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ABSTRACT

There has been growing interest, in recent years, in learning disentangled repre-
sentations of data. These are representations in which distinct features, such as
size or shape, are represented by distinct neurons. Measuring disentanglement,
i.e., quantifying the extent to which a given representation is disentangled, is not
straightforward. Multiple metrics have been proposed. In this paper, we identify
two failings of existing metrics, and show how they can assign a high score to a
model which is still entangled. We then propose two new metrics which redress
these problems. Additionally, we introduce the task of recognizing novel combi-
nations of familiar features (NCFF), which we argue is doable if and only if the
model is disentangled. As well as being desirable in itself, NCFF provides a tan-
gible downstream task that can help focus the field of disentanglement research,
in contrast to the set of bespoke metrics that are currently used. We then show em-
pirically that existing methods perform poorly on our proposed metrics and fail at
recognizing NCFF and so, we argue, are not disentangled.

1 INTRODUCTION

Learning to produce an effective vector representation of input data has long been a central ques-
tion for the field of deep learning. Early proponents argued that a significant advantage of neural
networks was that they could form distributed representations, where each input is represented by
multiple neurons, and each neuron is involved in the representation of multiple different inputs (Hin-
ton et al., 1986). Compared to using a separate neuron for each input, distributed representations are
exponentially more compact (Bengio, 2009). An extension of distributed representations is the idea
of disentangled representations. These are a particular type of distributed representation in which
each neuron represents a single human-interpretable factor of variation in the input data, such as
colour, size or shape. These are also sometimes called “generative factors”. In this paper, we mostly
refer to them as “factors” or “features”. Similarly, the individual scalar values in the vector represen-
tation, which are sometimes called “latent variables”, we refer to as “neurons”. In the strongest case,
each factor is represented by a single neuron so that, e.g., changing the colour of the object in the
image would cause a single neuron to change its value while all other neurons remain unchanged.
(We discuss further below the ambiguity as to whether this stronger condition is required.) Disen-
tanglement (DE) was originally formulated by Bengio (2009) (see also (Bengio et al., 2013; Bengio,
2013)). More recently, beginning with (Higgins et al., 2016), there have been many unsupervised
DE methods proposed based on autoencoders.

In this paper, we make the case that existing DE methods largely fail to produce disentangled rep-
resentations. We makes this case in two ways. Firstly, we examine the commonly used DE metrics
and show how they fail to pick up certain forms of entanglement, and that representations can score
highly on such metrics while being strongly entangled. Specifically, we expose two problems with
existing metrics: that they incorrectly align ground-truth factors to neurons, as they do not require
distinct variables to be assigned to distinct factors; and that they only consider the effect of single la-
tent variables at a time, and so they fail to detect when the representation of the ground-truth factors
is distributed, in an entangled way, over neurons. To address these problems, we present two new
DE metrics, based on the ability of a classifier to predict the generative factors from the encoded
representation. If a representation is truly disentangled, then all the relevant information should be
contained in a single neuron (or possibly a few neurons, see discussion in Section 2) and so a classi-
fier using only this/these neuron(s) should be just as accurate as one using all neurons, and using all
other neurons should be no more accurate than random guessing. Our first metric is the accuracy of
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the single-neuron classifier, this should be high. Our second metric is the accuracy of the classifier
using all other neurons, this should be low. We then demonstrate empirically that existing methods
all perform poorly on these two metrics.

The second way in which we challenge existing DE methods is by proposing a task to judge the
performance of a disentangled model, namely, the identification of novel combinations of familiar
features. Humans can accomplish this easily, because we understand each separately. We can clearly
picture a purple giraffe, and could recognize one if we saw it, even if we have never seen one or
even heard the phrase “purple giraffe” before, because we have disentangled the concepts of colour
and shape. The ability to form and understand novel combinations is a deep, important aspect of hu-
man cognition, and an essential feature of the oldest examples of human creativity. Folklore, across
many diverse cultures, abounds with mythical creatures that combine features of multiple animals,
such as the Minotaur or Pegasus in Greek mythology (Stratton, 2004; Hansen & Hansen, 2005).
Looking even further back in our past, therianthropic cave art that combines human and animal fea-
tures includes some of the earliest examples of human creative drawing (Conard, 2003). Scientific
creativity, too, draws on the conception of novel combinations, such as Mendeleev’s periodic table
predicting the existence and properties of silicon and other then-unknown elements, through novel
combinations of the features of existing elements (Mendeleev, 1871).

Such creative ability is a direct consequence of humans being able to disentangle the relevant fea-
tures of the objects we encounter. Having a disentangled representation implies the ability to under-
stand novel combinations, so, contrapositively, a system that cannot understand novel combinations
is not disentangled. This is the basis for our proposed task. For example, we test whether a network
trained to identify small squares, small circles and large squares can, at test time, correctly identify
large circles. If it had learned to disentangle colour from shape, then it could simply identify “large”
and “circle” separately, each of which is familiar. However, it turns out that existing models fail
badly at this task. For every method we test, on every dataset, the accuracy for novel combinations
is far below that for familiar combinations, mostly at random guessing. This is the strongest piece
of evidence that the previously proposed DE models are exhibiting hidden entanglement.

