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Neural Optimisation of Fixed Beamformers With
Flexible Geometric Constraints

Longfei Felix Yan"”, Member, IEEE, Weilong Huang
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Abstract—This paper presents a novel approach to optimising
fixed broadband beamformers using neural networks. The pro-
posed neural network model for fixed beamformers allows for the
optimisation of spatial filters while incorporating flexible geometric
constraints. We propose a framework for the unified signal model
applicable to all geometric settings and employ two heterogeneous
neural networks to simultaneously optimise both the geometry and
spatial filter of fixed beamforming. Furthermore, we introduce a
technique called constrained naked neurons for the optimisation
of spatial filters. Experimental results show that our approaches
outperform conventional approaches in terms of Directivity Factor
(DF) and White Noise Gain (WNG). Our study reveals the com-
petitive performance of a circular microphone array that matches
the capabilities of a concentric circular microphone array with the
same number of microphones. We also validate the effectiveness of
our model in a circular discal setting, where microphones can be
placed arbitrarily. Given the same parameter settings, a circular
discal array can be significantly better than a linear array.

Index Terms—Directivity factor, fixed beamforming, frequency-
invariant beampatten, geometry optimisation, microphone arrays,
neural network, white noise gain.

1. INTRODUCTION

ICROPHONE arrays are indispensable in various hands-

free communication systems and far-field speech recog-
nition systems, especially in challenging environments [1], [2],
[3], [4], [5]. Devices equipped with microphone arrays hold
potential for applications such as speaker separation [6], [7],
speaker localization [8], [9], speech dereverberation [10], and
speech enhancement [11], [12]. Beamforming, as a critical
function of microphone arrays, has garnered significant atten-
tion [13], [14]. It acts as a spatial filtering process, enhancing
the target signal from the desired direction while suppressing
interference from undesired directions [15].
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Differential Microphone Arrays (DMAs) are motivated by the
spatial derivative of the acoustic pressure field [16]. In the realm
of fixed beamforming, there has been a growing interest in the
application of DM As due to their distinct advantages over certain
traditional beamformers [13], [17], [18], [19]. First, DMAS can
generate a relatively frequency-invariant beampattern, making
them well-suited for broadband speech processing. Second,
DMAs have the potential to achieve high Directivity Factors
(DFs) with their compact apertures. Lastly, by incorporating
appropriate optimisation constraints [17] or predefined target
beampatterns [20], DMAs can achieve a more balanced com-
bination of DFs and White Noise Gains (WNGs) compared to
other fixed beamformers like Delay-and-Sum and superdirective
beamformers [21]. However, the predefined target beampatterns
are not guaranteed to be optimal. The beampattern parameters
such as null directions are often manually selected by human
experts.

Various DMA geometries have been studied, including uni-
form linear arrays [ 18], [22], nonuniform linear arrays [23], [24],
uniform circular arrays [25], and uniform concentric circular
arrays [26]. When it comes to a microphone array with a fixed
geometry, designing DMAs typically involves striking a bal-
ance between WNGs and DFs [14]. Robust DMAs, known to
achieve maximum WNG with a minimum norm solution, tend
to have a lower DF. On the other hand, Maximum Directivity
(MDF) differential beamformers can attain a high DF at the
expense of WNG. To address this trade-off, a parameterized
DMA has been proposed in [27], where DF and WNG are
compromised based on a parameter. The order of DMAs also
affects the WNG and DF performance and it is expressed by
the order of the MacLaurin series used to approximate the
exponential term [21], [28]. Each order of DMAs requires a
minimum number of microphones to achieve [21]. It is possible
to improve WNG without sacrificing DF by employing more
microphone elements than what is required for the order of
robust DMAs [20], [29] or by leveraging the acoustic properties
of directional sensors [30], [31], [32], [33]. Similarly, DF can be
enhanced without sacrificing WNG through the use of acoustic
vector sensors [34], [35]. However, such improvements come at
a financial cost in practice. Incorporating more microphones not
only increases the cost of the microphones themselves, but also
leads to a more complex hardware architecture. Furthermore, the
implementation of directional sensors in products necessitates
sound transparency, resulting in a much more intricate industrial
design compared to omnidirectional sensors.
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As mentioned above, the majority of recent DMAs have been
developed on the basis of specific given geometries, without
considering the optimisation of geometry itself. Optimisation
of geometry design for DMA beamformers has been explored
mainly for linear microphone arrays using techniques such as
particle swarm optimisation (PSO) [36], [37] or convex optimi-
sation [38], [39]. In the PSO-based approach proposed in [36],
DMA beamformers demonstrated a superior tradeoff between
DF and WNG compared to traditional methods. However, the
distortionless constraint in the desired direction is not guar-
anteed, leading to power distortion across different frequency
bins, deteriorating the quality of perceived broadband signals.
Additionally, these PSO-based DMA beamformers suffer from
white noise amplification in low-frequency bins. To address
these limitations, a neural optimisation method was proposed for
fixed beamformers on linear arrays utilising machine learning
techniques [40]. This approach shows an overall improvement
in WNG and DF compared to PSO-based DMA beamformers.
However, this method is limited to linear arrays and does not
provide separate improvements for WNG and DF individually.

Building on the work presented in [40], we propose a novel
neural network-based method that enables joint optimisation of
the array geometry and fixed beamformers. This method caters
to a range of geometries, including linear, circular, and concen-
tric circular arrays. The key innovation lies in integrating the
ResNet structure [41] and the augmented Lagrangian approach
within the loss function to facilitate the optimisation process.
ResNets are well known for their proven global convergence
property [42], [43]. Inspired by this, we reformulate the con-
strained optimisation problem associated with the performance
of fixed beamformers within a neural network framework.

Our framework focuses on enhancing the effectiveness of the
optimisation process by leveraging the power of the nonlinear
approximation of neural networks [44]. Neural networks con-
struct solutions that optimise geometric states and spatial filters,
enabling us to achieve superior performance in the beamforming
process. To validate the effectiveness of our neural network
framework, a comparative analysis with Constrained Naked
Neurons (ConNNs) is performed. In ConNNs, only stochastic
gradient descent is employed within predefined constraints to
optimise fixed beamformers.

