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Abstract

Modeling high-frequency information is a critical challenge in scientific machine learning. For
instance, fully turbulent flow simulations of the Navier-Stokes equations at Reynolds numbers
3500 and above can generate high-frequency signals due to swirling fluid motions caused
by eddies and vortices. Faithfully modeling such signals using neural networks depends
on the accurate reconstruction of moderate to high frequencies. However, it has been well
known that deep neural nets exhibit the so-called spectral or frequency bias towards learning
low-frequency components. Meanwhile, Fourier Neural Operators (FNOs) have emerged
as a popular class of data-driven models in recent years for solving Partial Differential
Equations (PDEs) and for surrogate modeling in general. Although impressive results have
been achieved on several PDE benchmark problems, FNOs often perform poorly in learning
non-dominant frequencies characterized by local features. This limitation stems from the
spectral bias inherent in neural networks and the explicit exclusion of high-frequency modes
in FNOs and their variants. Therefore, to mitigate these issues and improve FNO’s spectral
learning capabilities to represent a broad range of frequency components, we propose two key
architectural enhancements: (i) a parallel branch performing local spectral convolutions and
(ii) a high-frequency propagation module. Moreover, we propose a novel frequency-sensitive
loss term based on radially binned spectral errors. This introduction of a parallel branch for
local convolutions reduces the number of trainable parameters by up to 50% while achieving
the accuracy of the baseline FNO that relies solely on global convolutions. Moreover, our
findings demonstrate that the proposed model improves the stability over longer rollouts.
Experiments on five challenging PDE problems in fluid mechanics, wave propagation, and
biological pattern formation, and the qualitative and spectral analysis of predictions, show
the effectiveness of our method over the state-of-the-art neural operator families of baselines.

1 Introduction

Simulating real-world physical systems and problems in thermodynamics, biology, weather and climate
modeling, hydrodynamics, and astrophysics, to name a few, involves solving partial differential equations
(PDEs). Numerical PDE solvers based on Finite Volume, Finite Difference, and Finite Element methods
might be slow due to the need for fine discretization of the computational mesh, work only for a given
set of input parameters, and must be run from scratch when the settings, such as initial and boundary
conditions, change. In recent years, neural networks have been used to build generalizable surrogate models
of such dynamical systems (i.e., forward problem) and for the inverse task of the discovery of PDEs and their
parameters from data (Brunton & Kutz, 2023; 2024).

Effective modeling of the entire frequency spectrum, including high frequencies, is important for tasks such
as super-resolution and turbulence modeling (Wang et al., 2020; Fan et al., 2024). In the latter case, large
eddies can give rise to small eddies, resulting in chaotic dynamics, which can further be influenced by forcing
functions (Fan et al., 2024). Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) require
prohibitive costs for high-resolution scenarios (e.g., 2048×2048; Tran et al. (2023); Fan et al. (2024)). Neural
Operators (NOs) are a class of surrogate models that can be trained at low spatial and temporal resolutions,
saving cost, time, and compute, and can be used to predict solutions at resolutions unobserved during
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training, a technique called zero-shot super-resolution. Although the predominant neural operators exhibit
this property, their accuracy is limited on simulation tasks that exhibit fine-grained details and complex
structures. For instance, the Navier-Stokes equation exhibits high frequencies at low viscosities (i.e., ν = 1e−4)
or high Reynolds numbers (e.g., Re = 5000; Li et al. (2022b)). NOs suffer from the spectral bias of neural
nets and have difficulty modeling high frequencies and local features. We review related literature concerning
this challenge in Appendix A. Motivated by the limitations of existing NOs and inspired by multipath neural
net architectural designs (Chi et al., 2020; Chen et al., 2021; Pan et al., 2022; Li et al., 2024; Liu-Schiaffini
et al., 2024), we propose LOGLO-FNO with the following key contributions: (i) local spectral convolutions,
(ii) a high-frequency propagation component, and (iii) a novel frequency-aware loss term.

2 Background on Neural Operators (NO)

Neural Operators learn an approximation of operators between infinite-dimensional Banach spaces of functions.
Let A and U be two Banach spaces of functions defined on bounded domains. Then, a NO learns G that
maps functions a ∈ A to functions u ∈ U . More formally, G : A → U .

Fourier Neural Operator (FNO). FNO (Li et al., 2021; Kossaifi et al., 2024b), which is one of the
effective instantiations of a NO, learns the operator G using the Discrete Fourier Transform (DFT). In
compact terms, u = G(a) =

(
Q ◦ LL ◦ . . . ◦ L1 ◦ P

)
(a), with the lifting and projection layers P,Q and the

function composition ◦. A Fourier layer L can mathematically be described as the mapping in Eqn. 1, with
Z ∈ R···×Nc×Nx×Ny being the output of the lifting operation for the first Fourier layer and the previous
Fourier layer outputs thereafter,

L(Z) := σ
(

ChannelMLP1(Yglobal) + SoftGating1(Z)
)

, where Yglobal := σ
(

Kg(Z) + Conv1D1(Z)
)

(1)

where Kg(·) is the global kernel integral operator realizing DFT with Fast Fourier Transforms (FFT) for
uniformly discretized data, σ is the GELU non-linearity∗ acting point-wise, SoftGating operation applies
a learnable, feature-wise affine or linear transformation to its input, Conv1D represents 1× 1 convolution,
Nx×Ny is the spatial resolution of the 2D spatial data, and Nc is the width or the number of hidden channels.

FNO and its variants, barring incremental FNO (George et al., 2024), retain only a fixed, albeit tunable,
number of frequency modes corresponding to low frequencies and truncate the high-frequency ones (Kovachki
et al., 2023; Helwig et al., 2023; Brandstetter et al., 2023; Gupta & Brandstetter, 2023). This modeling
choice, although beneficial in managing the model parameters, results in suboptimal reconstruction quality of
predictions since it pushes the model to ignore high frequencies in the data. This is inconsequential when the
data in question contains mainly low-frequency structures. However, high-fidelity reconstruction is paramount
for tasks such as turbulence modeling (e.g., LES) and resolving multiple scales in multiphysics simulations.
For instance, Hassan et al. (2023) benchmark FNO and its variants on the BubbleML dataset, a multiphase
and multiphysics simulation of boiling scenarios. In such cases, the temperature profile can exhibit sharp
jumps, resulting in discontinuities along the bubble interfaces, a typical manifestation of high frequencies.
Their study has observed that FNO variants face significant difficulties in this task.

3 Method

In this section, we describe our main contributions. The LOGLO-FNO model aims to improve the class of
Fourier Neural Operators (Li et al., 2021; Kossaifi et al., 2024a;b; Tran et al., 2023) in boosting their capacities
to effectively learn local patterns and non-dominant frequencies. Such a model supports high-fidelity outputs
and achieves improved stability over long rollouts (McCabe et al., 2023). Towards this end, LOGLO-FNO
introduces two key modules as architectural enhancements, namely (i) a local spectral convolution module
and (ii) a high-frequency propagation module. Moreover, we propose a frequency-aware spectral space loss
function based on radially binned spectral errors, using which we conduct our experiments. In addition, we
explore an additional loss, namely, spectral patch high-frequency emphasized residual energy, in line with
the idea of patching the spatial domain to model local features. Furthermore, we employ attention-based

∗skipped for the last Fourier layer in the network.
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fusion strategies in LOGLO-FNO to seamlessly integrate multi-scale features, and assess the effect of such a
feature (Appendix G.3).

LOGLO-FNO. Our proposed LOGLO-FNO model modifies Eqn. 1 to Eqn. 2: the LOGLO Fourier layer
takes three input tensors. (i) Z ∈ R···×Nc×Nx×Ny , (ii) Ẑ ∈ R···×Nc×N̂x×N̂y being the outputs of the lifting
operation P for the first global and local Fourier layers, respectively, and the previous LOGLO Fourier
layer outputs thereafter, and (iii) Z′ ∈ R···×Nc×Nx×Ny is the lifted features of the extracted high frequency
structures XH (cf. Eqn. 4) for the first LOGLO Fourier layer and the previous channel MLP outputs thereafter.

Yglobal := σ
(

Kg(Z) + Conv1D1(Z)
)

, Ylocal := σ
(

Kl(Ẑ) + Conv1D1(Ẑ)
)

,

L(Z, Ẑ, Z
′
) := σ

(
ChannelMLP1(Yglobal) + SoftGating1(Z) +

ChannelMLP1(Ylocal) + SoftGating1(Ẑ) + ChannelMLP1(Z
′
)
)

,

(2)

where the suffixes g and l denote global and local Fourier kernels, respectively, and N̂x × N̂y the spatial
resolution of a 2D patch. The notations of the input tensors naturally extend to 3D spatial data.

The LOGLO-FNO architecture, depicted in Figure 1, maintains all the essential properties of NOs, such
as discretization invariance. In addition to the main global branch, it consists of two auxiliary branches:
(i) one parallel local branch that retains all Fourier modes and (ii) another parallel high-frequency feature
propagation branch.

3.1 Architectural Improvements for FNO

Local Spectral Convolution Branch. We propose employing auxiliary local branches to the global
Fourier layer to enable the model to learn rich local features by performing convolutions restricted to local
regions (e.g., patches). Unlike the global branch, the local one operates on patches of the input signal. First,
we create non-overlapping patches similar to the input of prototypical vision transformers (Dosovitskiy et al.,
2021). These are then fed to the lifting layer P before being passed on to the local spectral convolution
layer, which retains all Fourier modes. Akin to a CNN, the local branch operating on patches performs local
convolution since the spatial domain is now limited to the patch size, capturing local and small-scale patterns,
whereas the main branch performs global convolution, modeling high-level phenomena (e.g., overall fluid flow
direction from left to right or bottom to top).

We consider a partition of the domain D into non-overlapping hypercubes P1, . . . , PM called patches, such
that

⋃M
m=1 Pm = D. Then, the local kernel integral operator Kl(·) with a learnable ϕ can be defined as

(Kl(ϕ)ẐL̂n)(x) =
∫

Pm(x)

κϕ(x− y)ẐL̂n(y) dy, (3)

where Pm(x) is the mth patch containing x. Unlike the global integral operator Kg(·) in Eqn. 1, the kernel
integral operator Kl(·) in (3) is restricted to a local region Pm with a customizable spatial extent. The suffix
L̂n denotes the nth instance of the local Fourier layer and m indexes a specific patch out of the total M
patches. Therefore, ẐL̂n stands for the features fed as input to the nth local Fourier layer.

High-Frequency Propagation (HFP) Branch. In order to provide a stronger inductive bias of high-
frequency features, we propose an HFP module as the third branch, placed in parallel, that encourages the
accurate reconstruction of high-frequencies (Liu et al., 2020) that are otherwise subdued in the Fourier layers
of the global branch due to explicit truncation of high-frequency modes. We employ one level of downsampling
to the input signal using average pooling and an upsampling block using interpolation. The blurriness of the
downsampled signal (e.g., a field variable) is directly proportional to the degree of spatial distortion, which,
in the case of average pooling, is controlled by the kernel size and stride. The upsampling operation undoes
this effect to reconstruct the original signal resolution. The extracted high frequencies XH (cf. Figure 1)
are lifted using P with shared parameters for a tight coupling of the high-pass filtered features with that of
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Figure 1: The overall architecture of our proposed LOGLO-FNO model. X is the discretization of a(x), X̂
the patched version, and XH the extracted high frequencies (cf. Eqn. 4). The full network has L repetitions
of identical LOGLO Fourier layers, and the final activation function is applied on all but the last LOGLO
Fourier layer. The features from the three branches and the skip connections are fused by a simple summation.

the full signal features, propagated using a channel MLP, and added to the output features of the local and
global Fourier layers. Overall, the HFP block serves as a high-pass filter and can be written compactly as

XH = X− Interpolate(AvgPool(X; kernel_size, stride); size = (. . . , Nc, Nx, Ny, [Nz])). (4)

3.2 Frequency-aware Loss based on Radially Binned Spectral Energy Errors

Since our aim is to direct the optimization process to enable the model to faithfully reconstruct non-dominant
frequencies in the predictions, we propose a frequency-sensitive loss and penalize the band-classified (mid-
and high-frequency) spectral errors as an additional weighted term in the loss. Let Ỹ and Y be the model
prediction and target, respectively. The pointwise error in physical space is ∆u = Ỹ−Y, and the spectral
error ∆û = F(∆u) is obtained by applying the FFT on the spatial dimensions. Then, we define the radially
binned, temporal and channel-wise spectral error on 2D spatial data as,
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Ct,c
freq(r) = Lx

Nx
· Ly

Ny

√√√√√√√ 1
Nb

Nb∑
b=1

 ∑
(kx,ky) s.t.
R(kx,ky)=r

|∆ûb,c,t(kx, ky)|2

, (5)

where the inner summation aggregates the energy of spectral errors within each radial bin r, Lx and Ly are
the spatial extents of the domain, whereas Nx and Ny are the corresponding total number of observation
points along those spatial axes. Subsequently, the binned errors can be band-classified as low, mid, and high
frequencies by considering suitable radial cutoff values (e.g., low=[1,4], mid=[5,12], and high=[13, M]; see
Appendix K.6) and summed or averaged over the physical variables and temporal dimensions.
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Figure 2: Representative illustration of radially binned spectral error. Left: the spectral energy of error
magnitude with overlaid radial bins (blue – low frequency, green – mid frequency cutoff, the rest – high
frequency band); Right: the energy of the radially binned spectral error across radial distances as a line plot.

A detailed step-by-step procedure (Algorithm 1) and a PyTorch-style pseudocode to compute the frequency
loss for 2D spatial data are provided in Appendix D.2, and the visualizations are placed in Appendix D.3.

3.3 Fourier Layer Parameter Budget for 2D Spatial Data

The majority of the parameter mass in FNO is concentrated on the Fourier layers (specifically, the spectral
convolution modules) and their cardinality. It is dependent on three factors: (i) the spatial dimensionality s
of the problem, (ii) the number of selected Fourier modes K, and (iii) the channel† dimension dc. Denote the
number of Fourier layers as L. Then, for 2D spatial data (s = 2), the parameter complexity of the global
spectral convolutional layer is O

(
(dc · dc) ·Ks · L

)
. Note the quadratic growth in parameters as the number of

chosen modes K increases. This results in a higher number of trainable parameters for inputs of reasonably
high resolutions (e.g., 512×512, or above). Considering this inefficiency and the lack of local convolutions,
we consider an approach to distribute the apriori allotted parameter budget across a series of branches,
each processing the inputs at different resolutions, mimicking the multi-scale modeling paradigm (Chen
et al., 2021; Rahman et al., 2023; Gupta & Brandstetter, 2023). However, we differ from the prevalent
approaches in that we do not downsample the incoming spatial resolution in the local branch but decompose
it into smaller domains (i.e., patches) to process each independently. Therefore, the parameter complexity of
the local Fourier layers performing local spectral convolution on the patches of 2D spatial data would be
O
(
(dc · dc) · (nx · (psize//2 + 1)) · L

)
, where psize denotes the patch size, +1 is for the Nyquist frequency, and

nx is the x-axis resolution of the patches. Note that we retain all Fourier modes in the local branch.
†a.k.a. width or hidden channels in the Neural Operator framework: github.com/neuraloperator/neuraloperator
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3.4 Fourier Layer Parameter Budget for 3D Spatial Data

Extending the analysis of the dependence of trainable parameters on the spectral filter size K for 2D
spatial data in §3.3 to 3D spatial data, we obtain the parameter complexity of the global Fourier layer
performing global spectral convolutions as O

(
(dc · dc) ·K3 · L

)
, while noting the cubic growth in trainable

parameters as we increase the number of chosen Fourier modes K for more accurate reconstruction of
predictions and dc indicating the hidden channel dimension. In contrast, the parameter complexity of
the local Fourier layers performing local spectral convolution on the patches of 3D spatial data would be
O
(
(dc · dc) · (nx · ny · (psize//2 + 1)) · L

)
, where psize denotes the patch size, +1 for the Nyquist frequency,

and nx and ny are the x- and y-axes resolutions of the patches. Note that, as in the case of 2D spatial data,
we always retain all Fourier modes in the local branch.

3.5 Distributing Parameters across Local and Global Branches

Following the observations made in §3.3, we consider a scenario where the goal is to train a neural operator
given a parameter budget. A baseline FNO can be trained with this budget cost to reach a certain accuracy. In
contrast, we argue that we can reach the same accuracy using fewer parameters with LOGLO-FNO by making
the allotted parameters less concentrated on the global branch (thereby controlling the quadratic parameter
growth in terms of selected modes) and distributing them to the local branch, which has a more subdued
parameter growth (for modes) depending on the patch size. If, on the other hand, we use the entire parameter
budget, better accuracy than the baseline FNO model can be achieved (see Figures 3, 11, 12, 13, and 17).

4 Experiments and Results

In this section, we explain the different training setups we use and present the quantitative results of the
baselines and LOGLO-FNO on the five challenging time-dependent PDE problems, i.e., four 2D PDEs
(Kolmogorov Flow, CNS Turb, Wave-Gauss, and Diffusion-Reaction) and a 3D PDE (Turbulent Radiative
Mixing Layer from the Well benchmark), introduced and described in Appendix B.

Baseline Models. We consider the following neural operators as relevant and strong baselines in our
work. The FNO-related baselines include base FNO (Li et al., 2021; Kossaifi et al., 2024a), U-FNO (Wen
et al., 2022) that is well-suited for multiscale modeling, F-FNO (Tran et al., 2023) that factorizes the Fourier
transform over the spatial dimensions, and variants of NO-LIDK (Liu-Schiaffini et al., 2024) that achieve local
convolutions. Moreover, we include a modern version of U-Net from PDEArena (Gupta & Brandstetter, 2023),
LSM (Wu et al., 2023) that applies spectral methods in learned latent space, and a physics-attention based
transformer, namely, Transolver (Wu et al., 2024). Further specific details of baselines are in Appendix C.

Training Objective, Procedure, and Evaluation Metrics. We train the baselines using the standard
MSE loss (CMSE), whereas our frequency loss term is added on top for the LOGLO-FNO models. Consequently,
the 1-step training loss for N trajectories, each comprising T timesteps, is,

θ∗ = arg min
θ

N∑
n=1

T −1∑
t=1
C(Nθ(ut), ut+1), C = CMSE + λ · Cfreq, 0 ≤ λ ≤ 1 (6)

where (ut, ut+1) are the input-output pairs constructed from trajectories and C is the weighted sum of cost
functions, MSE (CMSE) and our band-classified frequency loss (Cfreq). Specifically, we minimize only the
spectral errors corresponding to the mid-and high-frequency bands in our experiments. We use the Adam
optimizer and halve the learning rate every 33 epochs in the case of Kolmogorov Flow and 100 epochs for
Diffusion-Reaction 2D for a fair comparison with NO-LIDK (Liu-Schiaffini et al., 2024). However, the learning
rate is halved every 10 epochs on the Turbulent Radiative Layer 3D dataset due to reduced training epochs.
The full set of hyperparameters is listed in Appendix O.8. We evaluate metrics from PDEBench (Takamoto
et al., 2022), which contain spectral, physics- and data-view-based error measures (fRMSE, cRMSE, nRMSE).
Additionally, we include metrics that measure the energy spectra deviations, viz. MELR and WLR (Wan
et al., 2023). More elaborate details on evaluation metrics can be found in Appendix G.1.
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4.0.1 1-step Training and Evaluation

Table 1: 1-step and 5-step AR evaluation of LOGLO-FNO
compared with SOTA baselines on the test set of 2D Kolmogorov
Flow (Li et al., 2022b). Rel. % Diff indicates improvement (-)
or degradation (+) with respect to FNO. LOGLO-FNO uses 40
and (16, 9) modes in the global and local branches, respectively,
whereas the width is set as 65. NO-LIDK∗ denotes using only
localized integral kernel, NO-LIDK⋄ means only differential kernel,
and NO-LIDK† means employing both. Transolver⋆ indicates a
longer training time of the model for 500 epochs due to convergence
issues at shorter training epochs of 136.

Model nRMSE (↓) fRMSE(L) fRMSE(M) fRMSE(H) (↓)
1-step Evaluation

U-Net 1.3 · 10−1 2.24 · 10−2 3.57 · 10−2 4.39 · 10−2

Transolver⋆ 1.39 · 10−1 2.74 · 10−2 4.48 · 10−2 4.65 · 10−2

FNO 1.47 ·10−1 1.36 ·10−2 2.05 ·10−2 4.7 ·10−2

F-FNO 1.37 ·10−1 1.49 ·10−2 2.15 ·10−2 4.36 ·10−2

LSM 1.36 · 10−1 2.59 · 10−2 4.42 · 10−2 4.64 · 10−2

U-FNO 1.12 · 10−1 1.27 · 10−2 2.22 · 10−2 3.71 · 10−2

NO-LIDK∗ 1.33 · 10−1 1.45 · 10−2 2.69 · 10−2 4.55 · 10−2

NO-LIDK⋄ 1.11 · 10−1 1.65 · 10−2 2.29 · 10−2 3.91 · 10−2

NO-LIDK† 1.07 · 10−1 1.44 · 10−2 2.46 · 10−2 3.82 · 10−2

LOGLO-FNO 1.07 · 10−1 1.21 · 10−2 1.81 · 10−2 3.54 · 10−2

Rel. % Diff -27.21 % -11.22 % -11.88 % -24.64 %

5-step Autoregressive Evaluation
U-Net 2.65 · 10−1 6.53 · 10−2 1.04 · 10−1 9.38 · 10−2

Transolver⋆ 3.36 · 10−1 7.44 · 10−2 1.51 · 10−1 1.18 · 10−1

FNO 2.35 ·10−1 3.37 ·10−2 5.80 ·10−2 8.37 ·10−2

F-FNO 2.28 ·10−1 3.60 ·10−2 5.52 ·10−2 8.12 ·10−2

LSM 3.18 · 10−1 7.6 · 10−2 1.44 · 10−1 1.12 · 10−1

U-FNO 2.03 · 10−1 2.69 · 10−2 5.33 · 10−2 7.35 · 10−2

NO-LIDK∗ 2.39 · 10−1 3.14 · 10−2 6.86 · 10−2 8.91 · 10−2

NO-LIDK⋄ 2.04 · 10−1 3.71 · 10−2 5.96 · 10−2 7.6 · 10−2

NO-LIDK† 2.05 · 10−1 3.31 · 10−2 5.94 · 10−2 7.74 · 10−2

LOGLO-FNO 1.92 · 10−1 2.80 · 10−2 4.55 · 10−2 6.93 · 10−2

Rel. % Diff -18.39 % -16.86 % -21.62 % -17.26 %

2D Kolmogorov Flow. We train us-
ing 1-step loss, a.k.a. teacher-forcing:
u(t−∆t, ·)→ u(t, ·). This training scheme
mimics the functioning of classical numer-
ical solvers and is commonly employed
(Gupta & Brandstetter, 2023).

Gaussian noise is added in order to ac-
count for the distribution mismatch be-
tween this type of teacher-forcing-based
training and autoregressive rollout for in-
ference (Pfaff et al., 2021; Stachenfeld
et al., 2022). In a similar spirit, we in-
ject adaptive Gaussian noise, which is de-
pendent on the high-frequency structures
extracted by the HFP module (see Ap-
pendix E for full details). Further, we
found it essential to employ gradient clip-
ping for stabilized training when model-
ing high frequencies. The LOGLO-FNO
models have been trained with a single
local branch (patch size 8× 8 or 16× 16
for 2D spatial data) in addition to a single
global branch operating on the full spatial
resolution.

1-step Evaluation. Once trained, we
evaluate the models for 1-step errors.
A summary of results comparing pro-
posed LOGLO-FNO with a range of
strong baselines, including the FNO-based
current state-of-the-art NO-LIDK (Liu-
Schiaffini et al., 2024), is in Table 1.
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Figure 3: Comparison of FNO vs. LOGLO-FNO showing 1-step fRMSE (↓) on the test set of Kolmogorov
Flow dataset (Re = 5k) (Li et al., 2022b) for a varying number of modes in the global branch and the full set
of modes (i.e., (16, 9) for patch size (16× 16)) in the local branch.

