input features and the
predicted labels, following the approach from in (Ethayarajh
et al., 2022), which is to estimate the PVI between X and
Y by training another model with the same architecture.
It measures how easily we can predict Y from X using
V . Thus, it can capture the confidence of the predictive
family V . While the way PVI is defined is architecture-
dependent, the definitions of PMI and PSI are not. For PMI
and PSI, it is more natural to use the features of the model
directly and the layers closest to the output should capture
the model’s confidence about the network the most. For
PMI and PSI, we compute them between the output layer
features and the predicted labels. Furthermore, instead of
computing the measures with just the predicted class, we
compute them for all classes and apply softmax function
along with temperature scaling. More discussion on this can
be found in Appendix D.1. In this way, the PI values are
normalized to a range between 0 and 1.

4.1. Failure Prediction

Goal: The goal of this experiment is to compare the effec-
tiveness of different confidence estimates for failure pre-
diction. Failure prediction typically involves three tasks:
misclassification detection, selective prediction, and out-
of-distribution detection (Jaeger et al., 2023). This work
focuses on the first two tasks. In misclassification detection,

the objective is to identify incorrect predictions made by
trained networks. Ideally, confidence scores should be high
for correct predictions and low for incorrect ones. In selec-
tive prediction, the aim is to evaluate the improvement in
classification performance after excluding a certain percent-
age of low-confidence predictions.

Methodology: For misclassification detection, we evaluate
the effectiveness of confidence estimates in distinguishing
between positive (incorrect predictions) and negative (cor-
rect predictions) samples. We use a threshold-independent
metric, AUROCf (Area Under the ROC Curve, with f de-
noting failure), which is widely adopted in the literature
(Hendrycks & Gimpel, 2017; Jaeger et al., 2023). Since
AUROC is less informative when the positive and neg-
ative classes have significantly different base rates, we
also consider another metric called AUPR (Area Under
the Precision-Recall Curve). Given that the base rate of
the positive class greatly influences AUPR, we examine
both scenarios: treating success classes as positive samples
(AUPRf , success) and treating error classes as positive sam-
ples (AUPRf , error). We also compute the FPR95, which
measures the false positive rate when the true positive rate
is at 95%. For selective prediction, we examine the im-
provement in classification error rates by filtering out low-
confidence samples. In this context, we define risk as the
error rate on the remaining samples, and coverage as the
proportion of remaining samples relative to the total sam-
ples. We employ a threshold-independent metric, E-AURC
(Area Under the Risk-Coverage Curve), as described in the
literature (Geifman et al., 2019; Jaeger et al., 2023). We
compare our results against six benchmark methods: max-
imum softmax probability (MSP) (Geifman & El-Yaniv,
2017), softmax margin (SM) (Tagasovska & Lopez-Paz,
2019), max logit (ML) (Hendrycks et al., 2022), logits mar-
gin (LM) (Streeter, 2018), negative entropy (NE) (Belghazi
& Lopez-Paz, 2021) and negative Gini index (NG) (Granese
et al., 2021). We report the results in Table 1. Note that we
omit PMI computation for datasets with a very large number
of classes (CIFAR-100, Stanford Dogs, and TinyImageNet)
due to its high computational cost.

Results: We observe that PVI generally outperforms the
other two PI measures, as well as other benchmark post-hoc
methods, across a range of metrics. The performance gains
are particularly pronounced for AUPRf,failure, FPR95f , and
AURC. A higher AUPRf,failure and a lower FPR95f indicate
that PVI can reliably assign lower confidence to misclassi-
fied examples, while a lower E-AURC indicates that PVI
can reliably defer uncertain predictions. The superior per-
formance of PVI is especially true for larger models and
datasets. We argue that this is due to PVI being generally
well-rounded in terms of its theoretical properties for confi-
dence estimation, as discussed in Section 3.3.

6

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

Table 1: Comparison of Confidence Estimation Methods for Failure Prediction (Averaged over 10 Runs).

Model, Dataset Method AUROCf × 102 ↑ AUPRf,success × 102 ↑ AUPRf,error × 102 ↑ FPR95f × 102 ↓ E-AURC × 103 ↓

MLP, MNIST

MSP 96.80 ± 0.17 99.93 ± 0.00 43.17 ± 2.49 16.25 ± 1.64 0.69 ± 0.05
SM 96.75 ± 0.17 99.93 ± 0.00 40.45 ± 1.94 16.21 ± 1.65 0.70 ± 0.05
ML 90.89 ± 0.32 99.78 ± 0.01 28.85 ± 1.49 40.67 ± 1.44 2.12 ± 0.10
LM 96.67 ± 0.18 99.93 ± 0.01 39.40 ± 1.89 16.87 ± 1.66 0.71 ± 0.05
NE 96.76 ± 0.17 99.93 ± 0.01 42.41 ± 2.02 16.09 ± 1.65 0.70 ± 0.05
NG 96.80 ± 0.17 99.93 ± 0.00 43.31 ± 2.30 16.20 ± 1.64 0.69 ± 0.05
PMI 97.13 ± 0.14 99.94 ± 0.00 45.94 ± 2.25 14.82 ± 1.39 0.61 ± 0.04
PSI 94.77 ± 0.46 99.88 ± 0.01 31.01 ± 1.99 27.89 ± 1.54 1.19 ± 0.14
PVI 96.94 ± 0.22 99.93 ± 0.01 48.28 ± 3.20 15.59 ± 1.46 0.66 ± 0.05

CNN, F-MNIST

MSP 92.53 ± 0.17 99.39 ± 0.03 44.71 ± 1.21 46.94 ± 1.73 5.72 ± 0.29
SM 92.42 ± 0.17 99.39 ± 0.03 42.77 ± 1.50 47.62 ± 1.66 5.80 ± 0.29
ML 86.76 ± 0.50 98.85 ± 0.08 32.38 ± 1.01 63.26 ± 1.73 10.91 ± 0.76
LM 92.29 ± 0.17 99.37 ± 0.03 42.12 ± 1.52 48.21 ± 1.67 5.91 ± 0.29
NE 92.40 ± 0.17 99.38 ± 0.03 43.38 ± 0.93 48.85 ± 1.87 5.82 ± 0.31
NG 92.52 ± 0.16 99.39 ± 0.03 44.51 ± 1.04 46.30 ± 1.64 5.73 ± 0.29
PMI 91.38 ± 0.40 99.26 ± 0.03 42.37 ± 1.62 48.95 ± 1.90 6.99 ± 0.30
PSI 89.95 ± 0.38 99.15 ± 0.07 36.28 ± 0.96 56.76 ± 2.03 8.02 ± 0.61
PVI 92.98 ± 0.52 99.43 ± 0.03 50.01 ± 4.22 43.26 ± 3.36 5.38 ± 0.33

VGG16, STL-10

MSP 92.04 ± 0.25 99.15 ± 0.05 50.75 ± 1.24 48.21 ± 1.69 7.93 ± 0.48
SM 91.97 ± 0.25 99.14 ± 0.05 48.61 ± 1.64 49.12 ± 1.95 7.97 ± 0.48
ML 89.50 ± 0.40 98.82 ± 0.07 45.70 ± 1.44 53.52 ± 1.30 10.94 ± 0.67
LM 91.82 ± 0.25 99.13 ± 0.05 47.51 ± 1.64 50.81 ± 1.77 8.11 ± 0.48
NE 91.77 ± 0.26 99.12 ± 0.06 48.95 ± 1.04 49.93 ± 1.48 8.19 ± 0.50
NG 92.01 ± 0.25 99.14 ± 0.05 50.25 ± 1.12 48.04 ± 1.23 7.95 ± 0.49
PMI 91.46 ± 0.37 99.07 ± 0.06 49.48 ± 1.95 49.12 ± 1.92 8.66 ± 0.56
PSI 91.79 ± 0.32 99.11 ± 0.06 50.78 ± 1.74 47.70 ± 1.56 8.29 ± 0.55
PVI 92.79 ± 0.62 99.23 ± 0.06 55.88 ± 3.50 41.97 ± 3.61 7.18 ± 0.53

ResNet50, CIFAR-10

MSP 93.59 ± 0.24 99.63 ± 0.02 43.42 ± 1.20 36.29 ± 1.23 3.52 ± 0.22
SM 93.71 ± 0.24 99.64 ± 0.02 43.05 ± 1.23 35.91 ± 1.10 3.44 ± 0.22
ML 91.80 ± 0.30 99.52 ± 0.02 37.54 ± 1.13 45.35 ± 1.38 4.58 ± 0.23
LM 93.80 ± 0.23 99.65 ± 0.02 42.74 ± 1.23 35.85 ± 1.23 3.38 ± 0.21
NE 93.29 ± 0.23 99.62 ± 0.02 40.49 ± 1.16 38.57 ± 1.64 3.67 ± 0.21
NG 93.55 ± 0.24 99.63 ± 0.02 42.44 ± 1.17 36.56 ± 1.35 3.54 ± 0.22
PMI 93.11 ± 0.30 99.60 ± 0.02 43.51 ± 1.53 37.43 ± 1.71 3.87 ± 0.23
PSI 93.51 ± 0.22 99.63 ± 0.02 43.27 ± 1.34 37.44 ± 1.64 3.57 ± 0.19
PVI 95.14 ± 0.30 99.72 ± 0.02 60.99 ± 1.60 25.77 ± 1.56 2.72 ± 0.17

ResNet101, CIFAR-100

MSP 85.54 ± 0.31 95.25 ± 0.15 60.83 ± 0.82 63.47 ± 0.96 39.17 ± 1.20
SM 85.92 ± 0.29 95.41 ± 0.15 60.78 ± 0.62 63.14 ± 0.58 37.85 ± 1.14
ML 82.48 ± 0.48 93.92 ± 0.22 57.20 ± 0.94 65.98 ± 1.13 50.15 ± 1.78
LM 86.27 ± 0.28 95.65 ± 0.14 59.40 ± 0.55 65.23 ± 0.94 35.89 ± 1.07
NE 84.33 ± 0.34 94.88 ± 0.16 57.57 ± 0.87 66.75 ± 1.11 42.32 ± 1.29
NG 85.32 ± 0.31 95.20 ± 0.15 59.75 ± 0.86 64.61 ± 1.15 39.62 ± 1.21
PSI 84.30 ± 0.26 94.72 ± 0.15 57.40 ± 1.01 66.44 ± 0.76 43.57 ± 1.11
PVI 89.02 ± 0.38 96.27 ± 0.11 71.54 ± 1.42 47.17 ± 1.73 30.44 ± 0.85

InceptionV3, Stanford Dogs

MSP 83.52 ± 0.34 93.80 ± 0.31 59.85 ± 0.71 66.72 ± 1.03 50.16 ± 2.31
SM 83.63 ± 0.37 93.91 ± 0.32 58.58 ± 0.70 67.78 ± 1.08 49.36 ± 2.36
ML 81.18 ± 0.34 92.71 ± 0.31 56.87 ± 0.70 69.03 ± 0.93 59.16 ± 2.25
LM 83.51 ± 0.44 94.05 ± 0.32 56.73 ± 0.69 70.46 ± 1.44 48.33 ± 2.40
NE 82.58 ± 0.32 93.48 ± 0.32 57.49 ± 0.66 69.14 ± 0.93 52.91 ± 2.32
NG 83.38 ± 0.33 93.76 ± 0.31 59.20 ± 0.70 67.48 ± 0.87 50.50 ± 2.30
PSI 81.80 ± 0.25 93.32 ± 0.23 54.36 ± 0.86 73.73 ± 0.83 54.41 ± 1.67
PVI 85.73 ± 0.73 94.50 ± 0.25 66.59 ± 2.30 57.05 ± 2.60 44.25 ± 2.20

DenseNet121, TinyImageNet

MSP 87.01 ± 0.34 94.28 ± 0.18 70.87 ± 0.83 58.29 ± 1.21 43.92 ± 1.36
SM 86.95 ± 0.35 94.35 ± 0.18 69.22 ± 0.88 60.79 ± 1.42 43.50 ± 1.38
ML 84.37 ± 0.45 92.58 ± 0.31 67.80 ± 0.89 61.42 ± 1.21 56.97 ± 2.29
LM 86.50 ± 0.35 94.37 ± 0.18 66.60 ± 0.83 65.44 ± 1.33 43.58 ± 1.38
NE 86.02 ± 0.37 93.86 ± 0.21 68.41 ± 0.86 61.82 ± 1.19 47.34 ± 1.56
NG 86.87 ± 0.34 94.24 ± 0.18 70.23 ± 0.83 59.28 ± 1.12 44.29 ± 1.36
PSI 84.78 ± 0.42 93.18 ± 0.23 64.73 ± 0.83 67.42 ± 1.45 52.65 ± 1.75
PVI 89.66 ± 0.27 95.32 ± 0.14 77.82 ± 0.69 46.89 ± 0.90 35.59 ± 1.10

7

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

Table 2: Comparison of Confidence Estimation Methods for Confidence Calibration (Averaged over 10 Runs).

Model, Dataset Method SCE ↓ CC-SCE ↓ Ada-SCE ↓ RMS-SCE ↓

MLP, MNIST

MSP 0.06 ± 0.01 0.18 ± 0.01 0.01 ± 0.00 0.44 ± 0.09
PMI 0.05 ± 0.01 0.17 ± 0.01 0.01 ± 0.00 0.42 ± 0.07
PSI 0.14 ± 0.02 0.30 ± 0.02 0.03 ± 0.00 0.75 ± 0.10
PVI 0.05 ± 0.01 0.18 ± 0.01 0.01 ± 0.00 0.41 ± 0.10

CNN, F-MNIST

MSP 0.15 ± 0.02 0.35 ± 0.02 0.07 ± 0.01 0.52 ± 0.05
PMI 0.23 ± 0.02 0.58 ± 0.05 0.06 ± 0.02 0.93 ± 0.11
PSI 0.15 ± 0.01 0.57 ± 0.05 0.08 ± 0.02 0.52 ± 0.04
PVI 0.14 ± 0.02 0.34 ± 0.02 0.07 ± 0.01 0.50 ± 0.06

VGG16, STL-10

MSP 0.28 ± 0.06 0.59 ± 0.03 0.12 ± 0.03 0.94 ± 0.14
PMI 0.23 ± 0.03 0.65 ± 0.04 0.16 ± 0.02 0.82 ± 0.10
PSI 0.22 ± 0.05 0.67 ± 0.05 0.15 ± 0.04 0.72 ± 0.11
PVI 0.20 ± 0.03 0.61 ± 0.04 0.12 ± 0.03 0.68 ± 0.09

ResNet50, CIFAR-10

MSP 0.19 ± 0.01 0.35 ± 0.02 0.03 ± 0.01 0.88 ± 0.07
PMI 0.15 ± 0.01 0.39 ± 0.02 0.04 ± 0.01 0.74 ± 0.08
PSI 0.17 ± 0.01 0.35 ± 0.02 0.04 ± 0.01 0.85 ± 0.08
PVI 0.17 ± 0.00 0.33 ± 0.00 0.03 ± 0.00 0.85 ± 0.01

ResNet101, CIFAR-100
MSP 0.08 ± 0.00 0.20 ± 0.00 0.04 ± 0.00 0.68 ± 0.04
PSI 0.07 ± 0.01 0.31 ± 0.01 0.02 ± 0.00 0.49 ± 0.05
PVI 0.08 ± 0.00 0.20 ± 0.00 0.04 ± 0.00 0.68 ± 0.04

InceptionV3, Stanford Dogs
MSP 0.07 ± 0.00 0.20 ± 0.01 0.03 ± 0.00 0.63 ± 0.03
PSI 0.05 ± 0.01 0.28 ± 0.01 0.02 ± 0.00 0.47 ± 0.07
PVI 0.07 ± 0.00 0.20 ± 0.01 0.03 ± 0.00 0.63 ± 0.03

DenseNet121, TinyImageNet
MSP 0.03 ± 0.00 0.12 ± 0.00 0.01 ± 0.00 0.32 ± 0.03
PSI 0.03 ± 0.00 0.19 ± 0.00 0.02 ± 0.00 0.29 ± 0.03
PVI 0.02 ± 0.00 0.12 ± 0.00 0.01 ± 0.00 0.29 ± 0.02

4.2. Confidence Calibration

Goal: The goal of confidence calibration is to determine
whether the confidence scores reflect the true correctness
likelihood (Guo et al., 2017). Perfect calibration is defined
as follows: P(Ŷ = Y |P̂ = p) = p, ∀p ∈ [0, 1], where
Y denotes the ground-truth labels, Ŷ denotes the predicted
labels and P̂ is the associated probability.