Our contributions can be summarised as follows: (i) We in-
troduce the Geometrically Optimised Neural Fixed Beamformer
(GONFB), which optimises the beampatterns of fixed beam-
formers and array geometries using stochastic gradient descent.
(ii) We reveal the competitiveness of a circular microphone array.
(iii) We eliminate deep nulls that are commonly encountered in
DMA beamformers. (iv) We demonstrate that circular discal
arrays can outperform linear arrays in a fair comparison. (v) We
compare the fixed beamformers designed by GONFB, DMA,
and ConNNs on different types of arrays. Experimental results
show that GONFB exhibits significant improvements in both
WNG and DF compared to current DM A-based methods. While
ConNNs exhibit commendable proficiency in optimising spatial
filters, they fall short when optimising geometry, a domain in
which our proposed method, GONFB, excels.

source

X

Fig. 1. The unified coordinate system in a 3D space. Black dots represent
microphones. 6 denotes the elevation angle and ¢ denotes the azimuth angle.
I, represents the scalar projection of the microphone location vector py, over
the plane wave direction a.

The remaining sections of this paper are organised as follows:
Section I presents a detailed description of our signal model and
problem formulation. Section III contextualises related DMA
beamformers within our research framework. In Section IV,
we outline the performance measures utilised in this study.
Building upon this, Section V introduces our neural network
model, which optimises both array geometries and spatial filters
of fixed beamformers. Section VI provides a comprehensive
discussion on our experimental settings and the corresponding
results. Finally, in Section VII, we draw meaningful conclusions
based on our findings.

II. SIGNAL MODEL AND PROBLEM FORMULATION

The objective of beamforming is to enhance signals in the
target direction while attenuating signals from other directions.
The geometry of a microphone array plays a fundamental role
in beamforming. Practically, the microphone array for a fixed
beamformer can form any geometry in a 3D space. To accom-
modate the flexible geometry of real-world microphone arrays,
we propose to unify the coordinate system for fixed beamformers
and consider an array of M microphones with an arbitrary
geometry, as shown in Fig. 1. Let the kth microphone, denoted
by my,, be located at p, = [y, Y&, 2&] T . The direction of a plane
wave can be represented by a unit vector

a=[-sinfcos¢ —sinfsing — cosf]’, (1)

where 6 is the elevation angle and ¢ is the azimuth angle of the
plane wave. Using the geometric definition of the dot product,
we can derive the scalar projection of pj, over a, denoted by [,
as:

T
k

I, =Pra

—(zk sinf cos ¢ + yp sinfsin ¢ + z cosd).  (2)
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Let ¢ be the speed of sound in the air. The difference in arrival
time between the origin o and the microphone my, is 7, = I, /c.
Thus, the steering vector [15], [45] can be defined as

d(w,a) = [eﬂwpf-é/c e*JWPLﬁ/C]T

—JwTL . e*jw‘l'M]T7 (3)

= [e
where ) = v/—1, w = 27 f and f is the temporal frequency.
To formulate the beamforming problem, we first define s(w)
as the far-field source signal. Under free-field propagation con-
ditions, the received signal vector y(w) is defined as

y(@) = [y (@) ya(w) -+ yar(w)]”
=d(w,a)s(w) + v(w), 4)

where y(w) is the signal received at the kth microphone, and
v(w) is the noise vector. By applying a beamforming filter h(w)
to y(w), $(w) can be estimated:

$(w) = h" W)y (w)
= h(w)d(w,a)s(w) + h" (w)v(w). ®)

In this way, a beamformer tries to recover s(w) from estimating
$(w).

The filter h(w) in fixed beamforming is a vector of complex
weights that performs spatial filtering at angular frequency w.
The constraint of fixed beamformer design is to obtain the filter
h(w) that achieves a unity gain at a desired look direction, &,
over the interested frequency bands. In other words, the filter
h(w) should satisfy the distortionless constraint at the desired
look direction a,, which is

h(w)d(w,dy) =1 VYw. (6)

The value of h¥ (w)d(w, &) should be less than 1 if & # &.

A. Performance Measures

The array response, or beampattern, characterises the re-
sponse of a microphone array as a function of the direction of
incident sound waves [46]. It yields a graphical representation
of the spatial sensitivity of the array to signals arriving from
different directions. The beampattern for a plane wave of angular
frequency w arriving from a direction a is given by

B[h(w),a] = h (w)d(w, a). (7)

The robustness of a microphone array is indicated by White
Noise Gain (WNG) [47]. The higher the WNG is, the more
resilient the microphone arrays are against self-noise and mi-
crophone mismatches in the desired look direction. The formula
of WNG is
. . _ |B[h(w),a?
WNGh(w),a,] = 7 (w)h(w) ®)

The directionality of a microphone array is measured by
Directivity Factor (DF). It is a ratio of the output power in
the direction of interest to the total output power. A high DF
suggests that the array can focus on a particular direction while

suppressing energy from other directions. It is defined as

DFb(w). i) = g . )

where Ty »(w) is a square matrix of size M. The elements in
Ty (w) are given by

Lo,z (w)]ij = sincw||p; — pjll2/cl, (10)

where sinc(z) = sinz/x.

B. Special Cases

The definition of the steering vector in (3) is a general de-
scription of the spatial information of a microphone array in any
geometry. Here, we provide the steering vectors for frequently
used array geometries.

1) Linear Array: Without loss of generality, we can align
the Linear Array (LA) with the z-axis. Its location can be
expressed as pra x = [0, 0, —qx]”. This leads to the commonly
used steering vector formula for linear arrays [17], [37]:

dia(w,0) =[1e 7w coslfc | . o—awam cose/C]T'

(11

2) Circular Array: Without loss of generality, we consider a
Uniform Circular Microphone Array (UCMA) of radius r with
M microphones in the -y plane. The centre of the circular array
coincides with the coordinate origin. The kth microphone has a
location pca x = 7[cos ¥y, sin ¥y, 0]7. The steering vector of a
circular array can be derived as [48]:

dea(w, @) = [erveost@—vr/e . gwcos(@—va)r/e)T

12)
where 1, is the angular position of the kth microphone measured
anticlockwise from the y axis.