Our contributions are briefly summarized as follows.

• We identify and describe two shortcomings of existing DE metrics: the incorrect alignment
of neurons to factors and the failure to pick on distributed entanglements.

• We propose two alternative metrics, single-neuron classification and neuron knockout, that
do not suffer from the problems that existing metrics suffer from.

• We empirically test existing DE models on our proposed metrics of single-neuron classifi-
cation and neuron knockout, and show that they all perform poorly.

• We introduce the task of identifying novel combinations of familiar features, and describe
why it is suitable for evaluating DE models.

• We show empirically that all existing models fail at this task on all datasets.

The rest of this paper is organized as follows. Section 2 discusses related work. Section 3 describes
the shortcomings of existing DE metrics, and proposes our new metrics. Section 5 introduces the
task of recognizing novel combinations. Section 6 presents the results of applying our metrics and
proposed task to existing DE models, and Section 7 summarizes our work.

2 RELATED WORK

Disentanglement Models. After the initial proposal by Bengio (2009), disentangled representa-
tions received new interest beginning with the proposal by Higgins et al. (2016) of β-VAE, which
was an adaption of the variational autoencoder (VAE) (Kingma & Welling, 2013) to produce disen-
tangled representations. By taking the prior in the VAE framework to be multivariate normal with a
diagonal covariance matrix, β-VAE encourages the model representations to have diagonal covari-
ance too, which the authors claim enforces DE. This instigated a series of VAE-based disentangled
models, which, like the original VAE and like β-VAE, were fully unsupervised. Kumar et al. (2017)
further encouraged a diagonal covariance matrix by introducing an additional loss term consisting of
the Euclidean of the model’s covariance matrix from the identity matrix. Burgess et al. (2018) pro-
pose to gradually increase the reconstruction capacity of the autoencoder by a form of annealing of
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the Kullbeck-Leibler (KL) term in the VAE loss. Chen et al. (2018) seeks to minimize the total corre-
lation of the latent variables. The total correlation is a generalization of mutual information to higher
dimensions, equal to the Kullbeck-Leibler divergence of the joint distribution from the product of
the marginals for each variable. Kim & Mnih (2018) propose FactorVAE, which approximates the
total correlation using a discriminator network. Chen et al. (2018) propose β-TCVAE, which also
aims to minimize the total correlation. Total correlation is approximated using Monte-Carlo on a
sampling method inspired by importance sampling.

Locatello et al. (2019) challenged the earlier DE methods both empirically and theoretically. They
proved that it is always possible for a model to learn an entangled representation that appears dis-
entangled only on the available data. They also showed that disentangled representations do not
necessarily perform better on downstream tasks such as classification, as had been claimed before.
Later, Locatello et al. (2020) claimed that including a small amount of supervision was sufficient
to learn disentangled representations. Despite this challenge, DE continues to be an active research
area, with many models being proposed in the last two years. Some are unsupervised, such as (Klindt
et al., 2020), which proposed a VAE-based model to learn disentangled representations from videos
of natural scenes. Some are semi-supervised, such as (Träuble et al., 2021) which explores the post-
hoc use of training labels to train a linear regressor to transform the latent representation to predict
the disentangled generative factors from the (possibly entangled) representation produced by the
model. These predictions are used as a new representation, which the authors claim is disentangled.
Some are fully supervised, such as (Sha & Lukasiewicz, 2021), which partitions the neurons into a
subset for each factor, and defines several additional DE loss terms using the ground-truth labels.
Some can operate either supervised or unsupervised, such as Parted-VAE (Hajimiri et al., 2021),
which encourages DE by minimizing the Bhattacharyya distance (1946) from a multivariate normal.

Disentanglement Metrics. Higgins et al. (2016) made an early attempt to quantify disentangle-
ment, and proposed fixing one of the generative factors and varying all others, then using a linear
model to predict which factor was fixed from the variance in each of the latent neurons. They claim
that high classification accuracy implies better DE. Kim & Mnih (2018) build on this approach, and
also propose a linear classifier, this time replacing the input to the classifier with the index of the
neuron with the lowest empirical variance so the resulting classifier is the majority vote classifier.
Ridgeway & Mozer (2018) decompose DE into two different concepts, modularity and explicitness,
each with its own metric. They measure modularity as the deviation from an “ideally modular” rep-
resentation, where every latent neuron has nonzero mutual information with exactly one generative
factor. Explicitness is measured similarly to the metric of Kim & Mnih (2018), except using the
mean of one-vs-rest classification and ROC area-under-curve (AUC) instead of accuracy.