Methodology: Expected Calibration Error (ECE), a widely
used calibration metric, has known limitations: it relies on a
fixed length binning approach that introduces bias–variance
trade-offs (fewer bins increase bias, more bins escalate vari-
ance), considers only the maximum predicted probabili-
ties (ignoring potentially meaningful information in lower-
confidence estimates), and may mislead by yielding low
calibration error even in poorly accurate models (Pavlovic,
2025; Nixon et al., 2019). Instead, we use the variants pro-
posed in (Nixon et al., 2019). Static Calibration Error (SCE)
is the multiclass extension of ECE that evaluates calibration
over all predicted class probabilities, not just the top pre-
diction. Class-Conditional SCE (CC-SCE) computes SCE
separately for each class (binning and accuracy calculation
per class), then averages the errors across classes. Adap-
tive SCE (Ada-SCE) uses adaptive (quantile-based) binning
so that each bin contains approximately the same number
of predictions, improving stability in accuracy estimates.
RMS-SCE replaces the L1 norm in the error term with the
L2 norm before averaging, thereby penalizing larger miscal-
ibrations more strongly. The results are shown in Table 2.

We also include the results for other calibration metrics in
Table 8 in the Appendix. Similar to the failure prediction
experiment, we omit PMI computation for datasets with a
very large number of classes (CIFAR-100, Stanford Dogs,
and TinyImageNet) due to its high computational cost.

Results: The results in Table 2 show that MSP and PVI
consistently perform well across most datasets and architec-
tures, reinforcing the observation in (Guo et al., 2017) that
simple temperature scaling can already be highly effective
for confidence calibration. PVI, in particular, often matches
or slightly outperforms MSP, especially in SCE and RMS-
SCE, but the differences are typically small. PMI and PSI
each show sporadic strengths in specific metrics, suggest-
ing they may offer situational advantages depending on the
dataset and calibration criterion. Overall, we find that PVI
demonstrates more consistent calibration than MSP across
all four metrics, with notable cases such as the substantially
lower RMS-SCE for the VGG16–STL-10 pair.

5. Reflections
We performed a comparative analysis of using three PI mea-
sures, namely PMI, PVI, and PSI, for confidence estimation
in DNNs. We studied several theoretical properties which
we believe can be relevant to confidence estimation, in-
cluding how well a measure behaves in response to data
transformations (invariance properties), how well a mea-
sure converges with data (convergence rates) and how well

8

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

a measure tracks the geometric difficulty of classifying a
feature point (sample-wise margin). We performed a series
of experiments on confidence estimation (failure prediction
and confidence calibration) to test and verify our theoretical
hypothesis. Our findings show that PVI outperforms PMI,
PSI, and benchmark post-hoc methods in failure prediction,
while remaining competitive in confidence calibration. This
highlights PVI’s versatility, especially given that popular
confidence calibration methods have been shown to be inef-
fective or even detrimental for failure prediction tasks (Zhu
et al., 2022). This is consistent with our theoretical find-
ings which suggest that PVI is generally well-rounded when
considering the three theoretical properties analyzed here.

One of our findings in this work has been that better sensitiv-
ity to margin does not necessarily imply better performance
in the confidence prediction problem. We note that for the
correlation to margin experiment (Table 4), the focus is
on whether the model assigns higher confidence to sam-
ples with a larger margin (and vice versa), regardless of
whether the prediction is correct. On the other hand, for
the misclassification detection, selective prediction, and cal-
ibration analysis, the focus is more on the correctness of
predictions (directly linked to accuracy). The contrast lies
in the interpretation of confidence: margin experiments treat
confidence as a measure of sensitivity to decision bound-
aries, while the other tasks treat it as a measure of predictive
reliability. Therefore, our results highlight that the two in-
terpretations of confidence may not be consistent with each
other, i.e., sample-wise margins may not be reflective of true
confidence.

For future work, these PI measures could be explored for
confidence estimation in other modalities (e.g., image, audio,
tabular, etc.). In addition, one could explore the potential of
using PI measures for other aspects of trustworthy machine
learning such as explainability and privacy. Furthermore,
we could study other scaling and normalization techniques
to improve the performance of the PI measures. We hope
that both our theoretical and empirical findings will moti-
vate more work in the direction of information-theoretic ap-
proaches for confidence estimation in the context of DNNs.

Another promising direction for future work is to integrate
PVI into existing confidence estimation methods (not nec-
essarily post-hoc) that rely on logit-based softmax outputs
for generating confidence scores, to evaluate whether it can
further improve performance. This includes popular tech-
niques such as Monte Carlo dropout, deep ensembles, focal
loss, and various temperature scaling methods. The inte-
gration is straightforward: replace the logit-based softmax
outputs with softmax-scaled PVI values when computing
confidence scores.

Limitations. Our PI measures require training additional
models to learn the probability distribution. Since estima-

tors for PI measures are less common compared to their
aggregate counterparts, our work, which clearly demon-
strates their applications in confidence estimation, could
motivate further research towards more accurate and ef-
ficient estimation of these measures. In addition, the PI
measures are the optimal choice of explainability if we as-
sume the probability-raising based causal model for the
problem. Exploring more general structural causal models
from an information-theoretic perspective in the context of
explainability is an interesting avenue for future work.

Impact Statement
The use of PI measures for confidence estimation in deep
learning models serves as an additional safeguard against
wrong predictions before deploying them in real-world ap-
plications. Our approach could be combined with explain-
ability methods to ensure consistency of results. Caution
should be taken when interpreting these results when they
are used for critical decision-making, such as in being aware
of any probabilistic biases in the data that may yield unfair
outcomes. Finally, these PI measures can be used to ex-
plore other aspects of trustworthy AI including adversarial
robustness and privacy.

Acknowledgements
This research/project is supported by A*STAR, CISCO Sys-
tems (USA) Pte. Ltd and National University of Singapore
under its Cisco-NUS Accelerated Digital Economy Corpo-
rate Laboratory (Award I21001E0002).

References
Abdar, M., Pourpanah, F., Hussain, S., et al. A review of

uncertainty quantification in deep learning: Techniques,
applications and challenges. Information Fusion, 2021.

Ahanin, Z. and Ismail, M. A. A multi-label emoji
classification method using balanced pointwise mutual
information-based feature selection. Computer Speech
and Language, 2022.

Bandhakavi, A., Wiratunga, N., Padmanabhan, D., et al.
Lexicon-based feature extraction for emotion text classi-
fication. Pattern Recognition Letters, 2017.

Battiti, R. Using mutual information for selecting features
in supervised neural net learning. IEEE Trans. Neural
Networks, 1994.

Belghazi, M. I. and Lopez-Paz, D. What classifiers know
what they don’t? CoRR, 2021.

Bouma, G. Normalized (pointwise) mutual information in
collocation extraction. Proceedings of GSCL, 2009.

9

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

Chen, Y., Shen, Y., and Zheng, S. Truthful data acquisition
via peer prediction. In Advances in Neural Information
Processing Systems, NeurIPS, 2020.

Church, K. and Hanks, P. Word association norms, mutual
information, and lexicography. Computational linguistics,
1990.

Corbière, C., Thome, N., Bar-Hen, A., et al. Addressing fail-
ure prediction by learning model confidence. In Advances
in Neural Information Processing Systems, NeurIPS,
2019.

Cover, T. M. and Thomas, J. A. Elements of Information
Theory. Wiley, 2001.

Dagan, I., Marcus, S., and Markovitch, S. Contextual word
similarity and estimation from sparse data. In 31st Annual
Meeting of the Association for Computational Linguistics,
1993.

DeVries, T. and Taylor, G. W. Learning confidence for
out-of-distribution detection in neural networks. CoRR,
2018.

Elsayed, G. F., Krishnan, D., Mobahi, H., et al. Large
margin deep networks for classification. In Advances in
Neural Information Processing Systems, NeurIPS, 2018.

Ethayarajh, K., Choi, Y., and Swayamdipta, S. Under-
standing dataset difficulty with V-usable information. In
International Conference on Machine Learning, ICML,
2022.

Fano, R. M. and Hawkins, D. Transmission of information:
A statistical theory of communications. American Journal
of Physics, 1961a.

Fano, R. M. and Hawkins, D. Transmission of information:
A statistical theory of communications. American Journal
of Physics, 29(11):793–794, 1961b.

Feng, L., Ahmed, M. O., Hajimirsadeghi, H., et al. Towards
better selective classification. In International Conference
on Learning Representations, ICLR, 2023.

Gal, Y. and Ghahramani, Z. Dropout as a bayesian approxi-
mation: Representing model uncertainty in deep learning.
In Proceedings of the 33nd International Conference on
Machine Learning, ICML, 2016.

Galil, I., Dabbah, M., and El-Yaniv, R. What can we learn
from the selective prediction and uncertainty estimation
performance of 523 imagenet classifiers? In International
Conference on Learning Representations, ICLR, 2023.

Gawlikowski, J., Tassi, C. R. N., Ali, M., et al. A survey
of uncertainty in deep neural networks. Artificial Intelli-
gence Review, 2023.

Geifman, Y. and El-Yaniv, R. Selective classification for
deep neural networks. In Advances in neural information
processing systems, NeurIPS, 2017.

Geifman, Y., Uziel, G., and El-Yaniv, R. Bias-reduced un-
certainty estimation for deep neural classifiers. In Inter-
national Conference on Learning Representations, ICLR,
2019.

Goldfeld, Z. and Greenewald, K. H. Sliced mutual infor-
mation: A scalable measure of statistical dependence.
In Advances in Neural Information Processing Systems,
NeurIPS, 2021.

Granese, F., Romanelli, M., Gorla, D., et al. DOCTOR:
A simple method for detecting misclassification errors.
In Advances in Neural Information Processing Systems,
NeurIPS, 2021.

Grønlund, A., Kamma, L., and Larsen, K. G. Near-tight
margin-based generalization bounds for support vector
machines. In International Conference on Machine
Learning, pp. 3779–3788. PMLR, 2020.

Guo, C., Pleiss, G., Sun, Y., et al. On calibration of modern
neural networks. In Proceedings of the 34th International
Conference on Machine Learning, ICML, 2017.

He, W. and Jiang, Z. A survey on uncertainty quantification
methods for deep neural networks: An uncertainty source
perspective. CoRR, 2023.

Hendrycks, D. and Gimpel, K. A baseline for detecting
misclassified and out-of-distribution examples in neural
networks. In International Conference on Learning Rep-
resentations, ICLR, 2017.

Hendrycks, D., Basart, S., Mazeika, M., et al. Scaling
out-of-distribution detection for real-world settings. In
International Conference on Machine Learning, ICML,
2022.

Hitchcock, C. Probabilistic causation. 1997.

Isola, P., Zoran, D., Krishnan, D., et al. Crisp boundary de-
tection using pointwise mutual information. In European
Conference on Computer Vision, ECCV, 2014.

Jaeger, P. F., Lüth, C. T., Klein, L., et al. A call to reflect
on evaluation practices for failure detection in image
classification. In International Conference on Learning
Representations, ICLR, 2023.

Jiang, H. Uniform convergence rates for kernel density esti-
mation. In International Conference on Machine Learn-
ing, ICML, 2017.

10

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

Jiang, H., Kim, B., Guan, M. Y., et al. To trust or not to
trust A classifier. In Advances in Neural Information
Processing Systems, NeurIPS, 2018.

Kaur, D., Uslu, S., Rittichier, K. J., et al. Trustworthy
artificial intelligence: A review. ACM Computing Surveys
(CSUR), 2023.

Kraskov, A., Stögbauer, H., and Grassberger, P. Estimating
mutual information. 2004.

Kulmizev, A. and Nivre, J. Investigating UD treebanks
via dataset difficulty measures. In Conference of the
European Chapter of the Association for Computational
Linguistics, EACL, 2023.

Liang, S., Li, Y., and Srikant, R. Enhancing the reliability
of out-of-distribution image detection in neural networks.
In International Conference on Learning Representations,
ICLR, 2018.

Lin, Y. T., Papangelis, A., Kim, S., et al. Selective in-context
data augmentation for intent detection using pointwise
v-information. In Conference of the European Chapter
of the Association for Computational Linguistics, EACL,
2023.

Littwin, E. and Wolf, L. Regularizing by the variance of
the activations’ sample-variances. Advances in Neural
Information Processing Systems, 31, 2018.

Lu, S., Chen, S., Li, Y., et al. Measuring pointwise V-usable
information in-context-ly. CoRR, 2023.

Luo, X., Liu, Z., Shang, M., et al. Highly-accurate
community detection via pointwise mutual information-
incorporated symmetric non-negative matrix factorization.
IEEE Transactions on Network Science and Engineering,
2021.

Mena, J., Pujol, O., and Vitrià, J. A survey on uncertainty
estimation in deep learning classification systems from a
bayesian perspective. ACM Computing Surveys (CSUR),
2022.

Mukhoti, J., Kirsch, A., van Amersfoort, J., Torr, P. H., and
Gal, Y. Deep deterministic uncertainty: A new simple
baseline. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 24384–
24394, 2023.

Nandwani, Y., Kumar, V., Raghu, D., et al. Pointwise mu-
tual information based metric and decoding strategy for
faithful generation in document grounded dialogs. In
Conference on Empirical Methods in Natural Language
Processing, EMNLP, 2023.

Nixon, J., Dusenberry, M. W., Zhang, L., et al. Measuring
calibration in deep learning. In IEEE Conference on Com-
puter Vision and Pattern Recognition CVPR Workshops,
2019.

Oldham, K. B., Myland, J. C., and Spanier, J. The incom-
plete beta function b (v, µ, x). In An Atlas of Functions,
pp. 603–609. Springer, 2008.

Padmakumar, V. and He, H. Unsupervised extractive sum-
marization using pointwise mutual information. In Con-
ference of the European Chapter of the Association for
Computational Linguistics, EACL, 2021.

Pavlovic, M. Understanding model calibration - A gentle
introduction and visual exploration of calibration and the
expected calibration error (ECE). ICLR Blogposts, 2025.

Poole, B., Ozair, S., van den Oord, A., et al. On varia-
tional bounds of mutual information. In International
Conference on Machine Learning, ICML, 2019.

Prasad, A., Saha, S., Zhou, X., et al. Receval: Evaluating
reasoning chains via correctness and informativeness. In
Conference on Empirical Methods in Natural Language
Processing, EMNLP, 2023.

Ren, L., Sidhu, M., Zeng, Q., et al. C-PMI: conditional
pointwise mutual information for turn-level dialogue eval-
uation. 2023.

Sintsova, V. and Pu, P. Dystemo: Distant supervision
method for multi-category emotion recognition in tweets.
ACM Transactions on Intelligent Systems and Technology,
(TIST), 2016.

Streeter, M. Approximation algorithms for cascading pre-
diction models. In International Conference on Machine
Learning, ICML, 2018.

Su, Q., Xiang, K., Wang, H., et al. Using pointwise mu-
tual information to identify implicit features in customer
reviews. In International Conference on Computer Pro-
cessing of Oriental Languages, ICCPOL, 2006.

Tagasovska, N. and Lopez-Paz, D. Single-model uncertain-
ties for deep learning. In Advances in Neural Information
Processing Systems, NeurIPS, 2019.

Tao, L., Zhu, Y., Guo, H., et al. A benchmark study on
calibration. In International Conference on Learning
Representations, ICLR, 2024.

Tsai, Y. H., Zhao, H., Yamada, M., et al. Neural methods
for point-wise dependency estimation. In Advances in
Neural Information Processing Systems, NeurIPS, 2020.

11

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

Turney, P. D. Mining the web for synonyms: PMI-IR versus
LSA on TOEFL. In European Conference on Machine
Learning, EMCL, Lecture Notes in Computer Science,
2001.

Vemuri, N. Scoring confidence in neural networks. Techni-
cal Report UCB/EECS-2020-132, University of Califor-
nia at Berkeley, 2020.

Wongso, S., Ghosh, R., and Motani, M. Using sliced mutual
information to study memorization and generalization in
deep neural networks. In International Conference on
Artificial Intelligence and Statistics, AISTATS, 2023a.

Wongso, S., Ghosh, R., and Motani, M. Pointwise sliced
mutual information for neural network explainability. In
IEEE International Symposium on Information Theory,
ISIT, 2023b.

Xu, Y., Zhao, S., Song, J., et al. A theory of usable infor-
mation under computational constraints. In International
Conference on Learning Representations, ICLR, 2020.

Zheng, S., Kwon, Y., Qi, X., et al. Truthful dataset valuation
by pointwise mutual information. CoRR, 2024.

Zhu, F., Cheng, Z., Zhang, X., et al. Rethinking confidence
calibration for failure prediction. In European Conference
on Computer Vision, ECCV, 2022.

12

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

Supplementary Materials

To allow ease of access and improve readability, we include the table of contents for our supplementary materials.

