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Abstract

Shadow characteristics are of great importance for scene understanding. Existing
works mainly consider shadow regions as binary masks, often leading to imprecise
detection results and suboptimal performance for scene understanding. We demon-
strate that such an assumption oversimplifies light-object interactions in the scene,
as the scene details under either hard or soft shadows remain visible to a certain
degree. Based on this insight, we aim to reformulate the shadow detection paradigm
from the opacity perspective, and introduce a new fine-grained shadow detection
method. In particular, given an input image, we first propose a shadow opacity
augmentation module to generate realistic images with varied shadow opacities.
We then introduce a shadow feature separation module to learn the shadow position
and opacity representations separately, followed by an opacity mask prediction
module that fuses these representations and predicts fine-grained shadow detection
results. In addition, we construct a new dataset with opacity-annotated shadow
masks across varied scenarios. Extensive experiments demonstrate that our method
outperforms the baselines qualitatively and quantitatively, enhancing a wide range
of applications, including shadow removal, shadow editing, and 3D reconstruction.

1 Introduction

Shadow is a natural phenomenon when objects obstruct light sources either fully or partially, resulting
in intensity and color variations across certain regions. These shadow characteristics play vital roles
for scene understanding. The presence of shadows can degrade image quality and impede numerous
vision and graphics tasks, including image editing [48], object detection [33], and visual tracking.
Furthermore, shadow analysis allows us to interpret semantics and geometry of a scene [31], e.g.,
object shapes, light source positions, and object relationships. However, accurately detecting shadow
characteristics (e.g., boundary, opacity, etc.) in the scene can be very challenging. Shadows exhibit
diverse characteristics due to scene factors like lighting conditions, surface properties, and occluder
configurations, resulting in various shadow types, from sharp to diffuse.

While advanced shadow detection methods have been proposed, they often regard shadows as binary
masks or assume uniform opacity within shadow regions [2, 17, 49, 42]. We argue that such a binary
or simplified lighting paradigm oversimplifies light-object interactions, as the scene details under
either hard or soft shadows retain varying degrees of visibility. As shown in Figure 1, existing
methods [54, 55] fail to capture the nuanced opacity variations and suffer from position and shape
estimation artifacts, undermining downstream applications like shadow removal and editing that
rely on precise shadow characteristics. A fine-grained formulation of the shadow regions remains
underexplored, which is vital for scene understanding.

∗ Joint corresponding authors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



0.0

1.0Input Image BDRAR FDRNet Ours

D
et

ec
tio

n
R

em
ov

al

Figure 1: Fine-grained shadow detection. Given an input image (1st row), existing methods [17, 54,
55] predict binary shadow masks (1st, 2nd and 3rd columns), yielding inaccurate shadow detection
results. In contrast, we propose to detect fine-grained shadow characteristics (4th column) that capture
subtle opacity variations, with benefits for the downstream applications like shadow removal [12]
(2nd row).

We observe that scene details under both umbra (fully occluded) and penumbra (partially occluded)
regions retain varying degrees of visibility. The variation of shadow opacity caused by factors like
occluder distance or light source intensity, could offer useful scene contextual cues. Take the input
image in Figure 1 as an example. The subtle gradation of the shadow boundary suggests occluder
distance, while umbra darkness and transparency reflect illumination intensity.

Inspired by the above observation, we propose a learning-based framework to predict a continuous
map that indicates the position, boundary, and opacity variation of shadow regions. Our framework
contains three main modules. First, given the input shadow image, we propose a Shadow Opacity
Augmentation (SOA) module to generate multiple images with varied shadow opacities. Each
augmented image and the original image are grouped as an image pair. Second, for each image
pair, we propose a Shadow Feature Separation (SFS) module to disentangle position and opacity
representations of the shadows separately. Third, we propose an Opacity Mask Prediction (OMP)
module that fuses the learned representations and predicts a continuous shadow map as the output.

To support detailed analysis of the proposed paradigm, we further construct a new Fine-grained
Shadow Detection (i.e., FSD) dataset. In particular, it contains 2,653 images with opacity-annotated
shadow masks across diverse scenarios, including different light source intensities and numbers,
indoor and outdoor scenes. We conduct extensive qualitative and quantitative experiments on public
datasets and the proposed dataset. Results show that our approach outperforms baselines in capturing
fine-grained shadow characteristics, enhancing downstream scene understanding applications.

