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Abstract

Width-based planning methods deal with conjunctive goals
by decomposing problems into subproblems of low width.
Algorithms like SIW thus fail when the goal is not easily
serializable in this way or when some of the subproblems
have a high width. In this work, we address these limita-
tions by using a simple but powerful language for expressing
finer problem decompositions introduced recently by Bonet
and Geffner, called policy sketches. A policy sketch R over
a set of Boolean and numerical features is a set of sketch
rules C 7→ E that express how the values of these fea-
tures are supposed to change. Like general policies, policy
sketches are domain general, but unlike policies, the changes
captured by sketch rules do not need to be achieved in a sin-
gle step. We show that many planning domains that cannot be
solved by SIW are provably solvable in low polynomial time
with the SIWR algorithm, the version of SIW that employs
user-provided policy sketches. Policy sketches are thus shown
to be a powerful language for expressing domain-specific
knowledge in a simple and compact way and a convenient
alternative to languages such as HTNs or temporal logics.
Furthermore, they make it easy to express general problem
decompositions and prove key properties of them like their
width and complexity.

Introduction
The success of width-based methods in classical planning is
the result of two main ideas: the use of conjunctive goals for
decomposing a problem into subproblems, and the observa-
tion that the width of the subproblems is often bounded and
small (Lipovetzky and Geffner 2012). When these assump-
tions do not hold, pure width-based methods struggle and
need to be extended with heuristic estimators or landmark
counters that yield finer problem decompositions (Lipovet-
zky and Geffner 2017a,b). These hybrid approaches have re-
sulted in state-of-the-art planners but run into shortcomings
of their own: unlike pure width-based search methods, they
require declarative, PDDL-like action models and thus can-
not plan with black box simulators (Lipovetzky, Ramirez,
and Geffner 2015; Shleyfman, Tuisov, and Domshlak 2016;
Geffner and Geffner 2015), and they produce decomposi-
tions that are ad-hoc and difficult to understand. Variations
of these approaches, where the use of declarative action
models is replaced by polynomial searches, have pushed the
scope of pure-width based search methods (Francès et al.

2017), but they do not fully overcome their basic limits: top
goals that are not easily serializable or that have a high
width. These are indeed the limitations of one of the sim-
plest width-based search methods, Serialized Iterated Width
(SIW) that greedily achieves top goal first, one at a time,
using IW searches (Lipovetzky and Geffner 2012).

In this work, we address the limitations of the SIW al-
gorithm differently by using a simple but powerful lan-
guage for expressing richer problem decompositions re-
cently introduced by Bonet and Geffner (2021), called pol-
icy sketches. A policy sketch is a set of sketch rules over a
set of Boolean and numerical features of the form C 7→ E
that express how the values of the features are supposed to
change. Like general policies (Bonet and Geffner 2018),
sketches are general and not tailored to specific instances of
a domain, but unlike policies, the feature changes expressed
by sketch rules represent subgoals that do not need to be
achieved in a single step.

We pick up here where Bonet and Geffner left off and
show that many benchmark planning domains that SIW can-
not solve are provably solvable in low polynomial time
through the SIWR algorithm, the version of SIW that makes
use of user-provided policy sketches. Policy sketches are
thus shown to be a powerful language for expressing
domain-specific knowledge in a simple and compact way
and a convenient alternative to languages such as HTNs or
temporal logics. Bonet and Geffner introduce the language
of sketches and the theory behind them; we show their use
and the properties that follow from them. As we will see, un-
like HTNs and temporal logics, sketches can be used to ex-
press and exploit the common subgoal structure of plan-
ning domains without having to express how subgoals are
to be achieved. Also, by being simple and succinct they pro-
vide a convenient target language for learning the subgoal
structure of domains automatically, although this problem,
related to the problem of learning general policies (Bonet,
Francès, and Geffner 2019; Francès, Bonet, and Geffner
2021), is outside the scope of this paper. In this work, we
use sketches to solve domains in polynomial time, which
excludes intractable domains. Indeed, intractable domains
do not have general policies nor sketches of bounded width
and require non-polynomial searches. Sketches and general
policies, however, are closely related: sketches provide the
skeleton of a general policy, or a general policy with “holes”



that are filled by searches that can be shown to be polyno-
mial (Bonet and Geffner 2021).

The paper is organized as follows. We review the notions
of width, sketch width, and policy sketches following Bonet
and Geffner (2021). We show then that it is possible to write
compact and transparent policy sketches for many domains,
establish their widths, and analyze the performance of the
SIWR algorithm. We compare sketches to HTNs and tempo-
ral logics, briefly discuss the challenge of learning sketches
automatically, and summarize the main contributions.

Planning and Width
A classical planning problem or instance P = (D, I) is as-
sumed to be given by a first-order domain D with action
schemas defined over some domain predicates, and instance
information I describing a set of objects, and two sets of
ground literals describing the initial situation Init and goal
description Goal . The initial situation is assumed to be com-
plete such that either L or its complement is in Init . A prob-
lem P defines a state model S(P ) = (S, s0, G,Act , A, f)
where the states in S are the truth valuations over the ground
atoms represented by the set of literals that they make true,
the initial state s0 is Init , the set of goal states G includes
all of those that make the goal atoms in Goal true, the ac-
tions Act are the ground actions obtained from the action
schemas and the objects, the actions A(s) applicable in state
s are those whose preconditions are true in s, and the state
transition function f maps a state s and an action a ∈ A(s)
into the successor state s′ = f(a, s). A plan π for P is a
sequence of actions a0, . . . , an that is executable in s0 and
maps the initial state s0 into a goal state; i.e., ai ∈ A(si),
si+1 = f(ai, si), and sn+1 ∈ G. The cost of a plan is as-
sumed to be given by its length, and a plan is optimal if there
is no shorter plan. We’ll be interested in solving collections
of well-formed instances P = (D, I) over fixed domains D
denoted as QD or simply as Q.