7



Under review as submission to TMLR

Since our method also performs convolution using local spectral kernels, we compare our results with their local
integral kernel (NO-LIDK∗) scores, whereas the other two variants (NO-LIDK⋄, NO-LIDK†) are provided for
the sake of completeness. We observe that LOGLO-FNO outperforms the baselines on all metrics. Since we
set out to model high-frequencies, we note that the mid- and high-frequency errors are close to 12% and 25%
less compared to base FNO, indicating better preservation of high-frequency details, whereas MELR is down
by over 75% (see Table 6). The results of a study analyzing the influence of an increasing number of global
branch Fourier modes and full count of local branch Fourier modes (i.e., (16, 9) for patch size (16 × 16))
for LOGLO-FNO on the frequency and energy spectra errors are visualized in Figure 3 and Figure 13,
respectively. More plots showing other error metrics are in Appendix G.4.
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Figure 4: Comparison of radially binned spectral errors of baselines and LOGLO-FNO on the test set of
Kolmogorov Flow (Re = 5k) (Li et al., 2022b).
Autoregressive Evaluation. In this setup, we evaluate the 1-step trained models on autoregressive
rollouts for varying numbers of timesteps and compute the errors. The 5-step autoregressive rollout errors are
shown in Table 1. We observe that LOGLO-FNO outperforms other models on seven out of the ten metrics
and is better than FNO on all metrics, achieving a noticeable reduction in mid- and high-frequency errors.
These 5-step and extended rollout results (see Figure 5) indicate that LOGLO-FNO is more robust to the
autoregressive error accumulation problem than base FNO. Further metrics are visualized in Figures 14, 15,
and 16 and the results with the full set of evaluation metrics are provided in Table 6 in Appendix G.2.1.
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Figure 5: Comparison of FNO vs. LOGLO-FNO for autoregressive rollout showing fRMSE ((↓)) error
growth over variable number of modes (K) in the global branch and varying timesteps in the trajectories on
the test set of Kolmogorov Flow (Re = 5k) (Li et al., 2022b). The local branch uses a patch size of 16× 16.
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Table 2: Top: 1-step and 5-step AR evaluation of LOGLO-FNO
compared with SOTA baselines on the test set of CNS Turb 2D.
LOGLO-FNO uses 40 and (16, 9) modes in the global and local
branches, respectively, whereas the width is set as 65. Bottom:
1-step and 5-step AR evaluation of LOGLO-FNO on the test set
of Wave-Gauss 2D. LOGLO-FNO uses 20 and (16, 9) modes in
the global and local branches, respectively, whereas the width is
set to 32. NO-LIDK∗ denotes using only localized integral kernel,
NO-LIDK⋄ means only differential kernel, and NO-LIDK† means
employing both. Rel. % Diff indicates improvement (-) or
degradation (+) with respect to FNO.

Model nRMSE (↓) fRMSE(L) fRMSE(M) fRMSE(H) (↓)
CNS Turb 2D: 1-step Evaluation

U-Net 4.9 · 10−2 2.47 · 10−3 2.9 · 10−3 1.48 · 10−3

Transolver⋆ 4.22 · 10−1 4.77 · 10−2 4.11 · 10−2 4.47 · 10−3

FNO 4.82 · 10−2 1.28 · 10−3 1.78 · 10−3 1.57 · 10−3

LSM 8.08 · 10−2 6.17 · 10−3 6.55 · 10−3 2.01 · 10−3

U-FNO 4.49 · 10−2 2.24 · 10−3 2.01 · 10−3 1.43 · 10−3

NO-LIDK∗ 6.4 · 10−2 1.5 · 10−3 2.14 · 10−3 1.98 · 10−3

NO-LIDK⋄ 5.54 · 10−2 1.35 · 10−3 1.88 · 10−3 1.76 · 10−3

NO-LIDK† 5.57 · 10−2 1.37 · 10−3 1.89 · 10−3 1.77 · 10−3

LOGLO-FNO 4.24 · 10−2 9.01 · 10−4 1.1 · 10−3 1.37 · 10−3

Rel. % Diff -11.91 % -29.57% -38.1 % -12.38 %

CNS Turb 2D: 5-step Autoregressive Evaluation
U-Net 1.44 · 10−1 1.42 · 10−2 1.3 · 10−2 3.08 · 10−3

Transolver⋆ 6.69 · 10−1 9.21 · 10−2 6.0 · 10−2 4.7 · 10−3

FNO 7.78 · 10−2 3.76 · 10−3 5.37 · 10−3 2.4 · 10−3

LSM 2.67 · 10−1 3.4 · 10−2 2.5 · 10−2 4.16 · 10−3

U-FNO 8.42 · 10−2 5.38 · 10−3 5.9 · 10−3 2.54 · 10−3

NO-LIDK∗ 8.55 · 10−2 4.14 · 10−3 5.92 · 10−3 2.62 · 10−3

NO-LIDK⋄ 7.88 · 10−2 3.82 · 10−3 5.35 · 10−3 2.44 · 10−3

NO-LIDK† 7.91 · 10−2 3.82 · 10−3 5.38 · 10−3 2.47 · 10−3

LOGLO-FNO 6.67 · 10−2 2.76 · 10−3 3.97 · 10−3 2.12 · 10−3

Rel. % Diff -14.31 % -26.7 % -26.09 % -11.42%

Wave-Gauss 2D: 1-step Evaluation
Transolver⋆ 2.29 · 10−1 3.51 · 10−2 2.76 · 10−2 2.2 · 10−3

FNO 4.03 · 10−2 7.5 · 10−3 5.45 · 10−3 6.22 · 10−4

LSM 3.08 · 10−2 4.91 · 10−3 3.86 · 10−3 8.54 · 10−4

U-FNO 3.49 · 10−2 6.62 · 10−3 4.52 · 10−3 7.24 · 10−4

NO-LIDK∗ 3.93 · 10−2 6.95 · 10−3 5.1 · 10−3 8.22 · 10−4

NO-LIDK⋄ 3.58 · 10−2 6.49 · 10−3 4.78 · 10−3 7.56 · 10−4

NO-LIDK† 3.5 · 10−2 6.31 · 10−3 4.61 · 10−3 7.4 · 10−4

LOGLO-FNO 3.11 · 10−2 6.43 · 10−3 3.84 · 10−3 3.44 · 10−4

Rel. % Diff -22.79 % -14.27% -29.54% -44.65%

Wave-Gauss 2D: 5-step Autoregressive Evaluation
Transolver⋆ 3.62 · 10−1 7.73 · 10−2 3.47 · 10−2 2.93 · 10−3

FNO 6.75 · 10−2 1.6 · 10−2 8.35 · 10−3 8.57 · 10−4

LSM 4.34 · 10−2 8.64 · 10−3 5.68 · 10−3 1.1 · 10−3

U-FNO 6.26 · 10−2 1.6 · 10−2 7.64 · 10−3 9.27 · 10−4

NO-LIDK∗ 5.96 · 10−2 1.34 · 10−2 7.92 · 10−3 1.19 · 10−3

NO-LIDK⋄ 1.21 · 10−1 2.43 · 10−2 1.12 · 10−2 4.07 · 10−3

NO-LIDK† 1.06 · 10−1 2.1 · 10−2 1.02 · 10−2 3.85 · 10−3

LOGLO-FNO 4.81 · 10−2 1.29 · 10−2 5.43 · 10−3 4.57 · 10−4

Rel. % Diff -28.76% -19.52% -34.91% -46.6%

CNS Turb 2D. We extend the exper-
iments to include compressible Navier-
Stokes equations (see Eqn. 8 in Ap-
pendix B.2 for details), specifically with
turbulent initial conditions and sonic
regime (Mach=1.0). The dataset consists
of 1k trajectories, of which we use 900
for training and 100 for testing, following
PDEBench (Takamoto et al., 2022) split.
Input-output data pairs are constructed
by slicing successive frames across the
timesteps, yielding 18k for training and
2k for testing. Each snapshot has two
scalar fields (i.e., density and pressure)
and one 2D vector field (i.e., velocity).
We replicate the 1-step training strategy
of Kolmogorov Flow 2D problem, but in-
stead use the AdamW optimizer for all
models. We observe from the 1-step and
5-step AR errors listed in Table 2, that
LOGLO-FNO yield consistent improve-
ments across spatial and spectral metrics
and outperforms all baselines in both eval-
uation settings. The results on the full
set of evaluation metrics are provided in
Table 7 in Appendix G.2.1, and the hy-
perparameters are placed in Appendix O.

Wave-Gauss 2D. As an additional
problem exhibiting a different physical
phenomenon of wave propagation, we in-
clude the 2D wave equation (see Eqn. 9
in Appendix B.3 for details), specifically
Wave-Gauss, from Poseidon (Herde et al.,
2024). The spatially dependent propa-
gation speed is generated as a sum of
Gaussians. As with the previous prob-
lems in this section, we employ 1-step
training strategy with the objective in
Eqn. 6 and evaluate on 1-step and 5-step
rollouts. The training data contains about
150k input-output pairs, 900 for valida-
tion, and 3.6k is reserved for testing.

As we observe from Table 2, although
LOGLO-FNO achieves the lowest mid
and high frequency errors, LSM baseline
model outperforms all other models on
the spatial and low frequency error met-
rics, and this trend is maintained on the
complete trajectory rollouts (see Table 8).

The results on the full set of evaluation metrics and extended full trajectory rollouts are provided in Table 8
in Appendix G.2.1, and the hyperparameters for the models are in Appendix O.

9



Under review as submission to TMLR

Table 3: 1-step and autoregressive evaluation of LOGLO-FNO
compared with state-of-the-art baselines on the test set of Tur-
bulent Radiative Mixing Layer 3D dataset (Fielding et al., 2020;
Ohana et al., 2024). Rel. % Diff indicates an improvement
(-) or degradation (+) with respect to base FNO, which uses a
spectral filter size of 12 and 48 hidden channels. LOGLO-FNO
uses 12 and (16, 16, 17)⋆ modes in the global and local branches,
respectively, whereas the width is set to 52. (⋆This is because
the Turbulent Radiative Layer 3D dataset has 2× more sampling
points on the z-axis relative to the x and y axes resolutions – (128
× 128 × 256).) Base FNO‡ means our implementation of FNO (see
Figure 1). [t:t+∆t] symbolizes the inclusion of the timesteps at
both ends of the interval when computing time-averaged vRMSE.

Model
1-step Eval. Autoregressive Evaluation

1-step
vRMSE (↓)

[6:12] Time-Avg.
vRMSE (↓)

[13:30] Time-Avg.
vRMSE (↓)

FNO 5.28 · 10−1 8.1 · 10−1 9.4 · 10−1

TFNO 5.19 · 10−1 >10 >10
U-Net 3.73 · 10−1 9.5 · 10−1 1.09 · 100

CNextU-Net 3.67 · 10−1 7.7 · 10−1 8.6 · 10−1

LSM 2.74 · 10−1 7.67 · 10−1 1.02 · 100

NO-LIDK⋄ 4.05 · 100 6.0 · 100 6.52 · 100

Base FNO‡ 3.18 · 10−1 7.49 · 10−1 8.58 · 10−1

LOGLO-FNO 2.76 · 10−1 7.09 · 10−1 7.72 · 10−1

Rel. % Diff -13.22% -5.3% -9.98%

Model nRMSE (↓) fRMSE(L) fRMSE(M) fRMSE(H) (↓)
1-step Evaluation

LSM 8.39 · 10−1 2.4 · 10−1 9.7 · 10−2 3.43 · 10−2

NO-LIDK⋄ 4.34 · 10−1 6.87 · 10−2 1.22 · 10−1 1.23 · 10−1

Base FNO‡ 3.06 · 10−1 4.87 · 10−2 4.58 · 10−2 2.89 · 10−2

LOGLO-FNO 2.65 · 10−1 4.45 · 10−2 3.68 · 10−2 2.48 · 10−2

Rel. % Diff -13.27% -8.61% -19.57% -14.01%

Turbulent Radiative Layer 3D
(TRL3D). Noting the absence of sup-
port for local convolutions in FNO for
3D spatial data, we extend the LOGLO-
FNO implementation to 3D and conduct
experiments on a challenging version of
a time-dependent turbulence simulation,
viz., Turbulent Radiative Layer 3D (Field-
ing et al., 2020; Ohana et al., 2024) from
the Well benchmark. Similar to the
Kolmogorov Flow 2D setup, the models
are trained using 1-step training loss (cf.
Eqn. 6), however, with the AdamW opti-
mizer and only for 50 epochs by halving
the learning rate every 10 epochs, main-
taining the proportion of learning rate
decays as with other problems. We chose
this setup since we observed overfitting
when training for longer epochs, such as
136 or even further. We attribute this
behavior to the limited amount of avail-
able training data. Following Ohana et al.
(2024), we consider the full data covering
the entire range of tcool parameters, where
tcool ∈ {0.03, 0.06, 0.1, 0.18, 0.32, 0.56,
1.00, 1.78, 3.16}. For each tcool value, ten
trajectories, each spanning 101 timesteps
and of spatial resolution 128 × 128 × 256,
are provided. The dataset also comes with
an explicit train (8), validation (1), and
test (1) splits. We then construct 7200,
900, and 900 1-step data pairs for train-
ing, validation, and testing, respectively.
Following recent investigations for conditioning the neural operators to generalize to unseen PDE parame-
ters (Takamoto et al., 2023), we append the tcool coefficients as additional channels. The goal of the so-called
forward problem for this PDE is then to predict the scalar (i.e., density and pressure) and vector (i.e.,
velocity-x, velocity-y, and velocity-z) physical quantities of ut+1(.) given the solution at the previous timestep
ut(.). Further details on the PDE are provided in Appendix B.6.

Note that we have improved the 1-step vRMSE score (on the TRL3D test set) of the baseline FNO model by
41.4% compared to results reported by Ohana et al. (2024) (cf. Table 2: Model Performance Comparison)
and, hence, our version of FNO is a strong baseline. We further note that the local integral kernel (DISCO
conv layers) of NO-LIDK (Liu-Schiaffini et al., 2024) is not implemented for 3D spatial data and, hence, is
not compared against in our experimental setup. We observe that LOGLO-FNO achieves the best results on
all metrics and outperforms CNextU-Net, the best results of Ohana et al. (2024) on the Turbulent Radiative
Layer 3D test dataset, on the vRMSE metric by 24.5%. The qualitative visualizations of predictions are
provided in Appendix H.0.2 and the table with the full set of metrics is in Table 10 in the Appendix.

4.0.2 Autoregressive Training and Evaluation

We evaluate LOGLO-FNO on a fully autoregressive training setup on the Diffusion-Reaction 2D PDE
from Takamoto et al. (2022). The model is trained with an initial context of 10 frames (i.e., ∆t = 10),
predicting one future state at a time until reaching the fully evolved state: u(t−∆t, ·)→ u(t, ·). In other
words, since each simulation trajectory consists of 101 timesteps, AR rollout is performed for 91 timesteps
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both during training and evaluation to be consistent and for a fair comparison with the training setup of
NO-LIDK (Liu-Schiaffini et al., 2024).

Table 4: Fully autoregressive evaluation of LOGLO-FNO
compared with SOTA baselines on the test set of challenging
2D Diffusion-Reaction coupled problem from PDEBench.
We also report the Rel. % Diff to indicate the error
improvement (-) with respect to baseline FNO.
Model nRMSE (↓) fRMSE(L) fRMSE(M) fRMSE(H) (↓)
U-Net 8.4 ·10−1 1.7 ·10−2 8.2 ·10−4 5.7 ·10−2

Transolver 2.63 · 10−1 2.99 · 10−3 2.03 · 10−3 5.51 · 10−4

U-FNO 2.6 ·10−1 3.4 ·10−3 1.6 ·10−3 2.6 ·10−4

FNO 8.3 ·10−2 6.2 ·10−4 5.6 ·10−4 2.4 ·10−4

F-FNO 7.0 ·10−2 9.6 ·10−4 4.7 ·10−4 1.3 · 10−4

LSM 4.47 · 10−1 7.17 · 10−3 2.4 · 10−3 3.67 · 10−4

NO-LIDK (loc. int) 6.3 · 10−2 4.0 ·10−4 4.6 ·10−4 1.5 ·10−4

LOGLO-FNO 6.4 ·10−2 2.8 · 10−4 3.2 · 10−4 1.9 ·10−4

Rel. % Diff -22.75 % -54.84 % -42.86 % -20.83 %

2D Diffusion-Reaction. We observe from
Table 4 that LOGLO-FNO achieves a signif-
icant reduction in frequency errors across all
bands (55%, 43%, 21%, resp.) compared to
baseline FNO and better than NO-LIDK on
low- and mid-frequencies (30%, 30.4%, resp.).
The tabulation of results with all metrics is
provided in Table 11 in the Appendix G.2.2.

5 Ablation Studies

In order to investigate the effect of each of
the proposed modules in LOGLO-FNO or the
radially binned frequency loss, we conduct an
ablation study on the Turbulent Radiative Layer 3D dataset, isolating the components. The LOGLO-FNO
model (cf. Fig. 1) by default uses the local spectral convolution and the HFP branches, and is trained with
the radially binned spectral loss. This configuration corresponds to the result on the second row in Table 5
and achieves the best result, emphasizing the need to retain all the proposed contributions.

Table 5: 1-step results of LOGLO-FNO on the test set of
TRL3D (Fielding et al., 2020; Ohana et al., 2024). Base
FNO uses a spectral filter size of 18 and 48 hidden channels.
LOGLO-FNO uses 16 and (16, 16, 17)* Fourier modes
in the global and local branches, respectively, whereas the
width is 52. (*Turbulent Radiative Layer 3D dataset has 2×
more sampling points on the z-axis relative to the x- and
y-axes resolutions – (128 × 128 × 256).)

Model nRMSE (↓) fRMSE(L) fRMSE(M) fRMSE(H) vRMSE (↓)
1-step Evaluation

Base FNO 2.97 · 10−1 5.17 · 10−2 4.45 · 10−2 2.76 · 10−2 3.09 · 10−1

LOGLO-FNO
(+freq loss, +HFP) 2.58 · 10−1 4.1 · 10−2 3.62 · 10−2 2.45 · 10−2 2.68 · 10−1

LOGLO-FNO
(-freq loss, +HFP) 2.75 · 10−1 4.4 · 10−2 4.09 · 10−2 2.63 · 10−2 2.86 · 10−1

LOGLO-FNO
(-freq loss, -HFP) 2.76 · 10−1 4.4 · 10−2 4.13 · 10−2 2.64 · 10−2 2.87 · 10−1

LOGLO-FNO
(+freq loss, -HFP) 2.66 · 10−1 4.53 · 10−2 3.76 · 10−2 2.48 · 10−2 2.76 · 10−1

Afterwards, to obtain the result in the next row,
we disable the frequency loss in the training
objective of Eqn. 6 while retaining all other hy-
perparameters as before, quantifying the effect
of the absence of radially binned frequency loss.

In the next setup, we additionally disable the
HFP branch to yield a configuration of train-
ing LOGLO-FNO with only the local branch
and MSE loss. The result for this is on the
penultimate row of Table 5.

To isolate the effect of removing the HFP
branch, we disable it and train LOGLO-FNO
with the training objective in Eqn. 6. The re-
sult of this model configuration is presented in
the last row of Table 5.

To summarize, although just using any one of
the proposed contributions is sufficient to obtain an improved result over baseline FNO, both local spectral
convolution and HFP branches, and the frequency loss are necessary to achieve the best result.

6 Conclusions, Limitations, and Future Work

In this paper, we have proposed an enhancement to the FNO architecture (Li et al., 2021; Kossaifi et al.,
2024b;a) through auxiliary parallel branches for local spectral convolution and high-frequency feature
propagation. Through our experiments on five relevant and highly challenging PDE problems, namely,
Kolmogorov Flow 2D, CNS Turb 2D, Wave-Gauss 2D, Turbulent Radiative Layer 3D, and non-linearly
coupled diffusion-reaction 2D problems that give rise to turbulence or high frequencies, we have demonstrated
the promise to significantly reduce both the spatial and spectral errors, showing the importance of local
convolutions in mitigating the spectral bias to a considerable extent. In addition, our proposed radially
binned spectral loss has also been found to be useful in this aspect. As a result of incorporating a local
spectral convolutional branch in the architecture, our model has paved a way for reducing the number of
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trainable parameters to reach the baseline model accuracy. The current work, however, in order to allow
a fair comparison to Liu-Schiaffini et al. (2024), has not considered any sophisticated parameter-efficient
spectral convolution methods (e.g., tensor factorization techniques (Kossaifi et al., 2024b)), which we see as a
limitation. Future work could look into improving the scalability of LOGLO-FNO or provide a theoretical
analysis of its benefits.
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A Related Work

It has been a well-established fact that DNNs, trained with first-order gradient descent optimization methods,
have a spectral bias for learning functions with low frequencies before picking up high-frequency details,
explaining their superior generalization capabilities on downstream tasks (Xu et al., 2019; Rahaman et al.,
2019; Cao et al., 2021; Schwarz et al., 2021; Molina et al., 2024; Yu et al., 2024). This means that deep networks
require longer training times (Basri et al., 2019), necessitate multi-stage residue-based training (Wang & Lai,
2024; Ng et al., 2024; Kong et al., 2025), or experiences difficulty altogether, in learning complex functions
with high-frequency components. This phenomenon is apropos of the neural PDE solving community (Li
et al., 2022b; Fu et al., 2023; Liu et al., 2024) where the high-frequencies are more pronounced in multiscale,
multiphysics, time-dependent PDEs and can evolve in time. This limitation of deep neural nets affects not
only an accurate reconstruction of the spectral components but also rollouts (Worrall et al., 2025) and causes
hallucinations (Sun et al., 2024b).

In the field of computer graphics and vision, several approaches have been proposed to solve this problem.
Sun et al. (2024a) explore learning high-frequencies for generative tasks in computer graphics and propose a
sinusoidal positional encoding method to learn high-frequency features effectively. Pan et al. (2022) propose
a faster variant of ViT with HiLo attention by splitting the attention heads to learn high and low frequencies
in a disentangled fashion.

In the research area of neural PDE solving and SciML applications, Liu et al. (2024) study the limitations
of existing neural operators for multiscale PDEs and propose a hierarchical attention method and H1 loss
to direct the emulator to learn high-frequencies. Other approaches in improving the capability of neural
operators to learn high frequencies include (i) an adaptive selection of Fourier modes and resolution (George
et al., 2024) since using a suboptimal choice for the number of modes may be detrimental on many PDE
problems (Lanthaler et al., 2024), (ii) a two-staged approach of first predicting the future states, given some
historical temporal context, using a neural operator and feeding that as an input (i.e., conditioning factor)
to a diffusion model in stage 2 (Oommen et al., 2024). Similarly, Fan et al. (2024) employ a two-stage
pipeline of first generating low-resolution Kolmogorov flow turbulence simulations using a hybrid DNS neural
solver on coarse grids and leveraging a conditional diffusion model to super-resolve for high frequencies and
fine-grained structures in the second stage. Poli et al. (2022) study frequency-domain models for PDE solving
with an aim to accelerate the training process. They propose a method to learn solution operators directly
in the frequency domain, which is made possible with a variance-preserving weight initialization scheme.
Closest to our work in terms of achieving local convolution and modeling high-frequency features in FNO is
NO-LIDK (Liu-Schiaffini et al., 2024), which designs two different local layers for learning the differential and
integral operators that capture local and high-frequency features. Hence, we consider this as the relevant
and competitive baseline. Although LOGLO-FNO has a high-level similarity to NO-LIDK by introducing
architectural modifications to FNO with an additional parallel branch for local convolutions, it differs from
NO-LIDK in the manner it achieves local convolutions. It does so by decomposing the input domain into
subdomains and then individually applying spectral convolutions on these subdomains, thereby effectively
capturing localized features. Moreover, an additional parallel branch specifically designed for modeling and
providing an inductive bias of high-frequency features is introduced.

Chen et al. (2021) develop a multi-scale vision transformer for image classification tasks and explore different
fusion methods aimed at an effective fusion of multi-scale features from the respective branches. Dai et al.
(2021) explore attention mechanisms for aggregating the local and global context features and demonstrate
their effectiveness on image classification and object localization tasks in computer vision. Specifically, they
propose a multi-scale channel attention module and attentional feature fusion blocks for fusing multi-scale
features in deep neural networks.
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B Benchmark PDEs and Datasets

We experiment with 2D and 3D PDEs that exhibit high frequencies, turbulence behaviour, and rich local
patterns due to their inherent nature (e.g., coupled variables), controllable parameters (i.e., PDE coefficients,
Reynolds number, forcing terms), chaotic dynamics, discontinuities, porosity of the medium, and higher-order
derivatives.

B.1 2D Incompressible Navier-Stokes (INS)

Kolmogorov Flow. Following prior literature (Li et al., 2022b; George et al., 2024; Liu-Schiaffini et al.,
2024; Lanthaler et al., 2024), we adopt 2D Kolmogorov Flow, which is a form of Navier-Stokes PDE, as one
of the test cases.

∂u

∂t
+ u · ∇u− 1

Re
∆u = −∇p + sin(ny)x̂ , ∇ · u = 0, on [0, 2π]2 × (0,∞) (7)

Reynolds number forcing term; (n=4)

We use the dataset configuration of Li et al. (2022a) for Re5000 that exhibits high-frequency structures due
to the flow being fully turbulent. It consists of 100 samples, each with a spatial and temporal resolution of
128×128 and 500 snapshots, respectively. As with George et al. (2024), we exclude the first 100 timesteps to
let the trajectories reach the attractor, obtaining a total of 40,000 pairs of samples, out of which we use 36K
input-output pairs for training and 4K for testing.