3) Concentric Circular Array: In the case of a Uniform
Concentric Circular Microphone Array (UCCMA) of radii r;,
i =1,..., 1, the location of the kth microphone on the ith ring
is pccaik = ri[cos ik, sint; x, 0]7 in the -y plane, where
1; 1, 1s the angular position of the kth microphone on the ith
ring. We derive the steering vector of the ith ring as:

(w) _ [eijOS((i)*"/)i,l)Ti/C . ejwcos(d)fwi_’Mi)ri/c]T

dcca,i )

(13)

where M; is the total number of microphones on the ith ring.
The steering vector of the whole UCCMA is:

dcca(w) = [d(TSCA,l(w)v s 7dgCA,I(w)]'

4) Circular Discal Array: As to Circular Discal Arrays
(CDAs), consider the case of M microphones located at arbitrary
points pcpa k. = 7k[cos ¥y, sin ¥, 0]7 on a circular disk in the
z-y plane. The centre of the circular disk is at the coordinate
origin. Its steering vector is:

(14)

dCDA(w) _ [eJWCOS(¢—1/11)7"1/C eJWCOS(qﬁ—'L/)M)TM/C]T. (15)

III. RELATED WORKS

DMAs are popular fixed beamformers with desirable prop-
erties like relative frequency-invariant beampatterns [14], [17],
[20], [21], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32],
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[37],[49]. Based on (7), the beampattern of an /N'th order uniform
linear DMA in the z-y plane can be approximated as [17], [23],
[371:

N
By (o) ~ Za]\;)ncos" o, (16)
n=0

where N is the order of DMA and ay ,, is the nth coefficient of
the beampattern. This expression is derived by approximating
exponential terms in the steering vector with MacLaurin series:

N
1

eIwdi cosd/c E — [wqi cos ¢/ c]™.
n

n=0

a7

Note that the order of DMA is the same as the order of MacLaurin
series used.

Some “ideal” beampatterns have been summarised for DMAs
of different orders, such as hypercardioid and supercardioid.
They are determined by the values of null directions, where zeros
are placed at those directions. However, an “ideal” beampattern
is optimal only with respect to one performance measure. For ex-
ample, a hypercardioid maximizes DF but has poor WNG [21].
Furthermore, the choice for the order of DMA, corresponding
to the number of null directions, is another issue. A higher
order DMA is better at suppressing interfering noise, but less
robust [21].

One popular technique for expressing exponential terms in
DMA beampatterns is to use the Jacobi-Anger expansion [20].
In a uniform circular DMA, we have:

POV = Jo(@) + 2 5" (@) cos[n(p — )],
n=1
(18)

where @ = wr/c and J,, (@) is the n-th order Bessel function of
the first kind. The approximated beampatterns replace infinity in
(18) with the order N and exhibit least-square errors in relation to
the “ideal” beampatterns. For the approximation, a (2N + 1) X
(2N + 1) diagonal matrix composed of J,, (@) is introduced:

1 1 1
J(w) = dia B == w
@) =diag| NT@ RE@) T N

19)

In this diagonal matrix, the occurrence of zeros of the Bessel
function gives rise to the issue of deep nulls [48], where the zero
denominators causes numerical instability in J(@). From the
perspective of least-squares approximation error, we compute
the minimum-norm filter hj, (w) with the Jacobi-Anger expan-
sion [20]. A few more terms related to the azimuth angle are
defined. The first one is:

T(pe) = diag(eNV, .. 1, eIV,

(20)
where 1)y is the look direction of the azimuth angle. The second
one is:

71#(1){7 MR wg}T7

U= [py, ... Q21

where 1, = [e/"¥1 ¥z ... e/m¥M], Finally, we can derive
the minimum-norm filter hja (w):

hja(w) = T (@) ITH (@) TH (1) bon, (22)

where ngﬂ' = b2N,—i = %GNJ‘ fori = 0, 1, 2, e 7]\/v.

As mentioned above, deep nulls are numerical explosion
phenomena caused by zero values of Bessel functions, which
are inevitable in the Jacobi-Anger expansion-based DMA for-
mulation. Specifically, the zero values of Bessel functions would
make values of J¥ () in (22) explosively large. Consequently,
the norm of hjs(w) becomes too large and the WNG value
in (8) becomes too small. Deep nulls significantly undermine
the performance of the beamformer at specific frequencies.
To mitigate deep nulls, an alternative way to design DMA
beamformers is by using the null-constrained approach [17].
Inspired by the observation that an Nth-order DMA can have NV
distinct null directions, the null-constrained approach selects N
null directions manually. In the z-y plane, a matrix D(w) can
be constructed as:

d* (w, ¢e)

dH(wa ¢1)

D(w) = . ; (23)

dH<w7 ¢N)

where ¢y is the look direction and ¢, ---, ¢ are N distinct
null directions. Thus, h(w) can be derived by solving

D(w)h(w) =1, (24)

wherei=[10 --- 0]7 is a one-hot vector of length N + 1. The
minimum-norm solution to (24) in the null-constrained approach
is:

hye(w) = D (W) [D(w)DH (w)] i (25)

From (25), we can see that it is crucial to decide the number and
value of null directions in order to derive hnc(w). Yet there is
no good mechanism of selecting parameters for null directions
other than manually selecting some.

A recent study by the authors in [48] has illuminated that a
null-constrained DMA can be viewed as a regularised Jacobi-
Anger expansion-based DMA. In a unified framework, (25) can
be approximated by Bessel functions with additional regular-
isation terms. The deep nulls arising from the zero values of
Bessel functions in the Jacobi-Anger expansion-based DMA are
mitigated through the presence of regularisation term in the null-
constrained DMA. Nevertheless, it is imperative to acknowledge
that the effectiveness of regularisation terms are dependent upon
factors such as the number of microphones and the order of
DMA. For example, when the number of microphones M is
odd and the order is (M — 1)/2, null-constrained DMA also
suffers from deep nulls [48].

In summary, the limitations of DMA beamformers in select-
ing optimal parameters, such as the order of DMA and null
directions, impede their ability to provide optimal solutions for
beamforming tasks. Moreover, deep nulls persist in all variants
of DMA approaches, and they can only be mitigated in certain
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Fig.2. Workflow diagram of GONFB, which consists of iterative optimisation
of both GNet and FNet. The dashed line indicates that no actual data is
transmitted.

cases. In contrast, machine learning models, such as neural
networks, excel at optimising parameters and searching for
near-optimal solutions when a globally optimal solution cannot
be achieved analytically. Neural networks do not rely on Bessel
functions have the potential to eliminate deep nulls. As a result,
there is a need for a neural network model that can enhance the
performance of fixed beamformers.

IV. NEURAL NETWORK MODEL AND CONSTRAINED NAKED
NEURONS

In this section, we introduce the architecture of the neural
network model and the loss function formulated from the aug-
mented Lagrangian. We also explain the motivation, definition,
and implementation of constrained naked neurons as one of our
baseline methods.