The most basic width-based search method for solving
a planning problem P is IW(1). It performs a standard
breadth-first search in the rooted directed graph associated
with the state model S(P ) with one modification: IW(1)
prunes a newly generated state if it does not make an atom r
true for the first time in the search. The procedure IW(k) for
k > 1 is like IW(1) but prunes a state if a newly generated
state does not make a collection of up to k atoms true for
the first time. Underlying the IW algorithms is the notion of
problem width (Lipovetzky and Geffner 2012):
Definition 1 (Width). Let P be a classical planning prob-
lem with initial state s0 and goal states G. The width w(P )
of P is the minimum k for which there exists a sequence
t0, t1, . . . , tm of atom tuples ti, each consisting of at most k
atoms, such that:

1. t0 is true in initial state s0 of P ,
2. any optimal plan for ti can be extended into an optimal

plan for ti+1 by adding a single action, i = 1, . . . , n− 1,
3. if π is an optimal plan for tm, then π is an optimal plan

for P .
If a problem P is unsolvable, w(P ) is set to the number

of variables in P , and if P is solvable in at most one step,

w(P ) is set to 0 (Bonet and Geffner 2021). Chains of tu-
ples θ = (t0, t1, . . . , tm) that comply with conditions 1–3
are called admissible, and the size of θ is the size |ti| of
the largest tuple in the chain. We talk about the third con-
dition by saying that tm implies G in the admissible chain
t1, t2, . . . , tm. The widthw(P ) is thus k if k is the minimum
size of an admissible chain for P . If the width of a problem
P is w(P ) = k, IW(k) finds an optimal (shortest) plan for
P in time and space that are exponential in k and not in the
number of problem variables N as breadth-first search.

The IW(k) algorithm expands up to Nk nodes, generates
up to bNk nodes, and runs in time and space O(bN2k−1)
and O(bNk), respectively, where N is the number of atoms
and b bounds the branching factor in problem P . IW(k) is
guaranteed to solve P optimally (shortest path) if w(P ) ≤
k. If the width of P is not known, the IW algorithm can be
run instead which calls IW(k) iteratively for k=0, 1, . . . , N
until the problem is solved, or found to be unsolvable.

While IW and IW(k) algorithms are not practical by
themselves, they are building blocks for other methods. Se-
rialized Iterated Width or SIW (Lipovetzky and Geffner
2012), starts at the initial state s = s0 of P , and then per-
forms an IW search from s to find a shortest path to state s′
such that #g(s′) < #g(s) where #g counts the number of
top goals of P that are not true in s. If s′ is not a goal state, s
is set to s′ and the loop repeats until a goal state is reached.

In practice, the IW(k) searches in SIW are limited to
k ≤ 2 or k ≤ 3, so that SIW solves a problem or fails in
low polynomial time. SIW performs well in many bench-
mark domains but fails in problems where the width of
some top goal is not small, or the top goals can’t be serial-
ized greedily. More recent methods address these limitations
by using width-based notions (novelty measures) in com-
plete best-first search algorithms (Lipovetzky and Geffner
2017a; Francès et al. 2017), yet they also struggle in prob-
lems where some top goals have high width. In this work,
we take a different route: we keep the greedy polynomial
searches underlying SIW but consider a richer class of prob-
lem decompositions expressed through sketches. The result-
ing planner SIWR is not domain-independent like SIW, but
it illustrates that a bit of domain knowledge can go a long
way in the effective solution of arbitrary domain instances.

Features and Sketches
A feature is a function of the state over a class of problems
Q. The features considered in the language of sketches are
Boolean, taking values in the Boolean domain, or numeri-
cal, taking values in the non-negative integers. For a set Φ of
features and a state s of some instance P in Q, f(s) is the
feature valuation determined by a state s. A Boolean fea-
ture valuation over Φ refers instead to the valuation of the
expressions p and n = 0 for Boolean and numerical features
p and n in Φ. If f is a feature valuation, b(f) will denote the
Boolean feature valuation determined by f where the values
of numerical features are just compared with 0.

The set of features Φ distinguish or separate the goals
in Q if there is a set BQ of Boolean feature valuations such
that s is a goal state of an instance P ∈ Q iff b(f(s)) ∈ BQ.
For example, ifQclear is the set of all blocks world instances



with stack/unstack operators and common goal clear(x) ∧
handempty for some block x, and Φ = {n(x), H} are the
features that track the number of blocks above x and whether
the gripper is holding a block, then there is a single Boolean
goal valuation that makes the expression n(x) = 0 true and
H false.

A sketch rule over features Φ has the formC 7→ E where
C consists of Boolean feature conditions, and E consists of
feature effects. A Boolean (feature) condition is of the form
p or ¬p for a Boolean feature p in Φ, or n = 0 or n > 0 for
a numerical feature n in Φ. A feature effect is an expression
of the form p, ¬p, or p? for a Boolean feature p in Φ, and n↓,
n↑, or n? for a numerical feature n in Φ. The syntax of sketch
rules is the syntax of the policy rules used to define general-
ized policies (Bonet and Geffner 2018), but their semantics
is different. In policy rules, the effects have to be delivered
in one step by state transitions, while in sketch rules, they
can be delivered by longer state sequences.