Different to these classifier-based metrics, there has also been a series of classifier-free metrics pro-
posed. Kumar et al. (2017) proposed the SAP score, which calculates, separately for each generative
factor, the R2 coefficient with each of the latent dimensions, and then takes the difference between
the largest and second largest. A representation will score highly on SAP if, for each generative
factor, one neuron is very informative and no other neurons are. A similar idea is employed by the
mutual information gap (MIG) metric (Chen et al., 2018), except using mutual information instead
of R2. Eastwood & Williams (2018) decompose the task into disentanglement, completeness and
informativeness (DCI). Then, they train a linear classifier to predict each generative factor from
each latent factor, and estimate DCI from the weights and accuracy of the trained classifier. Do &
Tran (2019) propose several metrics, most prominently RMIG, which is a different way to com-
pute MIG, and JEMMIG which subtracts the joint entropy from mutual information gap to penalize
extra information in the latent variables. These metrics are based on a decomposition into modular-
ity, compactness and explicitness, which is also advocated by a recent survey of DE metrics (Zaidi
et al., 2020). Suter et al. (2019) propose to measure the maximum amount that a given neuron can
be changed by changing a generative factor other than the one it corresponds to (should be low).

Definitions of Disentanglement. There is some ambiguity in the literature as to whether DE re-
quires that each factor is represented by a single neuron, or allows representation by multiple neu-
rons. The original definition by Bengio (2009) (echoed by Higgins et al. (2016), Kim & Mnih (2018)
and others) just stipulates that each neuron represents a single factor, and seems to allow that each
factor is represented by multiple neurons. However, a stronger concept of DE is normally implied,
namely, an injective function from factors to the unique neurons that represent them. This is implicit
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small large

Square 0 0 or 1 with equal probability
Circle 0 or 1 with equal probability 1

Table 1: Example of how one neuron (z2) can partially encode two factors.

in the common metrics, which map each factor to a single neuron, and in the descriptions of DE
in other works, e.g., “learning one exclusive factor per dimension” (Pineau & Lelarge, 2018). The
weaker notion of DE, which allows the representation of a factor by multiple neurons, loses some of
the claimed benefits of DE: it would be hard to tell which neurons represent a given factor if we have
to check all subsets of neurons, of which there are exponentially many, and we may still be unable to
interpret what a single neuron represents, if all we know is what sets of neurons represent. For these
reasons, we assume the strong notion, and it is mostly towards this notion that our challenges are
directed. However, one method we test on in Section 6 uses a subset of neurons to represent shape,
which allows us to see whether our arguments extend to such cases.

3 PROBLEMS WITH EXISTING DISENTANGLEMENT METRICS

3.1 INCORRECT ALIGNMENT OF LATENT VARIABLES

The majority of existing metrics are based on aligning the set of factors G with the set of neurons Z;
that is, for each factor, finding the neuron that it is represented by. Each neuron is only supposed
to represent a single factor, however all existing metrics simply relate each factor to the maximally
informative variable (normally this means the variable with maximum mutual information, but can
be another measure of informativeness, e.g., weight from a linear classifier (Kumar et al., 2017)).
This does not enforce the constraint of having distinct neurons for distinct features, it means that
the same neuron could be selected as representing multiple different factors. For example, consider
again the model trained on a dataset of small squares, small circles, large squares and large circles.
Suppose such a model has two latent variables, z1 and z2, the first is random noise, unrelated to the
inputs, the second is related as per Table 1. The second variable encodes both colour and shape, each
to an accuracy of 75%, whereas the other variable encodes both only to 50% (random guess). Thus,
the second will be chosen as the representative of both colour and shape. We observe that cases like
this often occur in practice; see the appendix for an example.

The reader may feel that the example from Table 1 is not a problem, as that neuron only represents
each of the two factors to 75% accuracy, and we want a model that represents at close to 100%
accuracy. However, a metric should not only work properly for models that are close to perfect, it
should also be able to distinguish between two models, both of which are far from perfect but one
of which is better than the other. Incorrect alignment can interfere with distinguishing between such
models. To take MIG as an example, the model from Table 1, would get a higher score than another
in which z2 is as above and z1 represents shape to an accuracy of 70% (0.189 vs 0.129, calculation
in supplementary material). This is a failure of the metric, as the second model is clearly closer to
the desired disentangled representation than the first.

Rather than aligning each factor independently, we should align all factors simultaneously and en-
force that they are aligned to distinct neurons:

argmax
{f :G→Z| f is injective }

∑
g∈G

I(g; f(g)) , (1)

where I denotes mutual information (this could be replaced with R2 or any other measure
of informativeness). A solution to equation 1 can be computed using the Kuhn-Munkres algo-
rithm (Munkres, 1957). The result is a mapping from factors in G to neurons in Z where no two
factors are mapped to the same neuron. This better fits the notion of DE than previous approaches.