A. Neural Network Model Architecture

Deep neural networks are known for their universal approxi-
mation when combined with nonlinear activation functions [50].
Previous research efforts have demonstrated the excellent con-
vergence characteristics of neural network architectures such as
ResNet in the pursuit of global optima [42], [43]. Consequently,
employing a ResNet-like neural network model for the opti-
misation of fixed beamformers should be no exception when
seeking near-optimal solutions. To show that the efficacy of our
neural network model is more than stochastic gradient descent,
we introduce ConNNs for comparative analysis, as elucidated
in Section IV-B.

Inspired by the success of statistics networks [40], [51],
[52], we propose a neural network model called Geometrically
optimised Neural Fixed Beamformer, abbreviated as GONFB.
The full model consists of two heterogeneous neural networks,
GNet and FNet. GNet is a fully connected feed-forward neural
network, and FNet has an architecture resembling ResNet. The
model is trained in a cascaded manner, as shown in Fig. 2.
GNet takes initial geometry inputs, that s, the initial coordinates
of the microphones Py = [p1, ..., par]T of size M x 3, and
produces optimised microphone coordinates Pp. The steering
vector d(w, &) can be calculated by utilising Py, and the di-
rection of the signals &,. Subsequently, FNet takes d(w, &,) and
the initial filter hj;(w) to produce the optimised filter oy (w).
During training, early termination is applied if the loss decreases
in the next evaluation. Otherwise, training will continue until the
maximum epoch number is reached. During each iteration, the

weights of GNet and FNet are updated by gradient descent in an
unsupervised manner. The inputs Piyii, hini(w), and &, remain
the same to facilitate neural network training.

1) GNet Implementation Details: GNet has three layers in
total: an input linear layer, a hidden layer and an output linear
layer. A linear layer multiplies the input with a weight matrix.
The input linear layer allows for the transformation of the input
into a new latent representation that captures important features
of the data. The output linear layer extracts the latent represen-
tation with the desired dimensions. In our experiments, it turns
out that the optimisation of geometry requires significantly fewer
parameters than the optimisation of array filters. This is because
2D array geometry has limited complexity in an x-y plane. The
nonlinear activation functions in the input linear layer and the
hidden layer are Rectified Linear Units (ReLU) [53]. They are
widely used in neural networks because of their simplicity and
effectiveness. A ReLLU function is expressed as:

ReLU(u) = max(0,u), (26)

where positive inputs are intact and negative inputs are converted
to 0.

For a linear array, a softmax function is applied, defined as:
e
Yl e
where u is the input latent embedding vector and u; is its ¢th
element. The softmax function has the desirable property that
the sum of its elements is equal to 1, similar to proportions.
This property enables us to assign spacing between microphones
based on the proportion of each element in the output vector.
In other words, each element’s value in the softmax function
represents its relative position along the length of the linear array.

A sigmoid function, defined as

o(u); = ; 27)

1

SIG(u) = e
is used for a UCCMA instead. As the sigmoid function’s range
is between 0 and 1, it can represent the proportion of an attribute
by using its output, provided that the maximum value of the
attribute is known. For instance, in a UCCMA, the angular
position of the first microphone on a ring is at most 27 /M,
where M microphones are uniformly spaced. The angular po-
sition of the first microphone corresponds to a proportion of
27 /M. Optimisation of the radius of rings is another geometry
parameter in a UCCMA. The proportion of the maximum radius
for different rings is optimised, given that the maximum length
of the radius is known.

2) FNet Implementation Details: FNet comprises an input
linear layer, an output linear layer, and multiple ResBlocks
in between, as shown in Fig. 3. All layers in FNet handle
complex data by enabling independent processing of the real and
imaginary parts of the input [54]. Specifically, imaginary parts
of the input are treated as though they were real. A ResBlock is a
building block inspired from ResNet [41], as shown in Fig. 4. We
employ the residual learning mechanism in ResBlocks, which
adds an identity mapping between input and output, to ease the
training of deep neural networks. The Gaussian Error Linear

(28)
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GELU tanh

N Distortionless
Linear Linear

h(w) = [ > ResBlock (> -+ [ ResBlock (——>{ T >l Constraint > hop(w)
aver aver Division
Fig. 3. The diagram of FNet, which comprises multiple ResBlocks between

the input and output linear layers. The distortionless constraint is enforced in
the end.

Identity

GELU

Linear
Layer

Normalization

Y

Fig. 4. The diagram of a ResBlock. An identity mapping is added after linear
transformation, GELU and normalisation.

Unit (GELU) function is expressed as [55]
1
GELU(u) = u®(u) =u- 5[1+ erf(u/V2)], (29

where u is the input of the function, ®(u) is the standard Gaus-
sian cumulative distribution function and it can be algebraically
represented by a manipulation of the error function

erf(u) = %/0 e dt.

The GELU function scales inputs by their value instead of gating
inputs by their signs. This has shown superior performance
than the ReLU and ELU functions in computer vision, natural
language processing, and speech tasks [55], [56], [57], [58]. The
hyperbolic tangent function (tanh) is acommonly used activation
function in neural networks. Its range is between —1 and 1 and
helps to prevent the saturation of neurons. The normalisation
layer is incorporated to facilitate the optimisation process by
centering the input data and scaling it to have unit variance [59].
Specifically, the normalisation layer transforms the input by
subtracting its mean and dividing it by its standard deviation,
resulting in a zero mean and unit variance representation. Finally,
to enforce the distortionless constraint, we divide hp (w) by the
product hZ (w)d(w, &y).

opt

(30)

B. Constrained Naked Neurons

In this work, we introduce a structure named Constrained
Naked Neurons (ConNNs), which diverges from the conven-
tional deep learning paradigm. The term “naked” is used to
convey that these neurons lack both learnable weights and
bias terms. Additionally, these naked neurons are devoid of
interconnections to other neurons; their role is solely to impose
constraints on the inputs using fixed functions. For instance,
activation functions such as sigmoid in (28) or ReLU in (26) can

be applied to ConNNs. Instead of iteratively adapting weights
and bias terms, ConNNs focus on the direct optimisation of
inputs. By subjecting initial inputs to feasible constraints and
employing the Stochastic Gradient Descent (SGD) algorithm,
ConNNs iteratively refine inputs through backpropogation to
align with a predefined loss function. Consequently, the optimi-
sation process hinges on the initial input data, the applied fixed
function, and the predefined loss function. This framework is
especially suitable for constrained optimisation problems where
access to extensive training data is limited. As ConNNs are also
driven by SGD, they serve as valuable baselines for comparison
against neural networks. Such a comparison elucidates the dis-
tinct contributions of neural networks on top of the constraints,
the loss function and the SGD algorithm.