A policy sketchRΦ is a collection of sketch rules over the
features Φ and the sketch is well-formed if it is built from
features that distinguish the goals in Q, and is terminat-
ing (to be made precise below). A well-formed sketch for a
class of problems Q defines a serialization over Q; namely,
a “preference” ordering ‘≺’ over the feature valuations that
is irreflexive and transitive, and which is given by the small-
est strict partial order that satisfies f ′ ≺ f if f ′ is not a goal
valuation and the pair of feature valuations (f, f ′) satisfies
a sketch rule C 7→ E. This happens when: 1) C is true in
f , 2) the Boolean effects p (¬p) in E are true in f ′, 3) the
numerical effects are satisfied by the pair (f, f ′); i.e., if n↓
in E (resp. n↑), then the value of n in f ′ is smaller than in
f , i.e., f ′n < fn (resp. fn > f ′n), and 4) Features that do
not occur in E have the same value in f and f ′. Effects p?
and n? do not constraint the value of the features p and n
in any way, and by including them in E, we say that they
can change in any way, as opposed to features that are not
mentioned in E whose values in f and f ′ must be the same.

Following Bonet and Geffner, we do not use the serializa-
tions determined by sketches but their associated problem
decompositions. The set of subgoal states Gr(s) associ-
ated with a sketch rule r : C 7→ E in RΦ and a state s for
a problem P ∈ Q, is empty if C is not true in f(s), and
else is given by the set of states s′ with feature valuations
f(s′) such that the pair (f, f ′) for f = f(s) and f ′ = f(s′)
satisfies the sketch rule r. Intuitively, when in a state s, the
subgoal states s′ in Gr(s) provide a stepping stone in the
search for plans connecting s to the goal of P .

Serialized Iterated Width with Sketches
The SIWR algorithm is a variant of the SIW algorithm that
uses a given sketch R = RΦ for solving problems P ∈ Q.
SIWR starts at the state s := s0, where s0 is the initial state
of P , and then performs an IW search to find a state s′ that
is closest from s such that s′ is a goal state of P or a subgoal
state in Gr(s) for some sketch rule r in R. If s′ is not a goal
state, then s is set to s′, s := s′, and the loop repeats until
a goal state is reached. The features define subgoal states
through the sketch rules but otherwise play no role in the
IW searches.

The only difference between SIW and SIWR is that in
SIW each IW search finishes when the goal counter #g is
decremented, while in SIWR, when a goal or subgoal state
is reached. The behavior of plain SIW can be emulated in
SIWR using the single sketch rule {#g > 0} 7→ {#g↓} in R
when the goal counter #g is the only feature, and the rule
{#g > 0} 7→ {#g↓, p?, n?}, when p and n are the other fea-
tures. This last rule says that it is always “good” to decrease
the goal counter independently of the effects on other fea-
tures, or alternatively, that decreasing the goal counter is a
subgoal from any state s where #g(s) is positive.

The complexity of SIWR over a class of problems Q can
be bounded in terms of the width of the sketch RΦ, which
is given by the width of the possible subproblems that can
be encountered during the execution of SIWR when solving
a problem P in Q. For this, let us define the set SR(P ) of
reachable states in P when following the sketch R = RΦ

recursively as follows: 1) the initial state s of P is in SR(P ),
2) the (subgoal) states s′ ∈ Gr(s) that are closest to s are in
SR(P ) if s ∈ SR(P ) and r ∈ R. The states in SR(P ) are
called the R-reachable states in P . The width of the sketch
R is then (Bonet and Geffner 2021):
Definition 2 (Sketch width). The width of the sketch R =
RΦ at state s of problem P ∈ Q, denoted wR(P [s]), is the
width k of the subproblem P [s] that is like P but with initial
state s and goal states that contain those of P and those in
Gr(s) for all r ∈ R. The width of the sketch R over Q is
wR(Q) = maxP,s wR(P [s]) for P ∈ Q and s ∈ SR(P ).1

The time complexity of SIWR can then be expressed as
follows, under the assumption that the features are all linear
(Bonet and Geffner 2021):
Theorem 1. If width wR(Q) = k, SIWRΦ solves any P ∈ Q
in O(bN |Φ|+2k−1) time and O(bNk +N |Φ|+k) space.

A feature is linear if it can be computed in linear time and
can take a linear number of values at most. In both cases,
the linearity is in the number of atoms N in the problem P
in Q. If the features are not linear but polynomial in P , the
bounds on SIWR remain polynomial as well (both k and Φ
are constants).

Bonet and Geffner introduce and study the language of
sketches as a variation of the language of general policies
and their relation to the width and serialized width of plan-
ning domains. They illustrate the use of sketches in a sim-
ple example (Delivery) but focus mainly on the theoretical
aspects. Here we focus instead on their use for modeling
domain-specific knowledge in the standard planning bench-
marks as an alternative to languages like HTNs.

Sketches for Classical Planning Domains
In this section, we present policy sketches for a representa-
tive set of classical planning domains from the benchmark

1This definition changes the one by Bonet and Geffner slightly
by restricting the reachable states s to those that are R-reachable;
i.e., part of SR(P ). This distinction is convenient whenQ does not
contain all possible “legal” instances P but only those in which the
initial situations complies with certain conditions (e.g., robot arm
is empty). In those cases, the sketches for Q do not have to cover
all reachable states.



set of the International Planning Competition (IPC). All of
the chosen domains are solvable suboptimally in polynomial
time, but plain SIW fails to solve them. There are two main
reasons why SIW fails. First, if achieving a single goal atom
already has a sufficiently large width. Last, greedy goal se-
rialization generates such avoidable subproblems, including
reaching unsolvable states.