B.2 2D Compressible Navier-Stokes (CNS)

In order to study a problem exhibiting turbulence and also capable of describing shock wave formation and
propagation, we experiment with the 2D CNS equations (Eq. 8a to 8c) from PDEBench (Takamoto et al.,
2022). More specifically, we use the sonic regime dataset (Mach=1.0) where the initial conditions comprise
turbulent velocity with uniform mass density and pressure, and the boundary conditions are periodic.

∂tρ +∇ · ( ρ v) = 0, (8a)

ρ(∂tv + v · ∇v) = −∇p + η△v + ( ζ +
η

3 )∇(∇ · v), (8b)

∂t(ϵ + ρv2

2 ) +∇ · [( p + ϵ + ρv2

2 )v− v · σ′ ] = 0,

mass density (mass per unit volume) shear viscosity

bulk viscosity

pressure

viscous stress tensorinternal energy
(8c)

The dataset (Mach=1.0) contains 1000 trajectories, each comprising 21 timesteps. Following the data split of
the PDEBench∗ repository, we use 900 samples for training and the rest for testing. To facilitate the 1-step
training and testing tasks, we construct the input-output pairs by slicing the solution fields (i.e., density,
pressure, velocity-x, and velocity-y) at successive timesteps along the length of the trajectory, yielding 18K
samples for training and 2K for testing. Due to the high spatial resolution of the data of 512 × 512, we
subsample it to 256× 256 throughout our experiments. However, we use the full spatial resolution to evaluate
spatial ZSSR capabilities.

∗https://github.com/pdebench/PDEBench
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B.3 2D Wave Equation (Poseidon)

As an additional challenging PDE problem modeling a different physical phenomenon of the propagation
of acoustic waves through a spatially varying medium, we consider the time-dependent 2D Wave Equa-
tion, specifically the so-called Wave-Gauss, from the PDEgym†† benchmark of Poseidon (Herde et al.,
2024).

∂2u(x, y, t)
∂t2 − ( c(x, y) )2

(
∂2u(x, y, t)

∂x2 + ∂2u(x, y, t)
∂y2

)
= 0, in D × (0, T ) (9)

spatially varying propagation field

The initial condition u0(x, y) of the displacement u, and the propagation field c(x, y) are both generated
using a sum of several Gaussians, and hence the name.

u0(x, y) =
n∑

i=1
gi(x, y), x, y ∈ (0, 1)

gi(x, y) = exp
(
− (xc,i − x)2 + (yc,i − y)2

2s2
i

)
, x, y ∈ (0, 1)

where si is the standard deviation of the ith Gaussian in the propagation field.

c(x, y) = c0 +
4∑

i=1
fi(x, y), x, y ∈ (0, 1)

fi(x, y) = vi · exp
(
− (xi + dxi − x)2 + (yi + dyi − y)2

2σ2
i

)
, x, y ∈ (0, 1)

where vi and σi are the amplitude and standard deviation of the ith Gaussian, respectively.

The dataset has a total of 10,512 trajectories of 16 timesteps each, with a spatial resolution of 128× 128, of
which we use 10,212 trajectories for training, 60 trajectories for validation, and 240 trajectories for testing,
following the data split provided by the authors. Since we perform 1-step training and evaluation, we construct
input-output pairs by sampling subsequent timesteps in the length of the trajectory, yielding us 153.18K
training, 900 validation, and 3.6K testing sample pairs. The autoregressive rollout is evaluated against the
full trajectory length by predicting one future timestep at a time.

B.4 Compressible Euler four-quadrant Riemann problem 2D

In order to test the capabilities of LOGLO-FNO in modeling shock waves and discontinuities, we consider
the highly challenging Compressible Euler four-quadrant Riemann problem 2D from Poseidon (Herde et al.,
2024). The four-quadrant Riemann problem is a generalization of the Sod shock tube to 2D space.

Di,j =
{

(x, y) ∈ T2 | i− 1
p
≤ x <

i

p
,

j − 1
p
≤ y <

j

p

}
,

††https://camlab-ethz.github.io/poseidon/#Time-dependent
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where T2 is the 2D torus, and considering a unit square D = [0, 1]2, it can be divided into 2 × 2 square
subdomains when p = 2. The underlying solution operator S(t, ρ0, v0

x,y, p0) = [ρ(t), vx,y(t), p(t)] solving the
compressible Euler equations with periodic boundary conditions, has four fields, viz. density, pressure, and
velocity.

The dataset consists of 10k trajectories, with each sample containing 21 snapshots at a spatial resolution
of 128 × 128. Following the pre-defined train/val/test split of Herde et al. (2024), we use the initial 9640
trajectories for training, the next 120 for validation, and the ultimate 240 for testing. As with other PDE
problems we consider, we slice successive timesteps as input-output pairs starting from the initial condition
of a trajectory. This yields us 192.8k training, 2.4k validation, and 4.8k testing data pairs.

B.5 2D Diffusion-Reaction (PDEBench)

2D Diffusion-Reaction (Takamoto et al., 2022) is a challenging SciML benchmark problem, modeling biological
pattern formation. It is challenging because of the nonlinear coupling of the solution variables, viz. activator
u(x,y,t) and inhibitor v(x,y,t) from the time-dependent PDE,

∂u

∂t
= Du∂xxu + Du∂yyu + Ru(u, v), ∂v

∂t
= Dv∂xxv + Dv∂yyv + Rv(u, v), (−1, 1)2 × (0, 5] (10)

where Du and Dv are diffusion coefficients for the activator and inhibitor, respectively, and the reaction
functions Ru and Rv in Eqn. 10 are defined by the Fitzhugh-Nagumo equations as,

Ru(u, v) = u− u3 − k − v, Rv(u, v) = u− v, (11)

The simulation data is generated by setting Du = 1 · 10−3, Dv = 5 · 10−3, and k = 5 · 10−3 with no-flow
Neumann boundary condition. The training and test sets consist of 900 and 100 trajectories, respectively,
where each simulation is of shape (128 × 128 × 101 × 2), indicating the solutions for 101 timesteps and a
channel each for the activator (u) and inhibitor (v).

B.6 3D Turbulent Radiative Mixing Layers (TRL3D)

In three-dimensional astrophysical environments, dense cold gas clouds (the “cold phase”) move through a
hotter, diffuse medium (the “hot phase”), generating turbulent mixing at their interfaces. This 3D turbulent
mixing produces a multiscale intermediate-temperature layer, where gas rapidly cools radiatively due to the
enhanced cooling efficiency at intermediate temperatures. As energy is lost via photon emission, the mixed
gas condenses and accretes onto the cold phase.

• Growth vs. Dissolution of Cold Clumps

– When radiative cooling dominates turbulent mixing (tcool ≪ tmix), the cold phase grows as
mixed gas rapidly cools and accretes onto cold clouds.

– When mixing dominates (tcool ≫ tmix), the cold phase evaporates into the hot medium.

• Cooling-Mass Transfer Relation: The volume-integrated cooling rate Ėcool and mass transfer rate Ṁ
from hot to cold phases scale as

Ėcool ∝ Ṁ ∝ v
3/4
rel t

−1/4
cool ,

where vrel is the 3D relative velocity between phases, and tcool is the cooling timescale.

These 3D simulations explicitly model the competition between turbulent mixing (driven by shear, Kelvin-
Helmholtz Instabilities (KHI), and turbulence) and radiative cooling, providing a more complete picture of
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multiphase gas dynamics in astrophysical environments (e.g., galactic halos, stellar winds, or the interstellar
medium) (Fielding et al., 2020). The equations underlying these simulations are given by Ohana et al. (2024),

∂ρ

∂t
+∇ · ( ρ v ) = 0

mass density

velocity field

∂ρv
∂t

+∇ · ( ρv⊗ v + P ) = 0

momentum flux tensor

pressure tensor

∂E

∂t
+∇ ·

(
(E + P )v

)
= − E

tcool
cooling timescale

E = P/( γ − 1) where γ = 5
3

adiabatic index
( 5

3 for monatomic gas)

C Baseline Neural Operator Models

We choose the following list of six diverse, competitive, and state-of-the-art baselines.

C.1 Modern U-Net

We benchmark the modern version of U-Net (https://github.com/pdearena/pdearena/tree/main/
pdearena/modules) from PDEArena (Gupta & Brandstetter, 2023). Considering that we do not focus
on testing the generalization capabilities of neural operators on a diverse set of PDE parameters, the pa-
rameter conditioning is skipped. The U-Net architecture models multi-scale spatio-temporal phenomena
through a series of downsampling and an equal number of upsampling blocks, with the skip-connections
passing information from the downsampling to the upsampling pass. We employ four levels of downsampling
and set the channel multipliers to (1, 2, 2, 3, 4) to maintain parameter parity with other baselines. Following
prior studies (Lippe et al., 2023), the network directly predicts the residual to the next step instead of the
actual solution, and then we down weight this output with the factor 3

10 . Note that this setting improves the
results of the modern U-Net model on Kolmogorov Flow significantly (1-step nRMSE Rel. % Diff of 22%)
compared to the reported results of NO-LIDK (Liu-Schiaffini et al., 2024) and hence is a strong baseline.
The hyperparameters are listed in Appendix O.1.

C.2 FNO: Fourier Neural Operators

As the original FNO architecture (Li et al., 2021) has been improved and optimized over the years, we utilize the
current state-of-the-art implementation of FNO (https://github.com/neuraloperator/neuraloperator)
from Kossaifi et al. (2024a) for Kolmogorov Flow 2D, CNS Turb 2D, Wave-Gauss 2D, and Compressible
Euler four-quadrant Riemann problem 2D PDEs. However, we omitted tensor factorization techniques in
our experiments so as to be able to directly compare our results with NO-LIDK (Liu-Schiaffini et al., 2024),
which was also devoid of any such data compression strategies. We use the implementation of Takamoto
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et al. (2022) for the Diffusion-Reaction 2D problem following Liu-Schiaffini et al. (2024) for a fair comparison.
The hyperparameters are provided in Appendix O.2.

C.3 F-FNO: Factorized Fourier Neural Operators

Tran et al. (2023) propose to improve the original FNO architecture of Li et al. (2021) by factorizing the
FFT computation for data with spatial dimensions of two or greater, among other contributions such as
skip connections, Markov assumption, Gaussian noise, cosine learning rate schedule, and hence the model
Factorized FNO. The factorization leads to a massive drop in the number of trainable parameters, resulting
in a lightweight and efficient model. Therefore, we use this as one of the baselines. Having borrowed their
open-source implementation (https://github.com/alasdairtran/fourierflow) and adapted to our PDE
problems, we provide the hyperparameters we use in Appendix O.3.

C.4 U-FNO: An Enhanced FNO for Multiphase Flow

Wen et al. (2022) propose U-FNO as an improved version of FNO specifically targeted for modeling
multiphase flows. The network consists of six layers in total, three of which are standard Fourier layers
from Li et al. (2021) and three UNet layers added to the Fourier layers. We adapt the open-source
implementation (https://github.com/gegewen/ufno) provided by Wen et al. (2022) for 3D spatial data to
our experiments on 2D spatial data. We tune the model hyperparameters, viz., learning rate, modes, and
channel dimension, to approximately match the number of trainable parameters as the other baselines while
also reaching a competitive accuracy. The full set of hyperparameters is provided in Appendix O.6.

C.5 LSM: Latent Spectral Models

Wu et al. (2023) introduce a multi-scale neural operator architecture with the use of a hierarchical projection
network mapping the high-dimensional input space into latent dimensions and propose to model the dynamics
in this low-dimensional latent space. The essential component of LSM is the so-called Neural Spectral Block,
which consists of an encode-process-decode style of processing. Considering the robustness of MSE to LSM’s
hyperparameters (cf. Appendix G in Wu et al. (2023)), such as scales, number of latent tokens, and number
of basis operators, we use 5 scales, 4 latent tokens, and 12 basis operators in the hierarchical projection
network. This yields 64, 128, 256, 512, and 512 channels for the five scales in question, starting with the
full spatial resolution and initial channel dimensions of 64 for the 2D Kolmogorov Flow, CNS Turb 2D, and
Wave-Gauss 2D problems. As for the Diffusion-Reaction 2D PDE, we use the initial channel dimensions of
32. Therefore, the channel dimensions for the five scales starting with the full incoming spatial resolution
would be 32, 64, 128, 256, and 256, respectively. The other hyperparameters are provided in Appendix O.4.

C.6 Transolver: Fast Transformer Solver for PDEs on General Geometries

Wu et al. (2024) design a transformer-based neural operator model, namely Transolver, to solve PDEs on
both regular and irregular domains. The idea stems from the observation that self-attention over individual
mesh points is unnecessary, expensive, and not scalable because it is not uncommon to have real-world data
spanning tens of millions of points or higher, resulting from the discretization of the continuous physical
fields. Towards this end, Transolver introduces a so-called ‘Physics Attention’ mechanism where the mesh
points belonging to similar physical states are grouped into slices and the self-attention is computed over
these slices. The resultant model achieves a near-linear complexity and scales to reasonably sized mesh
points (e.g., 16,384 – 128×128). Therefore, to include a transformer-based model in the baselines, we
benchmark this model on the 2D Kolmogorov Flow, CNS Turb 2D, Wave-Gauss 2D, and Diffusion-Reaction
2D PDEs by adapting the implementation provided in https://github.com/thuml/Transolver/tree/
main/PDE-Solving-StandardBenchmark. However, we note that Transolver needs an extended training
time of 500 epochs for convergence on the challenging Kolmogorov Flow problem, while the other baselines
converge to an optimal loss value in just 136 epochs. The model architecture and training hyperparameters
are listed in Appendix O.5.
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C.7 NO-LIDK: Neural Operators with Localized Integral and Differential Kernels

Noticing the deficiencies of FNO in learning local and finer scale features due to the absence of support for
local receptive fields, Liu-Schiaffini et al. (2024) propose two additional discretization-invariant convolutional
layers (one for differential operator and another for local integral kernel operator) that can be placed in parallel
to the (global) Fourier layers of (spherical) FNO. These additional pathways enrich the architecture with
capabilities for local convolutions, which are realized through localized integral and differential kernels. The
authors test the efficacy of these layers by conducting experiments on a wide range of two-dimensional PDE
problems, such as Darcy Flow, turbulent Navier-Stokes, and Diffusion-Reaction on the 2D planar domain, and
Shallow Water Equations on the spherical computational domain. Their results significantly improve over the
baseline FNO, ranging from 34% to 87% in terms of nRMSE, demonstrating the effectiveness and importance
of these local operations in operator learning. Since our work also achieves local convolutions, albeit by
decomposing the input spatial resolution into subdomains (e.g., patches), we consider the NO-LIDK model as
a closely related and competitive baseline. Considering that we report additional evaluation metrics, we train
three variants of NO-LIDK (namely, (i) NO-LIDK∗ denoting only the presence of local integral kernel layers,
(ii) NO-LIDK⋄ representing only the existence of differential kernel layers, and (iii) NO-LIDK† indicating
the use of both local integral kernel layers and differential kernel layers, in addition to the global FNO
branch) on the INS Kolmogorov Flow 2D dataset and reproduce the reported results. Following the authors’
suggestion, we use a radius cutoff of 0.05π for the local integral kernel layers and set the domain length to
[2π, 2π] (cf. Eqn 7). We borrow the other hyperparameters, such as the number of Fourier modes, hidden
channels, epochs, learning rate, scheduler, and scheduler steps, for each of the model variants from their
paper. The specific values used for each of these are provided in Appendix O.7, which also lists the training
and model configuration settings, including the radius cutoff values for the CNS Turb 2D, Wave-Gauss 2D,
and Compressible Euler four-quadrant Riemann problem 2D PDEs..

D Spectral Space Loss Functions

In this section, we focus on two loss functions that operate entirely in the frequency domain.

D.1 Spectral Patch High-frequency Emphasized Residual Energy (SPHERE) Loss

In congruence with the local branch of LOGLO-FNO, we propose a spectral loss localized to each of the
sub-domains Pm of the domain D (§3.1).

Let upred and ugt be the predictions and ground truths of non-overlapping patches of the solution in the
domain, respectively. First, we compute the residual in the physical space: ∆u = upred − ugt. Second,
these residuals of patches are transformed into the frequency domain using 2D DFT realized through FFT:
∆û(kx, ky) = F(∆u).

The SPHERE loss is then computed as the weighted squared magnitude of Fourier coefficients as

SPHERE =W(kx, ky)⊙ |∆û(kx, ky)|2 (12)

where the weight function W(kx, ky) emphasizing high-frequencies is defined as,

W(kx, ky) = 1 + α

(
FM

max(FM) + ϵ

)p

, FM =
√

k2
x + k2

y (13)

whereby α and p control the emphasis on high-frequencies. For our experiments, we use p = 2.

The loss is finally mean or sum reduced over the channel dimensions and the number of patches, and added
to the MSE loss during training.
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� �
1 def compute_frequency_weights (alpha , p, psize ):
2 kx = torch .fft. fftfreq (psize , d =1.0) . reshape (1, 1, 1, psize )
3 ky = torch .fft. fftfreq (psize , d =1.0) . reshape (1, 1, psize , 1)
4 freq_magnitude = torch .sqrt(kx **2 + ky **2)
5

6 # Normalize and define frequency weighting function
7 freq_magnitude /= ( freq_magnitude .max () + 1e -8)
8 return 1 + alpha * ( freq_magnitude ** p)
9

10 def extract_patches (x, psize ):
11 # Reshape to (nb*nt*nc , 1, nx , ny) to apply unfold over spatial dims
12 nb , nx , ny , nt , nc = x. shape
13 x_reshp = x. permute (0, 3, 4, 1, 2). reshape (nb * nt * nc , 1, nx , ny)
14

15 # Extract patches using unfold
16 patches = F. unfold (x_reshp , kernel_size =psize , stride = psize )
17

18 # Reshape back to (nb , nt , nc , num_patches , patch_size , patch_size )
19 num_ptch = patches . shape [ -1]
20 patches = patches .view(nb , nt , nc , num_ptch , psize , psize )
21

22 return patches
23

24 def SPHERELoss (preds , target , alpha , p, patch_size , reduction ="mean"):
25 # extract non - overlapping patches
26 pred_patches = extract_patches (pred , patch_size )
27 target_patches = extract_patches (target , patch_size )
28

29 # Compute difference (i.e., error ) in real space once
30 diff_patches = pred_patches - target_patches
31

32 # Use vmap to apply FFT over temporal and channel dims
33 def fft_and_weight (diff):
34 diff_fft = torch .fft.fft2(diff , norm=" ortho ")
35 weight = compute_frequency_weights (alpha , p, patch_size )
36 return weight * ( diff_fft .real ** 2 + diff_fft .imag ** 2)
37

38 # Apply vmap once along both (nt , nc) dimensions
39 fft_loss = torch .vmap(
40 torch .vmap( fft_and_weight , in_dims =1) ,
41 in_dims =2
42 )( diff_patches )
43

44 # Aggregate spectral loss over all patches , time , and channels
45 spect_loss = fft_loss .mean(dim =(1 , 2, 3))
46

47 if reduction == "mean":
48 return spect_loss .mean ()
49 else:
50 return spect_loss .sum ()� �

Unlike the function compute_frequency_weights(...) shown here for expediency, in practice, we compute the
weight only once per patch size and cache it for efficiency reasons.

D.2 Radially Binned Spectral Energy Errors as a Frequency-aware Loss

We elaborate on the frequency-aware loss term based on radially binning of energy spectra errors introduced
in §3.2 by considering a 2D spatiotemporal domain.

The detailed procedure to compute the frequency loss for 2D spatial data is shown in the algorithm below.
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Algorithm 1 Frequency-aware Loss based on Radially Binned Spectral Errors
1: Input: Prediction Ỹ ∈ RNb×Nc×Nx×Ny×Nt and Target Y ∈ RNb×Nc×Nx×Ny×Nt , Nx and Ny be the

spatial resolutions, Nb the batch size, Nt the total timesteps, Nc the number of physical fields, Lx and
Ly the length of the spatial domain along the respective axes of the 2D domain, and x and y be the 2D
mesh grid of frequency indices. Let iL and iH be the radial bin cutoff indices, i.e., iL is the count of
low-frequency bins, and iH is the count of low+mid-frequency bins.

// kx, ky below are frequency domain indices (e.g., kx ∈ [0, Nx/2− 1], ky ∈ [0, Ny/2− 1])
2: EF (b, c, kx, ky, t)← | F(Yb,c,t − Ỹb,c,t)(kx, ky) |2 {Energy Spectra Error (ESE)}
3: R(kx, ky)←

⌊√
x2 + y2

⌋
{Binned radial distances}

4: M← maxkx,ky (R(kx, ky)) {Max radius}
5: Srad(b, c, r, t) ←

∑
(kx,ky) s.t.
R(kx,ky)=r

EF (b, c, kx, ky, t) for r = 0 . . .M {Sum ESE into bin r, per b, c, t}

6: Srad(c, r, t)← meanb(Srad(b, c, r, t)) {Average summed ESE per bin over batch}

7: EF (c, r, t)←
√

Srad(c, r, t) ·
(

Lx

Nx

)
·
(

Ly

Ny

)
{Normalize 1D radial error spectrum}

8: errlow
F (c, t)← meanr∈[0,iL−1](EF (c, r, t)) {Low-frequency band errors}

9: errmid
F (c, t)← meanr∈[iL,iH−1](EF (c, r, t)) {Mid-frequency band errors}

10: errhigh
F (c, t)← meanr∈[iH,M](EF (c, r, t)) {High-frequency band errors}

The concrete steps are listed in the PyTorch-style pseudocode below. Since we use torch.fft.fftn in the
‘backward’ normalization mode, no normalization term is included. Let preds and target be the predictions
and ground truth, respectively, and the 2D spatial data has a single channel and timestep. The computation
for multi-channel and multi-timestep data is straightforward since they are obtained independently for each
physical variable and timestep in the input.� �

1 def RadialBinnedSpectralLoss (preds , target ):
2 # input data shape and params
3 nb , nc , nx , ny , nt = target .size ()
4 iLow , iHigh = 4, 12
5 Lx , Ly = 1.0 , 1.0
6

7 # Compute error in Fourier space
8 err_phys = preds - target
9 err_fft = torch .fft.fftn(err_phys , dim =[2 , 3])

10 err_fft_sq = torch .abs( err_fft )**2
11 err_fft_sq_h = err_fft_sq [Ellipsis , :nx //2 , :ny //2 , :]
12

13 # Create radial indices
14 x = torch . arange (nx //2)
15 y = torch . arange (ny //2)
16 X, Y = torch . meshgrid (x, y, indexing ="ij")
17 radii = torch .sqrt(X**2 + Y**2). floor ().to( torch .int) # Radial dist.
18 max_radius = int( torch .max( radii ))
19

20 # flatten radii for binary mask
21 radii_flat = radii . flatten () # (nx //2 * ny //2)
22

23 # Spatially flatten Fourier space error ; (nb , nc , nx //2 * ny //2 , nt)
24 err_fft_sq_flat = err_fft_sq_h . contiguous (). reshape (nb , nc , -1, nt)
25

26 # initialize output tensor to hold the Fourier error
27 # for each radial bin at distance r from the origin
28 err_F_vect_full = torch . zeros (nb , nc , max_radius + 1, nt)
29

30 # Apply ‘index_add_ ‘ for all radii and accumulate the errors
31 valid_r = radii_flat <= max_radius # binary mask to find valid radii
32
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33 # Sum for all valid radial indices
34 err_F_vect_full . index_add_ (2,
35 radii_flat [ valid_r ],
36 err_fft_sq_flat [:, :, valid_r ]
37 )
38

39 # Normalize & compute mean over batch ; => (nc , min(nx //2 , ny //2) , nt)
40 nrm = (Lx/nx) * (Ly/ny)
41 _err_F = torch .sqrt( torch .mean( err_F_vect_full , dim =0)) * nrm
42

43 # Classify Fourier space error into three bands
44 err_F = torch . zeros ([nc , 3, nt ])
45 err_F [:, 0] += torch .mean( _err_F [:, :iLow], dim =1) # low freqs
46 err_F [:, 1] += torch .mean( _err_F [:, iLow: iHigh ], dim =1) # mid freqs
47 err_F [:, 2] += torch .mean( _err_F [:, iHigh :], dim =1) # high freqs
48

49 # mean or sum over channels and time dimensions
50 if reduction == "mean":
51 freq_loss = torch .mean(err_F , dim =[0 , -1])
52 elif reduction == "sum":
53 freq_loss = torch .sum(err_F , dim =[0 , -1])� �

D.3 Visualizing Radially Binned Energy of Spectral Errors of Baselines and LOGLO-FNO

In this section, we provide a visualization of the proposed radially binned energy of the spectral errors for 2D
spatial data. In the interest of providing an uncluttered representation, we only show every 2nd radial bin in
the Figures 6, 7, 8, and 9.
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Figure 6: Visualization of the radially binned energy of spectral errors of baseline FNO predictions on a
random trajectory and timestep from the test set of Kolmogorov Flow (Re = 5k) (Li et al., 2022b). The left
plot depicts the radial bins and the location of the boundaries of mid and high-frequency groups. Note that
we show only every other radial bin. The right plot visualizes the radially binned spectral error as a line
plot over the radial distance from the DC component. The dashed blue and green vertical lines indicate the
starting locations of the mid and high-frequency regions, respectively.
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Figure 7: Visualization of the radially binned energy of spectral errors of LOGLO-FNO predictions on the
same random trajectory and timestep (as that of the one for baseline FNO) from the test set of Kolmogorov
Flow (Re = 5k) (Li et al., 2022b). The left plot depicts the radial bins and the location of the boundaries of
mid and high-frequency groups. Note that we show only every other radial bin. The right plot visualizes the
radially binned spectral error as a line plot over the radial distance from the DC component. The dashed blue
and green vertical lines indicate the starting locations of the mid and high-frequency regions, respectively.
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Figure 8: Visualization of the radially binned energy of spectral errors of NO-LIDK predictions on the same
random trajectory and timestep (as that of the one for baseline FNO) from the test set of Kolmogorov Flow
(Re = 5k) (Li et al., 2022b). The left plot depicts the radial bins and the location of the boundaries of mid
and high-frequency groups. Note that we show only every other radial bin. The right plot visualizes the
radially binned spectral error as a line plot over the radial distance from the DC component. The dashed blue
and green vertical lines indicate the starting locations of the mid and high-frequency regions, respectively.
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Figure 9: Visualization of the radially binned energy of spectral errors of modern U-Net predictions on the
same random trajectory and timestep (as that of the one for baseline FNO) from the test set of Kolmogorov
Flow (Re = 5k) (Li et al., 2022b). The left plot depicts the radial bins and the location of the boundaries of
mid and high-frequency groups. Note that we show only every other radial bin. The right plot visualizes the
radially binned spectral error as a line plot over the radial distance from the DC component. The dashed blue
and green vertical lines indicate the starting locations of the mid and high-frequency regions, respectively.
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Figure 10: Visualization of the radially binned energy of spectral errors of LSM predictions on the same
random trajectory and timestep (as that of the one for baseline FNO) from the test set of Kolmogorov Flow
(Re = 5k) (Li et al., 2022b). The left plot depicts the radial bins and the location of the boundaries of mid
and high-frequency groups. Note that we show only every other radial bin. The right plot visualizes the
radially binned spectral error as a line plot over the radial distance from the DC component. The dashed blue
and green vertical lines indicate the starting locations of the mid and high-frequency regions, respectively.
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E High-Frequency Feature Adaptive Gaussian Noise

In many machine learning and signal processing tasks, high-frequency (HF) features often capture fine-grained
details or noise-like patterns in the data. Introducing controlled noise based on these features during training
can improve model robustness, prevent overfitting, and enhance generalization. It has been shown in prior
surrogate modeling investigations that adding a small amount of Gaussian noise helps with long rollouts (Pfaff
et al., 2021; Stachenfeld et al., 2022) and stabilized training (Tran et al., 2023). However, traditional Gaussian
noise, which is static and independent of the input data, may not adequately capture the variability inherent
in turbulent PDE and physics simulation data rich in high frequencies. To address this shortcoming, we
propose a novel method to generate dynamic Gaussian noise that adapts to the statistical properties of the
input HF features. Specifically, we obtain the high-frequency feature adaptive Gaussian noise by scaling (α)
the standard Gaussian noise N (0, 1) based on the mean (µ) and standard deviation (σ) of the HF features.

Ndynamic = µ + α · σ ·N, N ∼ N (0, 1) (14)

High-Frequency Feature Adaptive Gaussian Noise

Let Xhf ∈ RNb×Nx×Ny×(Nt·Nc) denote the input tensor of HF features, where:

• Nb is the batch size,

• Nx and Ny are the resolutions of the spatial dimensions, and

• Nt ·Nc represents the combined temporal and channel dimensions.

The high-frequency feature adaptive Gaussian noise Ndynamic is then computed as follows:

1. Compute (per sample) Mean (µb) and Standard Deviation (σb) of High-Frequency Features

µb = 1
Nx ·Ny ·Nt ·Nc

Nx∑
i=1

Ny∑
j=1

NtNc∑
k=1

Xhf
b,i,j,k

σb =

√√√√ 1
Nx ·Ny ·Nt ·Nc

Nx∑
i=1

Ny∑
j=1

NtNc∑
k=1

(Xhf
b,i,j,k − µ)2 + ϵ

where ϵ is a small constant added for numerical stability, and µ and σ are obtained by stacking the
per sample statistics along the batch dimension.

2. Generate Standard Gaussian Noise
N ∼ N (0, 1)

3. Scale Noise Dynamically
Ndynamic = µ + α · σ ·N

where α is a small value such as 0.025 and Ndynamic has the same shape as the input Xhf .

Ndynamic can now be added to the batch of inputs to the global and local branches during the training phase
of LOGLO-FNO.
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F Complexity Analysis of Local and Global Spectral Convolutions

F.1 2D Spectral Convolutions

Global branch. FLOPs for FFT and IFFT computations (Cooley & Tukey, 1965) on the full 2D spatial
resolution.

Global Branch FLOPs Calculation for FFT & IFFT in Global Spectral Convolution 2D

Let X ∈ RNb×Nc×Nx×Ny denote the input tensor for the 2D global spectral convolution module, where:

• Nb is the batch size,

• Nx and Ny are the resolutions of the spatial dimensions,

• Nc represents the total number of hidden channels.

FLOPsFFT = 5 ·Nb · Cin ·Nx ·Ny · log2(Nx ·Ny)

FLOPsIFFT = 5 ·Nb · Cout ·Nx ·Ny · log2(Nx ·Ny)

where cin and cout are typically of the same dimension and are referred to as either width or embed-
ding/hidden channel dimension.

Therefore, FFT computation on the global branch with the full 2D spatial resolution has a complexity of
O
(

Nx ·Ny · log2(Nx ·Ny)
)

per channel, making it expensive for large Nx and Ny such as 2048 × 2048 or
higher spatial resolutions.

Local branch. FLOPs for FFT and IFFT computations (Cooley & Tukey, 1965) on the domain decomposed
2D spatial resolution, for instance, with non-overlapping patches.

Local Branch FLOPs Calculation for FFT & IFFT in Local Spectral Convolution 2D

Let X̂ ∈ RNb×Nc×Np×Psize×Psize denote the input tensor for the 2D local spectral convolution module,
where:

• Np is the number of patches obtained by Nx·Ny

P 2
size

,

• Nx and Ny are the resolutions of the spatial dimensions,

• Psize × Psize is the patch size (e.g., 16× 16 ),

• Nc represents the width or the number of hidden channels.

FLOPsFFT = 5 ·Nb · Cin ·Np · Psize · Psize · log2(Psize · Psize)
= 5 ·Nb · Cin ·Nx ·Ny · log2(Psize · Psize)

FLOPsIFFT = 5 ·Nb · Cout ·Np · Psize · Psize · log2(Psize · Psize)
= 5 ·Nb · Cout ·Nx ·Ny · log2(Psize · Psize)

where cin and cout are typically set to be of the same dimension (e.g., 128).

Thus, the FFT and IFFT computations (Cooley & Tukey, 1965) on the local branch operating on the patches
has a computational complexity of O

(
Nx ·Ny · log2(Psize ·Psize)

)
per channel. Since O

(
Nx ·Ny · log2(Psize ·
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Psize)
)
≪ O

(
Nx · Ny · log2(Nx · Ny)

)
in practice, the FFT computation is significantly cheaper in the

local branch. Moreover, it is highly parallelizable when computing FFTs since each patch can be processed
independently, leveraging modern accelerators such as GPUs and TPUs.

F.2 3D Spectral Convolutions

Global branch. FLOPs for FFT and IFFT computations (Cooley & Tukey, 1965) on the full 3D spatial
resolution.

Global Branch FLOPs Calculation for FFT & IFFT in Global Spectral Convolution 3D

Let X ∈ RNb×Nc×Nx×Ny×Nz denote the input tensor for the 3D global spectral convolution module,
where:

• Nb is the batch size,

• Nx, Ny, and Nz are the resolutions of the spatial dimensions,

• Nc represents the total number of hidden channels.

FLOPsFFT = 5 ·Nb · Cin ·Nx ·Ny ·Nz · log2(Nx ·Ny ·Nz)

FLOPsIFFT = 5 ·Nb · Cout ·Nx ·Ny ·Nz · log2(Nx ·Ny ·Nz)

where cin and cout are typically of the same dimension and are referred to as either width or embed-
ding/hidden channel dimension.

Therefore, FFT computation on the global branch with the full 3D spatial resolution has a complexity of
O
(

Nx ·Ny ·Nz · log2(Nx ·Ny ·Nz)
)

per channel, making it highly expensive for large values of Nx, Ny, and
Nz such as 512× 512× 512 or further higher spatial resolutions.

Local branch. FLOPs for FFT and IFFT computations (Cooley & Tukey, 1965) on the domain decomposed
3D spatial resolution, for instance, with non-overlapping patches.
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Local Branch FLOPs Calculation for FFT & IFFT in Local Spectral Convolution 3D

Let X̂ ∈ RNb×Nc×Np×Psize×Psize×Psize denote the input tensor for the 3D local spectral convolution
module, where:

• Np is the number of patches obtained by Nx·Ny·Nz

P 3
size

,

• Nx, Ny, and Nz are the resolutions of the spatial dimensions,

• Psize × Psize × Psize is the patch size (e.g., 16× 16× 16, 32× 32× 32, etc.),

• Nc represents the width or number of hidden channels.

FLOPsFFT = 5 ·Nb · Cin ·Np · Psize · Psize · Psize · log2(Psize · Psize · Psize)
= 5 ·Nb · Cin ·Nx ·Ny ·Nz · log2(Psize · Psize · Psize)

FLOPsIFFT = 5 ·Nb · Cout ·Np · Psize · Psize · Psize · log2(Psize · Psize · Psize)
= 5 ·Nb · Cout ·Nx ·Ny ·Nz · log2(Psize · Psize · Psize)

where cin and cout are typically set to be of the same dimension (e.g., 64, 128, etc.).

Thus, the FFT and IFFT computations (Cooley & Tukey, 1965) on the local branch operating on 3D
patches has a computational complexity of O

(
Nx · Ny · Nz · log2(Psize · Psize · Psize)

)
per channel. Since

O
(

Nx · Ny · Nz · log2(Psize · Psize · Psize)
)
≪ O

(
Nx · Ny · Nz · log2(Nx · Ny · Nz)

)
in practice, the FFT

computation is significantly cheaper in the local branch. Moreover, it is highly parallelizable when computing
FFTs since each patch can be processed independently, leveraging modern accelerators such as GPUs and
TPUs.

G Detailed Quantitative Results and Analysis

G.1 Evaluation Metrics

Following prior research efforts (Takamoto et al., 2022; Wan et al., 2023), we evaluate our models on a wide
range of metrics, viz. RMSE, nRMSE, fRMSE (low, mid, high), MaxError, MELR, and WLR. In addition,
we introduce Rel. % Diff (RPD) to report relative performance improvement w.r.t a baseline. For the sake
of completeness, we explain the computation of the metrics briefly.

G.1.1 Normalized Root Mean Square Error (nRMSE) a.k.a. Normalized L2 a.k.a. Relative L2 Error

The normalized L2 norm of a vector e = (e1, e2, . . . , en)T is given by:

Normalized L2 = ∥e∥2

∥y∥2
=
√∑n

i=1 e2
i√∑n

i=1 y2
i

,

where y = (y1, y2, . . . , yn)T is the reference vector.

The normalized RMSE is defined as:

Normalized RMSE =

√
1
n

∑n
i=1 e2

i√
1
n

∑n
i=1 y2

i

=
√∑n

i=1 e2
i√∑n

i=1 y2
i

36



Under review as submission to TMLR

The factor 1√
n

cancels out in the numerator and denominator, leading to:

Normalized RMSE = Normalized L2.

Given a prediction tensor Ŷ ∈ RNb×Nc×Nx×Ny×Nt and a target tensor Y ∈ RNb×Nc×Nx×Ny×Nt , where
b = 1, . . . , Nb, c = 1, . . . , Nc, x = 1, . . . , Nx, y = 1, . . . , Ny, and t = 1, . . . , Nt. The nRMSE is computed as
follows:

1. Mean Squared Error over the spatial dimensions:

MSEb,c,t = 1
Nx ·Ny

Nx∑
x=1

Ny∑
y=1

(Ŷb,c,x,y,t −Yb,c,x,y,t)2

2. Root Mean Squared Error over the spatial dimensions:

RMSEb,c,t =

√√√√ 1
Nx ·Ny

Nx∑
x=1

Ny∑
y=1

(Ŷb,c,x,y,t −Yb,c,x,y,t)2

3. Normalization Factor:

Normalization Factorb,c,t =

√√√√ 1
Nx ·Ny

Nx∑
x=1

Ny∑
y=1

Y2
b,c,x,y,t

4. Normalized RMSE (nRMSE):

nRMSEb,c,t = RMSEb,c,t

Normalization Factorb,c,t

5. Mean nRMSE over the batch, channel, and temporal dimensions:

nRMSE = 1
Nb ·Nc ·Nt

Nb∑
b=1

Nc∑
c=1

Nt∑
t=1

nRMSEb,c,t

G.1.2 Max Error

Considering 2D spatial data, we can deduce that Takamoto et al. (2022) define the maximum or the worst
case error in the entire test set as,

MaxError = 1
Nc ·Nt

Nc∑
c=1

Nt∑
t=1

(
max
b,x,y

∣∣∣Ŷb,c,x,y,t −Yb,c,x,y,t

∣∣∣)

G.1.3 RMSE at the Boundaries of the Spatial Domain (bRMSE)

Again, taking 2D spatial data as an exemplary case, we write the formula for bRMSE from Takamoto et al.
(2022) as,

1. Compute Sum of Squared Errors (SSE) on the Boundaries of the Spatial Domain:
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% left vertical boundary % right vertical boundary

SSEb,c,t =
Ny∑
y=1

(
Ŷb,c,1,y,t −Yb,c,1,y,t

)2
+

Ny∑
y=1

(
Ŷb,c,Nx,y,t −Yb,c,Nx,y,t

)2
+

Nx∑
x=1

(
Ŷb,c,x,1,t −Yb,c,x,1,t

)2
+

Nx∑
x=1

(
Ŷb,c,x,Ny,t −Yb,c,x,Ny,t

)2

% bottom horizontal boundary % top horizontal boundary

2. Compute Per-Sample Boundary RMSE:

bRMSEb,c,t =
√

SSEb,c,t

2Nx + 2Ny

3. Compute Final bRMSE:

bRMSE = 1
Nb ·Nc ·Nt

Nb∑
b=1

Nc∑
c=1

Nt∑
t=1

bRMSEb,c,t

Or more succinctly put,

bRMSE = 1
NbNcNt

Nb∑
b=1

Nc∑
c=1

Nt∑
t=1

√√√√√ 1
2Nx + 2Ny

Ny∑
y=1

(∆2
b,c,1,y,t + ∆2

b,c,Nx,y,t) +
Nx∑
x=1

(∆2
b,c,x,1,t + ∆2

b,c,x,Ny,t)



where ∆b,c,x,y,t =
(

Ŷb,c,x,y,t −Yb,c,x,y,t

)

G.1.4 RMSE of Conserved Physical Quantities (cRMSE)

We again consider 2D spatial data for illustrative purposes here since computing the same metric for 3D
spatial data is straightforward. Takamoto et al. (2022) define cRMSE as follows.

1. Compute the Error of Spatial Sum (∆S):

For each sample b, channel c, and timestep t, calculate the difference between the spatial sum of the predicted
field and the spatial sum of the target field.

∆S,b,c,t =
Nx∑
x=1

Ny∑
y=1

(
Ŷb,c,x,y,t −Yb,c,x,y,t

)

2. Compute Normalized cRMSE:
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cRMSEc,t = 1
Nx ·Ny

√√√√ 1
Nb

Nb∑
b=1

(∆S,b,c,t)2

3. Compute Final cRMSE:

cRMSE = 1
Nc ·Nt

Nc∑
c=1

Nt∑
t=1

cRMSEc,t

Alternatively, as a one-line expression:

cRMSE = 1
Nc ·Nt ·Nx ·Ny

Nc∑
c=1

Nt∑
t=1

√√√√√ 1
Nb

Nb∑
b=1

 Nx∑
x=1

Ny∑
y=1

(
Ŷb,c,x,y,t −Yb,c,x,y,t

)2

G.1.5 Variance-scaled Root Mean Square Error (vRMSE)

Ohana et al. (2024) introduce vRMSE, which is merely RMSE normalized by the variance of the ground
truth. Considering 3D spatial data,

MSEb,c,t = 1
Nx ·Ny ·Nz

Nx∑
x=1

Ny∑
y=1

Nz∑
z=1

(Ŷb,c,x,y,z,t −Yb,c,x,y,z,t)2

RMSEb,c,t =

√√√√ 1
Nx ·Ny ·Nz

Nx∑
x=1

Ny∑
y=1

Nz∑
z=1

(Ŷb,c,x,y,z,t −Yb,c,x,y,z,t)2

Meanb,c,t = 1
Nx ·Ny ·Nz

Nx∑
x=1

Ny∑
y=1

Nz∑
z=1

Yb,c,x,y,z,t

Varb,c,t = 1
Nx ·Ny ·Nz

Nx∑
x=1

Ny∑
y=1

Nz∑
z=1

(Yb,c,x,y,z,t −Meanb,c,t)2

vRMSE = 1
Nb ·Nc ·Nt

Nb∑
b=1

Nc∑
c=1

Nt∑
t=1

(
RMSEb,c,t√
Varb,c,t + ϵ

)

vRMSE = 1
Nb ·Nc ·Nt

Nb∑
b=1

Nc∑
c=1

Nt∑
t=1

(√
MSEb,c,t

Varb,c,t + ϵ

)

where the mean and variance are computed over the spatial dimensions in Meanb,c,t and Varb,c,t, respectively.
In other words, the mean and variance are computed for each sample, timestep, and channel independently.
The vRMSE score is finally computed by taking a mean over the batch, channel, and temporal dimensions,
yielding a single scalar value.
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G.1.6 Mean Energy Log Ratio (MELR) and Weighted Log Ratio (WLR)

Let K be the set of wavenumbers (frequency bins) being evaluated, |K| the cardinality of K, and Epred(k)
and Eref(k) the energy of the predicted and reference (i.e., ground truth) spectrum at wavenumber k.

Wan et al. (2023) defines the MELR metric as,

MELR =
∑
k∈K

wk

∣∣∣∣log
(

Epred(k)
Eref(k)

)∣∣∣∣ , (15)

with the energy spectrum being defined as,

E(k) =
∑

|k|=k

|û(k)|2 =
∑

|k|=k

∣∣∣∣∣∑
i

u(xi) exp(−j2πk · xi/L)
∣∣∣∣∣
2

(16)

where L is the length of the physical domain, u is the snapshot of the system state, û(k) is the Fourier coefficient
at wave-vector k, k is the magnitude of the wave-vector k (i.e., for 2D spatial data, k = |k| =

√
k2

x + k2
y).

Treating each wavenumber’s log ratio equally and assuming Nb samples in the test set, we arrive at the
formula for the unweighted MELR or simply MELR,

MELR = 1
Nb

Nb∑
b=1

(
1
|K|

∑
k∈K

∣∣∣∣∣log
(

E
(b)
pred(k)

E
(b)
ref (k)

)∣∣∣∣∣
)

(17)

WLR is then the weighted version of MELR with the weights wk computed using the reference energy
spectra,

WLR = 1
Nb

Nb∑
b=1

(∑
k∈K

(
E

(b)
ref (k)∑

j∈K E
(b)
ref (j)

)∣∣∣∣∣log
(

E
(b)
pred(k)

E
(b)
ref (k)

)∣∣∣∣∣
)

(18)

G.1.7 Relative Percentage Difference (Rel. % Diff)

We report Rel. % Diff, which indicates the relative improvement (negative value) or degradation (positive
value) of errors over the baseline. Denote the proposed model’s score of a chosen evaluation metric (e.g.,
fRMSE) as p̂ and the baseline model’s score as b̂. Then, the Rel. % Diff is defined as,

Rel. % Diff := (p̂− b̂)
b̂

× 100 (19)
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G.2 Detailed Quantitative Results with Full Set of Metrics

G.2.1 1-step Training and Evaluation

To expand on the abridged results presented in the main paper, we present the results with the full set of
evaluation metrics for the setting of 1-step training of baselines and our proposed LOGLO-FNO model on
four 2D PDE problems and one 3D PDE in the sections that follow.

Kolmogorov Flow 2D. Supplementing the results in the main paper, Table 6 shows the full set of
evaluation metrics for 1-step and 5-step AR rollouts on Kolmogorov Flow test dataset.

Table 6: 1-step and 5-step AR evaluation of LOGLO-FNO compared with SOTA baselines on the test set of
2D Kolmogorov Flow (Li et al., 2022b). Rel. % Diff indicates improvement (-) or degradation (+) with
respect to FNO. LOGLO-FNO uses 40 and (16, 9) modes in the global and local branches, respectively,
whereas the width is set as 65. NO-LIDK∗ denotes using only localized integral kernel, NO-LIDK⋄ means
only differential kernel, and NO-LIDK† means employing both. Transolver⋆ indicates a longer training time
of the model for 500 epochs due to convergence issues at shorter training epochs of 136.