Similar to the neural network architecture, the input elements
of ConNNs encompass the initial filter denoted as h;y; (w) and
the initial coordinates of the microphones denoted as Pjp.
The filter’s constraint aligns with the distortionless criterion
articulated in (6), realized through the division of hyp(w) by
the product h{fl[)t(w)d(w7 ay). Geometric constraints vary across
distinct spatial configurations. For linear arrays, Pj,; adheres
to the array’s length constraint, where the summed spacing
between microphones derived from P,y corresponds to the
designated array length A. Aratiop = A/ Ais computed, with A
representing the estimated array length obtained from ConNNss.
This ratio is multiplied to the estimated microphone spacing to
adjust the final outputs. In the context of circular arrays, the
array geometry is predefined as a uniform circular array, obviat-
ing the need for geometric optimisation. In concentric circular
arrays, a sigmoid function defined in (28) constrains the starting
microphone angular position and the radii of distinct rings. This
sigmoid function yields proportional parameter values relative
to the maximum values.

The implementation of ConNNS is straightforward, necessi-
tating only initial inputs, constraints, and a loss function. The
SGD algorithm drives ConNNs towards improved solutions
from the initial inputs. However, it’s worth noting that SGD
can become ensnared in local optima. Consequently, the final
output of ConNNs is dependent on the quality of the initial inputs
provided.

C. Loss Function

For convenience of presentation, we denote WNG[h(w)] as
1i(X) and DF[h(w)] as g;(X'), where i is the frequency bin index
corresponding to w, and X = h(w). Assuming that the distor-
tionless constraint is satisfied, we can formulate the optimisation
problem of our frequency-invariant beamformer as

1 F
i = 305

s.t.aiggi(X)Sﬁi, izl,...,F, (31)
where © represents the parameters to be optimised, F' is the
number of frequency bins, «; and ; are two-sided constraints

of g;(X) with o; < f3;.
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The augmented Lagrangian method is a powerful numerical
optimisation technique that combines the Lagrangian function
and a quadratic penalty function [60], [61]. It incorporates the
constraints and the objective into a single function, which is suit-
able to be a loss function of a neural network. It is smoother and
less ill-conditioned than using the penalty function directly [61].
In our case, the augmented Lagrangian dynamically adjusts the
weights between DFs and WNGs with a second-order regulari-
sation term. The objective optimises WNGs and the constraints
take care of the target values of DFs. We can write (31) in an
equivalent form:

e b0
sta; <gi(X)—w; < B, uy=0,i=1,....,F, (32)
Subsequently, (32) can be converted to £(X)[62]
1 E P o
min £(X) = —— ; filX) + ;p (9:(X), ks k), (33)

where L(X) is the loss function of our neural network frame-
work to be minimised and © denotes its parameters to be
optimised, ¢ = 1,..., F, pi is the ith Lagrangian multiplier
in the kth iteration, ¢, is the ith penalty coefficient in the kth
iteration and

i (9i(X), 1is i) = <o <5, {:Ukui + 2Ck|ui|2} .
(34)

ci is a positive large number intended to squash the value of

u;|?. Analytically, we can obtain the optimal solution [62] for
y y P

(34

gi(X) — B; if ul + ci[gi(X) — Bi] > 0,
9i(X) — o if p + ¢ [gi(X) — 5] <0,
—pi/ci otherwise.

(35)

U; =

Thus, (34) now becomes

11 (95 (X) = Bil+5 ¢ |gi (X)=Bl*  if pj,+ci [gs (X)—Bi] >0,
1, [9:(X) =il +56,19:(X)—ai|*if pj+c[9:(X)—au] <O,
—(ui)?/2c otherwise.

(36)

Using the first-order derivative, the update rule for p in the next
iteration is

wh A+ cgi(X) — Bi] if pl + cklg:(X) — Bi] > 0,

p 4 Elgi(X) — ai] i, + ¢} [9:(X) — ai] <0,
0 otherwise.

i _
K41 =

(37

To update the penalty coefficient ¢, we can multiply it by 2
whenever the constraint for g;(X") is violated. This yields:

i min(¢, 2¢4) if gi(X) > B; or g;(X) < o
Cht1 =

: : (38)
c otherwise,

where ¢ is the maximum value for ¢}. In our neural network
framework, the loss function £(X’) is minimised through the
stochastic gradient descent by adjusting O.

V. EXPERIMENTS

We conducted experiments on microphone arrays with four
different geometry scenarios: linear, circular, concentric cir-
cular, and circular discal. The circular discal geometry had
microphones distributed on a 2D circular plate. In each scenario,
we reported the results from our best run. For the first three
scenarios, we compared our approaches with state-of-the-art
frequency-invariant beamformers [20], [26], [37]. For the cir-
cular discal geometry, we demonstrated that our approach could
obtain nearly global optimal solutions without any pre-specified
geometry constraints. Additionally, we compared the perfor-
mance of our circular discal array with the corresponding linear
array [37]. ConNNs shared the same parameters with GONFB
where possible.

A. Neural Network Training Details

The Adam optimiser [63] was used in all geometry scenarios.
The learning rate was 0.00001. The gradient norm was clipped
and the maximum gradient norm was 5. The parameters of the
augmented Lagrangian in the first iteration were pf = 0 and
ch = 5. Geometry-dependent parameters such as the number of
neurons in each layer are provided in each geometry scenario
specifically.

B. Linear Array

1) Initialisation and Hyperparameters: The linear array to
be optimised had 16 microphones. The minimum spacing be-
tween microphones was set at 0.4 cm. The length of the ar-
ray was 15 cm. The initial filter was obtained by applying a
null-constrained method [17], with two nulls at 106° and 153°.
The initial geometry was a uniform linear array. FNet had 10
hidden layers. Each layer had 180 neurons. The loss was eval-
uated every 40,000 epochs. The parameters of the augmented
Lagrangian were updated every 10,000 epochs. The maximum
epoch number was 400,000. The target DF value was 8.24 dB.
With a tolerance of 0.1 dB, we set o; = 8.14 and [3; = 8.34.
The frequency range was from 300 Hz to 8000 Hz. The look
direction of the array was endfire. The PSO DMA method was
from [37].