We provide a handcrafted sketch for each of the domains
and show that it is well-formed and has small sketch width.
These sketches allow SIWR to solve all instances of the do-
main in low polynomial time and space by Theorem 1. Fur-
thermore, we impose a low polynomial complexity bound
on each feature, i.e., at most quadratic in the number of
grounded atoms. Such a limitation is necessary since oth-
erwise, we could use a numerical feature that encodes the
optimal value function V ∗(s), i.e., the perfect goal dis-
tance of all states s. With such a feature, the sketch rule
{V ∗ > 0} 7→ {V ∗↓} makes all problems trivially solvable.
Even with linear and quadratic features, we can capture com-
plex state properties such as distances between objects.

Proving Termination and Sketch Width
For each sketch introduced below we show that it uses goal-
separating features, is terminating and has bounded and
small sketch width. Showing that the features are goal sepa-
rating is usually direct.

Proving termination is required to ensure that by itera-
tively moving from a state s to a subgoal state s′ ∈ Gr(s) we
cannot get trapped in a cycle. The conditions under which
a sketch RΦ is terminating are similar to those that ensure
that a general policy πΦ is terminating (Srivastava et al.
2011; Bonet and Geffner 2020b, 2021), and can be deter-
mined in polynomial time in the size of the sketch graph
G(πΦ) using the SIEVE procedure (Srivastava et al. 2011;
Bonet and Geffner 2020b). Often, however, a simple syn-
tactic procedure suffices that eliminates sketch rules, one af-
ter the other until none is left. This syntactic procedure is
sound but not complete in general. In the following, we say
that a rule C 7→ E changes a Boolean feature b if b ∈ C
and ¬b ∈ E or the other way around. The procedure itera-
tively applies one of the following cases until no rule is left
(the sketch terminates) or until no further cases apply (there
may be an infinite loop in the sketch): (a) eliminate a rule
if it decreases a numerical feature n (n↓) that no other re-
maining rule can increase (n↑ or n?); (b) eliminate a rule
r if it changes the value of a Boolean feature that no other
remaining rule changes in the opposite direction; (c) mark
all features that were used for eliminating a rule in (a) or
(b) as these can only change finitely often; (d) remove rules
C 7→ E that decrease a numerical feature n or that change
a Boolean feature b to true (false) such that for all other re-
maining rules C ′ 7→ E′ it holds that if E′ changes the fea-
ture in the opposite direction, i.e., n↑, n? or changes b to
false (true), there must be a condition on a variable in C
that is marked and is complementary to the one in C ′, e.g.,
n> 0 ∈ C and n= 0 ∈ C ′ or b ∈ C and ¬b ∈ C ′.

Showing that a sketch for problem class Q has sketch
width k requires to prove that for all R-reachable states s in
all problem instances P ∈ Q, the width of P [s] is bounded

by k. Remember that P [s] is like P but with initial state
s, and goal states G of P combined with goal states Gr(s)
of all r ∈ R. The definition of R-reachability shows that
we need a recursive proof strategy: informally, we show that
(1) the feature conditions of a rule r with nonempty subgoal
Gr(s) are true in all initial states s ofQ, and (2) by following
a rule, we land in a goal state or a state s′ where the feature
conditions of another rule r′ with nonempty subgoalGr′(s

′)
are true. To show that the sketch has width k, we prove that
all subtasks P [s] for traversed states s have width k. We do
this by providing an admissible chain t1, . . . , tm of size at
most k where all optimal plans for tm are also optimal plans
for P [s]. We overapproximate the set of R-reachable states
where necessary to make the proofs more compact. This im-
plies that our results provide an upper bound on the actual
sketch width but are sufficiently small. For space reasons,
we give only one exemplary proof in the paper and provide
the remaining proofs as well as a sketch for the Driverlog
domain (Long and Fox 2003) in Drexler, Seipp, and Geffner
(2021).

Floortile

In the Floortile domain (Linares López, Celorrio, and Olaya
2015), a set of robots have to paint the tiles of a rectangu-
lar grid. There can be at most one robot a on each tile t
at any time and the predicate robot-at(a, t) is true iff a is
on tile t . If there is no robot on tile t then t is marked as
clear, i.e., clear(t) holds. Robots can move left, right, up
or down, if the target tile is clear. Each robot a is equipped
with a brush that is configured to either paint in black or
white , e.g., robot-has(a, black) is true iff the brush of robot
a is configured to paint in black . It is possible to change the
color infinitely often. The goal is to paint a rectangular sub-
set of the grid in chessboard style. If a tile t has color c
then the predicate painted(t , c) holds and additionally the
tile is marked as not clear, i.e., clear(t) does not hold. A
robot a can only paint tile t if a is on a tile t ′ that is be-
low or above t , i.e., robot-at(a, t ′) holds, and up(t ′, t) or
down(t ′, t) holds.

Consider the set of features Φ = {g, v} where g counts
the number of unpainted tiles that need to be painted and v
represents that the following condition is satisfied: for each
tile t1 that remains to be painted there exists a sequence of
tiles t1, . . . , tn such that each ti with i = 1, . . . , n − 1 re-
mains to be painted, tn does not need to be painted, and for
all pairs ti−1, ti with i = 2, . . . , n holds that ti is above ti−1,
i.e., up(ti−1, ti), or for all pairs ti−1, ti with i = 2, . . . , n it
holds that ti is below ti−1, i.e., down(ti−1, ti). Intuitively,
v is true iff a given state is solvable. The set of sketch rules
RΦ contains the single rule

r = {v, g > 0} 7→ {g↓}

which says that painting a tile such that the invariant v re-
mains satisfied is good.