Table of Contents

A Related Work & Information Measure Details

A.1 Related Work

A.2 General Properties of Information Measures and Their Pointwise Variants

A.2.1. General Properties of MI and PMI

A.2.2. General Properties of SMI and PSI

A.2.3. General Properties of VI and PVI

A.3 Pointwise Information Measures

A.3.1. PMI Estimators

A.3.2. PSI Estimators

A.3.3. PVI Estimators

B Theoretical Analysis & Proofs

B.1 Invariance Properties

B.2 Convergence Rates

B.3 Geometric Properties

C Benchmarks & Experimental Details

C.1 Benchmark Datasets & Architectures

C.2 Hyperparameters

C.3 Details for Experiments in Main Paper

C.3.1. Details for Experiment in Section 4.1 (Failure Prediction)

C.3.2. Details for Experiment in Section 4.2 (Confidence Calibration)

C.4 Additional Results for Experiments in Main Paper

C.4.1. Additional Results for Experiment in Section 4.2 (Confidence Calibration)

D Additional Experiments

D.1 Normalization: Effects of Softmax and Temperature Scaling

D.2 Comparison of Various Pointwise Information Estimators

D.2.1. Comparison of PMI Estimators

D.2.1. Comparison of PSI Estimators

D.2.1. Comparison of PVI Estimators

13

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

A. Related Work & Information Measures Details
A.1. Related Work

Pointwise Mutual Information (PMI). PMI compares the probability of two outcomes occurring together to what the
probability would be if they are independent. It is commonly in natural language processing to measure the association
between words (Church & Hanks, 1990; Turney, 2001; Su et al., 2006; Padmakumar & He, 2021). In this setting, p(x) and
p(x, y) can be obtained by counting the occurrences and co-occurrences of words in the corpus. However, PMI can be
sensitive to the size of the corpus and may not perform well with very rare words or when the data is sparse. Other variants
of PMI have also been introduced, including positive PMI measure, which sets all the negative values to zero (Dagan et al.,
1993), and normalized PMI measure, which scales the values to fall within the range [−1, 1] (Bouma, 2009). PMI has
found applications in a wide range of areas, including sentiment analysis (Ahanin & Ismail, 2022; Bandhakavi et al., 2017;
Sintsova & Pu, 2016), community detection (Luo et al., 2021), response generation (Nandwani et al., 2023; Ren et al., 2023),
truthful data acquisition (Zheng et al., 2024; Chen et al., 2020), and boundary detection (Isola et al., 2014). In this study, we
use PMI to obtain both confidence scores and saliency maps for image classification tasks.

Pointwise Sliced Mutual Information (PSI). (Wongso et al., 2023b) introduced PSI as a measure for generating confidence
scores and saliency maps for deep neural networks. For confidence scores, they compute the PSI between features of the
penultimate layer of a neural network and predicted label for each sample and refer to this as the sample-wise PSI. For
saliency maps, they compute the PSI between feature fiber of the last convolutional layer of a convolutional neural network
and predicted label for each sample and refer to this as the fiber-wise PSI. In addition, they show that PSI, in contrast to PMI,
exhibits sensitivity to sample-wise margin. Even though their findings demonstrate that PSI can produce sensible confidence
scores and saliency maps the paper lacks a profound perspective and the essential quality assessment of PSI as a metric
for model uncertainty and explainability. In this work, we provide a more comprehensive evaluation of PSI, comparing
it to the other two pointwise measures, namely PMI and PVI, to determine the relevance between features and predicted
labels. Additionally, we present a set of theoretical results that explore various properties of pointwise information measures,
providing deeper insights into what they may represent.

Pointwise V-Information (PVI). PVI was introduced to measure sample difficulty with respect to a given distribution
(Ethayarajh et al., 2022). In their research, they investigate natural language inference tasks and observe that samples with
high PVI are often predicted correctly, while those with low PVI are more likely to be predicted incorrectly. It is important
to note that in their paper, they assess PVI in relation to the true label (also referred to as the gold label), making it a measure
of sample difficulty rather than a measure of the network’s confidence. They also show that PVI can be used to identify
which subsets of each class are more difficult than others. PVI has recently been employed in a variety of NLP tasks (Lin
et al., 2023; Lu et al., 2023; Prasad et al., 2023; Kulmizev & Nivre, 2023). In this study, we compute PVI to obtain both
confidence scores and saliency maps for image classification tasks.

Predictive Confidence. The idea behind confidence estimation is closely connected to uncertainty quantification. Simply
put, when we are more confident in a prediction made by a model, it means there is less uncertainty about that prediction.
For a comprehensive survey/review on uncertainty quantification in deep learning, we refer the readers to (Gawlikowski
et al., 2023; He & Jiang, 2023; Mena et al., 2022; Abdar et al., 2021). There are two common lines of work for evaluating
predictive confidence: confidence ranking and confidence calibration. Works on confidence ranking focuses on ranking
confidence scores such that the lower-ranked samples are more likely to misclassified while the higher-ranked samples
are more likely to be correctly classified. Confidence ranking is useful in applications such as misclassification detection
(Hendrycks & Gimpel, 2017; Jiang et al., 2018; Corbière et al., 2019; Jaeger et al., 2023), out-of-distribution detection
(Hendrycks & Gimpel, 2017; DeVries & Taylor, 2018; Liang et al., 2018) and selective classification (Geifman & El-Yaniv,
2017; Feng et al., 2023; Galil et al., 2023). On the other hand, research on confidence calibration aims to provide confidence
scores that accurately reflect the likelihood of a prediction being correct (Guo et al., 2017; Nixon et al., 2019; Tao et al.,
2024). This requires the confidence scores to be probabilities within the range of 0 to 1.

A.2. General Properties of Information Measures and Their Pointwise Variants

In this section, we describe some general properties of mutual information (MI), V-information (VI), and Sliced Mutual
Information (SMI), and their pointwise variants.

14

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

A.2.1. GENERAL PROPERTIES OF MI AND PMI

We first restate the definition of MI and PMI from the main paper:

Definition 1 (MI and PMI). Let (X,Y) ∼ PXY . The MI between X and Y is:

I(X;Y) := EX,Y

[
log

P (X,Y)

P (X)P (Y)

]
(12)

Let (x, y) ∼ (X,Y). The PMI of an instance (x, y) is:

pmi(x; y) := log
p(x, y)

p(x)p(y)
(13)

MI satisfies the following properties:

1. Non-negativity: I(X;Y) ≥ 0.
2. Independence: I(X;Y) = 0 iff X and Y are independent.
3. Entropy decomposition: I(X;Y) = H(X) +H(Y) −H(X,Y) = H(X) −H(X|Y) = H(Y) −H(Y |X) where
H(·) and H(·|·) are the entropy and conditional entropy respectively.

4. Chain rule: I(X,Y ;Z) = I(X;Z) + I(Y ;Z|X). More generally, for X1, · · · , Xn, we have I(X1, · · · , Xn;Y) =
I(X1;Y) +

∑n
i=2 I(Xi;Y |X1, · · · , Xi−1).

Remark 4 (Data processing inequality). MI also satisfies the data processing inequality which means that I(X;Y) ≥
I(f(X);Y) for any deterministic function f . This is in contrast to VI and SMI which can grow with more processing of the
random variables.

We list some properties of PMI as follows:

1. Range:
• Continuous X and Y : −∞ ≤ pmi(x; y) ≤ ∞.
• Discrete Y : −∞ ≤ pmi(x; y) ≤ − log p(y).
• Discrete X and Y : −∞ ≤ pmi(x; y) ≤ min[− log p(x),− log p(y)].

2. Independence: If X and Y are independent, then pmi(x; y) = 0 ∀(x, y) ∈ X × Y . Note that pmi(x; y) = 0 for a
certain (x, y) ∼ PXY does not imply X and Y are independent.

3. Entropy decomposition: pmi(x; y) = h(x)+h(y)−h(x, y) = h(x)−h(x|y) = h(y)−h(y|x) where h(·) = − log p(·)
is called the self-information.

4. Chain rule: pmi(x, y; z) = pmi(x; z) + pmi(y; z|x).

A.2.2. GENERAL PROPERTIES OF SMI AND PSI

We first restate the definition of SMI and PSI from the main paper:

Definition 2 (SMI and PSI). Let (X,Y) ∼ PXY ∈ P(Rdx × Rdy). Let Θ ∼ Unif(Sdx−1) and Φ ∼ Unif(Sdy−1) be
independent of each other and of (X,Y). The SMI between X and Y is:

SI(X;Y) := Eθ∈Θ,
ϕ∈Φ

[I(θTX;ϕTY)] (14)

Let (x, y) ∼ X,Y . The PSI of an instance (x, y) is:

psi(x; y) := Eθ∈Θ,
ϕ∈Φ

[
pmi(θTx;ϕT y)

]
(15)

SMI shares many similar properties with MI (Goldfeld & Greenewald, 2021, Proposition 1), including:

1. Non-negativity: SI(X;Y) ≥ 0.
2. Independence: SI(X;Y) = 0 iff X and Y are independent.
3. Entropy decomposition: SI(X;Y) = SH(X)+SH(Y)−SH(X,Y) = SH(X)−SH(X|Y) = SH(Y)−SH(Y |X)

where SH(·) and SH(·|·) are the sliced entropy and conditional sliced entropy respectively.

15

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

4. Chain rule: SI(X,Y ;Z) = SI(X;Z) + SI(Y ;Z|X). More generally, for X1, · · · , Xn, we have
SI(X1, · · · , Xn;Y) = SI(X1;Y) +

∑n
i=2 SI(Xi;Y |X1, · · · , Xi−1).

Remark 5 (SMI can grow with processing). We note that unlike MI and similar to VI, SMI can increase with more
processing of the random variables, i.e., we can have SI(f(X);Y) ≥ SI(X;Y) for any deterministic function f . (Goldfeld
& Greenewald, 2021) argued that this property is desirable in the context of machine learning, where it is more intuitive to
think that processing input features yields representations that are more useful for inferring the labels.

We list some properties of PSI as follows:

1. Range:
• Continuous X and Y : −∞ ≤ psi(x; y) ≤ ∞.
• Discrete Y : −∞ ≤ psi(x; y) ≤ − log p(y).

2. Independence: If X and Y are independent, then psi(x; y) = 0, ∀(x, y) ∈ X ×Y . Note that psi(x; y) = 0 for a certain
(x, y) ∼ PXY does not imply X and Y are independent.

3. Entropy decomposition: psi(x; y) = sh(x) + sh(y) − sh(x, y) = sh(x) − sh(x|y) = sh(y) − sh(y|x) where
sh(x) := −Eθ∈Θ log p(θTx) and sh(x|y) := −Eθ∈Θ,ϕ∈Φ log p(θTx|ϕT y) are the pointwise sliced entropy and point-
wise conditional sliced entropy respectively.

4. Chain rule: psi(x, y; z) = psi(x; z) + psi(y; z|x).

A.2.3. GENERAL PROPERTIES OF V I AND PVI

We first provide more detailed definitions for predictive family and conditional V-entropy, and subsequently restate the
definition of VI and PVI from the main paper.
Definition 4 (Predictive Family). Let Ω = {f : X ∪ ∅ → P (Y)}. The predictive family V ⊆ is defined such that it
satisfies:

∀f ∈ V,∀P ∈ range(f), ∃ f ′ ∈ V, s.t. ∀x ∈ X , f ′[x] = P, f ′[∅] = P (16)

Remark 6 (Optional ignorance). In words, a predictive family is a set of predictive models the agent can use, often limited
by computational or statistical constraints. The additional condition f ′[x] = P, f ′[∅] = P is called the optional ignorance,
which gives the agent an option to ignore the side information x and still be able to predict get P . As shown in (Xu et al.,
2020), this condition is necessary to obtain the desirable properties of VI .
Definition 5 (Predictive Conditional V-entropy). Let (X,Y) ∼ PXY ∈ P(X × Y). We use ∅ to represent a null input
that provides no information about Y . Given a predictive family V , we can define the predictive conditional V-entropy as:

HV(Y |X) := inf
f∈V

EX,Y [− log f [X](Y)] (17)

HV(Y |∅) := inf
f∈V

EY [− log f [∅](Y)] (18)

HV(Y |∅) is also called the V-entropy and denoted as HV(Y) for simplicity.
Definition 3 (VI and PVI). Let V, HV(Y), HV(Y |X) and (X,Y) be defined as in Def. 4 and Def. 5. We are given
predictive family. Then the VI from X to Y is:

IV(X → Y) := HV(Y)−HV(Y |X) (19)

Let g = argminf∈V EY [− log f [∅](Y)] and g′ = argminf∈V EX,Y [− log f [X](Y)]. Given (x, y) ∼ (X,Y), the PVI
from x to y is:

pvi(x→ y) := − log f [∅](y) + log f ′[x](y) (20)

VI satisfies the following properties:

1. Non-negativity: IV(X → Y) ≥ 0.
2. Independence: IV(X → Y) = IV(Y → X) = 0 iff X and Y are independent.
3. Entropy decomposition: IV(X → Y) = HV(Y)−HV(Y |X).
Remark 7 (VI can grow with processing). We note that unlike MI and similar to SMI, VI can increase with more
processing of the random variables, i.e., we can have IV(f(X)→ Y) ≥ IV(X → Y) for any deterministic function f . (Xu
et al., 2020) argued that this property is desirable in the context of machine learning, where it is more intuitive to think that
processing input features yields more usable information about the label.

16

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

Remark 8 (Asymmetry of VI). We also note that unlike MI and SMI, VI is asymmetric in nature which is align with the
intuition that sometimes, it is easier to predict Y from X than to predict X from Y .

We list some properties of PVI as follows:

1. Range:
• Continuous X and Y : −∞ ≤ pvi(x→ y) ≤ ∞
• Discrete Y : −∞ ≤ pvi(x → y) ≤ − log p(y) when HV(Y) = H(Y). Note that this is true when V represents a

function modelled by a neural network with trainable weights and biases.
2. Independence: If X and Y are independent, then we have pvi(x→ y) = pvi(y → x) = 0. Note that pvi(x→ y) = 0

for some (x, y) ∼ PXY does not imply that X and Y are independent.
3. Entropy decomposition: pvi(x→ y) = hV(y)− hV(y|x), where hV(y) is the pointwise V-entropy of y and hV(y|x)

is the pointwise conditional V-entropy of y.

A.3. Pointwise Information Estimators

In this section, we describe the estimators of PMI, PSI and PVI as well as provide the algorithms for each pointwise measure.
We implemented these estimators in Python and use the Tensorflow library for neural networks.

A.3.1. PMI ESTIMATORS

In (Tsai et al., 2020), the authors proposed three different estimators for PMI: probabilistic classifier, density ratio fitting
and variational Jensen-Shannon (JS) bound. All of these approaches estimate PMI using neural networks with distinct loss
functions described below. We provide the pseudocode for the PMI estimator in Algorithm 1. Note that we presented the
algorithm for any label y but used predicted labels ŷ in our experiments.

Probabilistic Classifier (PC) Method. In this approach, we assign class 1 to samples drawn from the joint density (c = 1
for (x, y) ∼ PXY) and class 0 to samples drawn from the product of marginal densities (c = 0 for (x, y) ∼ PXPY). Thus,
we can rewrite the density ratio as:

p(x, y)

p(x)p(y)
=
p(x, y|c = 1)

p(x, y|c = 0)
=
p(c = 0)

p(c = 1)

p(c = 1|x, y)
p(c = 0|x, y)

(21)

where we have used Bayes’ Theorem for the second equality. Furthermore, we can approximate the ratio of class probabilities
by the ratio of the sample size:

p̂(c = 0)

p̂(c = 1)
=
nPXPY

/nPXPY
+ nPXY

nPXY
/nPXPY

+ nPXY

=
nPXPY

nPXY

(22)

To approximate the class-posterior probabilities, we use a neural network f parameterized by θ with the following binary
cross-entropy loss function:

LPC(θ) = −EPXY
[log fθ(c = 1|(x, y))]− EPXPY

[log(1− fθ(c = 1|(x, y)))] (23)

For b mini-batch samples, we can write the loss function as:

L̂PC(θ) = −
1

b

b∑
i=1

[log fθ(c = 1|(x(i), y(i)))]− 1

b

b∑
i=1

[log(1− fθ(c = 1|(x(i), ȳ(i))))] (24)

where (x, y) ∼ PXY and ȳ ∼ PY .

(Tsai et al., 2020) also showed that when Θ is large enough, the optimal fθ(c|x, y) = p(c|x, y).