3.2 DISTRIBUTED ENTANGLEMENTS

The second problem with existing metrics is that they miss information that may be distributed over
multiple neurons. This problem manifests when measuring whether the information for one factor
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is restricted to just one variable, and is a shortcoming both of classifier-based and classifier-free
metrics. In what follows, let g0, . . . , gn be the ground-truth generative factors, and let z0, . . . , zm,
m ≥ n be the corresponding neurons, ordered so that zi has been selected to correspond to gi for
each i. Further, let z̸=i refer to the set of all neurons other than zi. Now, consider XOR: g0 = z1⊕z2.
(We again use discrete variables for clarity, a continuous approximation could be |z1 − z2|, z1, z2 ∈
[0, 1].) Almost all existing metrics, both classifier-based and classifier-free, would conclude that g0
is not represented by any other latent variable, and so may assign a high score.

For classifier-free metrics, the approach of existing methods is to compare individual neurons pair-
wise. To again take MIG as an example, the requirement is that, for each i, gi has low mutual infor-
mation with each variable in z̸=i. However, with XOR, this condition is met but z̸=i collectively still
(near) perfectly represent the gi. In this case, I(g0; z1) = I(g0; z2) = 0, but I(g0; z1, z2) ̸= 0, in fact
I(g0; z1, z2) could be near maximal: I(g0; z1, z2) ≈ H(g0). The same failure mode can be found
in most related metrics such as JEMMIG, SAP and DCI. Classifier-based metrics would also fail to
penalize g0 = z1 ⊕ z2, because they use linear classifiers, and the strength of the linear relationship
between z1 and z2 is zero.

To our knowledge, the only existing metric that would correctly handle this case is that of Suter et al.
(2019). However, this metric still incorrectly aligns factors (Section 3.1), and may be too harsh: if
there are junk neurons that vary randomly for the input but do not encode any information, this
would be penalized, which may not be desirable if m > n. Also, taking the maximum change across
the dataset means that even one input point that causes significant variation in the wrong neurons
could give a very bad score even if all other examples were perfect.

4 PROPOSED METRICS

4.1 SINGLE-NEURON CLASSIFICATION (SNC)

Our first proposed metric tests whether each factor is well-represented by a single neuron, by first
computing the alignment function f by equation 1, then measuring how accurately each zi can clas-
sify the values of feature f(zi). In order to use zi as a classifier, we divide its values across the
dataset into K bins containing equal numbers of points, where K is the number of classes in f(zi).
That is, if N is the size of the dataset, the N/K smallest values are put into the first bin, etc. We
then align these K bins with the K ground-truth classes. Similar to equation 1, this can be done with
the Kuhn-Munkres algorithm. The final accuracy of the single-neuron classifier is the percentage
agreement between the aligned bin labels, and the ground-truth labels. If the representation is disen-
tangled, then this accuracy should be high, ideally as high as that of a classifier that uses all neurons.
This is essentially a quantification of the property that latent traversals aim to show qualitatively. In
the terminology of Ridgeway & Mozer (2018), it is a measure of explicitness, except that they fit a
linear classifier on all neurons, not just zi, which therefore allows for non-axis-alignment. That is,
if for each gi, there is some line in representation space such that the representation vector encodes
gi as the distance of the projection along that line, then this is regarded as disentangled. Using a
single-neuron classifier, on the other hand, requires that line to be an axis. We also report results for
such a linear classifier in Section 6.2.

4.2 NEURON KNOCKOUT (NK)

Our second proposed metric tests whether z̸=i contains any information about gi, by training an
MLP to predict gi from z̸=i. If the representation is disentangled, then this accuracy should be low,
ideally at random guessing. By comparing to the accuracy of an MLP that uses all neurons, we can
also get an indication of how relevant zi is to representing gi. This is similar to the technique of gene
knockout in genetics, which tests how relevant a given gene is to a given function, by removing the
gene and measuring the effect on function. This is crucially different from existing methods, which
only test whether each neuron individually contains information about gi, and which consequently
miss distributed entanglements (Section 3.2). Existing methods, e.g., fail to detect when z̸=i encode
gi via XOR. Our method, however, because it uses an MLP, can detect non-linear encodings such as
XOR. The results from Section 6 show that such encodings occur in practice.
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Table 2: Accuracy predicting each factor using an MLP on all neurons (full), a single-neuron clas-
sifier (SNC), a linear classifier on all neurons (linear), and an MLP with the corresponding neuron
and top two corresponding neurons knocked out (NK1 and NK1, respectively). We report the aver-
age for simple factors (size, location, colour) and complex factors (shape and orientation), and all
factors. For a truly disentangled representation, all the relevant information about each factor should
be given by its corresponding neuron. Therefore, SNC or, by a different interpretation of disentan-
glement, linear, should be as high as full, and NK1 and NK2 should be very low. However, SNC and
linear are significantly below full, and NK1 and NK2 are high, suggesting entanglement. Best for
each block is in bold.