Theorem 2. The sketch for the Floortile domain is well-
formed and has width 2.



TPP
In the Traveling Purchaser Problem (TPP) domain, there is
a set of places that can either be markets or depots, a set of
trucks, and a set of goods (Gerevini et al. 2009). The places
are connected via a roads, allowing trucks to drive between
them. If a truck t is at place p, then atom at(t , p) holds.
Each market p sells specific quantities of goods, e.g., atom
on-sale(g , p, 2) represents that market p sells two quantities
of good g . If there is a truck t available at market p, it can
buy a fraction of the available quantity of good g , making
g available to be loaded into t , while the quantity available
at p decreases accordingly, i.e., atom on-sale(g , p, 1) and
ready-to-load(g , p, 1) hold afterwards. The trucks can un-
load the goods at any depot, effectively increasing the num-
ber of stored goods, e.g., atom stored(g , 1) becomes false,
and stored(g , 2) becomes true, indicating that two quantities
of good g are stored. The goal is to store specific quantities
of specific goods.

SIW fails in TPP because loading sufficiently many quan-
tities of a single good can require buying and loading them
from different markets. Making the goods available opti-
mally requires taking the direct route to each market fol-
lowed by buying the quantity of goods. Thus, the problem
width is bounded by the number of quantities needed.

Consider the set of features Φ = {u,w} where u is the
number of goods not stored in any truck of which some
quantity remains to be stored, and w is the sum of quanti-
ties of goods that remain to be stored. The sketch rules in
RΦ are defined as:

r1 = {u > 0} 7→ {u↓}
r2 = {w > 0} 7→ {u?,w↓}

Rule r1 says that loading any quantity of a good that remains
to be stored is good. Rule r2 says that storing any quantity
of a good that remains to be stored is good.

Theorem 3. The sketch for the TPP domain is well-formed
and has width 1.

Proof. The features are goal separating because w = 0 holds
in state s iff s is a goal state. We show that the sketch RΦ is
terminating by iteratively eliminating rules: r2 decreases the
numerical feature w which no other rule increments, so we
eliminate r2 and mark w . Now only r1 remains and we can
eliminate it since it decreases u , which is never incremented.

It remains to show that the sketch width is 1. Consider
any TPP instance P . In the initial situation s, the feature
conditions of at least one rule r are true and the correspond-
ing subgoal Gr(s) is nonempty. Furthermore, whenever we
use r1 in some state s to get to the next subgoal Gr1(s), we
know that in this subgoal the feature conditions of r2 must
be true and its subgoal is nonempty, and it can be the case
that the feature conditions of r1 remain true and its subgoal
is nonempty. At some point, the subgoal of r2 is the overall
goal of the problem. Next, regardless of which rule r de-
fines the closest subgoal Gr(s) for an R-reachable state s,
we show that P [s] with subgoal Gr(s) in R-reachable state
s has width 1.

We first consider rule r1. Intuitively, we show that load-
ing a good that is not yet loaded but of which some quan-
tity remains to be stored in a depot has width at most 1.
Consider states S1 ⊆ S where the feature conditions of
r1 are true, i.e., states where there is no truck that has
a good g loaded but of which some quantity remains to
be stored in a depot. With Gr1

(s) we denote the subgoal
states of r1 in s ∈ S1, i.e., states where some quantity
ql of g is loaded into a truck t . The tuple loaded(g , t , ql)
implies Gr1(s) in s ∈ S1 in the admissible chain that
consists of moving t from its current place p1 to the
closest market pn that has g available, ordered descend-
ingly by their distance to pn, buying qb quantities of g ,
loading ql quantities of g , i.e., (at(t , p1), . . . , at(t , pn),
ready-to-load(g , pn, qb), loaded(g , t , ql)). Note that load-
ing ql quantities can be achieved optimally by buying qb ≥
ql quantities.

Next, we consider rule r2. Intuitively, we show that stor-
ing a good of which some quantity remains to be stored in
a depot has width at most 1. Consider states S2 ⊆ S where
the feature conditions of r2 are true and some quantity of a
good is loaded that remains to be stored, i.e., states where
some quantity of a good g remains to be stored in a depot,
and some quantity ql of g is loaded into a truck t because it
has width 1 (see above). With Gr2(s) we denote the subgoal
states of r2 in s ∈ S2, i.e., states where the stored quantity qs
of g has increased from qs to q′s using a fraction of the loaded
quantity q′l ≤ ql. The tuple stored(g , q′s) implies Gr2

(s) in
s ∈ S2 in the admissible chain that consists of moving t
from its current place p1 to the closest depot at place pn, or-
dered descendingly by their distance to pn, storing q′l quan-
tities of g , i.e., (at(t , p1), . . . , at(t , pn), stored(g , q′s)).

We obtain sketch width 1 because all tuples in admissible
chains have a size of at most 1.

Barman
In the Barman domain (Linares López, Celorrio, and Olaya
2015), there is a set of shakers, a set of shots, and a set of dis-
pensers where each dispenses a different ingredient. There
are recipes of cocktails each consisting of two ingredients,
e.g., the recipe for cocktail c consists of ingredients i1, i2.
The goal is to serve beverages, i.e., ingredients and/or cock-
tails. A beverage b is served in shot g if g contains b. An
ingredient i can be filled into shot g using one of the dis-
pensers if g is clean. Producing a cocktail c with a shaker
t requires both ingredients i1, i2 of c to be in t . In such a
situation, shaking t produces c. Pouring a cocktail from t
into shot g requires g to be clean. The barman robot has two
hands which limits the number of shots and shakers it can
hold at the same time. Therefore, the barman often has to
put down an object before it can grasp a different object.
For example, assume that the barman holds the shaker t and
some shot g ′ and assume that ingredient i must be filled into
shot g . Then the barman has to put down either t or g ′ so
that it can pick up g with hand h . As in the Barman tasks
from previous IPCs, we assume that there is only a single
shaker and that it is initially empty.