To sum up, we make the first attempt to investigate fine-grained shadow detection by exploiting
opacity variations that are ignored by existing shadow detection and removal methods. We propose a
new shadow detection method by explicitly capturing shadow position and opacity characteristics,
and construct a new dataset with shadow opacity annotations across varied scenarios. Experimental
results show that our method offers a promising shadow detection pipeline that can be applied across
various applications, including shadow removal, shadow editing, and 3D reconstruction.

2 Related Work

Shadow Detection. Early research works rely on physical assumptions or heuristic cues. For
instance, Lin et al. [29] adopted physical models assuming illumination invariance, while others
analyzed chromatic variations in shadow regions using chromaticity [8, 9, 25], gradient [8, 25, 53],
and intensity cues [39, 13, 53]. Huang et al. [20] trained a shadow detector by feeding edge features
into a support vector machine. Guo et al. [14] computed illumination features of segmented regions
and constructed a graph-based classifier by leveraging inter-region relationships. All these methods
depend on handcrafted features, making it difficult to detect shadows accurately in complex scenes.

Deep learning has significantly improved the shadow detection performance [24]. Qu et al. [35]
combined fully connected networks with patch-CNN refinement. Nguyen et al. [34] stabilized
training using adversarial networks, and Hu et al. [17, 19, 54] leveraged spatial contexts. Wang et
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Figure 2: The overall pipeline of our fine-grained shadow detection.

al. [43, 6] and Zheng et al. [51] improved accuracy via adversarial networks and distraction modeling,
respectively. Chen et al. [1] incorporated edge-assisted detection. Recent works [49, 36] further
addressed annotation subjectivity and enhanced features via multi-color-space training.

However, these methods tend to produce binary masks, ignoring fine-grained shadow opacity. While
Wang et al. [45] also noted the limitations of the binary shadow mask, they only generate soft masks
implicitly as intermediate results for shadow removal. In contrast, our approach models the shadow
opacity variations explicitly, benefiting various downstream scene understanding applications.

Shadow Matte Estimation. Shadow matte estimation aims to model the appearance of shadows in
natural scenes. Chuang et al. [2] proposed matte shadows and defined a shadow compositing formula.
Wu et al. [46] optimized the shadow compositing formulation and proposed a method to eliminate
shadows using the shadow matte. Lu et al. [32] introduced a generic framework capable of matting
objects with associated shadows. Lin et al. [28] further improved this to effectively matte objects and
their corresponding shadows in 3D scenes.

However, shadow mattes involve additional colors and textures, making it difficult to be utilized
directly for downstream applications. In contrast, our opacity-aware shadow mask formulation allows
for more flexible and controllable shadow removal and editing results.

3 Approach

Given an input shadow image Is, our goal is to predict a continuous opacity mask Mα representing
the shadow region. The shadow formulation is defined as follows:

Is = If · (1−Mα) +Mα · S, (1)

where If is the shadow-free image. S represents the shadow color, which could be a constant value.
Mα represents the continuous shadow opacity, ranging from 0 (fully transparent) to 1(fully opaque).

Figure 2 shows the overall pipeline of our method, which contains a shadow opacity augmentation
(SOA) module, a shadow feature separation (SFS) module, and an opacity mask prediction (OMP)
module. We first apply opacity augmentation by adjusting the opacity of shadow regions in the input
image. We then pass original and augmented images through the weights-shared backbone to obtain
position and opacity features. The position features Fpos and F ′

pos should be the same, while the
opacity features Fopa and F ′

opa should reflect the augmentation difference. Finally, both position
and opacity features are fused through a shadow detection head to output the continuous opacity map.
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3.1 Shadow Opacity Augmentation (SOA) Module

A trivial solution is to use an auto-encoder architecture to predict the opacity shadow mask directly.
However, it performs poorly in handling diverse and complex shadow scenarios. To fully leverage the
shadow opacity characteristics, we perform shadow augmentation on the input images by randomly
augmenting the opacity of shadow regions.