dsprites 3dshapes mpi3d
simple complex avg simple complex avg simple complex avg

β-VAE

full 94.0 (1.1) 82.5 (14.4) 89.4 (1.1) 99.8 (8.8) 99.8 (0.2) 99.8 (0.2) 99.7 (0.1) 80.1 (8.1) 91.5 (7.5)
SNC 16.0 (3.1) 24.6 (2.1) 19.4 (1.9) 17.7 (9.5) 30.7 (11.3) 22.0 (4.0) 48.7 (8.2) 8.2 (0.6) 32.6 (5.3)
linear 58.6 (3.6) 27.7 (1.3) 46.2 (2.5) 85.7 (0.0) 65.6 (10.0) 79.0 (1.3) 74.1 (3.4) 20.9 (1.4) 52.8 (2.8)
NK1 37.9 (5.9) 76.8 (14.1) 53.5 (3.7) 98.7 (0.0) 91.1 (8.3) 96.1 (2.8) 85.4 (4.9) 62.9 (6.4) 76.0 (2.8)
NK2 26.8 (1.9) 70.9 (18.4) 44.4 (1.3) 92.5 (8.7) 74.2 (6.1) 86.4 (1.8) 76.2 (4.0) 47.7 (4.7) 64.1 (0.8)

β-TC-
VAE

full 81.7 (1.8) 73.9 (7.8) 78.5 (4.1) 99.9 (0.1) 99.9 (0.2) 99.9 (0.1) 89.2 (13.5) 75.8 (8.1) 83.9 (7.5)
SNC 55.2 (13.7) 21.5 (6.0) 41.7 (9.8) 16.2 (2.1) 30.5 (6.1) 21.0 (2.9) 54.6 (9.0) 7.9 (0.6) 35.7 (5.3)
linear 61.0 (16.0) 51.0 (20.2) 57.0 (17.4) 82.1 (4.3) 64.6 (10.8) 76.3 (2.4) 76.5 (5.2) 19.5 (1.4) 53.6 (2.8)
NK1 53.0 (2.9) 72.9 (7.6) 60.9 (3.8) 98.4 (0.7) 92.4 (6.2) 96.4 (2.0) 76.3 (2.6) 58.8 (6.4) 69.3 (2.8)
NK2 47.6 (2.5) 65.1 (4.9) 54.6 (1.7) 92.5 (3.4) 72.5 (4.4) 85.8 (3.1) 63.1 (3.1) 43.6 (4.7) 54.8 (0.8)

fVAE

full 83.4 (1.2) 67.5 (2.1) 77.1 (1.5) 97.9 (3.7) 98.4 (1.6) 98.1 (2.4) 99.2 (0.9) 74.5 (18.0) 88.9 (7.5)
SNC 20.0 (1.5) 23.9 (0.8) 21.6 (0.7) 14.6 (1.3) 21.1 (3.0) 16.8 (1.7) 44.7 (2.2) 8.0 (0.2) 30.1 (1.2)
linear 33.9 (4.6) 26.2 (2.2) 30.8 (2.4) 75.7 (4.1) 44.2 (9.5) 65.2 (4.1) 67.3 (2.9) 19.7 (2.0) 48.4 (1.9)
NK1 39.3 (7.3) 60.7 (1.3) 47.9 (4.8) 86.9 (5.6) 81.7 (12.0) 85.2 (7.0) 79.6 (1.6) 55.3 (2.9) 69.4 (0.6)
NK2 26.7 (3.0) 56.3 (1.5) 38.5 (2.3) 63.7 (7.7) 59.8 (10.3) 62.4 (7.7) 69.9 (1.9) 42.0 (4.2) 57.7 (1.9)

Parted-
VAE

full 73.4 (2.5) 69.1 (8.1) 71.7 (4.2) 98.4 (0.9) 91.9 (15.2) 96.2 (5.2) 76.1 (0.6) 51.3 (1.0) 65.2 (0.7)
SNC 20.6 (9.9) 25.6 (1.5) 22.6 (6.1) 22.1 (5.2) 40.4 (30.8) 28.2 (12.3) 39.1 (3.1) 31.6 (0.6) 34.3 (0.9)
linear 40.6 (5.4) 29.5 (3.9) 36.2 (2.6) 71.8 (5.0) 68.7 (19.0) 70.8 (5.8) 53.7 (2.9) 37.1 (0.4) 45.8 (1.6)
NK1 42.8 (5.0) 52.0 (4.1) 46.5 (4.1) 67.2 (5.0) 28.4 (6.8) 54.3 (5.5) 75.7 (3.2) 41.6 (1.0) 60.9 (2.0)
NK2 36.8 (5.2) 6.6 (1.2) 29.2 (3.9) 42.3 (5.2) 20.7 (8.0) 33.7 (6.3) 86.2 (3.3) 35.4 (1.5) 61.8 (2.3)