Consider the set of features Φ = {g , u, c1, c2} where g
is the number of unserved beverages, u is the number of



used shots, i.e., shots with a beverage different from the one
mentioned in the goal, c1 is true iff the first recipe ingredient
of an unserved cocktail is in the shaker, and c2 is true iff both
recipe ingredients of an unserved cocktail are in the shaker.
We define the following sketch rules for RΦ:

r1 = {¬c1} 7→ {u?, c1},
r2 = {c1,¬c2} 7→ {u?, c2},
r3 = {u > 0} 7→ {u↓},
r4 = {g > 0} 7→ {g↓, c1?, c2?}.

Rule r1 says that filling an ingredient into the shaker is good
if this ingredient is mentioned in the first part of the recipe of
an unserved cocktail. Rule r2 says the same for the second
ingredient, after the first ingredient has been added. Requir-
ing the ingredients to be filled into the shaker in a fixed or-
der ensures bounded width, even for arbitrary-sized recipes.
Rule r3 says that cleaning shots is good and rule r4 says that
serving an ingredient or cocktail is good.

Theorem 4. The sketch for the Barman domain is well-
formed and has width 2.

Grid
In the Grid domain (McDermott 2000), a single robot oper-
ates in a grid-structured world. There are keys and locks dis-
tributed over the grid cells. The robot can move to a cell c
above, below, left or right of its current cell if c does not con-
tain a closed lock or another robot. The robot can drop, pick
or exchange keys at its current cell and can only hold a sin-
gle key e at any time. Keys and locks have different shapes
and the robot, holding a matching key, can open a lock when
standing on a neighboring cell. The goal is to move keys to
specific target locations that can be locked initially. Initially,
it is possible to reach every lock for the unlock operation.
SIW fails in this domain when goals need to be undone, i.e.,
a key has to be picked up from its target location to open a
lock that is necessary for picking or moving a different key.

Consider the set of features Φ = {l , k , o, t} where l is the
number of locked grid cells, k is the number of misplaced
keys, o is true iff the robot holds a key for which there is a
closed lock, and t is true iff the robot holds a key that must
be placed at some target grid cell. We define the sketch rules
for RΦ as:

r1 = {l > 0} 7→ {l↓, k?, o?, t?}
r2 = {l = 0, k > 0} 7→ {k↓, o?, t?}
r3 = {l > 0,¬o} 7→ {o, t?}
r4 = {l = 0,¬t} 7→ {o?, t}

Rule r1 says that unlocking grid cells is good. Rule r2 says
that placing a key at its target cell is good after opening all
locks. Rule r3 says that picking up a key that can be used to
open a locked grid cell is good if there are locked grid cells.
Rule r4 says that picking up a misplaced key is good after
opening all locks.

Theorem 5. The sketch for the Grid domain is well-formed
and has width 1.

Childsnack
In the Childsnack domain (Vallati, Chrpa, and McCluskey
2018), there is a set of contents, a set of trays, a set of gluten-
free breads, a set of regular breads that contain gluten, a set
of gluten-allergic children, a set of children without gluten
allergy, and a set of tables where the children sit. The goal is
to serve the gluten-allergic children with sandwiches made
of gluten-free bread and the non-allergic children with either
type of sandwich.

The Childsnack domain has large bounded width because
moving an empty tray is possible at any given time. The goal
serialization fails because it gets trapped in deadends when
serving non-allergic children with gluten-free sandwiches
while leaving insufficiently many gluten-free sandwiches for
the allergic children.

Consider the set of features Φ = {cg , cr , skg , sk , stg , st}
where cg is the number of unserved gluten-allergic children,
cr is the number of unserved non-allergic children, skg holds
iff there is a gluten-free sandwich in the kitchen, sk holds
iff there is a any sandwich in the kitchen, stg holds iff there
is a gluten-free sandwich on a tray, and st holds iff there is
any sandwich on a tray. We define the following sketch rules
RΦ:

r1 = {cg > 0,¬skg ,¬stg} 7→ {skg , sk}
r2 = {cg = 0, cr > 0,¬sk ,¬st} 7→ {sk}
r3 = {cg > 0, skg ,¬stg} 7→ {skg ?, sk?, stg , s

t}
r4 = {cg = 0, cr > 0, sk ,¬st} 7→ {skg ?, sk?, stg?, st}
r5 = {cg > 0, stg} 7→ {cg↓, stg?, st?}
r6 = {cg = 0, cr > 0, st} 7→ {cr↓, stg?, st?}

Rule r1 says that making a gluten-free sandwich is good
if there is an unserved gluten-allergic child and if there is
no other gluten-free sandwich currently being served. Rule
r2 says the same thing for non-allergic children after all
gluten-allergic children have been served and the sandwich
to be made is not required to be gluten free. Rules r3 and r4

say that putting a gluten-free (resp. regular) sandwich from
the kitchen onto a tray is good if there is none on a tray
yet. Rule r5 says that serving gluten-allergic children be-
fore non-allergic children is good if there is a gluten-free
sandwich available on a tray. Rule r6 says that serving non-
allergic children afterwards is good.

Theorem 6. The sketch for the Childsnack domain is well-
formed and has width 1.