Density Ratio Fitting (DRF) Method. This approach seeks to minimize the expected least-square difference between
the true density ratio and the density ratio estimated using a neural network f parameterized by θ. By letting r(x, y) =
p(x, y)/p(x)p(y), the objective function can be written as:

inf
θ∈Θ

EPXPY
[(r(x, y)− fθ(x, y))2]⇔ sup

θ∈Θ
EPXY

[fθ(x, y)]−
1

2
EPXPY

[f2θ (x, y)] (25)

17

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

Thus, the loss function is:

LDRF(θ) = −EPXY
[fθ(x, y)] +

1

2
EPXPY

[f2θ (x, y)] (26)

For b mini-batch samples, we can write the loss function as:

L̂DRF(θ) = −
1

b

b∑
i=1

[fθ(x
(i), y(i))] +

1

2b

b∑
i=1

[f2θ (x
(i), ȳ(i))] (27)

where (x, y) ∼ PXY and ȳ ∼ PY .

(Tsai et al., 2020) also showed that when Θ is large enough, the optimal fθ(x, y) = r(x, y) = p(x,y)
p(x)p(y) .

Variational Jensen-Shannon (JS) Bound Method. This approach relies on the variational form of MI, and in particular the
Jensen-Shannon divergence between PXY and PXPY (Poole et al., 2019). The Jensen-Shannon variational estimator is
found to be more stable than the other proposed variational lower bounds. Similar to the density ratio fitting method, the
density ratio is estimated using a neural network f parameterized by θ. The loss function can be written as:

LJS(θ) = EPXY
[softplus(− log fθ(x, y))] + EPXPY

[softplus(log fθ(x, y))] (28)

where softplus(x) = log(1 + exp(x)).

For b mini-batch samples, we can write the loss function as:

L̂JS(θ) =
1

b

b∑
i=1

[softplus(− log fθ(x
(i), y(i)))] +

1

b

b∑
i=1

[softplus(log fθ(x(i), ȳ(i)))] (29)

where (x, y) ∼ PXY and ȳ ∼ PY .

(Tsai et al., 2020) also showed that when Θ is large enough, the optimal fθ(x, y) =
p(x,y)

p(x)p(y) .

Critic Model Architectures. The neural networks used to estimate PMI are also commonly referred to as critic models. In
the literature, there are two common structures for the critic models: separable and joint. They primarily differ in how x and
y are considered in the neural network training. In separable critic design, x and y are being passed to two separate neural
networks: h(x) and g(y). The final model then computes the dot product between the outputs of the two neural networks:
f(x, y) = h(x)T g(y). In joint critic design, x and y are concatenated and fed as input to one neural network. In Appendix
D.2.1, we compare the performance of the different critic architectures. We represent the neural network using a multi-layer
perceptron, consisting of one hidden layer with 512 units and ReLU activation function. For separable critic, the outputs
of neural network h(x) and g(y) have dimensions of 128, while for joint critic, the output has a dimension of 1. They are
trained with Adam optimizer with learning rate of 0.001 for a maximum of 200 epochs. We employ early stopping if the
maximum MI on the validation dataset fails to improve after 10 epochs. For the final PMI model, we use the one that yields
the highest MI on the validation dataset.

Note on Implementation. We followed the implementation by (Tsai et al., 2020), adapting their original PyTorch code to
Tensorflow. In their implementation, rather than shuffling samples from the joint distribution to obtain samples drawn from
product of marginal densities, they manipulate the output of the critic model to have a shape of b× b, where b represents
the batch size. To achieve this for the joint critic, they introduce a new axis and replicate the input b times along that axis.
Consequently, the diagonal elements naturally correspond to samples drawn from the joint density, while the off-diagonal
elements represent the product of marginal densities. In this setup, there are b mini-batch joint samples and b2− b mini-batch
marginal samples. When using the PC method, there is an additional term nPXPY

/nPXY
which computes the ratio of

samples from the different distributions. In line with this implementation, given the unequal number of samples from the
different distributions, an additional term of log[(b2 − b)/b] = log[b− 1] must be included in the final PMI estimation.

18

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

Algorithm 1 PMI Estimator

Require: (Xn, Y n) ∼ PXY ∈ P(Rdx × R) where Y ∈ {1, .., k}, a chosen pair of sample (x, y) ∼ (Xn, Y n), critic
model f , and E number of epochs to train the critic model.
θ ← initialize parameters of f
e← 0
while e < E do

Draw b mini-batch samples from the joint density: (x(1), y(1)), · · · , (x(b), y(b)) ∼ (Xn, Y n)
Draw b mini-batch samples from the marginal density1: ȳ(1), · · · , ȳ(b) ∼ PY

Compute the loss function L(θ) on the mini-batch samples:
(Eq. (24) for PC, Eq. (27) for DRF, or Eq. (29) for variational JS bound)
Update the critic model parameters θ based on L(θ)
e← e+ 1

end while
return p̂mi(x; y)← f(x, y) for PC and variational JS bound or

p̂mi(x; y)← log f(x, y) for DRF

For all our experiments, we choose the variational JS bound (with separable critic) as the default PMI estimator as we show
in Appendix D.2.1, it yields the best performance.

A.3.2. PSI ESTIMATORS

We followed the implementation by (Wongso et al., 2023b) and considered an additional method: binning. We provide the
pseudocode for the PSI estimator for the binning method in Algorithm 2 and for the Gaussian method in Algorithm 3. Note
that we presented the algorithm for any label y but used predicted labels ŷ in our experiments. For our problems, we only
project X since Y is discrete. For both methods, we clip the probability to a minimum of 1e-5 to prevent division by zero.
We did not consider kernel density and neural network estimation in this work due to its high computational cost, which is
not practical for confidence estimation.

Algorithm 2 PSI Estimator (Binning Method)

Require: (Xn, Y n) ∼ PXY ∈ P(Rdx × R) where Y ∈ {1, .., c} (c classes), a chosen pair of sample (x, y) ∼ (Xn, Y n),
a chosen number of slices (projections) m, and a chosen number of bins nbins.
Initialize θi by sampling uniformly on the sphere Sdx−1 for i = 1, . . . ,m.
for i = 1 to m do

Compute θTi X and discretize it into nbins bins using training features Xn

Compute joint counts of binned θTi X and Y
Normalize joint counts to obtain joint probabilities P (θTi X,Y)
Compute marginal probabilities P (θTi X) and P (Y)
Find the bin index of θTi x in the discretized θTi X for the given sample x
Retrieve p(θTi x, y) from P (θTi X,Y)
Retrieve p(θTi x) from P (θTi X)
Retrieve the marginal probability p(y) from P (Y)

Compute the term: pmii(x; y)← log
p(θT

i x,y)

p(θT
i x)p(y)

end for
return p̂si(x; y)← 1

m

∑m
i=1 pmii(x, y)

1This can be done by shuffling the samples from the joint distribution along the batch axis.

19

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

Algorithm 3 PSI Estimator (Gaussian Method)

Require: (Xn, Y n) ∼ PXY ∈ P(Rdx × R) where Y ∈ {1, . . . , c} (with c classes), a chosen pair of sample (x, y) ∼
(Xn, Y n), a chosen number of slices (projections) m, and a chosen number of bins nbins.
Initialize θi by sampling uniformly on the sphere Sdx−1 for i = 1, . . . ,m.
for i = 1 to m do

for j = 1 to c do
Find µij , σ

2
ij with P (θTi X|Y = j) ∼ N (µij , σ

2
ij).

end for
end for
for i = 1 to m do

Compute θTi x for the given sample x
Retrieve p(θTi x|y) from P (θTi X|Y = y) ∼ N (µiy, σ

2
iy)

Compute p(θTi x) =
∑c

j=1 p(θ
T
i x|y = j)p(y = j)

Compute the term: pmii(x, y)← log
p(θT

i x|y)
p(θT

i x)

end for
return p̂si(x; y)← 1

m

∑m
i=1 pmii(x, y)

Binning. For each projection i, we bin θTi X into nbins. To compute the PSI, we estimate P (θTi X,Y), P (θTi X), and P (Y)
from the binned data. For a given sample, we can then find the p(θTi x, y), p(θ

T
i x), and p(y). The PSI is then given by:

p̂si(x; y)← 1

m

m∑
i=1

log
p(θTi x, y)

p(θTi x)p(y)
(30)

Gaussian. We assume that θTX for each class follows a Gaussian distribution. For each projection i and for each class j,
we estimate the mean (µij) and standard deviation (σij). To compute the PSI, we estimate P (θTi X|Y) and P (θTi X) from
µij and σij . For a given sample, we can then find the p(θTi x|y) and p(θTi x). The PSI is then given by:

p̂si(x; y)← 1

m

m∑
i=1

log
p(θTi x|y)
p(θTi x)

(31)

We choose the Gaussian method (with 500 projections) as the default estimator as we show in Appendix D.2.2, it
consistently yields good performance.

A.3.3. PVI ESTIMATORS

We followed the implementation by (Ethayarajh et al., 2022), adapting their original PyTorch code to Tensorflow. We
provide the pseudocode for the PVI estimator in Algorithm 4. Note that we presented the algorithm for any label y but used
predicted labels ŷ in our experiments. To estimate PVI, we are required to train two neural networks to obtain f (for null
inputs) and f ′ (for training inputs). The null inputs can be obtained by setting the values of the input features to zero. Below
we describe several methods we experiment to estimate the PVI.

Algorithm 4 PVI Estimator

Require: (Xn, Y n) i.i.d. sampled according to PXY ∈ P(Rdx × R) where Y ∈ {1, .., k}, a chosen pair of sample
(x, y) ∼ (Xn, Y n), and a model V .
f ′ ← train V on (Xn, Y n)
∅← null input (array of zeros with the same shape as Xn)
f ← train V on (∅, Y n)

return p̂vi(x→ y)← − log f [∅](y) + log f ′[x](y)

1A uniform sample from Sd−1 can be found by sampling a vector Z from a d-dimensional isotropic Gaussian and forming Z/||Z||2.

20

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

No Training. To obtain f ′, we use the model that has already been trained on the dataset. To obtain f , we train the
(untrained) model on null inputs.

Training from Scratch. To obtain f ′, we train another model (with different initialization but same architecture) on the
training data. To obtain f , we train the (untrained) model on null inputs. In practice, instead of training a new model, we can
use the model from the different run.

Training MLP Penultimate. To obtain f ′, we use the penultimate layer features as input x rather than the original inputs.
We train a one-hidden-layer MLP with 512 units on x to obtain f ′. To obtain f we train the untrained MLP model on null
inputs with the same dimension as the penultimate layer features.

We choose the Training from Scratch method as the default estimator as we show in Appendix D.2.3, it consistently yields
good performance. In addition, when computing the PVI, we can choose to first calibrate the probabilities with a simple
temperature scaling. As we see in Appendix D.2.3, this improves the performance.

21

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

B. Theoretical Analysis & Proofs
B.1. Invariance Properties

Proof of Proposition 1

Proposition 1 (Invariance to shift, scale, and rotation). Let T x = αRx + p, where p ∈ Rdx represents the extent to
which the distribution is shifted, α ∈ R represents how much the distribution is scaled, and R ∼ Rdx×dx is a rotation
matrix such that RRT = I and det(R) = 1, where I is the identity matrix and det represents the determinant operator.
Then we have:

pmiP (x, y) = pmiT P (αRx+ p, y)

psiP (x, y) = psiT P (αRx+ p, y)

pviP (x, y) = pviT P (αRx+ p, y)

Proof. For simplicity of notation, we denote the probability distribution in the original domain by P and the distribution in
the transformed domain by PT .

For PMI, we have:

pmiT P (αRx+ p, y) = log
PT (αRx+ p|y)
PT (αRx+ p)

= log
p(x|y)/det(αR)

p(x)/ det(αR)
= log

p(x|y)
p(x)

= pmiP (x, y),

where det denotes the determinant operator.

For PSI, we first note that

psiT P (αRx+ p, y) = Eθ

[
log

PT (θ
T (αRx+ p)|y)

PT (θT (αRx+ p))

]
= Eθ

[
log

PT (θ
′T (αx) + θTp)|y)

PT (θ′T (αx) + θTp))

]
,

where θ′ = θR. Notice that θ′ will have a uniform distribution over the sphere, similar to θ, because R is a rotation matrix.
We also apply the fact that PT (αx+ p) = p(x)/α to the numerator and denominator. This ultimately yields:

psiT P (αRx+ p, y) = Eθ′

[
log

p(θ′Tx)|y)
p(θ′Tx)

]
= Eθ

[
log

p(θ′Tx)|y)
p(θTx)

]
= psiP (x, y).

For PVI, we first note that the first term of PVI, − log f [∅](y), will remain unchanged as it only depends on y, and f
depends on the distribution of y, both of which do not change with T as it is a one-to-one transformation. Then, for the
conditional entropy term, let

f ′ = argmin
f∈V

EP [− log f [X](Y)].

As f ′ is a fully connected neural network with weights and biases, let W and b represent the weights and biases of the first
layer, respectively. When the distribution of x changes in response to T , let

g′ = argmin
f∈V

EPT [− log f [X](Y)].

Note that g′’s first layer weights W ′ and biases b′ will be such that W ′T (αRx+ p) + b′ =WTx+ b. We will simply have
W ′TαR =W and b′ = b−W ′Tp. Therefore, g′[T x](y) = f ′[x](y). The search space for the argmin is the same in both
cases, as the transformation is linear. We have that WT (T X) =W ′TX such that the weights W ′ and W have a one-to-one
correspondence (as T is invertible). Since log g′[T x](y) = log f ′[x](y), we have the result:

pviT P (αRx+ p, y) = pviP (x, y).

Proof of Proposition 2

22

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

Proposition 2 (Invariance to general linear transformations). Let T x = Mx, where M ∼ Rdx×dx is an invertible
matrix. Then we have,

pmiP (x, y) = pmiT P (Mx, y)

pviP (x, y) = pviT P (Mx, y)

Proof. For PMI, as M is invertible, we have:

pmiT P (Mx, y) = log
PT (Mx|y)
PT (Mx)

= log
p(x|y)/det(M)

p(x)/det(M)
= log

p(x|y)
p(x)

= pmiP (x, y).

where det denotes the determinant operator.

For PVI, we follow the same reasoning as the previous proof. Same as before, let

f ′ = argmin
f∈V

EP [− log f [X](Y)] g′ = argmin
f∈V

EPT [− log f [X](Y)].

Let W and b be the weights and biases of f ′, and let W ′ and b′ be the weights and biases of g′. Then, we have,
W ′T =WM−1 and b′ = b. As M is invertible, this implies that g′[T x](y) = f ′[x](y),which yields the result:

pviT P (Mx, y) = pviP (x, y).

Proof of Proposition 3

Proposition 3 (Invariance to homeomorphic transformations). Let T x = f(x), where f : Rdx → Rdx represents any
continuous and invertible transformation (i.e. a homeomorphism). Then we have,

pmiP (x, y) = pmiT P (f(x), y)

Proof. For smooth and invertible maps, it is known that the probability density function PT (f(x)) = P (x)/JX , where
JX = | ∂x

∂f(x) | is a scalar that only depends on x. The same rule would apply to conditional distributions p(x|y) as well.
Thus we have:

pmiT P (f(x), y) = log
PT (f(x)|y)
PT (f(x))

= log
p(x|y)/JX
p(x)/JX

= log
p(x|y)
p(x)

= pmiP (x, y)

Remark 9 (On PMI and invariance). Note that the above property for PMI also implies invariance to general linear
transformations, which is the extension to Proposition 2. What these results mainly indicate is that out of the three metrics,
PMI has the most structure-preserving property, followed by PVI and then PSI. This makes sense as PMI is the most general
and only depends on the distribution and does not rely on anything else. Note that MI is invariant to homeomorphisms as
well, but the invariance property for PMI is stronger as it states that the aggregate invariance for MI can be mirrored at the
pointwise level.

Remark 10 (On PSI and invariance). Note that PSI need not be invariant to both general linear transformations and
homeomorphisms. To see why, just consider a simple case where T represents general linear transformations which scale
each dimension of the input separately. Then, a sphere in the original domain of the distribution P gets transformed into an
ellipse in the domain of the distribution T P . As PSI uses a uniform distribution over all projections over the sphere, we
cannot say with certainty that the PSI in the new domain of T P will be preserved, because it will prefer some directions
more over others. To see this, consider a specific case of T where one of the dimensions is scaled significantly more than the
rest, thereby resulting in a ellipse that is very flat. In that case, most projections will contain more of that dimension, and we
cannot say that PSI will be surely preserved.