5 NOVEL COMBINATIONS OF FAMILIAR FEATURES (NCFF)

In this section, we present a new task, in addition to the above metrics, for measuring disentangle-
ment: recognizing novel combinations of familiar features. These are data points that exhibit features
that have each been seen individually during training, but have not been seen together. If the repre-
sentation learnt by a model is truly disentangled, then such novel combinations should not present
any difficulty, because the model would be able to extract representation elements for each feature
separately, and when considered separately, each is familiar to the model. However, if there is entan-
glement between the different features, then the novel combination is out of distribution. Formally,
let p(X,Y ) be the empirical distribution from the data for the two features, q(X,Y ) the distribution
learnt by the model, and x, y the two feature values that do not appear together in the data. Then,

p(X = x), p(Y = y) > 0 (2)
p(X = x, Y = y) = 0 . (3)

So, if q approximates the joint distribution p, we would expect q(X = x, Y = y) ≈ 0. However,
if q has been learned as a factored distribution, where q(X) ≈ p(X) and q(Y ) ≈ p(Y ), then
q(X = x, Y = y) = q(X)q(Y ) > 0. Our proposed task is as follows: randomly sample values
for two chosen features, form a testset of points with those two values for those two features, train
the VAE (or supervised model) on the trainset, encode the entire dataset with the encoder from the
VAE (this step is not needed for supervised models), and finally train and test the classifier on the
train/test sets respectively using the encodings as input.

This task is somewhat similar to the investigation into correlated features, such as those by Träuble
et al. (2021). However, it differs in a number of important ways. Firstly, the dependence that we
introduce between X and Y is restricted entirely to one combination of values, with probability
zero of this combination and otherwise the features being totally independent. This is in contrast to
(Träuble et al., 2021), who have some degree of correlation between all values of the two correlated
features. Secondly, they do not have a real-world task with which to evaluate the effect of entangle-
ments, instead they examine feature importance in a gradient boosting tree to predict each gi, and
the pairwise mutual information between zi and zj which, as we argued in Section 3.2, is a poor
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method for investigating entanglement. Our proposed task of correctly classifying NCFF is a more
natural, realistic way to measure if the models are learning to encode features independently.

6 EXPERIMENTAL EVALUATION

Datasets. We test on three datasets. Dsprites contains 737,280 black-and-white images with fea-
tures (x, y)-coordinates, size, orientation and shape. 3dshapes contains 480,000 images with fea-
tures object/ground/wall colour, size, camera azimuth and shape. MPI3D contains 103,680 images
of objects at the end of a robot arm with features object colour, size and shape, camera height and
azimuth and altitude of the robot arm.

Implementation Details. For unsupervised models, parted-VAE is trained using the author’s code
at https://github.com/sinahmr/parted-vae, and other models are trained using the library at https:
//github.com/YannDubs/disentangling-vae, all use default parameters. The number of neurons is
fixed to m+2, where m is the number of factors. The MLPs and linear models trained to predict the
factors are trained using Adam, learning rate .001, for 75 epochs. The MLP has one hidden layer of
size 256. The supervised model, MTD, is trained using the author’s code (obtained privately) with
all default parameters, for 10 epochs.

6.1 SINGLE-NEURON CLASSIFICATION AND NEURON KNOCKOUT

Table 2 shows the results of our two proposed metrics, SNC and NK on the three datasets described
above. Each dataset includes a slightly different set of features, and displaying all features impairs
readability, so we group the features into simple (colour, size and position) and complex (shape and
orientation), for each dataset, and also report the average across all features. Full results are given in
the appendix. We test several popular DE models, β-VAE, FactorVAE, β-TCVAE, and PartedVAE.
The details of these models are given in Section 2. For each combination of dataset, model and factor,
we report the accuracy from five different classifiers. “Full” and “linear” train an MLP and linear
model, respectively, on all neurons. “SNC” is the single-neuron classifier described in Section 4.1,
“NK1” and “NK2” are the two different implementations of the single-neuron classifiers described
in Section 4.1, knocking out, respectively, the single neuron aligned to the factor being predicted,
and the two highest neurons aligned to the factor being predicted. To find the second-highest neuron,
we realign all neurons and factors using the same method, after removing the highest factor. “NK2”
is inapplicable to PartedVAE, because they specify a limited number of neurons to encode class.

The single-neuron classifier (second row in each block) is very inaccurate at predicting the factor
that it is supposed to be representing, compared to using an MLP on all neurons (first row in each
block). With the partial exception of some simple factors on some datasets, the SNC accuracy is far
lower than that of the full MLP, for both simple and complex features. The linear model performs
slightly better, but is still significantly below the accuracy of the MLP. This suggests that each gi is
represented much more accurately by a distributed, non-linear entangled encoding across all neu-
rons, rather than just by zi. This would mean, for example, that the decoder network makes use of
this latter representation. Although an MLP is a more powerful model, this should not help test set
accuracy unless there is relevant information in the input that it can leverage, i.e., distributed entan-
glements. The fact that MLP accuracy is much higher than linear accuracy and that of SNC, suggests
that such entanglements exist. As discussed in Section 2, we mostly assume that DE requires each
factor represented by a single neuron. However, PartedVAE defines a subset of neurons to represent
shape, and another subset to represent other features. Here, (bottom block) “SNC” means training an
MLP on those to predict class from those neurons dedicated to class, and using the above-described
method to predict other factors. Unsurprisingly, this generally performs better than the other models,
especially on the complex factors (wherein shape is included). However, it still performs markedly
lower than the full MLP, which suggests that even this weaker notion of DE is failing to be achieved.