Model RMSE (↓) nRMSE bRMSE cRMSE fRMSE(L) fRMSE(M) fRMSE(H) MaxError (↓) MELR (↓) WLR (↓)
1-step Evaluation

U-Net 7.17 · 10−1 1.3 · 10−1 1.47 · 100 1.74 · 10−2 2.24 · 10−2 3.57 · 10−2 4.39 · 10−2 2.01 · 101 1.64 · 10−1 1.48 · 10−2

Transolver⋆ 7.69 · 10−1 1.39 · 10−1 1.42 · 100 7.65 · 10−3 2.74 · 10−2 4.48 · 10−2 4.65 · 10−2 1.52 · 101 1.43 · 10−1 1.83 · 10−2

FNO 8.08 ·10−1 1.47 ·10−1 7.94 ·10−1 1.1 ·10−2 1.36 ·10−2 2.05 ·10−2 4.7 ·10−2 1.46 ·101 5.2 ·10−1 2.83 ·10−2

F-FNO 7.53 ·10−1 1.37 ·10−1 7.41 ·10−1 1.5 ·10−2 1.49 ·10−2 2.15 ·10−2 4.36 ·10−2 1.42 ·101 4.74 ·10−1 2.28 ·10−2

LSM 7.49 · 10−1 1.36 · 10−1 1.47 · 100 1.36 · 10−2 2.59 · 10−2 4.42 · 10−2 4.64 · 10−2 2.05 · 101 1.43 · 10−1 1.68 · 10−2

U-FNO 6.13 · 10−1 1.12 · 10−1 1.0 · 100 7.09 · 10−3 1.27 · 10−2 2.22 · 10−2 3.71 · 10−2 1.64 · 101 1.38 · 10−1 1.09 · 10−2

NO-LIDK∗ 7.25 · 10−1 1.33 · 10−1 1.12 · 100 9.05 · 10−3 1.45 · 10−2 2.69 · 10−2 4.55 · 10−2 1.65 · 101 1.85 · 10−1 1.54 · 10−2

NO-LIDK⋄ 6.13 · 10−1 1.11 · 10−1 5.95 · 10−1 1.46 · 10−2 1.65 · 10−2 2.29 · 10−2 3.91 · 10−2 1.5 · 101 9.57 · 10−2 1.1 · 10−2

NO-LIDK† 5.86 · 10−1 1.07 · 10−1 5.64 · 10−1 1.05 · 10−2 1.44 · 10−2 2.46 · 10−2 3.82 · 10−2 1.47 · 101 7.11 · 10−2 1.0 · 10−2

LOGLO-FNO 5.89 · 10−1 1.07 · 10−1 6.74 · 10−1 7.23 · 10−3 1.21 · 10−2 1.81 · 10−2 3.54 · 10−2 1.33 · 101 1.29 · 10−1 1.06 · 10−2

Rel. % Diff -27.1 % -27.21 % -15.12 % -34.31 % -11.22 % -11.88 % -24.64 % -8.99 % -75.12 % -62.63 %

5-step Autoregressive Evaluation
U-Net 1.51 · 100 2.65 · 10−1 2.31 · 100 5.39 · 10−2 6.53 · 10−2 1.04 · 10−1 9.38 · 10−2 1.81 · 101 2.13 · 10−1 3.52 · 10−2

Transolver⋆ 1.91 · 100 3.36 · 10−1 2.59 · 100 6.12 · 10−3 7.44 · 10−2 1.51 · 10−1 1.18 · 10−1 2.36 · 101 2.45 · 10−1 4.92 · 10−2

FNO 1.33 ·100 2.35 ·10−1 1.34 ·100 1.46 ·10−2 3.37 ·10−2 5.80 ·10−2 8.37 ·10−2 1.60 ·101 6.18 ·10−1 4.93 ·10−2

F-FNO 1.29 ·100 2.28 ·10−1 1.27 ·100 2.28 ·10−2 3.60 ·10−2 5.52 ·10−2 8.12 ·10−2 1.50 ·101 5.37 ·10−1 3.99 ·10−2

LSM 1.81 · 100 3.18 · 10−1 2.76 · 100 3.87 · 10−2 7.6 · 10−2 1.44 · 10−1 1.12 · 10−1 2.08 · 101 2.04 · 10−1 4.39 · 10−2

U-FNO 1.15 · 100 2.03 · 10−1 1.45 · 100 6.3 · 10−3 2.69 · 10−2 5.33 · 10−2 7.35 · 10−2 1.56 · 101 2.01 · 10−1 2.51 · 10−2

NO-LIDK∗ 1.36 · 100 2.39 · 10−1 1.8 · 100 1.1 · 10−2 3.14 · 10−2 6.86 · 10−2 8.91 · 10−2 1.59 · 101 2.23 · 10−1 2.93 · 10−2

NO-LIDK⋄ 1.17 · 100 2.04 · 10−1 1.12 · 100 1.92 · 10−2 3.71 · 10−2 5.96 · 10−2 7.6 · 10−2 1.61 · 101 1.42 · 10−1 2.12 · 10−2

NO-LIDK† 1.17 · 100 2.05 · 10−1 1.14 · 100 1.23 · 10−2 3.31 · 10−2 5.94 · 10−2 7.74 · 10−2 1.56 · 101 1.03 · 10−1 2.18 · 10−2

LOGLO-FNO 1.09 · 100 1.92 · 10−1 1.12 · 100 8.99 · 10−3 2.80 · 10−2 4.55 · 10−2 6.93 · 10−2 1.26 · 101 1.67 · 10−1 2.07 · 10−2

Rel. % Diff -18.26 % -18.39 % -16.12 % -38.21 % -16.86 % -21.62 % -17.26 % -21.31 % -73.04 % -58.02 %
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CNS Turb 2D. Table 7 presents the full set of evaluation metrics for 1-step and 5-step autoregressive
rollouts on the test split of CNS Turb 2D dataset.

Table 7: 1-step and 5-step AR evaluation of LOGLO-FNO compared with SOTA baselines on the test set of
CNS Turb 2D (Takamoto et al., 2022). Rel. % Diff indicates improvement (-) or degradation (+) with
respect to FNO. LOGLO-FNO uses 40 and (16, 9) modes in the global and local branches, respectively,
whereas the width is set as 65. NO-LIDK∗ denotes using only localized integral kernel, NO-LIDK⋄ means
only differential kernel, and NO-LIDK† means employing both.

Model RMSE (↓) nRMSE bRMSE cRMSE fRMSE(L) fRMSE(M) fRMSE(H) MaxError (↓) MELR (↓) WLR (↓)
1-step Evaluation

U-Net 3.73 · 10−2 4.9 · 10−2 9.27 · 10−2 3.06 · 10−3 2.47 · 10−3 2.9 · 10−3 1.48 · 10−3 2.1 · 100 1.37 · 10−1 7.39 · 10−3

Transolver⋆ 3.13 · 10−1 4.22 · 10−1 3.08 · 10−1 1.1 · 10−2 4.77 · 10−2 4.11 · 10−2 4.47 · 10−3 3.66 · 100 5.01 · 10−1 3.33 · 10−1

FNO 3.69 · 10−2 4.82 · 10−2 3.64 · 10−2 1.42 · 10−3 1.28 · 10−3 1.78 · 10−3 1.57 · 10−3 1.96 · 100 2.78 · 10−1 7.8 · 10−3

LSM 6.11 · 10−2 8.08 · 10−2 1.67 · 10−1 3.83 · 10−3 6.17 · 10−3 6.55 · 10−3 2.01 · 10−3 2.43 · 100 2.7 · 10−1 1.66 · 10−2

U-FNO 3.43 · 10−2 4.49 · 10−2 4.92 · 10−2 3.42 · 10−3 2.24 · 10−3 2.01 · 10−3 1.43 · 10−3 2.0 · 100 1.32 · 10−1 9.5 · 10−3

NO-LIDK∗ 4.81 · 10−2 6.4 · 10−2 4.77 · 10−2 1.72 · 10−3 1.5 · 10−3 2.14 · 10−3 1.98 · 10−3 2.35 · 100 2.98 · 10−1 1.31 · 10−2

NO-LIDK⋄ 4.18 · 10−2 5.54 · 10−2 4.13 · 10−2 1.46 · 10−3 1.35 · 10−3 1.88 · 10−3 1.76 · 10−3 2.28 · 100 2.0 · 10−1 9.49 · 10−3

NO-LIDK† 4.2 · 10−2 5.57 · 10−2 4.16 · 10−2 1.56 · 10−3 1.37 · 10−3 1.89 · 10−3 1.77 · 10−3 2.26 · 100 2.08 · 10−1 9.54 · 10−3

LOGLO-FNO 3.23 · 10−2 4.24 · 10−2 3.34 · 10−2 1.24 · 10−3 9.01 · 10−4 1.1 · 10−3 1.37 · 10−3 1.86 · 100 1.71 · 10−1 5.5 · 10−3

Rel. % Diff -12.31% -11.91 % -8.3% -12.54 % -29.57% -38.1 % -12.38 % -4.79 % -38.39% -29.53%

5-step Autoregressive Evaluation
U-Net 1.15 · 10−1 1.44 · 10−1 1.98 · 10−1 7.13 · 10−3 1.42 · 10−2 1.3 · 10−2 3.08 · 10−3 2.87 · 100 1.37 · 10−1 2.13 · 10−2

Transolver⋆ 5.29 · 10−1 6.69 · 10−1 5.3 · 10−1 2.7 · 10−2 9.21 · 10−2 6.0 · 10−2 4.7 · 10−3 4.23 · 100 3.54 · 100 1.25 · 100

FNO 6.34 · 10−2 7.78 · 10−2 6.21 · 10−2 2.45 · 10−3 3.76 · 10−3 5.37 · 10−3 2.4 · 10−3 2.45 · 100 2.22 · 10−1 9.36 · 10−3

LSM 2.12 · 10−1 2.67 · 10−1 3.74 · 10−1 1.91 · 10−2 3.4 · 10−2 2.5 · 10−2 4.16 · 10−3 3.16 · 100 2.68 · 10−1 5.34 · 10−2

U-FNO 6.84 · 10−2 8.42 · 10−2 7.91 · 10−2 5.46 · 10−3 5.38 · 10−3 5.9 · 10−3 2.54 · 10−3 2.57 · 100 1.13 · 10−1 1.49 · 10−2

NO-LIDK∗ 6.95 · 10−2 8.55 · 10−2 6.86 · 10−2 2.83 · 10−3 4.14 · 10−3 5.92 · 10−3 2.62 · 10−3 2.83 · 100 2.06 · 10−1 1.15 · 10−2

NO-LIDK⋄ 6.41 · 10−2 7.88 · 10−2 6.32 · 10−2 2.64 · 10−3 3.82 · 10−3 5.35 · 10−3 2.44 · 10−3 2.49 · 100 1.37 · 10−1 9.57 · 10−3

NO-LIDK† 6.44 · 10−2 7.91 · 10−2 6.35 · 10−2 2.63 · 10−3 3.82 · 10−3 5.38 · 10−3 2.47 · 10−3 2.57 · 100 1.45 · 10−1 1.01 · 10−2

LOGLO-FNO 5.43 · 10−2 6.67 · 10−2 5.48 · 10−2 2.1 · 10−3 2.76 · 10−3 3.97 · 10−3 2.12 · 10−3 2.25 · 100 1.29 · 10−1 6.67 · 10−3

Rel. % Diff -14.35% -14.31 % -11.8% -14.23 % -26.7 % -26.09 % -11.42% -8.09% -41.8% -28.75%
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Wave-Gauss 2D. In Table 8, we present results with the full set of evaluation metrics on the test set of
Wave-Gauss 2D dataset.

Table 8: 1-step, 5-step, and 15-step AR evaluation of LOGLO-FNO compared against SOTA baselines on the
test set of Wave-Gauss 2D (Herde et al., 2024). Rel. % Diff indicates improvement (-) or degradation (+)
with respect to FNO. LOGLO-FNO uses 20 and (16, 9) modes in the global and local branches, respectively,
whereas the width is set to 32. NO-LIDK∗ denotes using only localized integral kernel, NO-LIDK⋄ means
only differential kernel, and NO-LIDK† means employing both.

Model RMSE (↓) nRMSE bRMSE cRMSE fRMSE(L) fRMSE(M) fRMSE(H) MaxError (↓) MELR (↓) WLR (↓)
1-step Evaluation

Transolver⋆ 2.01 · 10−1 2.29 · 10−1 7.29 · 10−2 1.97 · 10−2 3.51 · 10−2 2.76 · 10−2 2.2 · 10−3 2.94 · 100 1.29 · 100 1.1 · 10−1

FNO 3.76 · 10−2 4.03 · 10−2 1.91 · 10−2 2.82 · 10−3 7.5 · 10−3 5.45 · 10−3 6.22 · 10−4 1.31 · 100 9.66 · 10−1 9.01 · 10−3

LSM 2.83 · 10−2 3.08 · 10−2 3.04 · 10−2 2.69 · 10−3 4.91 · 10−3 3.86 · 10−3 8.54 · 10−4 9.99 · 10−1 1.2 · 100 6.2 · 10−3

U-FNO 3.23 · 10−2 3.49 · 10−2 2.09 · 10−2 3.89 · 10−3 6.62 · 10−3 4.52 · 10−3 7.24 · 10−4 1.2 · 100 1.41 · 100 6.82 · 10−3

NO-LIDK∗ 3.62 · 10−2 3.93 · 10−2 1.91 · 10−2 2.94 · 10−3 6.95 · 10−3 5.1 · 10−3 8.22 · 10−4 1.2 · 100 1.27 · 100 8.28 · 10−3

NO-LIDK⋄ 3.33 · 10−2 3.58 · 10−2 1.68 · 10−2 2.57 · 10−3 6.49 · 10−3 4.78 · 10−3 7.56 · 10−4 1.3 · 100 1.31 · 100 7.32 · 10−3

NO-LIDK† 3.25 · 10−2 3.5 · 10−2 1.68 · 10−2 2.7 · 10−3 6.31 · 10−3 4.61 · 10−3 7.4 · 10−4 1.19 · 100 1.28 · 100 7.04 · 10−3

LOGLO-FNO 2.9 · 10−2 3.11 · 10−2 1.17 · 10−2 2.75 · 10−3 6.43 · 10−3 3.84 · 10−3 3.44 · 10−4 1.12 · 100 9.29 · 10−1 6.82 · 10−3

Rel. % Diff -22.97% -22.79 % -38.59% -2.55% -14.27% -29.54% -44.65% -14.79% -3.77% -24.33%

5-step Autoregressive Evaluation
Transolver⋆ 3.45 · 10−1 3.62 · 10−1 1.31 · 10−1 6.09 · 10−2 7.73 · 10−2 3.47 · 10−2 2.93 · 10−3 3.66 · 100 2.07 · 100 1.79 · 10−1

FNO 6.91 · 10−2 6.75 · 10−2 2.06 · 10−2 6.5 · 10−3 1.6 · 10−2 8.35 · 10−3 8.57 · 10−4 2.23 · 100 1.5 · 100 1.93 · 10−2

LSM 4.33 · 10−2 4.34 · 10−2 3.63 · 10−2 5.48 · 10−3 8.64 · 10−3 5.68 · 10−3 1.1 · 10−3 2.12 · 100 1.72 · 100 1.24 · 10−2

U-FNO 6.37 · 10−2 6.26 · 10−2 2.55 · 10−2 1.44 · 10−2 1.6 · 10−2 7.64 · 10−3 9.27 · 10−4 2.54 · 100 2.0 · 100 1.82 · 10−2

NO-LIDK∗ 6.05 · 10−2 5.96 · 10−2 1.91 · 10−2 7.76 · 10−3 1.34 · 10−2 7.92 · 10−3 1.19 · 10−3 2.65 · 100 1.99 · 100 1.81 · 10−2

NO-LIDK⋄ 1.17 · 10−1 1.21 · 10−1 2.23 · 10−2 1.14 · 10−2 2.43 · 10−2 1.12 · 10−2 4.07 · 10−3 2.96 · 100 2.42 · 100 4.02 · 10−2

NO-LIDK† 1.02 · 10−1 1.06 · 10−1 2.16 · 10−2 1.38 · 10−2 2.1 · 10−2 1.02 · 10−2 3.85 · 10−3 2.95 · 100 2.41 · 100 3.02 · 10−2

LOGLO-FNO 5.1 · 10−2 4.81 · 10−2 1.12 · 10−2 6.35 · 10−3 1.29 · 10−2 5.43 · 10−3 4.57 · 10−4 1.62 · 100 1.48 · 100 1.39 · 10−2

Rel. % Diff -26.2% -28.76% -45.43% -2.41% -19.52% -34.91% -46.6% -27.16% -1.74% -27.85%

15-step Autoregressive Evaluation
Transolver⋆ 4.33 · 10−1 4.96 · 10−1 2.11 · 10−1 1.2 · 10−1 1.15 · 10−1 3.64 · 10−2 3.5 · 10−3 3.84 · 100 1.73 · 100 2.36 · 10−1

FNO 1.21 · 10−1 1.34 · 10−1 3.86 · 10−2 1.76 · 10−2 3.13 · 10−2 1.32 · 10−2 1.39 · 10−3 2.42 · 100 1.16 · 100 3.53 · 10−2

LSM 7.66 · 10−2 8.49 · 10−2 5.72 · 10−2 1.29 · 10−2 1.79 · 10−2 9.33 · 10−3 1.61 · 10−3 1.98 · 100 1.29 · 100 2.63 · 10−2

U-FNO 1.15 · 10−1 1.27 · 10−1 4.4 · 10−2 3.08 · 10−2 3.14 · 10−2 1.24 · 10−2 1.17 · 10−3 2.67 · 100 1.54 · 100 3.32 · 10−2

NO-LIDK∗ 9.98 · 10−2 1.13 · 10−1 3.14 · 10−2 1.81 · 10−2 2.61 · 10−2 1.21 · 10−2 1.38 · 10−3 3.09 · 100 1.57 · 100 3.22 · 10−2

NO-LIDK⋄ 1.14 · 100 1.48 · 100 4.61 · 10−1 4.2 · 10−1 2.88 · 10−1 5.88 · 10−2 4.24 · 10−2 1.65 · 101 3.2 · 100 3.0 · 10−1

NO-LIDK† 7.89 · 10−1 1.03 · 100 3.1 · 10−1 1.77 · 10−1 1.75 · 10−1 6.09 · 10−2 2.93 · 10−2 1.94 · 101 3.09 · 100 2.06 · 10−1

LOGLO-FNO 9.19 · 10−2 1.02 · 10−1 2.25 · 10−2 1.58 · 10−2 2.61 · 10−2 9.24 · 10−3 7.38 · 10−4 1.86 · 100 1.04 · 100 2.54 · 10−2

Rel. % Diff -23.83% -24.5% -41.61% -10.45% -16.84% -30.19% -46.99% -23.46% -10.16% -28.0%
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Compressible Euler four-quadrant Riemann problem 2D. In Table 9, we present the preliminary
1-step and varying timesteps of rollout evaluation results from the experiments we conducted on the highly
challenging Compressible Euler four-quadrant Riemann problem 2D problem, which exhibits shock waves
and discontinuities.

Table 9: 1-step and varying timestep (5, 10, 15, 20) autoregressive rollout evaluations of LOGLO-FNO
compared against SOTA baselines on the test set of Compressible Euler four-quadrant Riemann problem
2D (Herde et al., 2024). Rel. % Diff indicates improvement (-) or degradation (+) with respect to FNO.
LOGLO-FNO uses 40 and (16, 9) modes in the global and local branches, respectively, whereas the width is
set to 65. NO-LIDK∗ denotes using only the localized integral kernel with a radius cutoff value of 0.0078125,
and NO-LIDK⋄ means only the differential kernel.

Model RMSE (↓) nRMSE bRMSE cRMSE fRMSE(L) fRMSE(M) fRMSE(H) MaxError (↓) MELR (↓) WLR (↓)
1-step Evaluation

FNO 2.02 · 10−2 2.08 · 10−2 2.38 · 10−2 8.46 · 10−4 9.42 · 10−4 1.03 · 10−3 1.41 · 10−3 1.58 · 100 8.8 · 10−2 3.09 · 10−3

NO-LIDK∗ 3.56 · 10−2 3.58 · 10−2 3.94 · 10−2 1.14 · 10−3 1.5 · 10−3 2.35 · 10−3 2.47 · 10−3 2.35 · 100 7.26 · 10−2 5.67 · 10−3

NO-LIDK⋄ 1.59 · 10−2 1.66 · 10−2 1.83 · 10−2 1.47 · 10−3 1.05 · 10−3 8.54 · 10−4 1.11 · 10−3 1.4 · 100 4.34 · 10−2 2.54 · 10−3

LOGLO-FNO 1.48 · 10−2 1.5 · 10−2 1.87 · 10−2 6.36 · 10−4 5.79 · 10−4 5.09 · 10−4 9.67 · 10−4 1.31 · 100 5.42 · 10−2 1.75 · 10−3

Rel. % Diff -26.65% -27.9% -21.29% -24.82% -38.56% -50.71% -31.58% -16.9% -38.45% -43.26%

5-step Autoregressive Evaluation
FNO 3.39 · 10−2 3.43 · 10−2 5.62 · 10−2 2.69 · 10−3 2.58 · 10−3 2.7 · 10−3 2.35 · 10−3 2.49 · 100 1.18 · 10−1 8.3 · 10−3

NO-LIDK∗ 3.91 · 10−2 4.02 · 10−2 6.5 · 10−2 2.79 · 10−3 3.19 · 10−3 3.58 · 10−3 2.47 · 10−3 2.7 · 100 1.08 · 10−1 9.75 · 10−3

NO-LIDK⋄ 3.08 · 10−2 3.13 · 10−2 4.89 · 10−2 2.66 · 10−3 2.5 · 10−3 2.38 · 10−3 2.12 · 10−3 2.31 · 100 8.17 · 10−2 7.52 · 10−3

LOGLO-FNO 2.31 · 10−2 2.34 · 10−2 4.07 · 10−2 1.95 · 10−3 1.64 · 10−3 1.35 · 10−3 1.56 · 10−3 1.99 · 100 8.11 · 10−2 4.85 · 10−3

Rel. % Diff -31.82% -31.75% -27.61% -27.55% -36.7% -50% -33.4 % -20.26 % -31.44% -41.58%

10-step Autoregressive Evaluation
FNO 5.06 · 10−2 4.76 · 10−2 6.33 · 10−2 4.14 · 10−3 4.58 · 10−3 4.79 · 10−3 3.22 · 10−3 3.48 · 100 1.11 · 10−1 1.04 · 10−2

NO-LIDK∗ 6.15 · 10−2 5.87 · 10−2 7.68 · 10−2 4.63 · 10−3 5.88 · 10−3 6.35 · 10−3 3.59 · 10−3 3.67 · 100 9.65 · 10−2 1.35 · 10−2

NO-LIDK⋄ 4.72 · 10−2 4.52 · 10−2 5.6 · 10−2 4.39 · 10−3 4.55 · 10−3 4.37 · 10−3 3.02 · 10−3 3.55 · 100 7.95 · 10−2 9.75 · 10−3

LOGLO-FNO 3.43 · 10−2 3.25 · 10−2 4.44 · 10−2 3.16 · 10−3 2.9 · 10−3 2.74 · 10−3 2.19 · 10−3 2.67 · 100 7.47 · 10−2 6.28 · 10−3

Rel. % Diff -32.33% -31.75% -29.77% -23.71% -36.74% -42.7% -31.99% -23.2% -32.65% -39.84%

15-step Autoregressive Evaluation
FNO 6.87 · 10−2 6.37 · 10−2 7.35 · 10−2 5.55 · 10−3 6.91 · 10−3 7.19 · 10−3 4.11 · 10−3 3.98 · 100 1.07 · 10−1 1.31 · 10−2

NO-LIDK∗ 8.44 · 10−2 7.92 · 10−2 9.08 · 10−2 6.68 · 10−3 9.04 · 10−3 9.36 · 10−3 4.61 · 10−3 4.09 · 100 9.57 · 10−2 1.79 · 10−2

NO-LIDK⋄ 6.81 · 10−2 6.49 · 10−2 6.91 · 10−2 6.51 · 10−3 7.78 · 10−3 7.24 · 10−3 4.08 · 10−3 4.4 · 100 8.97 · 10−2 1.35 · 10−2

LOGLO-FNO 4.76 · 10−2 4.45 · 10−2 5.16 · 10−2 4.49 · 10−3 4.49 · 10−3 4.53 · 10−3 2.91 · 10−3 3.49 · 100 7.4 · 10−2 8.02 · 10−3

Rel. % Diff -30.73% -30.12% -29.86% -19.17% -35.04% -36.95% -29.04% -12.33% -30.94% -38.74%

20-step (full trajectory) Autoregressive Evaluation
FNO 8.41 · 10−2 7.86 · 10−2 8.54 · 10−2 6.68 · 10−3 8.94 · 10−3 9.24 · 10−3 4.8 · 10−3 4.46 · 100 1.08 · 10−1 1.54 · 10−2

NO-LIDK∗ 1.03 · 10−1 9.75 · 10−2 1.06 · 10−1 8.5 · 10−3 1.18 · 10−2 1.18 · 10−2 5.36 · 10−3 4.41 · 100 1.01 · 10−1 2.16 · 10−2

NO-LIDK⋄ 8.79 · 10−2 8.48 · 10−2 8.67 · 10−2 8.82 · 10−3 1.14 · 10−2 9.97 · 10−3 4.95 · 10−3 4.99 · 100 9.92 · 10−2 1.74 · 10−2

LOGLO-FNO 6.02 · 10−2 5.68 · 10−2 6.15 · 10−2 5.76 · 10−3 6.12 · 10−3 6.25 · 10−3 3.55 · 10−3 3.95 · 100 7.66 · 10−2 9.85 · 10−3

Rel. % Diff -28.4% -27.74% -28% -13.77% -31.53% -32.37% -26.12% -11.43% -28.92% -35.93%

We observe that LOGLO-FNO significantly and consistently outperforms Base FNO and the state-of-the-art
NO-LIDK baselines on both 1-step and autoregressive rollout evaluations, up to the full trajectory length of
20 timesteps.
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Turbulent Radiative Layer 3D (TRL3D). To complement the results in the main paper, we present
the full set of evaluation metrics for the 1-step evaluation on the test set of Turbulent Radiative Layer 3D
problem in Table 10.

Table 10: 1-step evaluation of LOGLO-FNO compared with state-of-the-art baselines on the test set of
Turbulent Radiative Mixing Layer 3D dataset (Fielding et al., 2020; Ohana et al., 2024). Rel. % Diff
indicates an improvement (-) or degradation (+) with respect to base FNO, which uses a spectral filter size of
12 and 48 hidden channels. LOGLO-FNO uses 12 and (16, 16, 17)⋆ modes in the global and local branches,
respectively, whereas the width is set to 52. (⋆This is because the Turbulent Radiative Layer 3D dataset has
2× more sampling points on the z-axis relative to the x and y axes resolutions – (128 × 128 × 256).) Base
FNO‡ means our implementation of FNO (see Figure 1).