23

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

B.2. Convergence Rates

Proof of Proposition 4

Proposition 4 (PMI convergence rate). Let P (X) be α-Holder continuous and let (x, y) ∼ PXY where X ∈ Rdx and
Y ∈ {0, 1}. Let p̂min represent the KDE estimate of PMI using n samples. Assuming min {P (Y = 0), P (Y = 1)} ≠ 0
when the probabilities are estimated on the training data, for large enough n, we can bound the estimation error as∣∣∣pmi(x; y)− p̂min∣∣∣ ≤ O(n−α/(2α+dx)

min {p(x), p(x|y)}

)
(32)

Proof. For simplicity of notation, we represent all estimated probability terms by P̂n, where n represents the number of
samples used to estimate the term. We have:

∣∣∣pmi(x; y)− p̂min∣∣∣ =
∣∣∣∣∣log P (x|y)P (x)

− log
P̂n(x|y)
P̂n(x)

∣∣∣∣∣ (33)

≤
∣∣∣logP (x|y)− log P̂n(x|y)

∣∣∣+ ∣∣∣logP (x)− log P̂n(x)
∣∣∣ (34)

≤ sup
x∈Rd

∣∣∣logP (x|y)− log P̂n(x|y)
∣∣∣+ sup

x∈Rd

∣∣∣logP (x)− log P̂n(x)
∣∣∣ (35)

Now, from (Jiang, 2017), we have the uniform bounds on P̂n(x) in Theorem 2, which yields:

sup
x∈Rd

|P (x)− P̂n(x)| ≤ O
(
n

−α
2α+d

)
(36)

Note that we can apply these bounds to P (x|y) as well, and in that case the sample complexity changes from n to
min {P (Y = 0), P (Y = 1)}×n, because the number of samples that now controls the convergence rate is reduced as these
are class-wise distributions. In the case when min {P (Y = 0), P (Y = 1)} ≠ 0, note that this keeps the final convergence
order unchanged, as it adds a fixed multiplicative term. As min {P (Y = 0), P (Y = 1)} ≠ 0 is assumed in the problem, we
can directly apply the results from (Jiang, 2017) for P (x|y) as well.

With this, we use the expansion of log to write:

∣∣∣logP (x)− log P̂n(x)
∣∣∣ = ∣∣∣∣∣log P̂n(x)

P (x)

∣∣∣∣∣ =
∣∣∣∣∣log

(
1 +

P̂n(x)− P (x)
P (x)

)∣∣∣∣∣ (37)

≤

∣∣∣∣∣ P̂n(x)− P (x)
P (x)

∣∣∣∣∣− 1

2

∣∣∣∣∣ P̂n(x)− P (x)
P (x)

∣∣∣∣∣
2

+
1

3

∣∣∣∣∣ P̂n(x)− P (x)
P (x)

∣∣∣∣∣
3

− ... (38)

≤

∣∣∣∣∣ P̂n(x)− P (x)
P (x)

∣∣∣∣∣− 1

2

∣∣∣∣∣ P̂n(x)− P (x)
P (x)

∣∣∣∣∣
2

+
1

3

∣∣∣∣∣ P̂n(x)− P (x)
P (x)

∣∣∣∣∣
3

− ... (39)

≤ O
(
n−α/(2α+d)

p(x)

)
− 1

2
O
(
n−2α/(2α+d)

p(x)2

)
+

1

3
O
(
n−3α/(2α+d)

p(x)3

)
− ... (40)

≤ O
(
n−α/(2α+d)

p(x)

)
(41)

Here we assume that n is large enough, such that the rest of the terms are insignificant compared to the first term. Combining
this with (35), we have the result.

Proof of Proposition 5

24

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

Proposition 5 (PSI convergence rate). Let P (θTX) be α-Holder continuous for all θ and let (x, y) ∼ PXY where
X ∈ Rdx and Y ∈ {0, 1}. Let p̂sin,m represent the KDE estimate of PSI using n samples and m projections. Furthermore,
let minθ pmi(θ

Tx; y) ≥ ρ. Assuming min {P (Y = 0), P (Y = 1)} ̸= 0 when the probabilities are estimated on the
training data, for large enough n, we can bound the estimation error as

EX,Y

[∣∣∣psi(x; y)− p̂sin,m∣∣∣] ≤ 1− ρ
2
√
m

+O
(

n−α/(2α+1)

minθ min {p(θTx), p(θTx|y)}

)
(42)

Proof. We apply the triangle inequality, similar to (Goldfeld & Greenewald, 2021) (Appendix A.4), to obtain:

∣∣∣psi(x; y)− p̂sin,m∣∣∣ ≤
∣∣∣∣∣psi(x; y)− 1

m

m∑
i=1

pmi(θTx; y)

∣∣∣∣∣+
∣∣∣∣∣

m∑
i=1

pmi(θTx; y)− p̂sin,m

∣∣∣∣∣ (43)

(44)

Now, as θi are i.i.d, and PSI(x; y) is essentially equal to
∑m

i=1 PMI(θTx; y) as m → ∞, we can use a variance based
bound to obtain:

E

[∣∣∣∣∣psi(x; y)− 1

m

m∑
i=1

pmi(θTx; y)

∣∣∣∣∣
]
≤
√
var(pmi(θTx; y))

m
≤ 1− ρ

2
√
m

(45)

Next, we have that:

E

[∣∣∣∣∣
m∑
i=1

pmi(θTx; y)− p̂sin,m

∣∣∣∣∣
]
≤

m∑
i=1

E
[∣∣∣pmi(θTx; y)− p̂min(θTx; y)∣∣∣] (46)

≤ sup
θ

E
[∣∣∣pmi(θTx; y)− p̂min(θTx; y)∣∣∣] (47)

We then apply the previous result (Proposition 6), to obtain:

sup
θ

E
[∣∣∣pmi(θTx; y)− p̂min(θTx; y)∣∣∣] ≤ O(n−α/(2α+d)

minθ min {p(θTx), p(θTx|y)}

)
(48)

= O
(
n−α/(2α+1)

pmin

)
(49)

This completes the proof.

Remark 11 (On KDE-based PSI estimator). The above result provides convergence bounds for the KDE-based PSI
estimator, providing guarantees as a function of the number of projections m and the number of datapoints n. The
result makes use of the uniform convergence bounds for the KDE-based density estimator provided in (Jiang, 2017) The
convergence rates would be tighter for larger values of α, and larger values of pmin. Thus, we note that the convergence can
be slower for datapoints x for which pmin is small, which will be true for datapoints in the edge of the distribution P (X).

Remark 12 (On PSI’s faster convergence over PMI). Note that when α→∞, we obtain the same rate of convergence
as SMI itself, which is O(m−1/2 + n−1/2) (Goldfeld & Greenewald, 2021). Also, note that PSI converges at a much
faster rate than PMI, especially when considering data of large dimensionality d, as the convergence rate for PMI will be
O(n−α/(2α+d)), which follows from Theorem 2 and Remark 8 in (Jiang, 2017).

Proof of Theorem 1

Theorem 1 (PVI convergence rate). Given (x, y) ∼ PXY where X ∈ Rdx and Y ∈ {0, 1}, we assume that P (Y =
0) = P (Y = 1) = 0.5. Assume V represents the set of all possible functions modelled by a neural network having some
fixed architecture. Assume ∀f ∈ V , log f [x](y) ∈ [−B,B]. Also, let f∗ = argminf∈V EX,Y [− log f [X](Y)] represent
the ground truth function for estimating conditional V-entropy, and f̂ represent the trained function given n datapoints
(x1, y1), ..., (xn, yn) sampled from Pn

XY . Let M = max{var(f∗[x](y)), var(f̂ [x](y))} where var denotes the variance.

25

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

Let p̂vin represent the PVI estimated using this neural network with n samples. Then, for any δ ∈ (0, 0.5), with probability
p ≥ 1− 2δ, we have

EX,Y

[∣∣∣pvi(x→ y)− p̂vin
∣∣∣] ≤ 2Rn(GV) + 2

√
M + 2B

√
2 log(1/δ)

n
, (50)

where the function family GV = {g|g(x, y) = log f [x](y), f ∈ V} and Rn denotes the Rademacher complexity with n
sampled points.

Proof. The result is a consequence of the generalization bound for V-information proposed in (Xu et al., 2020) (Lemma 3
of their Appendix). First, note that we can express PV I(x→ y) = IV(X → Y) + ϵ, where ϵ is a random variable, and
similarly for p̂vi(x→ y). Also, note that as f∗ and f̂ are neural networks, the first term in the estimation of PVI will be
fixed to 1, as the network can simply assign biases to the last layer such that f∗[∅](y) = 0.5, and similarly for f̂ as the
training set is balanced. In that case, we can write:

EPXY

[∣∣∣pvi(x→ y)− p̂vi(x→ y)
∣∣∣] = EPXY

[∣∣∣IV(X → Y) + ϵ1 − ÎV(X → Y)− ϵ2
∣∣∣] (51)

≤ EPXY

[∣∣∣IV(X → Y)− ÎV(X → Y)
∣∣∣] (52)

+ E[|ϵ1|] + E[|ϵ2|]

≤
∣∣∣IV(X → Y)− ÎV(X → Y)

∣∣∣+ 2
√
M, (53)

where the last step follows from noting that the absolute difference between the true and estimated V-information doesn’t
depend on the individual instances, and that the L1-norm is bounded using the variance via the application of the Cauchy-
Schwarz inequality. Next, we directly apply Lemma 3 of (Xu et al., 2020), after the additional observation that in this case
HV(Y) = ĤV(Y). We then have, with probability p ≥ 1− 2δ,

∣∣∣IV(X → Y)− ÎV(X → Y)
∣∣∣ ≤ 2Rn(GV) + 2B

√
2 log(1/δ)

n
(54)

Applying this to (53) yields the result.

Remark 13 (On the convergence of PVI). We note that the result provides a bound on the average error w.r.t the PVI
estimation over datapoints, and thus are not uniform convergence bounds. Next, we also note that the result depends on the
upper bound on the variance of the neural networks (M), which is not trivial to bound. However, overall, the convergence
result for PVI still shows us a few important differences w.r.t the convergence bounds for PSI and PMI. First, we note that
here, the convergence depends heavily on the choice of V . Choosing very deep and complex neural networks for estimating
PVI will lead to a large Rademacher complexity Rn(GV), which will lead to slower convergence. Also, ideally, we want
networks to have a smaller variance over its output logits, which will eventually also reduce the value of M and make
convergence stronger. This can be achieved by regularizing the outputs of the network to have low variance, and there are
approaches in literature which have studied this kind of regularization (Littwin & Wolf, 2018).

Table 3: Convergence Rate of PMI and PSI using KDE estimator (Averaged over 50 Runs with Standard Deviations Included).

n 100 1,000 10,000 100,000 1,000,000

|pmi(x; y)− p̂min| 6.075±8.881 1.684±1.209 1.268±0.714 0.911±0.473 0.809±0.301

n 100 200 1,000 2,000 10,000

Ex,y[|psi(x; y)− p̂sin,m|] 0.292±0.037 0.282±0.036 0.270±0.034 0.270±0.027 0.269±0.028

Experiment on Convergence Rate: We conduct a simple experiment on Gaussian mixture distributions to test the
convergence rates of PMI and PSI. Based on the results shown in Table 3, we have two main observations. First, we find that
both the trends of PMI and PSI are within the predicted convergence trends in Proposition 4 and Theorem 5 (we set α = 1

26

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

as our mixtures are Lipschitz continuous). This re-affirms the convergence bounds being an upper bound on the observed
trend with the number of samples n. Second, we find that the predicted convergence rate for PMI and PSI are reflective of
the theoretical results. Our theoretical results stated that PMI should converge slowly compared to PSI, and the difference is
amplified with greater dimensionality. After adjusting for scale and bias (error as n goes to very large values), we find that
the observed convergence rate for PSI is indeed greater than that for PMI. Note that for PVI, we found it hard to estimate
Rademacher complexity measures for neural network classifiers, so we cannot directly test our convergence rates.

B.3. Geometric Properties

In the following results, we mainly explore whether geometric properties of the feature distribution, such as the sample-wise
margin and the subspace intrinsic dimensionality, can affect the different PI measures. We define the notion of sample-wise
margin as the distance of a datapoint x to the other class distribution, when it is encapsulated by a sphere.

First, we provide the general idea of sample-wise margin. In the results that follow, we adopt more specific definitions that
are motivated from the general principle in the following definition.

Definition 6 (Sample-Wise Margin). Given x, y ∼ PXY and Y ∈ {0, 1} such that P (X|Y = 0) and P (X|Y = 1). The
sample-wise margin refers to the distance of the sample x from the distribution P (X|Y = 1 − y), when P (X|Y = 0)
and P (X|Y = 1) are non-overlapping. When P (X|Y = 0) and P (X|Y = 1) are overlapping, first we can create
non-overlapping probability masses Q(X|Y = 0) and Q(X|Y = 1) which encapsulate most of P (X|Y = 0) and
P (X|Y = 1) (fraction of 1− ϵ) respectively. Next, we estimate sample-wise margin as the distance of x from the distribution
Q(X|Y = 1− y).

We have the following result for PMI, in the context of non-overlapping feature distributions.

Proposition 6 (PMI and sample-wise margin). Let x, y ∼ PX,Y and Y ∈ {0, 1} such that P (X|Y = 0) and P (X|Y = 1)
are non-overlapping and P (Y = 0) = P (Y = 1) = 0.5. Then, we have that pmi(x; y) = 1.

Proof. Since P (X|Y = 0) and P (X|Y = 1) are non-overlapping, for a certain sampled y, we will have p(x|y) = 1 and
p(x|y = 1− y) = 0. Thus, we have:

pmi(x; y) = log2
p(x|y)
p(x)

= log2
p(x|y)

0.5 (p(x|y = 0) + p(x|y = 1))
= log2 2 = 1

Remark 14 (On PMI and sample-wise margin). Note that the above result implies that when the distributions P (X|Y = 0)
and P (X|Y = 1) are non-overlapping, then pmi(x; y) is always 1 irrespective of the distance of x from the decision
boundary. Thus, in this case, sample-wise margin does not affect the PMI at all.

Next, we highlight the conditions when PSI can be related to both sample-wise margin and intrinsic dimensionality (ID) of
the data. First, we define the subspace ID:

Definition 7 (Subspace Intrinsic Dimensionality). The subspace intrinsic dimensionality (ID), denoted by KP , is the
dimensionality of the smallest subspace W that contains the support of P (X).

We have the following result for PSI that relates it to sample-wise margin and the intrinsic dimensionality (ID) of the data.
Note that for the overlapping case, there is no unique notion of sample-wise margin, as it depends on how Q is constructed,
and also depends on the fraction (1− ϵ) of the distribution involved in encapsulating the class-wise distributions. For the
following result, we use spheres to construct Q, for each class-wise distribution.

Theorem 2 (PSI and sample-wise margin and ID). Given x, y ∼ PXY with Y ∈ {0, 1}, and assuming y = 0 without loss
of generality, we consider two non-overlapping spheres S1 and S2 with radii R1 and R2, and centers C1 and C2 such that
x ∈ S1. Here, the sample-wise margin, denoted by d(x, S2), refers to the distance between x and the surface of S2. The
subspace intrinsic dimensionality of P(X) is denoted by KP . Let {θTx|S2} = {θTx : x ∈ S2} represent the set of points in
the real line of the θ projection of S2. Let ϵ = maxθ,x P (θ

Tx|y = 1, x ∈ R − {θTx : x ∈ S2}), where {θTx : x ∈ S2}.
We also define the following two quantities:

pmax = max

{
max
θ,x∈S2

p(θTx|y = 1), max
θ,x∈S1

p(θTx|y = 0)

}
, pmin = min

θ,x∈S1

p(θTx|y = 0).

27

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

Then, we have the following lower bound:

psi(x; y) ≥ log
pmin

pmax
+

(
1 + log

pmax

pmin + ϵ

)
Bγ(d(x,S2),R2)

(
KP − 1

2
,
1

2

)
, (55)

where Bx(a, b) denotes the regularized incomplete beta function (Oldham et al., 2008), and γ(a, b) = a
a+b

(
2− a

a+b

)
.

Proof. The proof follows from the proof elements of Theorem 1 and 2 of (Wongso et al., 2023a), and Theorem 1 of (Wongso
et al., 2023b). First, using the proof of Theorem 1 of (Wongso et al., 2023a), it follows that Pr(θTx ∈ {θTx|S2}|x) =
Bγ(d(x,S2),R2)

(
dx−1

2

)
. We arrive at this result by considering two spheres in the context of Theorem 1 of (Wongso et al.,

2023a), S′
1 being a zero-radius sphere centered at x, and S′

2 being the same as S2 here.