Distributed entanglements are also suggested by the results of the neuron knockout setting (lines
four and five in each block). Here, in general, the accuracy is still quite high even after removing
the neuron that was supposed to contain all the relevant information. As with SNC, there are some
features that show reasonable results (see appendix for full results), but mostly the accuracy drop is
only slight, suggesting that much of the representation of gi is distributed over z̸=i. Even the NK2
setting can often classify shape nearly perfectly. This is also true of parted-VAE. As with the SNC
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experiments, it performs slightly better than the other models but is still suggestive of entanglement.
Note that the NK2 setting for parted-VAE (bottom row, bottom block), has four neurons out of 7-9
neurons removed (the three dedicated to class plus one extra), so deterioration in performance is
expected. As well as being evidence for entanglement, this highlights that fault tolerance is at odds
with DE. In one sense, it is a good thing that after removing any one or two neurons, even those
with the highest mutual information with the target feature, the representation still contains enough
information to classify with high accuracy. Fault-tolerance was one of the original arguments for the
advantages of distributed representations (Fahlman & Hinton, 1987; Hinton et al., 1986), and the
brain has been shown to be highly fault-tolerant (Yu, 2016). However, if, as disentangled models
aim for, the information for each feature is contained in only one neuron, then the representation is
very fragile, losing just one neuron means all the information is lost. This conceptual conflict with
fault-tolerance suggests that DE may not always be desirable, and we should be clear what benefit
DE offers if we are to pursue it. The results from Table 2 show that current supposedly disentangled
models largely retain the benefit of fault-tolerance, at the cost of entanglement.

6.2 NOVEL COMBINATIONS OF FAMILIAR FEATURES RESULTS

In this section, we present the results for the task of classifying novel combinations of familiar
features. As well as the models from Section 6.1, we also report results on a recent fully supervised
method (Sha & Lukasiewicz, 2021), which we denote MTD. Because of the architecture of MTD,
it is not suitable to evaluate it on the SNC and NK metrics, but it is suitable to see whether it can
correctly identify novel combinations of familiar features. Here, the train set consists of all data
points other than those with a specific combination of values for two specific features, e.g., large
circles, and the test set consists of all other data points. Because there is a very large number of
combinations of feature values, it is not feasible to test all of them in enough detail to obtain reliable
results. We restrict our attention to just shape and size combinations. We randomly sample a number
of shape-size value combinations to exclude, five for dsprites, six for mpi3d and 8 for 3dshapes
(see appendix for details), and report the average. For parted-VAE and MTD, the “normal test set”
predicts factors from the corresponding specified subsets of neurons, for other models, all neurons
are used.

Points from the test set are excluded both from the training of the VAE and of the classifier (same
in the “normal test set” setting). There is perhaps a danger here that the MLP itself entangles two
features that are not entangled in the representation itself. For example, if large circles are excluded
then, when classifying shape, the MLP could learn that whenever the “colour” neuron indicates
“large”, it should place low probability mass on “circle”. We feel this is unlikely to affect results
significantly, as the relationship between the “size” neuron and the value of shape would be highly
non-linear and present only for a small subset of data points. However, to ensure that this is not
the reason for such a failure to classify NCFF, we also test under three additional settings: “NCFF
linear” trains a linear classifier instead of an MLP, so the non-linear relationship could not be learnt,
and “NCFF excl1/2” exclude from the classifier, the top one and two neurons (respectively) for the
other features. That is, when classifying shape, the neuron(s) for size are removed and vice versa.

As Table 3 shows, the accuracy for all three of these settings, as well as in the original “NCFF”
setting, is very low, essentially at the level of random guessing. This is even true for MTD, the
supervised model. On the normal test set, where the data points are split into train-test randomly
every model is capable of classifying the unseen data accurately. They are all 75 + %, with many
at 90 + %. For the novel combinations, however, the model tends to capture one factor accurately,
but the other factor very inaccurately. This happens even in the “NCFF linear” and “NCFF excl 1/2”
settings which, as discussed above, shows that it is not the classifier that is introducing entanglement.
Rather, the entanglement must be in the representation itself. The failure to classify NCFF suggests
that, however the model has learned to encode the data, it is not able to represent the range of values
independently for each feature type. For example, it is completely unable to represent “square”
without also representing “not large”. This would mean that the representation is highly entangled.