2) Performance Analysis: The optimised geometry of the
linear array is shown in Fig. 5. Three subarrays are formed
to handle the broadband signal processing by GONFB. The
phenomenon that dense microphones are in the middle of the
array has been observed by another frequency-invariant linear
array approach [64]. Additionally, our approach placed two
smaller dense subarrays at both ends of the linear array. The same
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o 2 4 6 8 10 12 14

Fig.5. optimised linear array geometry of GONFB (top), PSO DMA (middle),
and ConNNs (bottom), when M = 16 and L = 0.15 m.

o 3 6 9 12 15

Fig. 6. optimised linear array geometry of GONFB when M = 20 and L =
0.15 m.
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Fig.7. Performance of GONFB, PSO DMA, ConNNs and DS in a linear array

when M = 16 and L = 0.15 m.

geometric pattern is observed again when GONFB arranges 20
microphones in Fig. 6. The small spacing in each subarray helps
process higher frequency signals and the large gap between
subarrays can deal with lower-frequency signals. Similarly, three
subarrays are also observed in the PSO DMA approach and the
ConNNs approach. For the PSO DMA approach, the individual
subarrays are not as dense. This could explain the inferior
performance of DMAs as shown in Fig. 7, as more compact
subarrays can better process high-frequency signals. For the
ConNNs approach, the three subarrays are almost identical to
the ones in GONFB except that there is one less microphone
in the left subarray, which is shifted to the middle subarray.
Apparently, ConNNs yield a local optimal solution and perform
slightly worse than GONFB, which can be corroborated in Fig. 7.

We compare the performance of our linear array with the
PSO-based frequency-invariant nonuniform linear DMA de-
scribed in [37], the Delay-and-Sum (DS) approach [21], and
ConNNs, as shown in Fig. 7. GONFB outperforms both the
DMA-based approach and ConNNs in terms of DF and WNG
values. While the DS approach shows good WNG performance,
its DF is significantly lower in low-frequency bins and lacks
frequency invariance. These results demonstrate that GONFB
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Fig. 8.  Performance of GONFB, DMA, ConNNs and DS in a circular array
when M = 5 and radius r = 0.015 m.

achieves a more effective linear array geometry along with its
corresponding filter design.

C. Circular Array

1) Initialisation and Hyperparameters: The circular array to
be optimised had 5 microphones. The radius of the array was
1.5 cm. The initial filter was obtained in the same way as the
linear array. The geometry of the array was fixed to a uniform
circular array. Thus, we only train FNet in this scenario, which
had 15 hidden layers. Each layer had 40 neurons. The loss
was evaluated every 100,000 epochs. The parameters of the
augmented Lagrangian were updated every 40,000 epochs. The
maximum epoch number was 1,000,000. The target DF value
was 7.4 dB. With a tolerance of 0.1 dB, we set ; = 7.3 and
Bi = 71.5. The frequency range was from 100 Hz to 4000 Hz,
since the DMA-based approach we compared with [20] could
only be frequency invariant below 4000 Hz. The direction of
the incoming signal was 0°. The baseline DMA method was
from [20].

2) Performance Analysis: The performance comparison of
our circular array with [20], DS, and ConNNs is shown in Fig. 8.
With the same geometry, both GONFB and ConNNs exhibit
superior performance in DF values, while our WNG values are
close to or slightly better than the WNGs in [20]. The DF values
of DS are significantly lower than other approaches. Fig. 8 shows
that both GONFB and ConNNs can optimise the spatial filter
effectively when the geometry is fixed.

We present a comparison of UCMA beampatterns in Fig. 9.
The DMA-based beampattern utilises the Jacobi-Anger series
expansion technique to approximate the second-order super-
cardioid pattern, whereas the GONFB-based beampattern is
automatically designed through neural networks. It is evident
that the GONFB-based beampattern features a single null direc-
tion and is significantly simpler compared to the DMA-based
beampattern. However, despite its simplicity, the GONFB-based
beampattern exhibits superior directivity and robustness. This
observation strengthens our findings that manually designed
null directions and differential orders by human experts are
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Fig.9. Comparison of UCMA beampatterns when M = 5,7 = 0.015m, f =
4 kHz. (i) The beampattern designed by DMA. (ii) The beampattern designed
by GONFB.

suboptimal compared to the beampattern parameters optimised
by neural networks.

D. Concentric Circular Array

1) Initialisation and Hyperparameters: The concentric cir-
cular array to be optimised had 13 microphones in total. The
initial geometry of the array consisted of two rings. Each ring had
6 uniformly located microphones. An additional microphone
was located at the center of the array. The minimum radius of
the inner ring was 1 cm and the maximum radius of the outer
ring was 3 cm. The initial filter was obtained by applying the
null-constrained approach, with null directions in 102° and 174°.
Before training, the angles of the starting microphones on the
inner and outer rings were 30° and 0°, respectively. The initial
radii of the inner and outer rings were 2cm and 3cm, respectively.
In the GNet, the radius of each ring and the angular position of
the first microphone on each ring were optimised. FNet had 10
hidden layers. Each layer had 90 neurons. The loss was evaluated
every 80,000 epochs. Parameters of the augmented Lagrangian
were updated every 10,000 epochs. The maximum epoch num-
ber was 600,000. The target DF value was 8.67 dB. «; was set
to the corresponding DF value of [26]. 3; = 8.67 + [8.67 — «|.
The frequency range was from 100 Hz to 8000 Hz. The direction
of the incoming signal was 30°. The baseline DMA-CCMA-II
method was from [26].

2) Performance Analysis: The optimised geometry of the
concentric circular array from GONFB is shown in Fig. 10.
Contrary to the research finding in [26], our approach prefers
to use only one ring instead of two rings. In other words,
placing 12 microphones all in one ring can perform better
than dividing the microphones into two rings. The superior
performance of two rings in [26] may be affected by the fact
that the authors use six additional microphones in two rings.
ConNNs fail to optimise the geometry of the concentric circular
array and there is almost no change from the initial geometric
configuration.

We present a performance analysis of our UCCMA technique
in comparison with the DMA-CCMA-II method utilising series
expansions as detailed in [26], along with ConNNs and DS.
Throughout this evaluation, all beamforming strategies except
DS are required to maintain frequency invariance.