Given that y = 0, we then can write:

psi(x; y) = Eθ

[
log

p(y = 0|θTx)
p(y = 0)

]
(56)

= Pr(θTx ∈ {θTx|S2}|x) · Eθ:θT x∈{θT x|S2}

[
log

p(y = 0|θTx)
p(y = 0)

]
+ Pr(θTx /∈ {θTx|S2}|x) · Eθ:θT x/∈{θT x|S2}

[
log

p(y = 0|θTx)
p(y = 0)

]
(57)

When θTx /∈ {θTx|S2}, note that S2 does not play a role in estimating the probabilities. In this cases, we have:

p(y = 0|θTx) = P (θTx|y = 0)

p(θTx|y = 0) + p(θTx|y = 1)
≥ pmin

pmin + ϵ

The ϵ term is a consequence of the fact that only the probability outside the set {θTx|S2} contributes to p(θTx|y = 1) in
this case.

When θTx ∈ {θTx|S2}, both S1 and S2 will contribute to estimating the probabilities. In this case, we have:

p(y = 0|θTx) = p(θTx|y = 0)

p(θTx|y = 0) + p(θTx|y = 1)
≥ pmin

2pmax

This, combined with the fact that p(y = 0) = p(y = 1) = 0.5 and Pr(θTx ∈ {θTx|S2}|x) = Bγ(d(x,S2),R2)

(
dx−1

2

)
, then

yields:

psi(x; y) ≥
(
1 + log

pmin

pmin + ϵ

)
Bγ(d(x,S2),R2)

(
dx − 1

2

)
(58)

+ log
pmin

pmax

(
1−Bγ(d(x,S2),R2)

(
dx − 1

2

))
(59)

= log
pmin

pmax
+

(
1 + log

pmax

pmin + ϵ

)
Bγ(d(x,S2),R2)

(
dx − 1

2
,
1

2

)
(60)

Furthermore, given that all of P (X) lies within a subspace of dimensionality KP , we can convert our analysis into a space
of dimensionality KP instead, as implied from Theorem 2 of (Wongso et al., 2023a). Note that in doing so, the distances
do not change, and the measures ϵ, pmax, pmin all stay the same, because the dimensionality of the null-space within the
projections has zero measure. This yields the final result:

psi(x; y) ≥ log
pmin

pmax
+

(
1 + log

pmax

pmin + ϵ

)
Bγ(d(x,S2),R2)

(
KP − 1

2
,
1

2

)
, (61)

28

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

Remark 15 (On the lower bound of PSI). Note that when x is further away from S2, i.e. a larger sample-wise margin, it
leads to a larger lower bound on the PSI. Thus, in this case, PSI will likely be larger. This generalizes the result in (Wongso
et al., 2023b), which was only for symmetric non-overlapping distributions P (X|Y = 0) and P (X|Y = 1). As Theorem
2 shows, PSI can be sensitive to both soft and hard margins. Furthermore, in three scenarios we expect the bound to be
tight. (i) For distributions where ϵ is small, and pmax >> pmin. (ii) When the radius R2 is large, or the distance d(x, S2)
is large. (iii) When the intrinsic dimensionality KP is small. Thus, for high-dimensional data, if it lies on a low dimensional
manifold, we will get a significantly tighter result. Furthermore, we note that none of the terms pmin, pmax, ϵ, R2,KP are
dependent on the sample-wise margin d(x, S2). Thus, the only term affected by sample-wise margin is the regularized
incomplete beta function Bγ(d(x,S2),R2)

(
KP−1

2 , 12
)
. Therefore, our hypothesis that the lower bound of psi(x; y) increases

as the sample-wise margin increases is valid.

Remark 16 (On the sample-wise margin definition in Theorem 2). Note that the definition of sample-wise margin here
d(x, S2) converges to the classical definition of margin w.r.t a linear decision boundary when R2 →∞.

Remark 17 (On the choice of S1, S2, and ϵ). As mentioned in the main paper, here we provide some more context to
the choice of the spheres S1 and S2, and the nature of ϵ. Note that the choice of S1 does not affect the result much, as the
only main constraint for S1 is that x must be contained within it. As such, the radius R1 also does not directly impact the
result. However, S2 should be ideally chosen such that it contains as much of the distribution P (X|Y = 1). To see this, we
mainly look at how the choice of S2 impacts ϵ. Note that if ϵ is very large, such that pmax < pmin + ϵ, then the dependence
on sample-wise margin reverses (less margin leads to more psi). To avoid this, we can always choose S2 such that ϵ is
small. Let S2 be chosen such that p(x ∈ S2|y = 1) = ρ. Furthermore, let us assume that there is another bigger sphere S3

such that S2 is contained in S3, such that p(x ∈ S3|y = 1) = 1. Let the radius of S3 be R3. Then, we can approximate
ϵ as (1− ρ)/(2(R3 −R2)). This is because the projection of S2 will have a length of 2R2 and similarly for S3. Thus, if
we choose S2 such that ρ is made arbitrarily close to 1, we can make ϵ arbitrarily close to zero. However, do note that
although this can be done when the distributions P (X|Y = 0) and P (X|Y = 1) have less overlap, for the case where
P (X|Y = 0) and P (X|Y = 1) are highly overlapping, this may not be possible. As in most of our experiments x is taken
from the penultimate layer of neural networks which have separable features, the assumption will hold with high probability.

Remark 18 (On sensitivity to hard margins). When P (X|Y = 0) and P (X|Y = 1) are clearly separated, one should
ideally have maximum confidence estimates everywhere. But the fact that we do not know the ground truth distribution
P (X,Y) implies that even when the estimate of P , denoted by Q(X,Y), from the training data, is perfectly separated,
the separation of the true unknown P (X,Y) will be most likely smaller with potential overlap. This is because Q(X,Y)
clearly has a significant chance of overfitting the true distributions, as the objective of the classifier is always to separate the
training feature distributions anyway. Due to this potential overestimation of the real margin, encoding additional geometric
information about Q(X,Y), such as the hard margin involved in the perfect separation, can inform about the probability
of P (X|Y = 0) and P (X|Y = 1) being perfectly separated as well. If Q(X,Y) has a very small hard margin, then it is
possible that P (X,Y) ends up with overlapping class-wise feature distributions, and if it has a very large hard margin,
then the opposite is likely. Lastly, correlation between the hard margin between the class-wise feature distributions and
generalization has indeed been observed in literature (Grønlund et al., 2020), showcasing the significance of this issue.

Finally, we have the following result to relate PVI to the sample-wise margin.

Proposition 7 (PVI and sample-wise margin). We are given a neural network with function f : Rd → R2 for classifying
points X into two labels Y ∈ {0, 1}, and we are given that P (Y = 0) = P (Y = 1) = 0.5. We assume that the final outputs
of f are passed through a softmax operator with temperature T = 1, to yield the output softmax(f(X)). We are given an
instance (x, y) ∼ P (X,Y). Given x as the input, we define margin τ as in (Vemuri, 2020), where

τ =
f(x)y − f(x)1−y

∥∇x(f(x)y)−∇x(f(x)1−y)∥2
. (62)

If M = maxx{||∇x(f(x)y)||, ||∇x(f(x)1−y)||}, then we have: pvi(x→ y) ≤ 1− log
(
1 + e−2Mτ

)
.

Proof. As we consider the function outputs before the softmax here, we re-represent the two terms of PVI. The first term
of PVI, is now represented as − log softmax(f)[∅](y), which will be equal to 1, as the neural network can simply learn
the biases of the last layer and set them such that softmax(f)[∅](y) = softmax(f)[∅](1 − y) = 0.5. Note that, as
τ =

f(x)y−f(x)1−y

∥∇x(f(x)y)−∇x(f(x)1−y)∥2
and M = maxx{|∇x(f(x)y)|, |∇x(f(x)1−y)|}, we can write

f [x](1− y)− f [x](y) ≤
√
(2M2 + 2M2)τ = 2Mτ (63)

29

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

Table 4: Correlation of PMI/PSI/PVI with Margin (Averaged over 5 Runs with Std Dev shown). Best results are highlighted in bold.

Method MLP, MNIST CNN, F-MNIST VGG16, STL-10 ResNet50, CIFAR-10
PMI 0.398±0.029 0.429±0.034 0.619±0.011 0.637±0.019
PSI 0.657±0.022 0.846±0.006 0.809±0.006 0.758±0.033
PVI 0.327±0.025 0.368±0.008 0.604±0.010 0.563±0.011

Like before, let f ′ = argming∈V E(X,Y)∼PXY
[− log g[X](Y)], denote the trained neural network that estimates conditional

V-entropy. Now, the second term for PVI will be represented as log softmax(f ′)[x](y). Then, given x, y ∼ PXY , we have:

log (softmax(f ′)[x](y)) = log

(
ef

′[x](y)

ef ′[x](y) + ef ′[x](1−y)

)
(64)

= log

(
1

ef ′[x](1−y)−f ′[x](y) + 1

)
(65)

≤ − log
(
1 + e−2Mτ

)
(66)

Then, the result direct follows from the expression of PVI.

Remark 19 (On PVI and sample-wise margin). As the above result shows, PVI can indeed be sensitive to the sample-
wise margin, and thus datapoints x which are near to the decision boundary can be expected to have a lower PVI
and vice versa. However, the raw PVI values may not be very sensitive to margin. For τ >> 1, we can approximate
pvi(x→ y) ≤ 1− e−4M2τ , which converges to 1 quickly as τ increases and the differences become smaller for larger τ .
Thus, if one were to replace the PVI values by their relative rank, we could potentially see a higher correlation. As our
experiments use the pointwise measures to rank confidence scores relatively among samples, samples with larger PVI will
likely correspond to the samples with larger sample-wise margins.

Experiment on Correlation to Margin: We perform an experiment to examine whether samples closer to the decision
boundary (smaller margin) are assigned lower confidence scores by the various measures compared to those located further
away (higher margin). We aim to test our hypothesis that PSI is the most sensitive to sample-wise margin. We approximate
the sample-wise margin using the method provided in (Elsayed et al., 2018), which approximates the smallest distance of a
datapoint x to the decision boundary by:

di,j(x) ≈
f(x)i − f(x)j

∥∇x(f(x)i)−∇x(f(x)j)∥2
(67)

where we choose f(x)i and f(x)j to be the highest and second highest logits of the neural network f (also used in Proposition
7) and∇ represents the gradient operator. Then, we compute the Pearson correlation between the margin and the confidence
estimates returned by the different PI measures. The results are shown in Table 4. In addition, we use Uniform Manifold
Approximation and Projection (UMAP) to visualize the features of the penultimate layer on the test dataset. We rank the
PMI, PSI, and PVI for each sample and visualize these rankings using color bars in the UMAP plots. As shown in Table
4, we find that PSI is the most correlated with margin, followed by PMI and then PVI, supporting the theory. The higher
correlation of PMI with margin compared to PVI could be attributed to the decrease of sensitivity of PVI when M (related
to the complexity of the network) is large. In Figure 1, we find that for all measures, as the samples get closer to the
decision boundary, the values generally decrease. We generally observe that PSI tends to rank highly misclassified classes
lower than those that are often classified correctly. For example, in the STL-10 dataset, animal categories generally receive
lower-ranked confidence scores overall (showing more blue than pink).

30

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

(a) PMI (VGG16, STL-10) (b) PSI (VGG16, STL-10) (c) PVI (VGG16, STL-10)

Figure 1: UMAP visualization of the penultimate layer features.

C. Benchmarks & Experimental Details
C.1. Benchmark Datasets & Architectures

Below is a list of the benchmark datasets we use in our experiments:

1. MNIST is a dataset comprising of 28×28 grayscale images of handwritten digits from 0 to 9.
2. Fashion MNIST is a dataset comprising of 28×28 grayscale images of fashion products from 10 classes: T-shirt, trouser,

pullover, dress, coat, sandal, shirt, sneaker, bag, ankle boot.
3. STL-10 is a subset of the ImageNet dataset, consisting of 96×96 color images from 10 classes: airplane, bird, car, cat,

deer, dog, horse, monkey, ship, truck. It was primarily developed for unsupervised learning, and thus most of the samples
are unlabelled.

4. CIFAR-10 is a dataset consisting of 32×32 color images from 10 classes: airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, and truck.

5. CIFAR-100 is an expanded version of CIFAR-10, comprising 100 classes.
6. Stanford Dogs is a dataset consisting of color images of various sizes, spanning 120 different dog breeds.
7. Tiny-ImageNet is a dataset consisting of 64×64 color images from 200 classes. It is a smaller subset of the original

ImageNet dataset.

All of these datasets are publicly accessible through the TensorFlow Datasets catalog at https://tensorflow.org/
datasets/catalog/overview. All images, except those from MNIST and Fashion-MNIST, are resized to 224×224.
We split the dataset into training, validation and test sets.

Table 5: The architecture of the basic CNN.

Layer Type Parameters
Convolutional 32 filters, kernel size=3×3, strides=1, padding=same, ReLU
Convolutional 32 filters, kernel size=3×3, strides=1, padding=same, ReLU
Max Pooling pool size=2×2
Dropout rate=0.3
Convolutional 64 filters, kernel size=3×3, strides=1, padding=same, ReLU
Convolutional 64 filters, kernel size=3×3, strides=1, padding=same, ReLU
Max Pooling pool size=2×2
Dropout rate=0.3
Convolutional 128 filters, kernel size=3×3, strides=1, padding=same, ReLU
Convolutional 128 filters, kernel size=3×3, strides=1, padding=same, ReLU
Max Pooling pool size=2×2
Dropout rate=0.3
Fully-Connected 128 units, ReLU
Fully-Connected K units (where K is the number of classes), softmax

Below is a list of neural network architectures that we use in our experiments:

31

https://tensorflow.org/datasets/catalog/overview
https://tensorflow.org/datasets/catalog/overview

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

Table 6: The top layers of the benchmark model’s architecture.

Layer Type Parameters
Base Network Weights are pre-trained on ImageNet dataset
Fully-Connected 256 units, ReLU
Dropout rate=0.3
Fully-Connected 128 units, ReLU
Fully-Connected K units (where K is the number of classes), softmax

1. Multi-layer Perceptron (MLP): We implemented a simple MLP, consisting of three hidden layers with 512 units and
ReLU activation each.

2. Convolutional Neural Network (CNN): We implemented a simple CNN with a detailed architecture as illustrated in
Table 5. We refer to this as the Basic CNN.

3. VGG16: We loaded the base model of VGG16 from Tensorflow and excluded the three fully-connected layers at the top
of the network.

4. ResNet50: We loaded the base model of ResNet50V2 from Tensorflow and excluded the three fully-connected layers at
the top of the network.

5. ResNet101: We loaded the base model of ResNet101V2 from Tensorflow and excluded the three fully-connected layers
at the top of the network.

6. InceptionV3: We loaded the base model of InceptionV3 from Tensorflow and excluded the three fully-connected layers
at the top of the network.

7. DenseNet121: We loaded the base model of DenseNet121 from Tensorflow and excluded the three fully-connected
layers at the top of the network.

For all the pre-trained networks, we incorporated four new layers on top of the base network, as detailed in Table
6. All the pre-trained network modules are publicly accessible through the Tensorflow Keras Applications catalog at
https://tensorflow.org/api_docs/python/tf/keras/applications.

C.2. Hyperparameters

We use the AdamW optimizer with a learning rate of 1e-4 and weight decay of 1e-4, with a batch size of 128. A learning
rate scheduler (ReduceLROnPlateau) is employed, which monitors validation accuracy and reduces the learning rate by a
factor of 0.5 if it does not improve for 5 consecutive epochs. Early stopping is also applied, monitoring validation accuracy
with a patience of 10 epochs, and restoring the best weights upon stopping. We train for a maximum of 100 epochs, except
for Fashion-MNIST, where we use 300 epochs. All experiments were performed using a single NVIDIA A100 (80GB SXM)
GPU. We report the classification errors for the different model-dataset pairs in our experiments in Table 7.

Table 7: Train, Validation and Test Classification Error in Percentage for the Different Model-Dataset Pairs (Averaged over 5 Runs with
Standard Deviations Included)

MODEL,DATASET Train Error Validation Error Test Error
MLP, MNIST 0.00 ± 0.00 1.56 ± 0.04 1.53 ± 0.03
BASIC CNN, FASHION MNIST 0.01 ± 0.01 6.21 ± 0.09 6.52 ± 0.19
VGG16, STL-10 0.00 ± 0.01 8.73 ± 0.51 8.94 ± 0.41
RESNET50, CIFAR-10 0.00 ± 0.01 4.39 ± 0.21 4.78 ± 0.15
RESNET101, CIFAR-100 0.06 ± 0.07 21.62 ± 0.53 21.60 ± 0.58
INCEPTIONV3, STANFORD DOGS 0.14 ± 0.04 24.47 ± 0.94 23.46 ± 0.65
DENSENET121, TINY-IMAGENET 0.02 ± 0.01 27.89 ± 0.44 27.95 ± 0.31

C.3. Details for Experiments in Main Paper

Below, we provide more details on the experiments presented in the main paper.