Some prior works have investigated novel combinations of familiar features before, and mostly they
have claimed their model can meaningfully represent such combinations, however, these prior works
have only examined the reconstructions, i.e., the output of the decoder: Higgins et al. (2016) display
figures of reconstructed chairs with a round bottom for certain latent traversals and Esmaeili et al.
(2019) present reconstructions for MNIST digits with certain combinations of digits and features
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Table 3: Classification accuracy for novel combinations of familiar features, best for each block in
bold. For a truly disentangled representation, this task should not present additional difficulty, be-
cause each factor can be recognized separately. However, NCFF is consistently much lower than
for a normal test set, mostly at the level of random guessing. The same is true when using a linear
classifier (NCFF linear) and when excluding opposite neurons (NCFF excl 1/2), showing the entan-
glement is not merely introduced by the classifier. The failure at this task suggests entanglement.

dsprites 3dshapes mpi3d
size shape both size shape both size shape both

β-VAE

normal testset 99.0 99.6 98.7 99.4 100.0 99.9 98.9 85.8 85.1
NCFF 5.3 4.2 0.0 16.9 27.7 0.0 72.8 5.2 4.3
NCFF linear 2.5 91.6 2.0 36.0 70.6 17.2 95.1 7.6 5.0
NCFF excl 1 3.2 90.4 2.0 32.7 71.6 14.0 88.5 9.1 7.0
NCFF excl 2 4.2 94.9 3.8 36.1 70.8 17.4 97.8 11.3 10.0

β-TCVAE

normal testset 88.6 94.3 85.7 99.6 100.0 99.6 97.6 81.2 79.9
NCFF 0.2 38.0 0.0 7.1 61.4 3.9 83.0 3.6 3.4
NCFF linear 0.0 99.8 0.0 41.2 81.1 28.9 98.0 11.3 10.6
NCFF excl 1 0.0 92.5 0.0 28.7 79.8 19.9 92.1 13.0 11.6
NCFF excl 2 0.0 82.9 0.0 32.6 80.6 20.3 96.8 6.4 5.3

FactorVAE

normal test set 97.5 98.4 96.4 92.6 98.8 91.5 97.9 82.3 80.9
NCFF 3.1 28.3 0.3 13.5 36.9 1.2 67.3 2.6 2.1
NCFF linear 14.4 92.6 12.2 40.8 62.1 18.1 91.9 9.6 8.8
NCFF excl 1 11.2 95.6 11.0 36.1 60.3 19.4 87.7 9.6 8.6
NCFF excl 2 8.5 70.6 6.4 28.8 67.8 9.3 97.8 9.0 8.3

PartedVAE

normal testset 77.0 97.4 75.9 96.7 99.0 95.8 80.7 100.0 29.1
NCFF 3.6 25.6 0.0 10.0 87.4 9.7 79.4 0.0 0.0
NCFF linear 2.2 12.7 0.3 14.2 95.3 4.5 87.8 0.0 0.0
NCFF excl 1 3.1 28.3 1.3 25.7 21.1 0.5 92.6 0.0 0.0
NCFF excl 2 0.6 62.9 0.4 22.2 95.2 21.6 90.1 0.2 0.2

MTD normal testset 79.9 80.2 99.7 100.0 100.0 100.0 99.9 95.8 95.8
NCFF 11.3 33.4 2.9 12.1 23.3 1.3 59.9 16.5 5.0

- random 16.7 33.3 5.6 12.5 25.0 3.1 50.0 16.7 8.3

(e.g., line thickness) excluded. However, we argue that these investigations do not provide suffi-
cient evidence to make claims about the internal representation. Being able to reconstruct an image
accurately does not imply anything about the internal representation, it could just be the result of
learning the identity function. The key question is not what the decoder reconstructs from the en-
coding or from a latent traversal, it is what representation the encoder produces. Prior investigations
into NCFF only examined the former, and so wrongly concluded that their models could understand
NCFF. Our proposed task of classifying NCFF, on the other hand, directly investigates what infor-
mation is present in the encoder’s representations of the data, and finds, contra the claims of prior
works but in line with the results from Section 3.2, evidence of strong entanglement.

7 CONCLUSION

This paper has cast doubt on whether current, supposedly disentangled models are really producing
disentangled representations. First, we examined the metrics that are used to assess performance
of disentangled models and identified that they have two significant flaws: incorrect alignment of
generative factors with neurons and a failure to detect information spread over multiple neurons,
which we call distributed entanglement. We described two new metrics that avoid these problems:
single-neuron classification and neuron knockout. We then tested existing DE models on these new
metrics and showed that, for most features, they perform poorly. Next, we propose the classification
of novel combinations of familiar features as a real-world task with which disentanglement can be
measured. Disentangled models should be able to perform this task, but when we test it empirically,
it turns out they perform little better than random guessing, which suggests entanglement.
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