Schedule
In the Schedule domain (Bacchus 2001), there is a set of
objects that can have different values for the following at-
tributes: shape, color, surface condition, and temperature.
Also, there is a set of machines where each is capable of
changing an attribute with the side effect that other attributes
change as well. For example, rolling an object changes its
shape to cylindrical and has the side effect that the color
changes to uncolored, any surface condition is removed, and
the object becomes hot. Often, there are multiple different



work steps for achieving a specific attribute of an object. For
example, both rolling and lathing change an object’s shape
to cylindrical. But rolling makes the object hot, while lath-
ing keeps its temperature cold. Some work steps are only
possible if the object is cold. Multiple work steps can be
scheduled to available machines, which sets the machine’s
status to occupied. All machines become available again af-
ter a single do-time-step action. The goal is to change the
attributes of objects.

SIW fails in Schedule because it gets trapped into dead-
ends when an object’s temperature becomes hot, possi-
bly blocking other required attribute changes. The follow-
ing sketch uses this observation and defines an ordering
over achieved attributes where first, the desired shapes
are achieved, second, the desired surface conditions are
achieved, and third, the desired colors are achieved.

Consider the set of features Φ = {p1, p2, p3, h, o} where
p1 is the number of objects with wrong shape, p2 is the num-
ber of objects with wrong surface condition, p3 is the num-
ber of objects with wrong color, h is the number of hot ob-
jects, and o is true iff there is an object scheduled or a ma-
chine occupied. We define the following sketch rules RΦ:

r1 = {p1> 0} 7→ {p1↓, p2?, p3?, o}
r2 = {p1 = 0, p2> 0} 7→ {p2↓, p3?, o}
r3 = {p1 = 0, p2 = 0, p3> 0} 7→ {p3↓, o}
r4 = {o} 7→ {¬o}

Rule r1 says that achieving an object’s goal shape is good.
Rule r2 says that achieving an object’s goal surface condi-
tion is good after achieving all goal shapes. Rule r3 says that
achieving an object’s goal color is good after achieving all
goal shapes and surface conditions. Rule r4 says that making
objects and machines available is good. Note that r4 does not
decrease the sketch width but it decreases the search time by
decreasing the search depth. Note also that h never occurs in
any rule because we want its value to remain constant.

Theorem 7. The sketch for the Schedule domain is well-
formed and has width 2.

Experiments
Even though the focus of our work is on proving polynomial
runtime bounds for planning domains theoretically, we eval-
uate in this section how these runtime guarantees translate
into practice. We implemented SIWR in the LAPKT plan-
ning system (Ramirez, Lipovetzky, and Muise 2015) and use
the Lab toolkit (Seipp et al. 2017) for running experiments
on Intel Xeon Gold 6130 CPU cores. For each planning do-
main, we use the tasks from previous IPCs. For each planner
run, we limit time and memory by 30 minutes and 4 GiB.
The benchmark set consists of a subset of tractable classi-
cal planning domains from the satisficing track of the 1998-
2018 IPC where top goal serialization using SIW fails.

The main question we want to answer empirically is how
much an SIW search benefits from using policy sketches. To
this end, we compare SIW(2) and SIWR(2) with the sketches
for the planning domains introduced above. We use a width
bound of k=2, since SIW(k) and SIWR(k) are too slow to

compute in practice for larger values of k. We also include
two state-of-the-art planners, LAMA (Richter and Westphal
2010) and Dual-BFWS (Lipovetzky and Geffner 2017a), to
show that the planning tasks in our benchmark set are hard
to solve with the strongest planners.

Table 1 shows results for the four planners. We see that the
maximum effective width (MW) for SIWR(2) never exceeds
the theoretical upper bounds we established in the previous
section. For the domains with sketch width 2, the average
effective width (AW) is always closer to 1 than to 2.

In the comparison we must keep in mind that SIWR is not
a domain-independent planner as it uses a suitable sketch for
each domain. SIW(2) solves none of the instances in three
domains (Barman, Childsnack, Floortile) because the prob-
lem width is too large. In the other four domains, it never
solves more than half of the tasks. In contrast, SIWR(2)
solves all tasks and is usually very fast. For example, SIW(2)
needs 74.7 seconds to solve the eleventh hardest TPP task,
while SIWR(2) solves all 30 tasks in at most 0.4 seconds.
This shows that our sketch rules capture useful information
and that the sketch features are indeed cheap to compute.

Even with the caveats about planner comparisons in mind,
the results from Table 1 show that policy sketches usually let
SIWR solve the tasks from our benchmark set much faster
than state-of-the-art domain-independent planners. The only
exception is Schedule, where LAMA has a lower maximum
runtime than SIWR. The main bottleneck for SIWR in Sched-
ule is generating successor states. Computing feature valua-
tions on the other hand takes negligible time.

Overall, our results show that adding domain-specific
knowledge in the form of sketches to a width-based planner
allows it to solve whole problem domains very efficiently.
This raises interesting research questions about whether we
can learn sketches automatically to transform SIWR into a
domain-independent planner that can reuse previously ac-
quired information.

Related Work
We showed that a bit of knowledge about the subgoal struc-
ture of a domain, expressed elegantly in the form of com-
pact sketches, can go a long way in solving the instances of
a domain efficiently, in provable polynomial time. There are
other approaches for expressing domain control knowledge
for planning in the literature, and we review them here.

The distinction between the actions that are “good” or
“bad” in a fixed tractable domain can often be character-
ized explicitly. Indeed, the so-called general policies, unlike
sketches, provide such a classification of all possible state
transitions (s, s′) over the problems in Q (Francès, Bonet,
and Geffner 2021), and ensure that the goals can always be
reached by following any good transitions. Sketch rules have
the same syntax as policy rules, but they do not constraint
state transitions but define subgoals.