150° 30°

180°® L4 q0°

210° 330°

270°

Fig. 10. optimised geometry from GONFB for a uniform concentric circular
array. 12 microphones in one ring and 1 additional microphone in the center.
Microphones are represented by blue circles.
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Fig. 11. Performance of GONFB, DMA-CCMA-II, ConNNs and DS in a
concentric circular array when M = 13 and the maximum radius 7max = 0.03
m.

The results of the performance evaluation are shown in
Fig. 11. ConNNs and DS exhibit similar performance; while
both maintain high WNG values across frequencies, they fail to
construct a frequency-invariant fixed beamformer, as reflected
by their consistently low DF values, particularly below 5000 Hz.
In contrast, GONFB and DMA-CCMA-II successfully achieve
frequency-invariant behavior. Notably, GONFB demonstrates
superior DF values at frequencies above 4000 Hz and also
achieves higher WNG values. This further underscores the
robustness and effectiveness of the GONFB technique across
diverse geometric scenarios.

In our comparative analysis, we assess the performance of
UCMA and UCCMA when optimised using GONFB. The angle
of the starting microphone is 30°, and we evaluate the loss
every 100,000 epochs, updating the parameters of the augmented
Lagrangian every 40,000 epochs, with a maximum of 2,000,000
epochs. Each layer has 180 neurons. Other details of network
training are identical to those of UCCMA. For a fair comparison,
the radius of the CMA is equal to the maximum radius of the
outer ring in the UCCMA, measuring 3cm. Both UCMA and
UCCMA employ 13 microphones. However, the key distinction
lies in the placement: in UCCMA, one microphone is centrally
located, while UCMA positions all microphones along its ring.
Our findings, illustrated in Fig. 12, demonstrate that UCMA,
when optimised through GONFB, not only resolves deep
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Fig. 12.  Performance of GONFB-CCMA, DMA-CCMA-II, and GONFB-

CMA when M = 13. The radius of of GONFB-CMA is 3 cm, which is the
same as the maximum radius of the outer ring in GONFB-CCMA.

null issues but also delivers comparable performance to UC-
CMA in both GONFB and DMA configurations. This suggests
that UCMA’s geometric configuration could offer competitive
beamforming performance.

E. Circular Discal Array

1) Initialisation and Hyperparameters: To explore the be-
havior of GONFB in optimising a circular discal microphone
array, we first considered two straightforward scenarios: max-
imising only WNG or maximising only DF with two micro-
phones. The minimum spacing between the microphones was
set at 0.5 cm. The radius of the disc was 3 cm. The initial
filter was randomly sampled from a uniform distribution. The
initial locations of the two microphones were at the intersections
between the rim of the disc and the z-axis. To avoid geometric
degeneration when maximising DF, the microphone location at
0°is fixed. FNet had 10 hidden layers. Each layer had 90 neurons.
The loss was evaluated every 80,000 epochs. The maximum
epoch number was 800,000. The frequency considered was 1000
Hz. As only one frequency value was considered, we did not use
the augmented Lagrangian in the loss function. Instead, the loss
function maximized (8) or (9). Additionally, a penalty term was
appended in the loss function to ensure the minimum distance
between the two microphones was not violated. The direction
of the incoming signal was 30°.

2) Performance Analysis: Two microphones are invariably
configured into a linear array on a disc. The maximum WNG
of a distortionless linear array is equal to the number of micro-
phones [21]. Both GONFB and ConNNs effectively determine
the global optimum, yielding a WNG value of 2. Since (8) does
notrely on geometric information for maximization, the geomet-
ric configurations are degenerate. In simpler terms, numerous
viable geometric arrangements for a linear array on a disc can
achieve the maximum WNG, provided the filter requirement is
satisfied. The filter for optimal WNG can be analytically deduced
as:

hywne (w) = depa(w) /M. (39)

120° 003 o 120

(i) GONFB (i) ConNNs

Fig. 13.  Optimised Geometry of two microphones when maximizing only DF.
The look direction is 30°. Microphones are represented by blue circles. (i) The
array geometry designed by GONFB with minimum microphone distance. (ii)
The array geometry designed by ConNNs is not optimal.

The observation that ConNNs can optimise a competitive CDA
spatial filter is consistent with our observations in the CMA
scenario. When geometric optimisation is dispensable, ConNNs
demonstrate an aptitude to optimise spatial filters.

The maximum DF of a distortionless linear array can be
analytically derived, as shown in [21]. The expression for the
maximum DF, denoted as DF[h(w)]ax, i8S given by:

1 — sinc(wTp) cos(wTp cos(¢ — pcpa))
1 — sinc?(wp)

)

DFh(w)]max = 2
(40)

where 7 represents the distance [y between two microphones
divided by ¢, and ¢cpa is the azimuth angle of the linear
microphone array formed by these two microphones. Equation
(40) highlights that for optimal performance, the discrepancy
between angles ¢ and ¢cpa should ideally be zero, and the
distance [y should be minimized. The arrangement illustrated
in Fig. 13 demonstrates that the GONFB-based array aligns pre-
cisely with the incoming signal direction. The inter-microphone
spacing is optimised to the minimum distance. The DF value
of the optimised array aligns numerically with the theoretical
maximum DF value derived from Equation (40), resulting in a
value of 6.02dB. Evidently, GONFB has effectively located the
global optimum in this scenario. In contrast, ConNNs exhibit a
tendency to converge to local optima and are unable to effec-
tively minimize microphone spacing. The azimuth angle ¢cpa
produced by ConNNs is approximately 33°, slightly deviating
from the desired direction of 30° . Consequently, the optimised
directivity factor for ConNNss is recorded at 5.76dB.
Furthermore, we compared a CDA with an LA following
the same parameter settings in V-B. In Fig. 14, we show that
a CDA designed by GONFB outperforms its LA counterpart in
terms of WNGs. By placing 16 microphones in a novel geometry
asillustrated in Fig. 15, the CDA achieves comparable DF values
to those of the LA while maintaining frequency invariance.
The CDA also outperforms the LA by significantly enhancing
the WNGs across all frequency bins. After 1 kHz, the WNGs
of the CDA are about 10 dB higher than those of the LA.
This comparison demonstrates the significance of geometric
optimisation and the potential of the CDA geometry.
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Fig. 14. Performance of LA vs CDA when both arrays are designed by
GONFB. M =16, L =0.15mand r = 0.075 m.
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Fig. 15. Optimised circular discal array geometry of GONFB when M = 16
and » = 0.075 m. The look direction is end-fire.
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Fig. 16. The convergence plot of DF and WNG values in a linear array during
the training of GONFB.