Specifically, given an input image Is and its opacity shadow mask Mα, we modify the opacity of the
shadow regions by randomly sampling the parameter β to generate an augmented shadow image Îs.
Note that the SOA module is only used for training, where Is and Îs are grouped as an image pair.

3.2 Shadow Feature Separation (SFS) Module

Given each image pair that indicates the same scene with different shadow opacities as input, we
extract the position and opacity features separately. For the original image Is, we introduce a backbone
to extract the position feature Fpos and the opacity feature Fopa. Similarly, for the augmented shadow
image Îs, we use the weight-shared backbone to extract ˆFpos and ˆFopa correspondingly.

Since the shadow positions in the image pair remain unchanged, the position features Fpos and ˆFpos

should be identical theoretically. Meanwhile, the opacity features Fopa and ˆFopa should exhibit the
differences caused by the opacity augmentation parameter β.

3.3 Opacity Mask Prediction (OMP) Module

Given the set of the position feature Fpos and the opacity feature Fopa, we fuse these representations
and predict the continuous shadow opacity map as the fine-grained shadow detection result. In
particular, we first fuse the position feature Fpos and the opacity feature Fopa as follows:

Fs = µFpos + (1− µ)Fopa. (2)

We then employ a cumulative learning strategy [52] to optimize the fused shadow feature Fs through
a weight selection strategy. For training epoch T and the total training epochs Tmax, µ is defined as:

µ = 1−
(

T

Tmax

)η

, (3)

where η is a hyperparameter controlling the decay rate of µ during the training phase. Finally, the
optimized shadow features are passed through a detection head to predict the opacity mask.

3.4 Training

For the SFS module, we use Lpos to constrain the consistency of the position features:

Lpos = MAE(Fpos, ˆFpos), (4)

where MAE is a mean-absolute-error loss function. The shadow opacity features Fopa and ˆFopa

should be capable of predicting the transparency augmentation parameter β. To achieve this, we
subtract Fopa from ˆFopa to predict β:

Lopa = |MLP(Fopa − ˆFopa)− β|, (5)

where MLP contains a global average pooling layer and fully connected layers.

For the OMP module, to mitigate the computational difficulty arising from the varying proportions
of shadow and non-shadow regions in each image, we employ Larea to calculate the difference for
shadow and non-shadow regions and multiply by their weights:

Larea =

∑
i Ls

(
Apred

i , Agt
i

)
· [Agt

i = 0]∑
i[A

gt
i = 0]

+

∑
i Ls

(
Apred

i , Agt
i

)
· [Agt

i ̸= 0]∑
i[A

gt
i ̸= 0]

, (6)
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Figure 3: Example images with opacity mask annotations in our FSD dataset.

where Apred
i represents the predicted value of the i-th pixel, and Agt

i represents the true value of the
i-th pixel. The definition of Ls is:

Ls(pred , gt ) =
{
0.5 · (pred − gt )2 if |pred − gt | < 1

|pred − gt | − 0.5 otherwise.
(7)

To achieve smooth prediction results that are close to the real shadow values, we also use gradient
loss Lgrad as follows:

Lgrad = (∥∇xpred −∇xgt ∥+ ∥∇ypred −∇ygt ∥), (8)

where ∇x and ∇y represent the gradients in the x and y directions, respectively.

We further utilize Lrecon to address the overall discrepancy as follows:

Lrecon =
1

N

N∑
i=1

(pred− gt)
2
. (9)

In summary, we train our model with the following losses:

Lall = λposLpos + λopaLopa + λareaLarea + λgradLgrad + λreconLrecon, (10)

where λpos λopa λarea λgrad, and λrecon are the weighting parameters.

4 Dataset

Dataset Opacity
Mask

Binary
Mask

Object
Association

Shadow
Free

SRD [35] ✗ ✗ ✗ ✓
SBU [41] ✗ ✓ ✗ ✗
ISTD [43] ✗ ✓ ✗ ✓
USR [30] ✗ ✗ ✗ ✓

SOBA [44] ✗ ✓ ✓ ✗
DESOBA [16] ✗ ✓ ✓ ✓
RdSOBA [38] ✗ ✓ ✓ ✓

FSD (ours) ✓ ✓ ✓ ✓

Table 1: A taxonomy of shadow datasets.