Logical approaches to domain control have been used to
provide partial information about good and bad state tran-
sitions in terms of suitable formulas (Bacchus and Kabanza
2000; Kvarnström and Doherty 2000). For example, for the
Schedule domain, one may have a formula in linear tempo-
ral logic (LTL) expressing that objects that need to be lathed



SIW(2) SIWR(2) LAMA Dual-BFWS

Domain S T AW MW S T AW MW S T S T

Barman (40) 0 – – – 40 0.9 1.17 2 40 505.3 40 162.8
Childsnack (20) 0 – – – 20 10.8 1.00 1 6 2.6 8 216.9
Driverlog (20) 8 0.5 1.68 2 20 0.8 1.00 1 20 7.6 20 4.2
Floortile (20) 0 – – – 20 0.2 1.25 2 2 9.9 2 176.3
Grid (5) 1 0.1 2.00 2 5 0.1 1.00 1 5 3.6 5 3.7
Schedule (150) 62 1349.1 1.10 2 150 54.7 1.17 2 150 15.3 150 151.4
TPP (30) 11 74.7 2.00 2 30 0.4 1.00 1 30 16.5 29 99.6

Table 1: Comparison of SIW(2), SIWR(2), the first iteration of LAMA, and Dual-BFWS. It shows the number of solved tasks
(S), the maximum runtime in seconds for a successful run (T), the average effective width over all encountered subtasks (AW),
and the maximum effective width over all encountered subtasks (MW).

and painted should not be painted in the next time step, since
lathing removes the paint. This partial information about
good and bad transitions can then be used by a forward-state
search planner to heavily prune the state space. A key dif-
ference between these formulas and sketches is that sketch
rules are not about state transitions but about subgoals, and
hence they structure the search for plans in a different way,
in certain cases ensuring a polynomial search.

Baier et al. (2008) combine control knowledge and prefer-
ence formulas to improve search behavior and obtain plans
of high quality, according to user preferences. The control
knowledge is given in the Golog language and defines sub-
goals such that a planner has to fill in the missing parts. Since
the control knowledge is compiled directly to PDDL, they
are able to leverage off-the-shelve planners. The user prefer-
ences are encoded in an LTL-like language. Like our policy
sketches, their approach can be applied to any domain. How-
ever, policy sketches aim at ensuring polynomial searches in
tractable domains.

Hierarchical task networks or HTNs are used mainly for
expressing general top-down strategies for solving classes of
planning problems (Erol, Hendler, and Nau 1994; Nau et al.
2003; Georgievski and Aiello 2015). The domain knowledge
is normally expressed in terms of a hierarchy of methods
that have to be decomposed into primitive methods that can-
not be decomposed any further. While the solution strategy
expressed in HTNs does not have to be complete, it is of-
ten close to complete, as otherwise the search for decompo-
sitions easily becomes intractable. For this reason, crafting
good and effective HTNs encodings is not easy. For exam-
ple, the HTN formulation of the Barman domain in the 2020
Hierarchical Planning Competition (Höller et al. 2019) con-
tains 10 high-level tasks (like AchieveContainsShakerIngre-
dient), 11 primitive tasks (like clean-shot) and 22 methods
(like MakeAndPourCocktail). In contrast, the PDDL version
of Barman has only 12 action schemas, and the sketch above
has 4 rules over 4 linear features. Note, however, that com-
paring different forms of control knowledge in terms of their
compactness is not well-defined.

Finally, the need to represent the common subgoal struc-
ture of dynamic domains arises also in reinforcement learn-
ing (RL), where knowledge gained in the solution of some
domain instances can be applied to speed up the learning

of solutions to new instances of the same family of tasks
(Finn, Abbeel, and Levine 2017). In recent work in deep RL
(DRL) these representations, in the form of general intrin-
sic reward functions (Singh et al. 2010), are expected to be
learned from suitable DRL architectures (Zheng et al. 2020).
Sketches provide a convenient high-level alternative to de-
scribe common subgoal structures, but opposed to the re-
lated work in DRL, the policy sketches above are not learned
but are written by hand. We leave the challenge of automati-
cally learning sketches as future work and describe it briefly
below.

Conclusions and Future Work
We have shown that the language of policy sketches as in-
troduced by Bonet and Geffner provides a simple, elegant,
and powerful way for expressing the common subgoal struc-
ture of many planning domains. The SIWR algorithm can
then solve these domains effectively, in provable polynomial
time, where SIW fails either because the problems are not
easily serializable in terms of the top goals or because some
of the resulting subproblems have a high width. A big advan-
tage of pure width-based algorithms like SIW and SIWR is
that unlike other planning-based methods they can be used
to plan with simulators in which the structure of states is
available but the structure of actions is not.2

A logical next step in this line of work is to learn sketches
automatically. In principle, methods similar to those used
for learning general policies can be applied. These methods
rely on using the state language (primitive PDDL predicates)
for defining a large pool of Boolean and numerical fea-
tures via a description logic grammar (Baader et al. 2003),
from which the features Φ are selected and over which the
general policies πΦ are constructed (Francès, Bonet, and
Geffner 2021). We have actually analyzed the features used
in the sketches given above and have noticed that they can
all be obtained from a feature pool generated in this way.
A longer-term challenge is to learn the sketches automati-
cally when using the same inputs as DRL algorithms, where
there is no state representation language. Recent works that
learn first-order symbolic languages from black box states
or from states represented by images (Bonet and Geffner
2020a; Asai 2019) are important first steps in that direction.

2 A minor difference then is that the novelty tests in IW(k) are
not exponential in k − 1 but in k.
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