Model RMSE (↓) nRMSE bRMSE cRMSE fRMSE(L) fRMSE(M) fRMSE(H) MaxError (↓)
1-step Evaluation

LSM 5.67 · 10−1 8.39 · 10−1 1.25 · 100 1.41 · 10−1 2.4 · 10−1 9.7 · 10−2 3.43 · 10−2 1.59 · 101

NO-LIDK⋄ 1.04 · 100 4.34 · 10−1 4.59 · 100 2.17 · 10−2 6.87 · 10−2 1.22 · 10−1 1.23 · 10−1 1.85 · 101

Base FNO‡ 2.84 · 10−1 3.06 · 10−1 7.05 · 10−1 2.04 · 10−2 4.87 · 10−2 4.58 · 10−2 2.89 · 10−2 1.12 · 101

LOGLO-FNO 2.45 · 10−1 2.65 · 10−1 6.33 · 10−1 1.76 · 10−2 4.45 · 10−2 3.68 · 10−2 2.48 · 10−2 1.06 · 101

Rel. % Diff -13.55% -13.27% -10.2% -13.8% -8.61% -19.57% -14.01% -5.17%

G.2.2 Autoregressive Training and Evaluation

In Table 11, we present the evaluation results with the full set of evaluation metrics for the fully autoregressive
training on the Diffusion-Reaction 2D problem.

Table 11: Fully autoregressive evaluation of LOGLO-FNO compared with SOTA baselines on the test set of
challenging 2D Diffusion-Reaction coupled problem from PDEBench (Takamoto et al., 2022). We also report
the Rel. % Diff to indicate the error improvement (-) or degradation (+) w.r.t FNO.

Model RMSE (↓) nRMSE bRMSE cRMSE fRMSE(L) fRMSE(M) fRMSE(H) MaxError (↓) MELR (↓) WLR (↓)
U-Net 6.1 ·10−2 8.4 ·10−1 7.8 ·10−2 3.9 ·10−2 1.7 ·10−2 8.2 ·10−4 5.7 ·10−2 1.9 ·10−1 ✗ ✗

Transolver 1.74 · 10−2 2.63 · 10−1 3.05 · 10−2 3.37 · 10−3 2.99 · 10−3 2.03 · 10−3 5.51 · 10−4 1.11 · 10−1 7.19 · 10−1 1.15 · 10−1

U-FNO 1.4 ·10−2 2.6 ·10−1 2.0 ·10−2 4.3 ·10−3 3.4 ·10−3 1.6 ·10−3 2.6 ·10−4 7.8 ·10−2 4.5 ·10−1 7.9 ·10−2

FNO 5.2 ·10−3 8.3 ·10−2 1.5 ·10−2 1.2 ·10−3 6.2 ·10−4 5.6 ·10−4 2.4 ·10−4 7.3 ·10−2 2.96 ·10−1 1.3 ·10−2

F-FNO 4.3 ·10−3 7.0 ·10−2 7.9 ·10−3 2.8 ·10−3 9.6 ·10−4 4.7 ·10−4 1.3 · 10−4 5.3 ·10−2 2.0 ·10−1 1.3 ·10−2

LSM 2.81 · 10−2 4.47 · 10−1 3.45 · 10−2 5.92 · 10−3 7.17 · 10−3 2.4 · 10−3 3.67 · 10−4 1.32 · 10−1 3.43 · 10−1 2.08 · 10−1

NO-LIDK (loc. int) 3.6 · 10−3 6.3 · 10−2 1.0 ·10−2 4.8 ·10−4 4.0 ·10−4 4.6 ·10−4 1.5 ·10−4 5.0 ·10−2 ✗ ✗
LOGLO-FNO 3.89 ·10−3 6.4 ·10−2 5.2 · 10−3 4.6 · 10−4 2.8 · 10−4 3.2 · 10−4 1.9 ·10−4 2.2 · 10−2 1.6 · 10−1 7.9 · 10−3

Rel. % Diff -25.19 % -22.75 % -65.13 % -61.67 % -54.84 % -42.86 % -20.83 % -69.97 % -44.09 % -36.98 %
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G.3 Further Improvements with Attentional Feature Fusion, Multi-scale Channel Attention, and
SPHERE Loss

2D Kolmogorov Flow. In this section, we explore ways to further improve the results by considering
advanced feature fusion strategies. The global and local branches in LOGLO-FNO models input features
on different scales, whereas the HFP module learns different latent features that are representative of high
frequencies. Therefore, we propose to employ sophisticated feature fusion modules targeted towards a seamless
aggregation of these multi-scale and diverse features, as opposed to a simple summation (Figure 1). Towards
this end, we adopt the multi-scale channel attention and attentional feature fusion modules introduced in Dai
et al. (2021) to fuse the features of the local and global branches and the HFP branch. The results of an
experiment with this fusion in LOGLO-FNO, as well as penalizing the SPHERE loss on the Kolmogorov
Flow 2D dataset, are presented in Table 12. We term this model as LOGLO-FNO+. Comparing the results
in Table 1 and Table 12, we observe that these improvements lead to an additional 12% in 1-step nRMSE
and (6%, 11%) for the mid-and high-frequency errors, respectively. The MELR and WLR errors are also
down by 8% and 7%, respectively. In a similar manner, we see consistent improvements in 5-step nRMSE
(8%), fRMSE-mid (2%), fRMSE-high (8%), MELR and WLR (3% each) over the LOGLO-FNO model not
using feature fusion and the SPHERE loss.

Table 12: 1-step and 5-step AR evaluation of LOGLO-FNO+ employing multi-scale feature fusion and
patch-based energy spectra loss (SPHERE) compared with SOTA baselines on the test set of 2D Kolmogorov
Flow (Li et al., 2022b). We also report the Rel. % Diff to indicate the improvement (-) or the degradation
(+) with respect to FNO. The number of modes used in the global branch is 40, and the local branch uses a
patch size of 16× 16. The number of hidden channels has been set as 65. NO-LIDK† indicates the usage of
both differential kernel and localized integral kernel layers in its architecture, NO-LIDK∗ denotes the model
employing only the local integral kernel layer, and NO-LIDK⋄ stands for the use of only the differential
layer as an additional parallel layer to the global spectral convolution layer of base FNO (see Table 4 in
Liu-Schiaffini et al. (2024)). Transolver⋆ indicates a longer training time of the model for 500 epochs due
to convergence issues at shorter training epochs of 136. We boldface the best result and underline the
second-best result.

Eval Type Model RMSE (↓) nRMSE bRMSE cRMSE fRMSE(L) fRMSE(M) fRMSE(H) MaxError (↓) MELR (↓) WLR (↓)
1-step Evaluation

1-step

U-Net 7.17 · 10−1 1.3 · 10−1 1.47 · 100 1.74 · 10−2 2.24 · 10−2 3.57 · 10−2 4.39 · 10−2 2.01 · 101 1.64 · 10−1 1.48 · 10−2

Transolver⋆ 7.69 · 10−1 1.39 · 10−1 1.42 · 100 7.65 · 10−3 2.74 · 10−2 4.48 · 10−2 4.65 · 10−2 1.52 · 101 1.43 · 10−1 1.83 · 10−2

FNO 8.08 ·10−1 1.47 ·10−1 7.94 ·10−1 1.1 ·10−2 1.36 ·10−2 2.05 ·10−2 4.7 ·10−2 1.46 ·101 5.2 ·10−1 2.83 ·10−2

F-FNO 7.53 ·10−1 1.37 ·10−1 7.41 ·10−1 1.5 ·10−2 1.49 ·10−2 2.15 ·10−2 4.36 ·10−2 1.42 ·101 4.74 ·10−1 2.28 ·10−2

LSM 7.49 · 10−1 1.36 · 10−1 1.47 · 100 1.36 · 10−2 2.59 · 10−2 4.42 · 10−2 4.64 · 10−2 2.05 · 101 1.43 · 10−1 1.68 · 10−2

U-FNO 6.13 · 10−1 1.12 · 10−1 1.0 · 100 7.09 · 10−3 1.27 · 10−2 2.22 · 10−2 3.71 · 10−2 1.64 · 101 1.38 · 10−1 1.09 · 10−2

NO-LIDK∗ 7.25 · 10−1 1.33 · 10−1 1.12 · 100 9.05 · 10−3 1.45 · 10−2 2.69 · 10−2 4.55 · 10−2 1.65 · 101 1.85 · 10−1 1.54 · 10−2

NO-LIDK⋄ 6.13 · 10−1 1.11 · 10−1 5.95 · 10−1 1.46 · 10−2 1.65 · 10−2 2.29 · 10−2 3.91 · 10−2 1.5 · 101 9.57 · 10−2 1.1 · 10−2

NO-LIDK† 5.86 · 10−1 1.07 · 10−1 5.64 · 10−1 1.05 · 10−2 1.44 · 10−2 2.46 · 10−2 3.82 · 10−2 1.47 · 101 7.11 · 10−2 1.0 · 10−2

LOGLO-FNO 5.89 · 10−1 1.07 · 10−1 6.74 · 10−1 7.23 · 10−3 1.21 · 10−2 1.81 · 10−2 3.54 · 10−2 1.33 · 101 1.29 · 10−1 1.06 · 10−2

LOGLO-FNO+ 4.88 · 10−1 8.87 · 10−2 5.57 · 10−1 8.78 · 10−3 1.31 · 10−2 1.68 · 10−2 3.04 · 10−2 1.35 · 101 7.56 · 10−2 8.76 · 10−3

Rel. % Diff w/o fusion -27.1 % -27.21 % -15.12 % -34.31 % -11.22 % -11.88 % -24.64 % -8.99 % -75.12 % -62.63 %
Rel. % Diff w/ fusion -39.6 % -39.78 % -29.86% -20.28% -3.87 % -18.13 % -35.39 % -7.91 % -83.54 % -69.03%

5-step Autoregressive Evaluation

5-step AR

U-Net 1.51 · 100 2.65 · 10−1 2.31 · 100 5.39 · 10−2 6.53 · 10−2 1.04 · 10−1 9.38 · 10−2 1.81 · 101 2.13 · 10−1 3.52 · 10−2

Transolver⋆ 1.91 · 100 3.36 · 10−1 2.59 · 100 6.12 · 10−3 7.44 · 10−2 1.51 · 10−1 1.18 · 10−1 2.36 · 101 2.45 · 10−1 4.92 · 10−2

FNO 1.33 ·100 2.35 ·10−1 1.34 ·100 1.46 ·10−2 3.37 ·10−2 5.8 ·10−2 8.37 ·10−2 1.6 ·101 6.18 ·10−1 4.93 ·10−2

F-FNO 1.29 ·100 2.28 ·10−1 1.27 ·100 2.28 ·10−2 3.60 ·10−2 5.52 ·10−2 8.12 ·10−2 1.50 ·101 5.37 ·10−1 3.99 ·10−2

LSM 1.81 · 100 3.18 · 10−1 2.76 · 100 3.87 · 10−2 7.6 · 10−2 1.44 · 10−1 1.12 · 10−1 2.08 · 101 2.04 · 10−1 4.39 · 10−2

U-FNO 1.15 · 100 2.03 · 10−1 1.45 · 100 6.3 · 10−3 2.69 · 10−2 5.33 · 10−2 7.35 · 10−2 1.56 · 101 2.01 · 10−1 2.51 · 10−2

NO-LIDK∗ 1.36 · 100 2.39 · 10−1 1.8 · 100 1.1 · 10−2 3.14 · 10−2 6.86 · 10−2 8.91 · 10−2 1.59 · 101 2.23 · 10−1 2.93 · 10−2

NO-LIDK⋄ 1.17 · 100 2.04 · 10−1 1.12 · 100 1.92 · 10−2 3.71 · 10−2 5.96 · 10−2 7.60 · 10−2 1.61 · 101 1.42 · 10−1 2.12 · 10−2

NO-LIDK† 1.17 · 100 2.05 · 10−1 1.14 · 100 1.23 · 10−2 3.31 · 10−2 5.94 · 10−2 7.74 · 10−2 1.56 · 101 1.03 · 10−1 2.18 · 10−2

LOGLO-FNO 1.09 · 100 1.92 · 10−1 1.12 · 100 8.99 · 10−3 2.8 · 10−2 4.55 · 10−2 6.93 · 10−2 1.26 · 101 1.67 · 10−1 2.07 · 10−2

LOGLO-FNO+ 9.81 · 10−1 1.72 · 10−1 1.02 · 100 1.05 · 10−2 2.9 · 10−2 4.43 · 10−2 6.27 · 10−2 1.31 · 101 1.17 · 10−1 1.90 · 10−2

Rel. % Diff w/o fusion -18.26 % -18.39 % -16.12 % -38.21 % -16.86 % -21.62 % -17.26 % -21.31 % -73.04 % -58.02 %
Rel. % Diff w/ fusion -26.37 % -26.63 % -23.43 % -27.99 % -14.03 % -23.58 % -25.09 % -15.62 % -77.76 % -61.43 %

Note that the terminology Rel. % Diff w/ fusion in the Table 12 above indicates the use of SPHERE loss
in addition to feature fusion. This detail has been omitted in the row for an uncluttered presentation.
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G.4 Significance of Adding More Modes in the Fourier Layers of Global Branch

G.4.1 Kolmogorov Flow 2D

In this study, we analyze the influence of adding more modes in the global branch while keeping the number of
modes constant in the local branch, which is done by using a single local branch with a patch size of 16× 16.
This setting yields the local spectral convolution branch with 9 modes, including the Nyquist frequency for
the y-axis of the 2D spatial data. Further, we also fix the embedding dimension to 48. Therefore, the number
of modes in the global branch is the only varying factor. The experiments are conducted on the turbulent 2D
Kolmogorov Flow dataset (Li et al., 2022b).

1-step Evaluation. Here, we evaluate the baseline FNO and LOGLO-FNO models on 1-step errors. The
LOGLO-FNO models have been trained with a single local branch (patch size 16× 16) in addition to the
global branch. Figures 11, 3, 12, and 13 plot xRMSE, MaxError, and the energy spectra (MELR and WLR)
metrics.
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Figure 11: Comparison of FNO vs. LOGLO-FNO showing 1-step nRMSE and MaxError (↓) on the test set
of Kolmogorov Flow (Re = 5k) (Li et al., 2022b) for varying number of modes in global branch and full set of
modes (i.e., (16, 9) for patch size 16× 16) in local branch.

In Figure 11, we observe that as we increase the modes in the global branch, it generally leads to a reduction
in nRMSE and MaxError for both models, except for a slight increase in MaxError when utilizing the full set
of modes, potentially due to overfitting. Also, note that LOGLO-FNO outperforms base FNO significantly,
particularly when the modes used in the global branch are fewer (i.e., sparse modes). We hypothesize that
the local branch compensates in this case when there is a lack of expressivity. Even when using the full set of
available modes, LOGLO-FNO yields improved error. This behavior shows that local convolutions always
supplement global convolutions.

Figure 3 in the main paper visualizes the low, mid, and high-frequency band-classified errors for varying
numbers of modes in the global branch. A similar trend as observed for nRMSE also holds here. Additionally,
we observe that the error improvement for LOGLO-FNO over FNO for the high-frequency is more pronounced
than for low and mid-frequencies. Note the logarithmic scale on the y-axis. Further, FNO tends to overfit
when employing the full set of modes (fRMSE (Low) & fRMSE (Mid)), suggesting potential overfitting
and corroborating the findings of Lanthaler et al. (2024). In contrast, LOGLO-FNO does not exhibit this
behavior and achieves the lowest error when utilizing the full set of modes. Notably, LOGLO-FNO with
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32 modes attains lower frequency errors than the base FNO with 48 modes, highlighting its more efficient
representation of complex features while maintaining robustness against overfitting.
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Figure 12: Comparison of FNO vs. LOGLO-FNO showing 1-step RMSE and bRMSE (↓) on the test set of
Kolmogorov Flow (Re = 5k) (Li et al., 2022b) for a varying number of modes in the global branch and full
set of modes (i.e., (16, 9) for patch size 16× 16) in the local branch.
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Figure 13: Comparison of FNO vs. LOGLO-FNO showing 1-step MELR and WLR (↓) on the test set of
Kolmogorov Flow (Re = 5k) (Li et al., 2022b) for a varying number of modes in the global branch and full
set of modes (i.e., (16, 9) for patch size 16× 16) in the local branch.

In Figure 13, we plot the energy spectra scalar measures, viz. MELR and WLR, which quantify the spectral
discrepancy between the prediction and reference simulations. Here, we observe that LOGLO-FNO is
significantly better than baseline FNO.
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Extended Autoregressive Evaluation. In this inference setup, we evaluate the 1-step trained models
on autoregressive rollouts for varying numbers of timesteps and evaluate the rollout errors. We roll out the
trajectories until reaching 25 timesteps to understand the behavior of LOGLO-FNO compared to base FNO
on autoregressive error accumulation.

In Figures 14, 15, 5, and 16 we plot the autoregressive errors of metrics, such as nRMSE, Max Error, fRMSE,
bRMSE, MELR, and WLR. We observe that, overall, LOGLO-FNO consistently yields lower errors compared
to base FNO and maintains the same behavior throughout the rollout extent. Although the autoregressive
error accumulation is not completely mitigated, we can conclude that LOGLO-FNO suffers less from this
problem than the baseline FNO.
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Figure 14: Comparison of FNO vs. LOGLO-FNO for autoregressive rollout showing nRMSE and MaxError
(↓) growth over varying number of modes (K) in global branch and timesteps in the trajectories on the test
set of Kolmogorov Flow (Re = 5k) (Li et al., 2022b). The local branch uses a patch size of 16× 16.

In Figure 16, we visualize the energy spectra deviations through MELR and WLR metrics. We observe that
LOGLO-FNO outperforms base FNO by a significant margin, indicating that the gap between the energy
spectra of predictions and the ground truth of LOGLO-FNO is narrower than the baseline FNO model.
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Figure 15: Comparison of FNO vs. LOGLO-FNO for autoregressive rollout showing RMSE and bRMSE (↓)
error growth over varying modes (K) in global branch and number of timesteps in the trajectories on the test
set of Kolmogorov Flow (Re = 5k) (Li et al., 2022b). The local branch uses a patch size of 16× 16.

5 10 15 20 25
AR Rollout Timesteps

0.2

0.4

0.6

M
E

LR

5 10 15 20 25
AR Rollout Timesteps

0.1

0.02

0.04

0.06

0.08

W
LR

FNO (K=12)
LOGLO-FNO (K=12)
FNO (K=16)

LOGLO-FNO (K=16)
FNO (K=24)
LOGLO-FNO (K=24)

FNO (K=48)
LOGLO-FNO (K=48)

FNO (K=64)
LOGLO-FNO (K=64)

Figure 16: Comparison of FNO vs. LOGLO-FNO for autoregressive rollout showing MELR and WLR (↓)
error growth over varying modes (K) in global branch and number of timesteps in the trajectories on the test
set of Kolmogorov Flow (Re = 5k) (Li et al., 2022b). The local branch uses a patch size of 16× 16.
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G.4.2 Turbulent Radiative Layer 3D
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Figure 17: Comparison of base FNO vs. LOGLO-FNO showing 1-step spatial domain xRMSE (left) and
frequency space fRMSE (right) over varying Fourier modes (K) in the global branch and the local branch
utilizing a patch size of 16× 16× 32 and the resulting full set of modes (16, 16, 17) on the test set of the
Turbulent Radiative Layer 3D dataset (Ohana et al., 2024).
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Figure 18: Comparison of base FNO vs. LOGLO-FNO showing vRMSE values for the autoregressive rollout
over the time windows [6:12] (left) and [13:30] (right, both ends inclusive), for variable Fourier modes (K) in
the global branch while the local branch employing a patch size of 16× 16× 32 and the resulting full set of
modes (16, 16, 17) on the test set of the Turbulent Radiative Layer 3D dataset (Ohana et al., 2024).
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H Qualitative Results and Analysis

H.0.1 Kolmogorov Flow 2D

In this section, we provide qualitative visualizations of the predictions of a few random trajectories from the
test set of Kolmogorov Flow 2D dataset (Li et al., 2022b). The predictions are obtained from the models
trained with 32 modes in the global branch and a patch size of 16 in the local branch for LOGLO-FNO.
Both models use a constant width of 48.

Figure 19 provides a qualitative visualization comparing the ground truth, predictions, and the corresponding
absolute errors of two consecutive timesteps of two random trajectories. We observe that LOGLO-FNO
retains sharp details, resulting in a noticeable reduction of errors, whereas the base FNO yields smoothed-
out predictions. Note that the absolute errors of both predictions are placed on the same scale for a fair
comparison.
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Figure 19: Qualitative comparison of predictions, ground truths, and absolute errors of FNO and LOGLO-
FNO for random trajectories from the test set of Kolmogorov Flow (Re = 5k) (Li et al., 2022b).

Similar to Figure 19, we visualize the errors of two different trajectories from the test set in Figure 20.
However, we additionally localize the regions in the predictions corresponding to regions in the absolute
error that exceed 10% of the maximum error in the whole domain. This could result in multiple such
regions. Therefore, we limit ourselves to a single contiguous region with the highest intensity in the interest
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of providing an uncluttered visualization. The displayed regions inside the red bounding boxes are the ones
with the highest error intensity. We observe that the regions overlap for both trajectories at timestep 1. This
implies that both models struggle to get the details correct in this region. However, note that the bounding
box regions are smaller for LOGLO-FNO compared to base FNO. Hence, we can deduce that LOGLO-FNO
is effective in mitigating errors in regions where the base FNO struggles. In scenarios when the bounding
boxes do not overlap, as is the case in both model predictions for timestep 2, it is generally desirable to have
bounding boxes with smaller areas as this indicates the errors are localized to a small region and not spread
out over a large area.
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Figure 20: Qualitative comparison of FNO vs. LOGLO-FNO on random samples from the test set of
Kolmogorov Flow (Re = 5k). The red bounding boxes highlight a single spatially contiguous region where
the absolute error exceeds 10% of the maximum error in the domain.

H.0.2 Turbulent Radiative Layer 3D

In this section, we provide qualitative visualizations of predictions of a few random trajectories from the
test set of the Turbulent Radiative Layer 3D dataset (Ohana et al., 2024). The LOGLO-FNO and base
FNO predictions are obtained using 1-step evaluation. In the following plots, we show the test set trajectory
corresponding to the tcool parameter 0.03. The x, y, and z axes show the spatial extents (Lx, Ly, and Lz) of
the simulation. The ground truth solution is repeated on the left column for clarity in the representation.
Note the deviation in the range of density and velocity values predicted by base FNO and LOGLO-FNO
with respect to the ground truth. Further, we observe that base FNO predicts unphysical values (negative
density), whereas the values predicted by LOGLO-FNO are non-negative.
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(a) Ground Truth (b) LOGLO-FNO

(c) Ground Truth (d) Base FNO

Figure 21: A cross-sectional (XY) slice at the middle of the Z-axis, embedded in the XY, YZ, and XZ planar
view, showing the density channel from the test set trajectory (for tcool = 0.03) at timestep 5 comparing the
ground truth (left), LOGLO-FNO and base FNO predictions (right).
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(a) Ground Truth (b) LOGLO-FNO

(c) Ground Truth (d) Base FNO

Figure 22: A cross-sectional (XY) slice at the middle of the Z-axis, embedded in the XY, YZ, and XZ planar
view, showing the velocity-z channel from the test set trajectory (for tcool = 0.03) at timestep 5 comparing
the ground truth (left), LOGLO-FNO and base FNO predictions (right).
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I Energy Spectra Visualization and Analysis

Kolmogorov Flow. In this section, we provide a comparative analysis of the energy spectra of predictions
of state-of-the-art neural operator baselines versus the reference solution u on the Kolmogorov Flow 2D
dataset. The predictions are obtained by autoregressive rollout of the 1-step trained models for the entire
duration of the trajectory. In Figures 23, 24, 25, 26, 27, 28, 29, and 30, we plot the energy spectra for two
consecutive timesteps at 50 timestep intervals.
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Figure 23: Energy spectra comparison of predictions of state-of-the-art neural operator baselines and our
LOGLO-FNO vs. ground truth at two consecutive timesteps on a random sample from the test set of
Kolmogorov Flow 2D (Re = 5k) (Li et al., 2022a). NO-LIDK† denotes the use of both local integral and
differential kernels for local convolutions.
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Figure 24: Energy spectra comparison of predictions of state-of-the-art neural operator baselines and our
LOGLO-FNO vs. ground truth at two consecutive timesteps on a random sample from the test set of
Kolmogorov Flow 2D (Re = 5k) (Li et al., 2022a). NO-LIDK† indicates the use of both local integral and
differential kernels for local convolutions.
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Figure 25: Energy spectra comparison of predictions of state-of-the-art neural operator baselines and our
LOGLO-FNO vs. ground truth at two consecutive timesteps on a random sample from the test set of
Kolmogorov Flow 2D (Re = 5k) (Li et al., 2022a). NO-LIDK† denotes the use of both local integral and
differential kernels for local convolutions.
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Figure 26: Energy spectra comparison of predictions of state-of-the-art neural operator baselines and our
LOGLO-FNO vs. ground truth at two consecutive timesteps on a random sample from the test set of
Kolmogorov Flow 2D (Re = 5k) (Li et al., 2022a). NO-LIDK† indicates the use of both local integral and
differential kernels for local convolutions.
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Figure 27: Energy spectra comparison of predictions of state-of-the-art neural operator baselines and our
LOGLO-FNO vs. ground truth at two consecutive timesteps on a random sample from the test set of
Kolmogorov Flow 2D (Re = 5k) (Li et al., 2022a). NO-LIDK† represents the use of both local integral and
differential kernels for local convolutions.
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Figure 28: Energy spectra comparison of predictions of state-of-the-art neural operator baselines and our
LOGLO-FNO vs. ground truth at two consecutive timesteps on a random sample from the test set of
Kolmogorov Flow 2D (Re = 5k) (Li et al., 2022a). NO-LIDK† indicates the use of both local integral and
differential kernels for local convolutions.
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Figure 29: Energy spectra comparison of predictions of state-of-the-art neural operator baselines and our
LOGLO-FNO vs. ground truth at two consecutive timesteps on a random sample from the test set of
Kolmogorov Flow 2D (Re = 5k) (Li et al., 2022a). NO-LIDK† denotes the use of both local integral and
differential kernels for local convolutions.
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Figure 30: Energy spectra comparison of predictions of state-of-the-art neural operator baselines and our
LOGLO-FNO vs. ground truth at two consecutive timesteps on a random sample from the test set of
Kolmogorov Flow 2D (Re = 5k) (Li et al., 2022a). NO-LIDK† indicates the use of both local integral and
differential kernels for local convolutions.