VI. FURTHER ANALYSIS

This section presents a convergence analysis of the GONFB
training process for three array configurations: linear, circular,
and concentric circular arrays. Additionally, the computational
complexity of GONFB is analysed for each of these geometric
setups. The circular discal array, being primarily an exploratory
case with a simplified GONFB implementation, is excluded from
the convergence and complexity analysis in this section.

A. Convergence Analysis

In Fig. 16, 17 and 18, we present the convergence plots of DF
and WNG values during the GONFB training for linear, circular,
and concentric circular arrays. The horizontal axes represent the

7.25
7.00
6.75

(ii) WNG

Fig. 17. The convergence plot of DF and WNG values in a circular array
during the training of GONFB.

(ii)) WNG

Fig. 18.  The convergence plot of DF and WNG values in a concentric circular
array during the training of GONFB.

frequency bins and the number of epochs. Note that the starting
point at 0 on the epochs axis does not correspond to epoch 0,
but rather to the first recorded epoch during the training process.
Each epoch unit represents 10,000 epochs. The vertical axis
maps the DF and WNG values in decibels, with darker blue
indicating lower values and darker red signifying higher values.
The training and geometric setups follow those described in
Section V-B,V-C, and V-D.

Across all geometric configurations, WNG values exhibit
small variation at the beginning of training, with the remainder
of the process primarily fine-tuning these values. In contrast, DF
values undergo significantly larger changes during convergence,
which is expected given the optimisation process of our loss
function using augmented Lagrangian methods, as described in
Section IV-C. The DF values are dynamically constrained by
c§C as shown in (38), allowing for considerable fluctuation as
training progresses.

In Fig. 16, we observe that the DF values are initially too
low at low-frequency bins and too high at high-frequency
bins. Over time, these extreme values are smoothed, leading
to more frequency-invariant DF values. By the final epochs, the
DF values have flattened significantly compared to the initial
stages. In Fig. 17, DF convergence is especially noticeable in
low-frequency bins below 400 Hz. A clear pattern emerges
where the low DF values are progressively elevated to match
the higher-frequency bins as training goes. In Fig. 18, we not
only observe the enhancement of DF values at low frequencies
but also the presence of multiple valleys in DF values over the
epochs. This is consistent with the optimisation process in the
concentric circular geometry. When the geometry undergoes
major changes, such as two rings merging into one, the DF values
initially drop due to the structural change but quickly adapt and
improve in the new configuration.

In summary, both DF and WNG values converge during
GONFB training. The DF values exhibit substantial changes
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TABLE I
COMPLEXITY COMPARISON OF GONFB ACROSS DIFFERENT GEOMETRIC
SETTINGS: LINEAR, CIRCULAR, AND CONCENTRIC CIRCULAR ARRAYS

GNet FNet
Geometry | #Params | #FLOPs | #Params | #FLOPs
LA 3.8 3.8 66.4 2638.1
CMA N/A N/A 5 117.1
CCMA 0.9 0.9 16.9 633.4

The number of parameters (#Params) and floating-point operations (#FLOPs)
in both GNet and FNet are compared. All values are rounded to one decimal
place and are presented in units of x10°.

throughout the process, driven by the requirement for frequency
invariance and the augmented Lagrangian optimisation. In
contrast, WNG values display a smoother, more gradual con-
vergence pattern.

B. Complexity Analysis

When analyzing the complexity of neural networks, the
number of parameters (#Params) and floating-point operations
(#FLOPs) are commonly used metrics [65], [66]. The #Params
measure reflects the memory footprint, while the #FLOPs metric
indicates computational cost. Higher values of #Params and
#FLOPs suggest greater complexity.

The details of #Params and #FLOPs in GONFB across differ-
ent geometric configurations are presented in Table I. For GNet
comparison, CMA is excluded as it does not require geometry
optimisation. The GNet in LA has higher #Params and #FLOPs
than in CCMA. This is because, in LA, geometry optimisation
involves adjusting the spacing between all microphones, while
in CCMA, GNet focuses only on optimising the radii and the
starting angular positions of the two rings. As a result, GNet in
LA handles more optimisation tasks and thus requires greater
complexity.

For FNet comparison, CMA has the fewest #Params and
#FLOPs, which can be attributed to the smaller number of
microphones (M = 5) and the restricted frequency range (up to
4000 Hz) considered in this configuration. In contrast, both LA
and CCMA need to account for a frequency range up to 8000 Hz.
In LA, 16 microphones are used, all with optimisable positions.
In CCMA, although there are 13 microphones, one is fixed, and
the remaining 12 are divided into two groups with fixed geometry
within each group. This makes the filtering design task in CCMA
less challenging than in LA.

In summary, the complexity of GONFB aligns with the diffi-
culty of the optimization tasks associated with each geometric
configuration. The complexity of GNet is driven by the number
of parameters and locations to optimise, while the complexity
of FNet depends on the frequency range, the number of micro-
phones, and the complexity of geometric optimisation.

VII. CONCLUSION

This paper presented a novel and comprehensive framework
for the neural optimisation of fixed beamformers with varying
geometries. The proposed neural network model, Geometrically
optimised Neural Fixed Beamformer (GONFB), successfully
optimised both array geometries and spatial filters of fixed

beamformers. By leveraging the ResNet structure and incorpo-
rating an augmented Lagrangian-based loss function, GONFB
surpassed its DMA-based counterparts in linear, circular,
and concentric circular arrays. GONFB also outperformed
Constrained Naked Neurons (ConNNs) in optimising array ge-
ometries.

In our study, we observed consistent superior performance of
GONEFB in terms of DF and WNG across different frequency
bins. GONFB exhibited these advantages while maintaining
a desirable frequency-invariant property. Our experiments re-
vealed that GONFB could effectively design CCMAs using
a single ring. Moreover, our results demonstrated that CMAs
designed by GONFB performed comparably to CCMAs. Ad-
ditionally, we explored the capabilities of GONFB in circular
discal geometric settings and achieved globally optimal solu-
tions using two microphones. When equipped with an equal
number of microphones, a circular discal array can outperform
a linear array due to its superior robustness. These results show-
case the versatility and robustness of GONFB in various array
configurations, emphasising its potential in diverse applications.
Moreover, they demonstrate GONFB’s potential for practical
applications and further research in array signal processing.
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