32

https://tensorflow.org/api_docs/python/tf/keras/applications

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

C.3.1. DETAILS FOR EXPERIMENT IN SECTION 4.1 (FAILURE PREDICTION)

In this experiment, the goal is to compare the effectiveness of the three PI measures for misclassification detection and
selective prediction. We formulate the problem as a binary classification task where we have a binary failure label:

yf = 1(y ̸= ŷ) (68)

In other words, we assign label 1 for misclassified samples and 0 for correctly classified samples. Let c be the confidence
scores quantified by different approaches. For a threshold value τ , we can compute:

TPf (τ) =

N∑
i=1

(1− yf,i) · 1(c ≥ τ) FPf (τ) =

N∑
i=1

yf,i · 1(c ≥ τ) (69)

FNf (τ) =

N∑
i=1

(1− yf,i) · 1(c < τ) TNf (τ) =

N∑
i=1

yf,i · 1(c < τ) (70)

From these, we can compute the following:

Sensitivityf (τ) =
TPf (τ)

TPf (τ) + FNf (τ)
(71)

Precisionf (τ) =
TPf (τ)

TPf (τ) + FPf (τ)
(72)

FPRf (τ) =
FPf (τ)

TNf (τ) + FPf (τ)
(73)

(74)

In misclassification detection, the two commonly used metrics are AUROC (Area under Receiver Operating Curve) and
AUPRC (Area under Precision-Recall Curve) to evaluate performance on a multi-threshold list {τt}Tt=0 of length T .

The AUROC is defined as:

AUROCf =

T∑
t=1

(FPRf (τt)− FPRf (τt−1)) ·
(Sensitivityf (τt) + Sensitivityf (τt−1))

2
(75)

=

T∑
t=1

∑N
i=1 yf,i · (1(c ≥ τt)− 1(c ≥ τt−1))∑N

i=1 yf,i
·
∑N

i=1(1− yf,i) · (1(c ≥ τt) + 1(c ≥ τt−1))

2 ·
∑N

i=1(1− yf,i)
(76)

The AUPR is defined as:

AUPRf,success =
T∑

t=1

(Sensitivityf (τt) + Sensitivityf (τt−1)) · Precisionf (τt) (77)

=

T∑
t=1

∑N
i=1(1− yf,i) · (1(c ≥ τt)− 1(c ≥ τt−1))∑N

i=1(1− yf,i)
·
∑N

i=1(1− yf,i) · 1(c ≥ τt)∑N
i=1 1(c ≥ τt)

(78)

AUPRC is more informative than AUROC when there is a significant difference between the positive and negative class base
rates. However, AUPRC is heavily influenced by the base rate of the positive class. Therefore, as suggested by (Hendrycks
& Gimpel, 2017), we present two types of AUPRC results: AUPRf,success, where the success class is treated as positive,
and AUPRf,error, where the error class is treated as positive. The error classes can be treated as positive by labeling them
positive and multiplying the confidence scores c by -1. The AUPRf,error is defined as:

AUPRf,error =

T∑
t=1

(Sensitivityf (τt) + Sensitivityf (τt−1)) · Precisionf (τt) (79)

=

T∑
t=1

∑N
i=1 yf,i · (1(c < τt)− 1(c < τt−1))∑N

i=1 yf,i
·
∑N

i=1 yf,i · 1(c < τt)∑N
i=1 1(c < τt)

(80)

33

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

Additionally, we report the FPR95 metric, which measures the false positive rate when the true positive rate is at 95%.

In selective prediction, given a threshold τ , we filter out the samples with confidence c < τ , and compute the performance
on the remaining samples c ≥ τ . In this context, the risk is defined as the error rate of the remaining samples after selection:

Risk(τ) = 1− Precisionf (τ) =

∑N
i=1 yf,i · 1(c ≥ τ)∑N

i=1 1(c ≥ τt)
(81)

Coverage is defined as the proportion of samples remaining after selection:

Coverage(τ) =
∑N

i=1 1(c ≥ τt)
N

(82)

The most common metric used in selective prediction is the AURC (Area under Risk-Coverage Curve) which evaluates
performance on a multi-threshold list {τt}Tt=0 of length T . The AURC is defined as:

AURC =

T∑
t=1

(Coverage(τt)− Coverage(τt−1)) ·
(Risk(τt) + Risk(τt−1))

2
(83)

=

T∑
t=1

∑N
i=1(1(c ≥ τt)− 1(c ≥ τt−1))

N
·

(∑N
i=1 yf,i · 1(c ≥ τ)

2 ·
∑N

i=1 1(c ≥ τt)
+

∑N
i=1 yf,i · 1(c ≥ τt−1)

2 ·
∑N

i=1 1(c ≥ τt−1)

)
(84)

A common criticism of the AURC metric is that it does not allow for meaningful comparisons across problems (Geifman
et al., 2019). The same AURC value can correspond to an ideal confidence estimator for one classifier (with high overall risk)
and to a completely random confidence estimator for another classifier (with low overall risk). To address this limitation,
Excess-AURC (E-AURC) normalizes the AURC against an oracle confidence estimator g∗ that perfectly orders samples in
decreasing loss. Formally, for a classifier h and confidence estimator g, E-AURC is defined as:

E-AURC(h, g) = AURC(h, g)− AURC(h, g∗) (85)

where AURC(h, g∗) represents the minimal achievable AURC for h. The oracle g∗ achieves perfect ranking, ensuring the
smallest possible risk for every coverage level. By construction, E-AURC = 0 for an ideal estimator, and positive values
indicate excess risk due to imperfect ranking of samples by confidence.

Next, we provide details on the benchmark methods against which we compare our methods. Let z represent the logits of the
network (output of the last layer before the softmax function). For K number of classes, the softmax function σ is defined
as:

σk(z) =
ezi∑K
j=1 e

zj
(86)

where σk(z) denotes the k-th element of σ(z).

We define the maximum softmax probability (MSP), the softmax margin (SM), the max logit (ML), the logits margin (LM),
the negative entropy (NE), and the negative Gini (NG) as follows:

MSP(z) := σŷ(z) (87)
SM(z) := σŷ(z)− max

k∈Y:k ̸=ŷ
σk(z) (88)

ML(z) := zŷ (89)
LM(z) := zŷ − max

k∈Y:k ̸=ŷ
zk (90)

NE(z) :=
∑
k∈Y

σk(z) log σk(z) (91)

NG(z) :=
∑
k∈Y

σk(z)2 − 1 (92)

where ŷ = argmaxk∈Y zk is the predicted label.

Aside from ML and LM, the remaining methods apply temperature scaling to the logits or PI values, with the scaling
parameter optimized using negative log-likelihood on the validation set.

34

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

C.3.2. DETAILS FOR EXPERIMENT IN SECTION 4.2 (CONFIDENCE CALIBRATION)

In this experiment, the goal is to determine to what extent the confidence scores estimated by the three PI measures reflect
the true correctness likelihood (well-calibrated). A commonly used calibration metric is Expected Calibration Error
(ECE) which bins the predictions in [0, 1] under M equally-spaced intervals (we choose M = 10), and then averages the
accuracy/confidence in each bin. ECE is defined as follows:

ECE =

M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)| (93)

However, the ECE has noteworthy limitations: it relies on a binning approach that introduces bias–variance trade-offs (fewer
bins increase bias, more bins escalate variance), considers only the maximum predicted probabilities (ignoring potentially
meaningful information in lower-confidence estimates), and may mislead by yielding low calibration error even in poorly
accurate models (Pavlovic, 2025; Nixon et al., 2019). Nevertheless, we still present the results for ECE in Table 8 in
Appendix C.4.1.

Instead, we consider the metrics introduced by (Nixon et al., 2019):

Static Calibration Error (SCE) is a multiclass extension of the Expected Calibration Error (ECE) that evaluates calibration
across all predicted class probabilities rather than only the top prediction. For each class, predicted probabilities are
partitioned into bins, and the absolute difference between the bin’s average confidence and accuracy is computed, weighted
by the number of samples in that bin. The SCE is the average of these weighted errors over all classes, providing a more
comprehensive measure of calibration. Unlike ECE, SCE can be zero only if the model is perfectly calibrated for every
class, making it a stricter and more informative metric for multiclass settings.

Class-Conditional Static Calibration Error (CC-SCE) is a multiclass calibration metric that extends SCE by computing
calibration error separately for each class and then averaging over all classes. For each class, predicted probabilities for
that class (regardless of whether it is the top prediction) are partitioned into bins, and the absolute difference between the
bin’s average confidence and accuracy is calculated, weighted by the proportion of samples in that bin. Averaging these
weighted errors across all classes yields the final score. This class-wise approach captures calibration behaviour for every
class individually, avoiding the bias of standard ECE, which only considers the most confident class per sample.

Adaptive Calibration Error (Ada-SCE) is a multiclass calibration metric that, like SCE, measures calibration across all
predicted class probabilities but avoids the fixed-bin bias of SCE by using adaptive binning. Instead of dividing the
probability range [0,1] into equal-width bins, ACE sorts the predicted probabilities for each class and partitions them so
that each bin contains approximately the same number of samples. This ensures that even low-probability regions with few
samples are adequately represented, reducing bias in sparse regions. For each class and bin, the absolute difference between
average confidence and accuracy is computed and weighted equally across bins and classes. Averaging these values yields
ACE, which offers a more reliable estimate of calibration—especially for skewed probability distributions or imbalanced
datasets.

Root Mean Squared Calibration Error (RMS-SCE) extends SCE by computing the square root of the mean squared
difference between predicted confidence and empirical accuracy. It applies the L2 error to penalize larger calibration
deviations more strongly than absolute-error metrics. Each bin holds roughly 100 predictions, ensuring stable accuracy
estimates within bins. RMSCE is particularly useful when large miscalibrations are of greater concern, as the squaring step
magnifies their impact before averaging and taking the square root.

We additionally consider 4 other common metrics in Appendix C.4.1:

The Maximum Calibration Error (MCE) measures the worst-case deviation between predicted confidence and empirical
accuracy across all bins. Unlike ECE, which averages the bin-wise calibration errors weighted by bin size, MCE only
considers the largest absolute gap. Formally, it is defined as:

MCE = max
m∈{1,...,M}

|acc(Bm)− conf(Bm)| (94)

where Bm denotes the set of samples whose predicted confidence falls into the m-th bin, acc(Bm) is the accuracy within
bin m, and conf(Bm) is the average predicted confidence in bin m.

35

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

The Average Calibration Error (ACE) measures the mean absolute difference between predicted confidence and empirical
accuracy across all bins, without weighting by bin size. Unlike ECE, which weights each bin by its number of samples,
ACE treats all bins equally, providing an unweighted estimate of calibration error. Formally, it is defined as:

ACE =
1

M

M∑
m=1

|acc(Bm)− conf(Bm)| (95)

where Bm denotes the set of samples whose predicted confidence falls into the m-th bin, acc(Bm) is the accuracy within
bin m, and conf(Bm) is the average predicted confidence in bin m.

The Negative Log Likelihood (NLL) measures the quality of the predicted probability distribution by penalizing incorrect or
overconfident predictions. Formally, for N samples, it is defined as:

NLL = − 1

N

N∑
i=1

log pθ(yi | xi) (96)

where pθ(yi | xi) denotes the predicted probability assigned to the true class yi for input xi under model parameters θ.

The Brier Score (BS) measures the mean squared difference between the predicted probability distribution and the actual
outcome, providing an overall assessment of the accuracy of probabilistic predictions. It penalizes both overconfidence and
underconfidence in predictions. Formally, for N samples and K classes, it is defined as:

BS =
1

N

N∑
i=1

K∑
k=1

(pθ(yi = k | xi)− 1(yi = k))
2 (97)

where pθ(yi = k | xi) is the predicted probability that sample i belongs to class k, and 1(yi = k) is the indicator function
that equals 1 if the true label is k and 0 otherwise.

Similar to the failure prediction experiment, we apply temperature scaling to all the logits and PI values, with the scaling
parameter optimized using negative log-likelihood on the validation set.

C.4. Additional Results for Experiments in Main Paper

C.4.1. ADDITIONAL RESULTS FOR EXPERIMENT IN SECTION 4.2 (CONFIDENCE CALIBRATION)

For completeness, in Table 8, we also report results for 5 additional common calibration metrics: Maximum Calibration Error
(MCE), Average Calibration Error (ACE), Negative Log-Likelihood (NLL), and Brier Score (BS). Generally, MSP performs
well on ECE, MCE, and ACE; however, as noted earlier, these metrics have known limitations, such as bias–variance trade-
offs and reliance solely on the maximum predicted probability. For NLL and BS, both MSP and PVI achieve competitive
results.

36

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

Table 8: Comparison of Confidence Estimation Methods for Confidence Calibration (Averaged over 10 Runs).

Model, Dataset Method ECE ↓ MCE ↓ ACE ↓ NLL ↓ BS ↓

MLP, MNIST

MSP 0.34 ± 0.07 0.10 ± 0.04 9.46 ± 2.28 6.45 ± 0.18 3.02 ± 0.07
PMI 0.31 ± 0.06 0.08 ± 0.03 7.33 ± 1.39 6.32 ± 0.17 2.97 ± 0.07
PSI 1.75 ± 0.16 0.28 ± 0.04 23.26 ± 1.43 9.56 ± 0.37 3.99 ± 0.13
PVI 0.59 ± 0.08 0.13 ± 0.03 11.63 ± 1.81 6.47 ± 0.18 3.02 ± 0.07

CNN, F-MNIST

MSP 0.72 ± 0.10 0.18 ± 0.02 5.12 ± 1.47 19.72 ± 0.54 10.23 ± 0.34
PMI 1.27 ± 0.10 0.30 ± 0.06 8.17 ± 1.14 21.93 ± 0.33 10.56 ± 0.29
PSI 2.85 ± 0.28 0.32 ± 0.03 18.40 ± 0.96 24.54 ± 1.12 12.10 ± 0.56
PVI 1.48 ± 0.30 0.18 ± 0.03 10.28 ± 2.65 19.71 ± 0.54 10.22 ± 0.34

VGG16, STL-10

MSP 1.51 ± 0.32 0.46 ± 0.15 5.40 ± 0.53 27.62 ± 0.84 13.09 ± 0.40
PMI 1.07 ± 0.13 0.21 ± 0.04 5.51 ± 1.18 28.71 ± 0.77 13.25 ± 0.39
PSI 1.40 ± 0.20 0.21 ± 0.03 6.85 ± 1.16 28.26 ± 0.86 13.21 ± 0.39
PVI 2.34 ± 0.35 0.31 ± 0.06 11.27 ± 1.71 27.44 ± 0.81 13.02 ± 0.40

ResNet50, CIFAR-10

MSP 1.06 ± 0.06 0.45 ± 0.06 6.15 ± 0.81 15.51 ± 0.45 7.24 ± 0.20
PMI 1.11 ± 0.13 0.48 ± 0.08 6.82 ± 1.01 16.44 ± 0.56 7.31 ± 0.22
PSI 1.01 ± 0.11 0.33 ± 0.07 9.52 ± 2.26 16.05 ± 0.53 7.33 ± 0.21
PVI 2.53 ± 0.21 0.39 ± 0.02 22.42 ± 1.06 15.49 ± 0.44 7.24 ± 0.20

ResNet101, CIFAR-100
MSP 4.76 ± 0.28 1.70 ± 0.16 6.63 ± 0.46 91.24 ± 1.78 31.56 ± 0.59
PSI 5.73 ± 0.32 0.80 ± 0.10 10.75 ± 0.41 102.67 ± 1.65 33.14 ± 0.53
PVI 10.29 ± 0.56 2.56 ± 0.15 20.99 ± 0.72 91.24 ± 1.78 31.56 ± 0.59

InceptionV3, Stanford Dogs
MSP 4.80 ± 0.19 1.66 ± 0.14 5.87 ± 0.39 95.27 ± 2.44 34.12 ± 0.69
PSI 6.84 ± 0.62 1.11 ± 0.22 11.83 ± 0.71 112.53 ± 1.73 36.71 ± 0.51
PVI 8.79 ± 0.63 1.78 ± 0.20 15.27 ± 1.07 95.27 ± 2.44 34.12 ± 0.69

DenseNet121, TinyImageNet
MSP 3.45 ± 0.51 1.04 ± 0.24 4.03 ± 0.61 125.17 ± 0.95 38.62 ± 0.20
PSI 6.73 ± 0.46 1.03 ± 0.12 9.87 ± 0.45 147.91 ± 2.01 41.53 ± 0.37
PVI 9.80 ± 0.28 2.60 ± 0.14 17.47 ± 0.33 125.05 ± 0.98 38.58 ± 0.22

37

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

D. Additional Experiments
D.1. Normalization: Effects of Softmax and Temperature Scaling

(a) Logits (Without Any Scaling) (b) Logits+Softmax Scaling (c) Logits+Softmax+Temp. Scaling

(d) PMI (Without Any Scaling) (e) PMI+Softmax Scaling (f) PMI+Softmax+Temp. Scaling

(g) PSI (Without Any Scaling) (h) PSI+Softmax Scaling (i) PSI+Softmax+Temp. Scaling

(j) PVI (Without Any Scaling) (k) PVI+Softmax Scaling (l) PVI+Softmax+Temp. Scaling

Figure 2: The distributions of confidence values estimated using logits (figures a-c), PMI (figures d-f), PSI (figures g-i),
and PVI (figures j-l) for incorrect and correct test predictions (model: CNN, dataset: Fashion MNIST). First column (left
figures): raw values; Second column (middle figures): with softmax scaling; Third column (right figures): with softmax and
temperature scaling. The respective AUROC (scaled by 100, higher is better) and AURC (scaled by 1000, lower is better)
are also reported.