59



Under review as submission to TMLR

J Analysis of Correlation with Ground Truth on AR Rollout

J.1 Pearson’s Correlation of Sample Trajectories with Ground Truth

In this section, we first describe the steps for Pearson’s correlation coefficient computation and then provide
visualizations of Pearson’s correlation of the baselines and our proposed LOGLO-FNO model predictions
with respect to the reference solution on randomly sampled trajectories from the test set of Kolmogorov Flow
2D (Re = 5k) (Li et al., 2022a).

Let X ∈ RNb×Nt×Nx×Ny and Y ∈ RNb×Nt×Nx×Ny represent the predictions from a model and the ground
truth, respectively, where:

• Nb is the batch size and Nt is the sequence length or the number of time frames,

• Nx and Ny are the resolutions of spatial dimensions (e.g., width and height for 2D data),

We compute the Pearson correlation coefficient between X and Y in a vectorized manner as follows.

Step 1: Reshape Tensors. The tensors X and Y are reshaped by flattening the spatial dimensions Nx

and Ny into a single dimension S = Nx ×Ny.

X = Xreshape ∈ RNb×Nt×S , Y = Yreshape ∈ RNb×Nt×S .

Step 2: Compute Mean. The mean values of X (predictions) and Y (ground truth) along the spatial
dimension S are computed as,

µX = 1
S

S∑
i=1

X:,:,i, µY = 1
S

S∑
i=1

Y:,:,i,

where:

• µX ∈ RNb×Nt and µY ∈ RNb×Nt are the mean tensors for X and Y, respectively,

• The colon notation :, :, i indicates that the operation is performed over the spatial dimension S for
each sample in the batch Nb and for each time step in Nt.

Step 3: Compute Standard Deviation. The standard deviations of X (predictions) and Y (ground
truth) along the spatial dimension S are computed as,

σX =

√√√√ 1
S

S∑
i=1

(X:,:,i − µX)2, σY =

√√√√ 1
S

S∑
i=1

(Y:,:,i − µY)2,

where σX ∈ RNb×Nt and σY ∈ RNb×Nt are the standard deviations for X and Y, respectively.

Step 4: Compute Covariance. The covariance between X (predictions) and Y (ground truth) can then
be computed as,

cov(X, Y) = 1
S

S∑
i=1

(X:,:,i − µX)⊙ (Y:,:,i − µY),

where cov(X, Y) ∈ RNb×Nt is the covariance tensor and ⊙ denotes element-wise multiplication.
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Step 5: Compute Pearson’s Correlation Coefficient. The Pearson’s correlation coefficient for each
sample in the batch Nb and time step Nt is computed using,

corr(X, Y) = cov(X, Y)
σX ⊙ σY

To ensure numerical stability, the denominator is clamped to a small positive value ϵ (for instance, set ϵ =
torch.finfo(torch.float32).tiny ):

corr(X, Y) = cov(X, Y)
max(σX ⊙ σY, ϵ)

where corr(X, Y) ∈ RNb×Nt is the output tensor containing the Pearson’s correlation coefficients for each
sample in the batch and time step.

Interpretation. Pearson’s correlation coefficient measures the linear relationship between the model
predictions X and the ground truth solution Y. Therefore, a value of

• 1 indicates a perfect positive linear relationship,

• −1 indicates a perfect negative linear relationship, and

• 0 indicates no linear relationship.
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Figure 31: Comparison of Pearson’s correlation of predictions of state-of-the-art neural operator baselines
and our LOGLO-FNO vs. ground truth on a random sample from the test set of Kolmogorov Flow 2D
(Re = 5k) (Li et al., 2022a). NO-LIDK† indicates the use of both local integral and differential kernels for
local convolutions.
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Figure 32: Comparison of Pearson’s correlation of predictions of state-of-the-art neural operator baselines
and our LOGLO-FNO vs. ground truth on a different random sample from the test set of Kolmogorov Flow
2D (Re = 5k) (Li et al., 2022a). NO-LIDK† indicates the use of both local integral and differential kernels
for local convolutions.
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K Ablation Studies

Through the following ablation studies, we attempt to ascertain the impact and importance of each of the
introduced components (i.e., local spectral convolution branch and high-frequency propagation module) as
well as the patch size sensitivity, high-frequency adaptive Gaussian noise, and radially binned frequency-aware
loss term.

K.1 LOGLO-FNO Devoid of Radially Binned Frequency Loss (���HHHCfreq)

We conduct an ablation study to assess the relative importance of the proposed radially binned spectral energy
of errors as a frequency-aware loss term compared to the architectural modifications by the introduction of
layers for local spectral convolution and high-frequency propagation. Therefore, we train LOGLO-FNO by
retaining only the local branch and high-frequency propagation module in parallel to the global branch. By
setting Cfreq = 0, the cost function C for model training then reduces to the plain MSE loss.

θ∗ = arg min
θ

N∑
n=1

T −1∑
t=1
CMSE(Nθ(ut), ut+1)

The results of this study on the Turbulent Radiative Layer 3D dataset are provided in Table 5 on row 3.

K.2 LOGLO-FNO Devoid of HFP Module and Radially Binned Frequency Loss (���XXXHFP, ���H
HHCfreq)

In this ablation setup, we remove the high-frequency propagation module and keep only the local branch.
The radially binned frequency loss term is also disabled by setting Cfreq = 0. Therefore, the LOGLO-FNO
architecture comprises only the local and global branches in the Fourier layers, and is trained with plain MSE.

The results of this ablation choice on Turbulent Radiative Layer 3D are provided in Table 5 on row 4.

K.3 LOGLO-FNO Devoid of High Frequency Propagation Module (���XXXHFP)

This ablation setup is similar to the previous study in §K.2, except that we now enable the radially binned
frequency loss in the training objective to isolate the effect of removing the HFP module. The 1-step evaluation
results for this model setup on Turbulent Radiative Layer 3D are placed in the last row of Table 5.

Table 13: 1-step evaluation of LOGLO-FNO on the test set of Turbulent Radiative Mixing Layer 3D
dataset (Fielding et al., 2020; Ohana et al., 2024). Base FNO uses a spectral filter size of 18 and 48 hidden
channels. LOGLO-FNO uses 16 and (16, 16, 17)* Fourier modes in the global and local branches, respectively,
whereas the width is set to 52. (*This is because the Turbulent Radiative Layer 3D dataset has 2× more
sampling points on the z-axis relative to the x- and y-axes resolutions – (128 × 128 × 256).)

Model RMSE (↓) nRMSE bRMSE cRMSE fRMSE(L) fRMSE(M) fRMSE(H) vRMSE (↓) MaxError (↓)
1-step Evaluation

Base FNO 2.76 · 10−1 2.97 · 10−1 6.83 · 10−1 2.3 · 10−2 5.17 · 10−2 4.45 · 10−2 2.76 · 10−2 3.09 · 10−1 1.11 · 101

LOGLO-FNO
(+freq loss, +HFP) 2.42 · 10−1 2.58 · 10−1 6.19 · 10−1 1.75 · 10−2 4.1 · 10−2 3.62 · 10−2 2.45 · 10−2 2.68 · 10−1 1.06 · 101

LOGLO-FNO
(-freq loss, +HFP) 2.57 · 10−1 2.75 · 10−1 6.51 · 10−1 1.85 · 10−2 4.4 · 10−2 4.09 · 10−2 2.63 · 10−2 2.86 · 10−1 1.09 · 101

LOGLO-FNO
(-freq loss, -HFP) 2.58 · 10−1 2.76 · 10−1 6.55 · 10−1 1.83 · 10−2 4.4 · 10−2 4.13 · 10−2 2.64 · 10−2 2.87 · 10−1 1.1 · 101

LOGLO-FNO
(+freq loss, -HFP) 2.47 · 10−1 2.66 · 10−1 6.32 · 10−1 2.03 · 10−2 4.53 · 10−2 3.76 · 10−2 2.48 · 10−2 2.76 · 10−1 1.07 · 101

As we observe from Table 5, our model achieves the lowest errors across all metrics when the local branch is
combined with both the radially binned frequency loss and the HFP module.
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K.4 Patch-Size Sensitivity of LOGLO-FNO

In this section, we first provide the results of an ablation study investigating the sensitivity of LOGLO-FNO
on the patch sizes for the local branch through an experiment on the Turbulent Radiative Layer 3D PDE
problem. Across the tested patch size variations (psize = {4, 8, 16}), only the patch size values are altered
while all other hyperparameters, including the learning rate and random seed, remain the same during
training.
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Figure 33: Effect of patch sizes on the Time-Averaged vRMSE and 1-step spatial and spectral evaluation
metrics on the Turbulent Radiative Layer 3D dataset.

In Figure 33, we visualize the Time-Averaged vRMSE and 1-step xRMSE evaluation scores for patch sizes 4,
8, and 16. While we observe a trend of minor improvement in 1-step errors with the increase of patch sizes,
the Time-Averaged autoregressive errors do not exhibit this clear trend. We note from Figure 33 that an
increase in patch size directly results in an increased number of trainable parameters (and by virtue of it,
increases model expressivity) since we use the full set of Fourier modes in the local branch. Therefore, as a
trade-off between errors and training time or memory usage, we use a patch size of 16.

As an additional case study on patch size sensitivity analysis, we conduct experiments on the Compressible
Euler four-quadrant Riemann problem 2D from Poseidon (Herde et al., 2024), and provide the 1-step and
autoregressive error evolution of overall (nRMSE) and frequency-decomposed (fRMSE) evaluations over an
increasing number of timesteps for four different patch size configurations of LOGLO-FNO in Figures 34
and 35, respectively.
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Figure 34: Effect of patch sizes on the 1-step spatial (left: nRMSE and vRMSE) and spectral (right: fRMSE)
evaluation metrics on the Compressible Euler four-quadrant Riemann problem 2D (Herde et al., 2024).

Shifting our attention to the rollout evaluations, we note from Figure 35 a trend of error improvements as
we increase the patch sizes from 4 to 16. However, a further increase in patch size to 32 does not yield an
improvement, but rather detrimental, over long rollout scenarios. Therefore, as was previously found in the
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case of the Turbulent Radiative Layer 3D problem, we come to the conclusion that a patch size of 16 is a
sufficiently good choice.
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Figure 35: Error accumulation and patch size sensitivity during autoregressive rollouts on the Compressible
Euler four-quadrant Riemann problem 2D (Herde et al., 2024).
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K.5 Influence of High-Frequency Adaptive Gaussian Noise on Rollout Stability in LOGLO-FNO

In this section, we conduct an ablation study to investigate the influence of high-frequency adaptive Gaussian
noise (HF-AGN) in LOGLO-FNO on the stability of trajectory rollouts for the Kolmogorov Flow 2D
(Re5000) dataset. We report the mean and standard deviation values of errors at timestep 400 over three‖

runs in Table 14. The results suggest that HF-AGN is helpful for the stability of longer rollout scenarios.

Table 14: Rollout errors of LOGLO-FNO, with and without adaptive Gaussian noise (HF-AGN) injected
during 1-step training, at timestep 400 on the Kolmogorov Flow 2D (Re5000) dataset. The autoregressive
evaluation is over three runs.

Group RMSE (↓) nRMSE bRMSE cRMSE fRMSE(L) fRMSE(M) fRMSE(H) MaxError (↓) MELR (↓) WLR (↓)
LOGLO-FNO

(-HF-AGN) 7.8891
(±1.2168)

1.4572
(±0.2319)

7.5518
(±1.0478)

0.0472
(±0.0614)

1.4525
(±0.2229)

0.8524
(±0.2458)

0.1726
(±0.0227)

66.2614
(±13.5936)

0.4811
(±0.0662)

0.2797
(±0.0699)

LOGLO-FNO
(+HF-AGN) 7.1982

(±0.1837)
1.3227

(±0.0337)
7.0794

(±0.2293)
0.0113

(±0.0050)
1.2965

(±0.0512)
0.7362

(±0.0151)
0.1667

(±0.0012)
58.9953

(±1.7618)
0.4061

(±0.0795)
0.2228

(±0.0070)

K.6 Choice of Radial Bin Cutoff Values for the Radially Binned Frequency Loss in LOGLO-FNO

In order to assess the sensitivity of the cutoff boundaries when demarcating the low, mid, and high frequency
regions for the radially binned spectral loss, we conduct an ablation study on the 2D Kolmogorov Flow
dataset and provide the 5-step AR errors in Table 15.

Table 15: Sensitivity analysis of radial bin cutoffs for the radially binned frequency loss applied for training
LOGLO-FNO. The experiments are on the Kolmogorov Flow 2D (Re5000) dataset, and the evaluations are
over five independent runs with unique random seeds.

Cutoff
Boundary

Unpenalized
Region

Penalized
Region nRMSE (↓) fRMSE(L) fRMSE(M) fRMSE(H) (↓)

iLow=2, iHigh=10 r < 2 r ≥ 2
0.1917
(± 0.0039)

0.0262
(± 0.0008)

0.0466
(± 0.0025)

0.0694
(± 0.0014)

iLow=4, iHigh=12 r < 4 r ≥ 4
0.1931

(± 0.0021)
0.0285

(± 0.0025)
0.0462
(± 0.0020)

0.0694
(± 0.0008)

iLow=6, iHigh=15 r < 6 r ≥ 6
0.1942

(± 0.0034)
0.0281

(± 0.0010)
0.0485

(± 0.0025)
0.0702

(± 0.0014)

We note that the choice iLow=2 and iHigh=10 achieves the lowest spatial (nRMSE) and low-frequency errors
and ties with the iLow=4 and iHigh=12 setup on the high-frequency error. However, the latter might be an
optimal choice since it exhibits the lowest variance on the spatial (nRMSE), mid-, and high-frequency errors
and is more stable over long rollouts.

‖Of the total four runs we conducted, we exclude a run from the mean computation due to a blow-up in errors for the model
without HF-AGN.
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L Zero-Shot Super-Resolution (ZSSR) Capability and Performance of LOGLO-FNO

In this section, we evaluate the capability and performance of LOGLO-FNO on spatial ZSSR tasks and
compare it with the results of NO-LIDK (Liu-Schiaffini et al., 2024) and the baseline FNO model.

Table 16: ZSSR evaluation of LOGLO-FNO on the test set of Kolmogorov Flow 2D dataset (Li et al., 2022b).
Base FNO and NO-LIDK∗ use a spectral filter size of 12 and 20 hidden channels. NO-LIDK∗ denotes using
only localized integral kernel and NO-LIDK† means employing both disco and diff layers. LOGLO-FNO
uses 12 and (16, 9) Fourier modes in the global and local branches, respectively, whereas the width is set to
20. Training spatial resolution is (64× 64) and denoted as 1×, whereas the ZSSR test resolution is (128× 128)
and denoted as 2×. We boldface the lowest errors and underline the value when the 2nd best model is
LOGLO-FNO.

Model Resolution nRMSE (↓) fRMSE(L) fRMSE(M) fRMSE(H) MELR (↓) WLR (↓)
Train: 1×
Test : 2× 1-step Evaluation

Base FNO 1× 2.99 · 10−1 4.71 · 10−2 8.3 · 10−2 1.59 · 10−1 6.41 · 10−1 1.2 · 10−1

2× 2.93 · 10−1 3.14 · 10−2 7.38 · 10−2 1.16 · 10−1 9.61 · 10−1 1.43 · 10−1

NO-LIDK∗ 1× 2.79 · 10−1 4.65 · 10−2 8.88 · 10−2 1.41 · 10−1 5.89 · 10−1 1.04 · 10−1

2× 3.71 · 10−1 5.16 · 10−2 7.87 · 10−2 1.12 · 10−1 9.21 · 10−1 1.45 · 10−1

NO-LIDK† 1× 2.56 · 10−1 4.61 · 10−2 7.77 · 10−2 1.28 · 10−1 2.32 · 10−1 5.89 · 10−2

2× 4.35 · 10−1 1.11 · 10−1 1.75 · 10−1 1.39 · 10−1 2.6 · 10−1 6.6 · 10−2

LOGLO-FNO 1× 2.32 · 10−1 4.57 · 10−2 7.35 · 10−2 1.22 · 10−1 2.12 · 10−1 4.68 · 10−2

2× 2.9 · 10−1 3.19 · 10−2 6.76 · 10−2 1.05 · 10−1 2.32 · 10−1 6.34 · 10−2

5-step Autoregressive Evaluation

Base FNO 1× 4.54 · 10−1 1.05 · 10−1 1.96 · 10−1 2.44 · 10−1 7.03 · 10−1 1.68 · 10−1

2× 4.4 · 10−1 9.17 · 10−2 1.65 · 10−1 1.55 · 10−1 1.13 · 100 1.95 · 10−1

NO-LIDK∗ 1× 4.32 · 10−1 1.05 · 10−1 2.03 · 10−1 2.27 · 10−1 8.58 · 10−1 1.86 · 10−1

2× 4.65 · 10−1 9.89 · 10−2 1.97 · 10−1 1.58 · 10−1 1.28 · 100 2.59 · 10−1

NO-LIDK† 1× 3.85 · 10−1 9.15 · 10−2 1.69 · 10−1 2.16 · 10−1 3.75 · 10−1 1.06 · 10−1

2× 7.58 · 10−1 2.59 · 10−1 5.06 · 10−1 2.11 · 10−1 4.38 · 10−1 1.78 · 10−1

LOGLO-FNO 1× 3.78 · 10−1 8.23 · 10−2 1.55 · 10−1 2.02 · 10−1 3.56 · 10−1 9.46 · 10−2

2× 4.29 · 10−1 7.95 · 10−2 1.47 · 10−1 1.51 · 10−1 4.39 · 10−1 1.4 · 10−1

We provide the spatial ZSSR results of baseline FNO, NO-LIDK variants, and our proposed LOGLO-FNO
on the test set of the 2D Kolmogorov Flow dataset (Li et al., 2022a) in Table 16. The original spatial
resolution of the dataset is 128× 128. Therefore, we perform an even rate 2× subsampling to obtain training
data at a resolution of 64 × 64, denoted as 1× in the table. Naturally, the ZSSR task is then to evaluate
the capability of the models for the next higher resolution of 128× 128, for which we have the ground truth.
We observe that baseline FNO exhibits superior spatial ZSSR capabilities, except on the spectral metrics
(MELR & WLR), on which it incurs degradation. LOGLO-FNO, on the other hand, incurs degradation
in spatial and spectral errors. However, it exhibits superior improvements on the frequency domain errors,
outperforming base FNO on all metrics, but fRMSE (Low). Most importantly, we find that LOGLO-FNO
is better than the NO-LIDK variants on all metrics. Subsequently, we perform ZSSR evaluation on the 5-step
autoregressive rollouts, and find a similar trend.
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Table 17: Spatial ZSSR evaluation of LOGLO-FNO on the test set of CNS Turb 2D dataset (Takamoto
et al., 2022). Base FNO uses a spectral filter size of 40 and 65 hidden channels. LOGLO-FNO uses 40 and
(16, 9) Fourier modes in the global and local branches, respectively, whereas the width is set to 65. NO-LIDK∗

uses 40 modes and 65 hidden channels and a radius cutoff value of 0.00390625. NO-LIDK∗ denotes using
only localized integral kernel and NO-LIDK† means employing both disco and diff layers. Training spatial
resolution is (256× 256), being noted as 1×, whereas the ZSSR test resolution is (512× 512) and denoted as
2×. We boldface the lowest errors and underline the value when the 2nd best model is LOGLO-FNO.

Model Resolution nRMSE (↓) fRMSE(L) fRMSE(M) fRMSE(H) MELR (↓) WLR (↓)
Train: 1×
Test : 2× 1-step Evaluation

Base FNO 1× 4.82 · 10−2 1.28 · 10−3 1.78 · 10−3 1.57 · 10−3 2.78 · 10−1 7.8 · 10−3

2× 4.81 · 10−2 1.26 · 10−3 1.77 · 10−3 9.24 · 10−4 5.5 · 10−1 7.85 · 10−3

NO-LIDK∗ 1× 6.4 · 10−2 1.5 · 10−3 2.14 · 10−3 1.98 · 10−3 2.98 · 10−1 1.31 · 10−2

2× 7.61 · 10−2 7.73 · 10−3 2.92 · 10−3 1.17 · 10−3 5.29 · 10−1 2.45 · 10−2

NO-LIDK† 1× 5.57 · 10−2 1.37 · 10−3 1.89 · 10−3 1.77 · 10−3 2.08 · 10−1 9.54 · 10−3

2× 8.66 · 10−2 4.8 · 10−3 2.67 · 10−3 1.93 · 10−3 9.0 · 10−1 1.21 · 10−2

LOGLO-FNO 1× 4.34 · 10−2 9.74 · 10−4 1.17 · 10−3 1.41 · 10−3 1.83 · 10−1 5.93 · 10−3

2× 4.54 · 10−2 1.06 · 10−3 1.27 · 10−3 8.91 · 10−4 3.56 · 10−1 7.75 · 10−3

5-step Autoregressive Evaluation

Base FNO 1× 7.78 · 10−2 3.76 · 10−3 5.37 · 10−3 2.4 · 10−3 2.22 · 10−1 9.36 · 10−3

2× 7.06 · 10−2 3.31 · 10−3 4.77 · 10−3 1.37 · 10−3 5.12 · 10−1 8.1 · 10−3

NO-LIDK∗ 1× 8.55 · 10−2 4.14 · 10−3 5.92 · 10−3 2.62 · 10−3 2.06 · 10−1 1.15 · 10−2

2× 1.35 · 10−1 1.5 · 10−2 1.1 · 10−2 2.11 · 10−3 4.25 · 10−1 3.48 · 10−2

NO-LIDK† 1× 7.91 · 10−2 3.82 · 10−3 5.38 · 10−3 2.47 · 10−3 1.45 · 10−1 1.01 · 10−2

2× 3.9 · 100 4.17 · 10−1 1.41 · 10−1 7.21 · 10−2 2.36 · 100 5.25 · 10−1

LOGLO-FNO 1× 6.72 · 10−2 2.8 · 10−3 4.0 · 10−3 2.14 · 10−3 1.31 · 10−1 6.78 · 10−3

2× 7.31 · 10−2 3.2 · 10−3 4.36 · 10−3 1.43 · 10−3 3.13 · 10−1 8.36 · 10−3

20-step (entire trajectory) Autoregressive Evaluation

Base FNO 1× 1.81 · 10−1 1.25 · 10−2 1.44 · 10−2 3.26 · 10−3 2.8 · 10−1 3.22 · 10−2

2× 1.82 · 10−1 1.26 · 10−2 1.45 · 10−2 1.78 · 10−3 5.52 · 10−1 3.24 · 10−2

NO-LIDK∗ 1× 1.97 · 10−1 1.44 · 10−2 1.6 · 10−2 3.36 · 10−3 2.95 · 10−1 3.94 · 10−2

2× 3.72 · 10−1 4.63 · 10−2 3.16 · 10−2 2.39 · 10−3 3.66 · 10−1 1.09 · 10−1

NO-LIDK† 1× 1.87 · 10−1 1.35 · 10−2 1.48 · 10−2 3.37 · 10−3 2.1 · 10−1 3.7 · 10−2

2× 1.04 · 1011 1.18 · 1010 5.64 · 108 1.77 · 109 1.33 · 101 9.99 · 100

LOGLO-FNO 1× 1.62 · 10−1 1.07 · 10−2 1.26 · 10−2 3.09 · 10−3 1.87 · 10−1 2.7 · 10−2

2× 1.72 · 10−1 1.16 · 10−2 1.34 · 10−2 1.79 · 10−3 3.49 · 10−1 3.02 · 10−2
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M Training and Inference Time Comparison of LOGLO-FNO

M.1 Comparison with Numerical Solver

The inference time of LOGLO-FNO to generate predictions on the Turbulent Radiative Layer 3D dataset
is provided in Table 18 and compared against the CPU-only numerical solver Athena++ used to generate
the original simulations of the TRL3D dataset. However, in order to establish a fair comparison with the
numerical solver, the training time of the neural surrogate (LOGLO-FNO), which is about 12 hours for 50
epochs on TRL3D, should also be considered.