In this section, we analyze the effects of softmax and temperature scaling on the raw (unnormalized) confidence values. For
a given vector of unnormalized confidence values τ of length K (number of classes), the softmax function σ is given by:

σk(τ) =
eτk∑K
j=1 e

τj
(98)

where σk(τ) denotes the k-th element of σ(τ).

38

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

The softmax function with temperature scaling is:

σk(τ , T) =
eτk/T∑K
j=1 e

τj/T
(99)

where T is the temperature parameter. By adjusting the temperature T , we can control the sharpness or smoothness of the
resulting probability distribution. When T = 1, the temperature-scaled softmax reduces to the standard softmax function.
Since the same T is used for all classes, it does not change the maximum of the softmax function, which means that
the predictions of the network remain the same. To obtain the optimal temperature for a trained network, we select the
temperature from the range 0.01, 0.02, . . . , 4.99, 5.00 that maximizes the AURC on the validation dataset.

We compare the effects of softmax and temperature scaling for the four approaches (trained network logits, PMI, PSI, and
PVI). We show the results for CNN model with Fashion MNIST dataset in Figure 2 The figure shows the violin plots of
the confidence scores for wrong and correct predictions. We also report the AUROC and AURC for each method in the
respective figure.

Takeaway. Without any scaling, the raw confidence estimates can span a wide range of values, resulting in a distribution
that may be highly skewed or exhibit large variance, with significant overlap between the distributions of wrong and correct
predictions. Applying softmax normalizes the logits into a probability distribution, which transforms the range of values
and adjusts the distribution, often leading to more concentrated confidence scores for correct predictions at high values,
while wrong predictions tend to have a broader distribution. This can help reduce the overlap between the two distributions.
Temperature scaling further increases this separation by either compressing the confidence scores of correct predictions or
broadening those of wrong predictions.

D.2. Comparison of Various Pointwise Information Estimators

In this section, we compare the different methods of estimating each PI measure to obtain the best results. For comparison,
we report the results for MLP trained with MNIST dataset as well as CNN trained with Fashion MNIST dataset for 5 runs.
The hyperparameters for the training are reported in Appendix C.2 and the model classification errors are reported in Table
7. To show the improvement of these estimators, we also include the results for softmax (without temperature scaling).

D.2.1. COMPARISON OF PMI ESTIMATORS

For this experiment, we consider two different types of critic design: joint critic and separable critic. We also consider the
three estimators: probabilistic classifier, density ratio fitting and variational JS bound. More details on these critic designs
and estimators can be found in Appendix A.3.1. We first look at the convergence behaviour of these estimators by computing
the I(T ; Ŷ) where T is the penultimate layer for MLP model trained on MNIST dataset. We train each critic model for 100
epochs with batch size of 512 and Adam optimizer (with learning rate of 0.001). We present the results (averaged over 5
runs) in Figure 3, with the shaded regions representing the standard deviations. We observe that the probabilistic classifier
estimator converges more slowly and exhibits higher variance compared to the other two estimators. As a result, we exclude
it from subsequent comparisons.

We then evaluate the performance of confidence estimates returned by both the density ratio fitting and variational JS bound
estimators (using both joint and separable critics) on MLP and MNIST, as well as CNN and Fashion MNIST. The confidence
ranking metrics are AUROCf and AURC. In addition, we assess their performance based on whether softmax scaling is
used and whether confidence estimates are derived from the penultimate layer features or output layer features (before the
softmax function). We report the results in Table 9.

Takeaway. We observe that using the output layer features, rather than the penultimate layer features, yields significantly
better results. Additionally, applying softmax scaling enhances the performance of the variational JS bound estimator
but degrades the results for the density ratio fitting estimator. Among the estimators, the variational JS bound estimator,
combined with softmax scaling, surpasses the density ratio fitting estimator. Regarding critic design, the separable critic
slightly outperforms the joint critic. We find that the best configuration includes using output layer features with a
separable critic and the variational JS bound estimator with softmax scaling, which we adopt for all subsequent
experiments.

39

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

Figure 3: Estimation of I(T ; Ŷ) where T is the penultimate layer for the MLP model trained on the MNIST dataset. Three
estimators are considered: probabilistic classifier (blue line), density ratio fitting (orange line), and variational JS bound
(green line). Two critic designs are considered: joint (left) and separable (right). Here, the epochs refer to the training of the
critic, not the original network.The shaded regions represent the standard deviations.

Table 9: Comparison of Different PMI Estimators (Averaged over 5 Runs with Standard Deviations Included). The best results are
highlighted in bold.

Critic, Estimator AUROCf × 102 ↑ AURC × 103 ↓
MLP, MNIST CNN, F-MNIST MLP, MNIST CNN, F-MNIST

Without Softmax Scaling, Penultimate Layer
Joint Critic, Density Ratio Fitting 90.47± 1.16 89.09± 0.96 2.54± 0.35 11.81± 1.37
Joint Critic, Variational JS Bound 87.30± 1.38 78.53± 1.16 3.58± 0.51 25.89± 3.77
Separable Critic, Density Ratio Fitting 78.51± 2.43 85.09± 1.04 8.24± 1.73 16.94± 1.61
Separable Critic, Variational JS Bound 76.45± 3.08 85.56± 0.81 6.27± 0.88 16.10± 1.18

With Softmax Scaling, Penultimate Layer
Joint Critic, Density Ratio Fitting 89.35± 1.87 79.00± 3.38 2.62± 0.66 22.14± 3.93
Joint Critic, Variational JS Bound 85.51± 5.38 90.31± 0.46 4.88± 2.44 10.19± 0.48
Separable Critic, Density Ratio Fitting 89.02± 1.79 87.45± 0.82 3.14± 0.94 15.11± 1.33
Separable Critic, Variational JS Bound 90.12± 1.44 91.67± 0.28 2.55± 0.52 8.40± 0.16

Without Softmax Scaling, Output Layer
Joint Critic, Density Ratio Fitting 95.36± 0.38 91.49± 0.39 1.01± 0.09 8.68± 0.44
Joint Critic, Variational JS Bound 91.63± 0.62 87.39± 1.01 2.19± 0.34 13.95± 1.82
Separable Critic, Density Ratio Fitting 95.55± 0.59 86.65± 0.61 1.03± 0.20 14.55± 0.93
Separable Critic, Variational JS Bound 92.95± 1.94 88.22± 0.62 1.57± 0.45 12.00± 0.81

With Softmax Scaling, Output Layer
Joint Critic, Density Ratio Fitting 93.32± 1.42 87.37± 1.25 1.441± 0.377 13.39± 1.59
Joint Critic, Variational JS Bound 97.35± 0.36 91.54± 0.22 0.57± 0.08 8.52± 0.43
Separable Critic, Density Ratio Fitting 97.13± 0.33 88.44± 0.55 0.67± 0.12 13.94± 0.73
Separable Critic, Variational JS Bound 97.24± 0.18 91.97± 0.35 0.57± 0.05 8.11± 0.09

Softmax 95.11± 0.48 92.03± 0.23 1.38± 0.16 8.75± 0.34

D.2.2. COMPARISON OF PSI ESTIMATORS

For this experiment, we consider the two methods: binning and Gaussian described in Section A.3.2. First, we validate the
accuracy of these estimators by comparing their estimates with those obtained using the KSG estimator (Kraskov et al.,
2004). Note that SMI is the average of PSI over all samples. We compute the SMI between the penultimate layer and the
predicted labels during training (100 epochs) for MLP model and MNIST validation dataset. We use 500 projections for
both SMI and PSI estimation and 20 bins for the binning method. The results are shown in Figure 4. We observed that
the SMI estimates derived from the PSI binning method align more closely with the direct SMI estimates from the KSG
estimator than those from the Gaussian method. However, both methods exhibit the same overall trend.

We then evaluate the performance of confidence estimates returned by both the binning and Gaussian estimators (with
different number of projections m) on MLP and MNIST, as well as CNN and Fashion MNIST. The confidence ranking

40

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

Figure 4: SMI between penultimate layer and predicted labels during training. The plot shows the average SMI over 5 runs
for three different estimation methods (KSG, PSI Bin, and PSI Gaussian) across epochs. The shaded regions represent the
95% confidence intervals.

metrics are AUROCf and AURC. In addition, we assess their performance based on whether softmax scaling is used and
whether confidence estimates are derived from the penultimate layer features or output layer features (before the softmax
function). We report the results in Table 10.

Takeaway. We observe that using the output layer features, rather than the penultimate layer features, yields significantly
better results. We observe that the Gaussian method yields poor performance for the CNN with Fashion MNIST case, but
this could be remedied by a simple softmax scaling. We also observe that increasing the number of projections m beyond
500 leads to little or no improvement in the results. We find that the best configuration includes using output layer features
with the Gaussian estimator and softmax scaling, which we adopt for all subsequent experiments.

D.2.3. COMPARISON OF PVI ESTIMATORS

We evaluate the performance of confidence estimates returned by the various PVI estimation methods described in Section
A.3.3 on MLP and MNIST, as well as CNN and Fashion MNIST. The confidence ranking metrics are AUROCf and AURC.
In addition, we also consider calibrating the softmax probabilities used to compute the PVI. Similar to PMI and PSI, we
assess if the performance improves with softmax scaling. We report the results in Table 10.

In addition, we assess their performance based on whether softmax scaling is used and whether the associated probabilities
are calibrated with temperature scaling before computing the PVI.

Takeaway. We find that calibrating the softmax probabilities before computing PVI, along with applying softmax scaling,
significantly improves performance. The best result is achieved by ”training from scratch,” which means using another
trained network with a different initialization. We use this as the default estimator for PVI in all experiments.

41

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

Table 10: Comparison of Different PSI Estimators (Averaged over 5 Runs with Standard Deviations Included). The best results are
highlighted in bold.

Estimator AUROCf × 102 ↑ AURC × 103 ↓
MLP, MNIST CNN, F-MNIST MLP, MNIST CNN, F-MNIST

Without Softmax Scaling, Penultimate Layer
Binning (m = 250) 96.85± 0.25 85.82± 0.33 0.63± 0.06 12.78± 0.25
Binning (m = 500) 96.89± 0.12 86.13± 0.48 0.62± 0.03 12.55± 0.34
Binning (m = 750) 96.92± 0.18 86.11± 0.51 0.61± 0.04 12.56± 0.10
Binning (m = 1000) 96.90± 0.15 86.19± 0.39 0.62± 0.03 12.49± 0.25
Gaussian (m = 250) 96.38± 0.40 81.74± 0.68 0.71± 0.09 16.20± 0.40
Gaussian (m = 500) 96.46± 0.32 82.13± 0.87 0.69± 0.07 15.90± 0.39
Gaussian (m = 750) 96.45± 0.25 82.12± 0.89 0.69± 0.05 15.87± 0.40
Gaussian (m = 1000) 96.43± 0.28 82.21± 0.72 0.70± 0.06 15.80± 0.27

With Softmax Scaling, Penultimate Layer
Binning (m = 250) 96.08± 0.54 88.11± 0.12 0.78± 0.14 10.94± 0.33
Binning (m = 500) 96.89± 0.12 88.34± 0.26 0.73± 0.08 10.76± 0.34
Binning (m = 750) 96.28± 0.26 88.35± 0.30 0.73± 0.06 10.73± 0.19
Binning (m = 1000) 96.17± 0.32 88.47± 0.19 0.76± 0.08 10.65± 0.31
Gaussian (m = 250) 96.05± 0.28 88.29± 0.22 0.79± 0.06 10.79± 0.34
Gaussian (m = 500) 95.95± 0.16 88.23± 0.49 0.81± 0.04 10.84± 0.39
Gaussian (m = 750) 96.00± 0.21 88.45± 0.35 0.81± 0.05 10.66± 0.26
Gaussian (m = 1000) 96.07± 0.18 88.46± 0.39 0.79± 0.03 10.65± 0.34

Without Softmax Scaling, Output Layer
Binning (m = 250) 97.01± 0.11 85.88± 0.75 0.60± 0.03 12.89± 0.24
Binning (m = 500) 97.05± 0.20 85.77± 0.68 0.59± 0.05 13.00± 0.25
Binning (m = 750) 97.05± 0.13 85.96± 0.66 0.60± 0.03 12.84± 0.14
Binning (m = 1000) 97.06± 0.11 85.87± 0.75 0.59± 0.03 12.91± 0.25
Gaussian (m = 250) 96.68± 0.23 80.40± 1.02 0.66± 0.05 17.62± 0.67
Gaussian (m = 500) 96.73± 0.30 80.38± 0.69 0.65± 0.07 17.63± 0.58
Gaussian (m = 750) 96.72± 0.26 80.55± 0.62 0.65± 0.06 17.46± 0.31
Gaussian (m = 1000) 96.71± 0.23 80.54± 0.63 0.66± 0.05 17.47± 0.36

With Softmax Scaling, Output Layer
Binning (m = 250) 96.15± 0.43 85.96± 1.06 0.79± 0.11 13.31± 0.84
Binning (m = 500) 96.24± 0.52 85.89± 0.86 0.76± 0.13 13.38± 0.67
Binning (m = 750) 96.31± 0.39 86.23± 0.85 0.75± 0.10 13.10± 0.69
Binning (m = 1000) 96.31± 0.41 86.12± 0.94 0.75± 0.10 13.19± 0.70
Gaussian (m = 250) 96.58± 0.21 89.46± 0.46 0.69± 0.05 9.97± 0.23
Gaussian (m = 500) 96.61± 0.18 89.42± 0.42 0.69± 0.04 10.00± 0.25
Gaussian (m = 750) 96.59± 0.17 89.44± 0.49 0.69± 0.04 10.00± 0.25
Gaussian (m = 1000) 96.62± 0.22 89.36± 0.50 0.68± 0.05 10.05± 0.23

Softmax 95.11± 0.48 92.03± 0.23 1.38± 0.16 8.75± 0.34

42

Pointwise Information Measures as Confidence Estimators in Deep Neural Networks

Table 11: Comparison of Different PVI Estimators (Averaged over 5 Runs with Standard Deviations Included). The best results are
highlighted in bold.

Estimator AUROCf × 102 ↑ AURC × 103 ↓
MLP, MNIST CNN, F-MNIST MLP, MNIST CNN, F-MNIST

Uncalibrated, Without Softmax Scaling
No training 75.65± 1.93 83.11± 0.77 6.33± 0.56 22.16± 0.26
Training from scratch 82.79± 1.20 89.07± 0.06 4.52± 0.42 12.07± 0.48
Training MLP penultimate 65.45± 1.23 70.53± 0.61 9.39± 0.44 32.45± 1.42

Uncalibrated, With Softmax Scaling
No training 95.12± 0.48 92.03± 0.23 1.38± 0.16 8.75± 0.34
Training from scratch 95.85± 0.43 92.75± 0.28 1.19± 0.14 8.24± 0.37
Training MLP penultimate 88.31± 1.37 85.20± 0.38 3.56± 0.45 19.51± 0.44

Calibrated, Without Softmax Scaling
No training 88.13± 0.79 92.37± 0.19 2.82± 0.29 8.10± 0.18
Training from scratch 90.76± 1.06 93.28± 0.26 2.20± 0.22 7.10± 0.20
Training MLP penultimate 80.57± 1.73 84.51± 0.31 5.09± 0.48 17.13± 0.55

Calibrated, With Softmax Scaling
No training 97.12± 0.23 92.68± 0.22 0.60± 0.04 7.43± 0.17
Training from scratch 97.53± 0.23 93.33± 0.25 0.54± 0.03 6.99± 0.15
Training MLP penultimate 96.84± 0.27 91.82± 0.20 0.72± 0.06 8.29± 0.18

Softmax 95.11± 0.48 92.03± 0.23 1.38± 0.16 8.75± 0.34

43