Table 18: Comparison of runtimes to generate all trajectories at the full resolution for the Turbulent Radiative
Layer 3D dataset.

Solver Type Hardware Runtime
Numerical Solver: Athena++

(Stone et al., 2020; Ohana et al., 2024) CPU (128 cores) 34,560 CPU-h

Neural Surrogate: LOGLO-FNO one H100 GPU 38.143767 mins

Table 19: Scaling factor of runtimes to generate all trajectories at training and higher (2×) spatial resolutions
for the Turbulent Radiative Mixing Layer 3D dataset.

Metric Data
Split

Spatial Resolution
(64×64×128)

Spatial Resolution
(128×128×256)

Scaling
Factor

Total Grid Points ✗ 524,288 4,194,304 8x

Runtime (9 Trajectories) Test 31,430.94 ± 0.80 ms
(~31.4 sec)

228,862.60 ± 0.81 ms
(~3.8 min) ~7.28x

Runtime (90 Trajectories) Full 314,309.4 ± 8.0 ms
(~5.2 min)

2,288,626.0 ± 8.1 ms
(~38.1 min) ~7.28x

We measure the runtimes by generating the trajectory predictions only for the test set, containing 9 trajectories,
each of which has 101 timesteps (row 2 in Table 19). The runtime consumed by the numerical solver Athena++
is taken from Ohana et al. (2024)¶. The runtime for the full dataset containing 90 trajectories (row 3 in
Table 19) is obtained by naive scaling (i.e., multiplying by 10) of the GPU runtime for the 9 trajectories.
During inference, we use a batch size of 1 and report the mean runtime and standard deviation over 10
iterations for both spatial resolutions listed in Table 19.

M.2 Training & Inference Time and GPU Memory Usage Comparison with Base FNO and NO-LIDK

In this part, we provide the training and inference times as well as the GPU memory usage of LOGLO-FNO
and compare them with FNO and NO-LIDK variants of baseline models since these are the most related
model architectures for LOGLO-FNO. We note that all experiments, configured through the Slurm workload
manager, are conducted on a single H100 NVIDIA graphics card with 96 GB of memory. The benchmark
problem we consider is the 2D Kolmogorov Flow (Li et al., 2022a) and 1-step training outlined in §4.0.1.

In order to establish a complete picture of the trade-off among these models in terms of memory usage and
total epoch times, we list the training times and GPU memory usage for the forward and backward passes in
Table 20. We observe that baseline FNO� wins all other models, both in terms of GPU memory consumed
and time needed for the completion of the full training cycle of 136 epochs. NO-LIDK⋄�, employing a
differential kernel as a parallel branch, occupies the second place. LOGLO-FNO� comes third in training
time, while it needs slightly more memory than NO-LIDK∗, using a local integral kernel, takes fourth place

¶https://polymathic-ai.org/the_well/datasets/turbulent_radiative_layer_3D
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when comparing training time. In last place is the NO-LIDK variant utilizing both kernels as parallel branches
in addition to the global Fourier branch.

Table 20: Training times and GPU memory usage for the forward and backward passes during the 1-step
training for a total of 136 epochs on the Kolmogorov Flow 2D training dataset. The reported values are
the average over 4 training runs on the training set. NO-LIDK∗, NO-LIDK⋄, and NO-LIDK† represent the
variants trained with the local integral (DISCO), differential kernel, and both layers as additional parallel
branches, in that corresponding order.

Model Training
Time

Slowdown
wrt. FNO

GPU
Mem. (GB)

Mem. Fact.
vs. FNO

Batch
Size

Spatial
Res.

Fourier
Modes

Hidden
Channel Psize

Radius
Cutoff

Base FNO� 1h 36m 47s ± 8.35s ref. 33.90 ± 0.81 ref. 256 128x128 40 65 ✗ ✗

LOGLO-FNO� 5h 19m 40s ± 16.28s 3.30× 76.02 ± 2.10 2.24× 256 128x128 40 65 16× 16 ✗

NO-LIDK∗ 7h 23m 30s ± 16.59s 4.58× 69.33 ± 2.02 2.05× 256 128x128 20 129 ✗ 0.05π

NO-LIDK⋄� 2h 52m 54s ± 7.55s 1.79× 35.63 ± 1.12 1.05× 256 128x128 40 65 ✗ ✗

NO-LIDK† 7h 31m 11s ± 13.54s 4.66× 78.75 ± 4.63 2.32× 256 128x128 20 127 ✗ 0.05π

Subsequently, we compute the inference times and GPU memory usage for the 1-step predictions and list
them in Table 21, with the provided values averaged over 100 repetitions.

Table 21: Inference times and GPU memory usage for the forward pass during 1-step evaluation on the
Kolmogorov Flow 2D test dataset. The reported values are the average over 100 iterations on the test
set. NO-LIDK∗, NO-LIDK⋄, and NO-LIDK† represent the variants trained with the local integral (DISCO),
differential kernel, and both layers as additional parallel branches, in that corresponding order.

Model Inference
Time (ms)

Slowdown
wrt. FNO

GPU
Mem. (GB)

Batch
Size

Spatial
Res.

Fourier
Modes

Hidden
Channel Psize

Radius
Cutoff

Base FNO� 1471.41 ± 0.06 ref. 10.74 ± 0.0 256 128x128 40 65 ✗ ✗

LOGLO-FNO� 4899.53 ± 0.15 3.33× 18.31 ± 0.0 256 128x128 40 65 16× 16 ✗
NO-LIDK∗ 7601.22 ± 7.17 5.17× 19.63 ± 0.0 256 128x128 20 129 ✗ 0.05π

NO-LIDK⋄� 2477.68 ± 0.14 1.68× 10.19 ± 0.0 256 128x128 40 65 ✗ ✗

NO-LIDK† 7096.81 ± 4.34 4.82× 21.43 ± 0.0 256 128x128 20 127 ✗ 0.05π

We observe a similar trend with baseline FNO being the fastest, however, consuming slightly higher GPU
memory than NO-LIDK⋄, which is about 1.7× slower. In the third place is our LOGLO-FNO model,
incurring a 3.3× slowdown factor. Pertinent to our model is NO-LIDK∗, and it is about 1.6× slower while also
incurring a slightly higher memory consumption than LOGLO-FNO under the considered hyperparameter
configurations, following Liu-Schiaffini et al. (2024). Finally, the NO-LIDK† variant, consisting of both
branches, incurs the highest GPU memory, although it is slightly faster than the NO-LIDK∗ variant with
only the local integral kernel branch as an additional pathway.
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N Confidence Analysis of LOGLO-FNO and Baselines

In this section, we report the mean and standard deviation values for the base FNO and NO-LIDK variants,
comparing them with our proposed LOGLO-FNO model. We repeat the 1-step training setup discussed in
§4.0.1 on the 2D Kolmogorov Flow dataset four times with different random seeds, and evaluate the 1-step
as well as the 5-step autoregressive rollouts. The plot in Figure 36 shows the mean and 95% confidence
interval values of fRMSE and WLR errors, with the hatched and solid bars visualizing the 1-step and 5-step
autoregressive rollout errors in that order.
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Figure 36: Confidence analysis of baseline FNO, NO-LIDK (Liu-Schiaffini et al., 2024), and proposed
LOGLO-FNO for the 1-step and 5-step autoregressive evaluation of fRMSE and WLR (Wan et al., 2023)
metrics on the test set of 2D Kolmogorov Flow (Li et al., 2022b). NO-LIDK∗ and NO-LIDK⋄ represent the
variants trained with the local integral (DISCO) and differential kernel layers, respectively.

We observe that LOGLO-FNO consistently outperforms baseline FNO and is significantly better than
NO-LIDK∗, utilizing the local integral kernel, across all metrics. Particularly noteworthy are the improvements
we observe in the rollout scenarios.

In a similar vein, in Figure 37, we visualize the mean and 95% confidence interval values of nRMSE and
MELR errors, whereas Figure 38 establishes a comparison of the plain and boundary RMSE values.

We find that while LOGLO-FNO is the best model on the nRMSE metric, NO-LIDK⋄ employing a differential
kernel layer outperforms all models, reinforcing the results found in Table 6. However, we note that the
results on NO-LIDK⋄ are provided only for the sake of completeness, and LOGLO-FNO should be compared
with NO-LIDK∗ when assessing its effectiveness.

Liu-Schiaffini et al. (2024) find the differential kernel layer to be effective in reducing the boundary error for
non-periodic boundary conditions. Additionally, in our study on Kolmogorov Flow 2D, it has been found to
be effective for periodic boundary conditions as well, enforced through padding. However, this advantage is
not maintained in rollouts (see Figure 38).
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Figure 37: Confidence analysis of baseline FNO, NO-LIDK (Liu-Schiaffini et al., 2024), and proposed
LOGLO-FNO for the 1-step and 5-step autoregressive evaluation of nRMSE and MELR (Wan et al., 2023)
metrics on the test set of 2D Kolmogorov Flow (Li et al., 2022b). NO-LIDK∗ and NO-LIDK⋄ represent the
variants trained with the local integral (DISCO) and differential kernel layers, respectively.
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Figure 38: Confidence analysis of baseline FNO, NO-LIDK (Liu-Schiaffini et al., 2024), and proposed
LOGLO-FNO for the 1-step and 5-step autoregressive evaluation of xRMSE (plain and boundary) metrics
on the test set of 2D Kolmogorov Flow (Li et al., 2022b). NO-LIDK∗ and NO-LIDK⋄ represent the variants
trained with the local integral (DISCO) and differential kernel layers, respectively.
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O Model Hyperparameters

O.1 Modern U-Net Hyperparameters

The Table 22 below presents the hyperparameters for the modern version of U-Net baseline we use from the
PDEArena (Gupta & Brandstetter, 2023) benchmark codebase.

PDE
Problem

Channel
Multiplier

Learning
Rate (LR)

LR
Sched.

Sched.
Steps

Sched.
Gamma

Train
Type

Train
Loss

Total
Epochs

2D Kolmogorov Flow (1, 2, 2, 3, 4) 1.0 ·e−3 StepLR 33 0.5 1-step MSE 136
2D CNS Turb (1, 2, 2, 3, 4) 1.0 ·e−3 StepLR 33 0.5 1-step MSE 136

Table 22: Model hyperparameters for U-Net (Gupta & Brandstetter, 2023) baseline.

O.2 Base FNO Hyperparameters

Table 23 below lists the hyperparameters for training the FNO baseline model on the two-dimensional and
three-dimensional PDE problems considered in our experiments. Note that we borrow the hyperparameters
from Liu-Schiaffini et al. (2024) for the Kolmogorov Flow case and Takamoto et al. (2022) for the Diffusion-
Reaction 2D PDE.

PDE
Problem

Fourier
Modes

Channel
Dimens.

Learning
Rate (LR)

LR
Scheduler

Sched.
Steps

Sched.
Gamma

Train
Type

Train
Loss

Total
Epochs

2D Diffusion-Reaction 12 20 1.0 ·e−3 StepLR 100 0.5 AR MSE 500
2D Kolmogorov Flow 40 65 1.0 ·e−3 StepLR 33 0.5 1-step MSE 136

2D Wave-Gauss 20 32 1.0 ·e−3 StepLR 33 0.5 1-step MSE 136
2D CNS Turb 40 65 1.0 ·e−3 StepLR 33 0.5 1-step MSE 136

2D Comp. Euler RP 40 65 1.0 ·e−3 StepLR 33 0.5 1-step MSE 136
Turbulent Radiative Layer 3D 12 48 1.0 ·e−3 StepLR 10 0.5 1-step MSE 50

Table 23: Model hyperparameters for FNO baseline.

O.3 F-FNO Hyperparameters

Table 24 provides the hyperparameters for the F-FNO baseline model from Tran et al. (2023). As with the
baseline FNO model, we use four Fourier layers.

PDE
Problem

Fourier
Modes

Channel
Dimens.

Learning
Rate (LR)

LR
Scheduler

Warmup
Steps

Train
Type

Train
Loss

Total
Epochs

2D Diffusion-Reaction 16 32 6.0 ·e−4 Cosine Warmup 200 AR MSE 500
2D Kolmogorov Flow 40 65 1.0 ·e−3 Cosine Warmup 60 1-step MSE 136

Table 24: Model hyperparameters for F-FNO (Tran et al., 2023) baseline.

O.4 LSM Hyperparameters

Tables 25 provides the hyperparameters used for training the Latent Spectral Model (Wu et al., 2023) baseline
on the Kolmogorov Flow 2D, CNS Turb 2D, Wave-Gauss 2D, and Diffusion-Reaction 2D datasets, whereas
Table 26 lists the model hyperparameters used for the LSM architecture configuration.

We found the model to be very sensitive to the learning rate in the full autoregressive training setup and,
hence, we use a low learning rate of 5.0 ·e−5 in addition to employing gradient clipping with a max norm of
5.0.
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PDE
Problem

Learning
Rate (LR)

LR
Scheduler

Sched.
Steps

Sched.
Gamma

Train
Type

Train
Loss

Total
Epochs

2D Diffusion-Reaction 5.0 ·e−5 StepLR 100 0.5 AR MSE 500
2D Kolmogorov Flow 1.0 ·e−3 StepLR 33 0.5 1-step MSE 136

2D CNS Turb 1.0 ·e−3 StepLR 33 0.5 1-step MSE 136
2D Wave-Gauss 1.0 ·e−3 StepLR 33 0.5 1-step MSE 136

3D Turbulent Radiative Layer 1.0 ·e−3 StepLR 10 0.5 1-step MSE 50

Table 25: Training settings for LSM (Wu et al., 2023) baseline model.

PDE
Problem

Num.
Tokens

Num.
Basis

Channel
Dimens. (init.)

Downsample
Ratio

Num.
Scales

Patch
Size

Interpol.
Type

2D Diffusion-Reaction 4 8 32 5/10 5 (4,4) bilinear
2D Kolmogorov Flow 4 16 64 5/10 5 (4,4) bilinear

2D CNS Turb 4 16 64 5/10 5 (4,4) bilinear
2D Wave-Gauss 4 8 32 5/10 5 (4,4) bilinear

3D Turbulent Radiative Layer 4 16 64 5/10 5 (4,4,8) trilinear

Table 26: Further Model hyperparameters for LSM (Wu et al., 2023) baseline.

Channel dimensions (init.) represent the number of channels used for the incoming full spatial resolution,
including which the remaining four spatial scales and their respective channels follow.

O.5 Transolver Hyperparameters

Tables 27 provides the hyperparameters used for training the Transolver Model (Wu et al., 2024) baseline
on the Kolmogorov Flow 2D, CNS Turb 2D, Wave-Gauss 2D, and Diffusion-Reaction 2D datasets, whereas
Table 28 lists the model hyperparameters used for the Transolver model architecture configuration.

PDE
Problem Optimizer

Learning
Rate (LR)

LR
Scheduler

Weight
Decay

Train
Type

Train
Loss

Total
Epochs

2D Diffusion-Reaction AdamW 4.0 ·e−4 OneCycleLR 1.0 ·e−4 AR MSE 500
2D Kolmogorov Flow AdamW 6.0 ·e−3 OneCycleLR 1.0 ·e−4 1-step MSE 500

2D CNS Turb AdamW 6.0 ·e−3 OneCycleLR 1.0 ·e−4 1-step MSE 500
2D Wave-Gauss AdamW 6.0 ·e−3 OneCycleLR 1.0 ·e−4 1-step MSE 500

Table 27: Training settings for Transolver (Wu et al., 2024) baseline model.

PDE
Problem

Num.
Layers

Num.
Heads

Num.
Slices

Hidden
Channels

Activation
Function

MLP
Ratio

Apply
Dropout

2D Diffusion-Reaction 4 8 32 64 GeLU 1 False
2D Kolmogorov Flow 9 8 64 128 GeLU 1 False

2D CNS Turb 9 8 64 128 GeLU 1 False
2D Wave-Gauss 9 8 64 32 GeLU 1 False

Table 28: Model architecture hyperparameters for Transolver (Wu et al., 2024) baseline.

O.6 U-FNO Hyperparameters

Table 29 below lists the hyperparameters for the U-FNO baseline model from Wen et al. (2022).
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PDE
Problem

Fourier
Modes

Channel
Dimens.

Learning
Rate (LR)

LR
Scheduler

Sched.
Steps

Sched.
Gamma

Train
Type

Train
Loss

Total
Epochs

2D Diffusion-Reaction 10 19 5.0 ·e−4 StepLR 10 0.9 AR MSE 500
2D Kolmogorov Flow 36 48 1.0 ·e−3 StepLR 2 0.9 1-step MSE 136

2D CNS Turb 36 48 5.0 ·e−4 StepLR 10 0.9 1-step MSE 136
2D Wave-Gauss 16 32 5.0 ·e−4 StepLR 10 0.9 1-step MSE 136

Table 29: Model hyperparameters for U-FNO (Wen et al., 2022) baseline.

O.7 NO-LIDK Hyperparameters

Table 30 lists the hyperparameters for different configurations of the Neural Operators with Localized Integral
and Differential Kernels (NO-LIDK) model from Liu-Schiaffini et al. (2024). For the Kolmogorov Flow 2D
data, following the authors’ training setup (see Table 4 in Liu-Schiaffini et al. (2024)), we use 20 modes and a
hidden channel dimension of 127 for the model employing both local integral and differential kernel layers
(NO-LIDK†), 20 modes and a hidden channel dimension of 129 for the model using only the local integral
kernel layer (NO-LIDK∗), and 40 modes and a hidden channel dimension of 65 for the model with just the
differential kernel layer (NO-LIDK⋄) as parallel layers in addition to the global spectral convolution layer of
base FNO. All these variants use 4 Fourier layers in total.

PDE
Problem

Integral
Kernel

Differential
Kernel

Learning
Rate (LR)

LR
Sched.

Sched.
Steps

Sched.
Gamma

Train
Type

Train
Loss

Total
Epochs

2D Kolmogorov Flow ✓ ✓ 1.0 ·e−3 StepLR 33 0.5 1-step MSE 136
2D Wave-Gauss ✓ ✓ 1.0 ·e−3 StepLR 33 0.5 1-step MSE 136

2D Comp. Euler RP ✓ ✓ 1.0 ·e−3 StepLR 33 0.5 1-step MSE 136
2D CNS Turb ✓ ✓ 1.0 ·e−3 StepLR 33 0.5 1-step MSE 136

Turbulent Radiative Layer 3D ✗ ✓ 6.0 ·e−3 OneCycleLR 10 ✗ 1-step MSE 50

Table 30: Model hyperparameters for NO-LIDK (Liu-Schiaffini et al., 2024) baseline.

The local integral kernel for the disco convolution employs a radius cutoff value of 0.0078125, 0.0078125, and
0.00390625 for the Wave-Gauss 2D, Compressible Euler four-quadrant Riemann problem 2D, and CNS Turb
2D problems, respectively, following the heuristic suggested by Liu-Schiaffini et al. (2024). As in the case of
the baseline FNO model, the number of spectral filters and hidden channels is set as 40 and 65, resp., for all
three configurations of the trained models (i.e., disco layers – NO-LIDK∗, differential layers – NO-LIDK⋄,
and disco+differential layers – NO-LIDK†) for the CNS Turb 2D dataset, whereas we use 20 modes and
32 hidden channels for the Wave-Gauss 2D problem. We use the hyperparameter settings applied for 2D
Kolmogorov Flow for the Compressible Euler four-quadrant Riemann problem 2D PDE.

For the Turbulent Radiative Layer 3D data, we use 16, 16, and 20 modes along the x, y, and z axes. The
number of hidden channels is set as 96, and the model consists of 4 layers, as in the case of all 2D experiments.

O.8 LOGLO-FNO Implementation and Hyperparameters

Implementation. Our implementation uses PyTorch v2 (Ansel et al., 2024), NumPy (Harris et al., 2020),
and FNO base implementation adapted from the neural operator library (Kossaifi et al., 2024a).

Hyperparameters. The Kolmogorov Flow problem uses a batch size of 256 and a patch size of 16× 16 (in
the local branch) for the 1-step training strategy, whereas it is set as 8× 8 for Diffusion-Reaction 2D due to
memory limitations with fully autoregressive training on long trajectories of 91 timesteps. An experiment
employing data-parallel training using a patch size of 16 has not resulted in improved performance. Therefore,
we set the patch size to 8 when extracting non-overlapping patches on the domain for the Diffusion-Reaction
problem and report the results for this setting.
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PDE
Problem

Fourier
Modes (Global)

Channel
Dimens.

Learning
Rate (LR)

LR
Scheduler

Sched.
Steps

Sched.
Gamma

Train
Type

Train
Loss

Total
Epochs

2D Diffusion-Reaction 10 24 8.0 ·e−4 StepLR 100 0.5 AR MSE + (mid&high) Freq. 500
2D Kolmogorov Flow 40 65 4.4 ·e−3 StepLR 33 0.5 1-step MSE + (mid&high) Freq. 136

2D Wave-Gauss 20 32 4.4 ·e−3 StepLR 33 0.5 1-step MSE + (mid&high) Freq. 136
2D Comp. Euler RP 40 65 4.4 ·e−3 StepLR 33 0.5 1-step MSE + (mid&high) Freq. 136

2D CNS Turb 40 65 4.4 ·e−3 StepLR 33 0.5 1-step MSE + (mid&high) Freq. 136
Turbulent Radiative Layer 3D 12 52 4.0 ·e−3 StepLR 10 0.5 1-step MSE + (mid&high) Freq. 50

Table 31: Model hyperparameters for our proposed LOGLO-FNO in the main paper with simple summation
(+) as the fusion method (Fig. 1) for the features from the HFP, global, and local branches.

All models use a batch size of 64, 256, and 256 for the CNS Turb 2D, Compressible Euler four-quadrant
Riemann problem 2D, and Wave-Gauss 2D problems, respectively. LOGLO-FNO uses a patch size of 16× 16
for the Compressible Euler four-quadrant Riemann problem 2D and Wave-Gauss 2D from Poseidon (Herde
et al., 2024) and CNS Turb 2D dataset, which is provided by PDEBench (Takamoto et al., 2022).

The kernel size and stride have been set to 4 in the high-frequency extraction and propagation modules for
all PDE problems. The local branch (e.g., with a patch size of 8× 8 or 16× 16) uses all available frequency
modes. This would yield 16 and 9 Fourier modes for the spatial dimensions x and y, respectively, when a
patch size of 16×16 is considered. Analogously, assuming an equal number of sampling points along all three
spatial axes of a 3D spatial data, the local branch configured with a patch size of 16× 16× 16 would use all
the 16, 16, and 9 Fourier modes for the spatial dimensions x, y, and z, respectively. Since Turbulent Radiative
Layer 3D (Ohana et al., 2024) has 2x more observation points on the z-axis (i.e., 128× 128× 256), we use a
proportionate patch size of 16× 16× 32, resulting in 16, 16, and 17 Fourier modes along the x, y, and z axes,
respectively.
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P Table of Notations and Mathematical Symbols

To serve as a handy guide, the following tabulation describes the symbols used within this manuscript.

R+ Set of positive real numbers. Specifically, t ∈ (0, T]

∇ Gradient or vector derivative operator ( ∂
∂x , ∂

∂y , . . .)

∆ Laplacian (∇2)

∂t Partial derivative with respect to t

∂x Partial derivative with respect to x

∂y Partial derivative with respect to y

u(x, t) Solution of a PDE at time t for a given spatial coordinate x

v Velocity vector field (x⃗, y⃗, . . . )

p PDE parameter values, either a scalar or vector

fθ Neural network with learnable parameters θ

Nt Total number of timesteps in the simulation

Nc Total number of channels in the simulation

u0(x) Initial data of the PDE at time t = 0

Ω Domain of the PDE under consideration

∂Ω Boundary of the domain Ω under consideration

ν Viscosity coefficient of Navier-Stokes

Re Reynolds Number
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