A number of shadow datasets [35,
43, 18] have been proposed in the
community, advancing the progress of
shadow detection and removal tasks.
However, as shown in Table 1, these
datasets suffer from shortcomings
like lacking scenes with weak light-
ing, non-point light sources, or multi-
source soft shadows. Most impor-
tantly, there are no publicly available
shadow datasets considering opacity
characteristics.

To increase the diversity of the images, we use Blender to construct a new synthetic fine-grained
shadow detection (i.e., FSD) dataset with the following guidelines:

• Object. We select common and diverse object categories from daily life (e.g., person,
animals, shoes), and place 1 to 5 objects with randomized positions in each scene.

• Scene. The shadow images were captured from different camera angles across various
indoor and outdoor scenarios, with all cameras configured at a 50mm focal length, automatic
sensor settings, and randomized positions.

• Light Source. To enhance diversity, the number, position, and intensity of light sources are
considered, with their positions and brightness levels being randomly sampled.
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Figure 4: Qualitative comparisons of shadow detection on the ISTD [43] and FSD datasets. Given
the input image (1st column), we show the baseline results (2nd to 4th columns), our binary mask(5th
column), our opacity mask (6th column), and ground truth (7th column), respectively.

In summary, FSD comprises 2,653 scenes with different object, scene, and light source properties.
Each scene contains varied camera positions, light intensities, object numbers, and categories,
resulting in 7,701 object-shadow pairs. Some examples with varying shadow opacities are shown in
Figure 3. Please refer to the supplementary material for additional details.

5 Experiments

5.1 Experimental Setup

Implementation Details. All experiments are conducted on a single NVIDIA RTX 4090 GPU.
We use EfficientNet-B3 [37] as the backbone network and ImageNet [5] for weights initialization.
Our model is trained using the Adam optimizer for 20 epochs, with an initial learning rate of 5e-4,
dynamically adjusted through an exponential decay strategy (decay rate of 0.7). During training,
the input images are resized to 400× 400 with a batch size of 12. The random horizontal flipping
operation is further used for data augmentation. The weight parameters λpos, λopa, λarea, λgrad, and
λrecon are set to 1, 1, 10, 10, and 10, respectively.

Datasets. We conduct experiments on both the proposed FSD dataset and the existing ISTD [43]
dataset, which contains 1,330 training images and 540 test images. Furthermore, we utilize two
shadow removal datasets, i.e., ISTD+ [26] and SRD [35], for downstream applications. The ground
truth shadow masks in SRD are obtained by utilizing a connectivity-based optimization strategy.

Compared Methods. As this is the first work for fine-grained shadow detection that considers
opacity, to make fair comparisons, we convert our output to binary shadow masks, and compare our
method with existing shadow detection methods, including SDCM [56], FDRNet [55], MTMT [1],
DSD [51], DSC [17], BDRAR [54], ST-CGAN [43], scGAN [34], stacked-CNN [41].
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Dataset Method BER ↓ Shadow ↓ Non Shad.↓

ISTD

stacked-CNN [41] 8.60 7.69 9.23
scGAN [34] 4.70 3.22 6.18

ST-CGAN [43] 3.85 2.14 5.55
BDRAR [54] 2.69 0.50 4.87

DSC [17] 3.42 3.85 3.00
DSD [51] 2.17 1.36 2.98
MTMT [1] 1.72 1.36 2.08

FDRNet [55] 1.55 1.22 1.88
SDCM [56] 1.40 1.02 1.78

Ours 1.32 0.96 1.67

FSD

DSC [17] 4.46 4.99 3.93
BDRAR [54] 4.43 7.74 1.12

ST-CGAN [43] 4.19 4.63 3.76
FDRNet [55] 3.01 2.58 3.43

Ours 1.79 1.94 1.64

Table 2: Quantitative comparison of the proposed method with baselines on the ISTD [43] and FSD
datasets. The best and second-best performances are marked in bold and underlined.

Evaluation Metrics. We evaluate the quality of the predicted fine-grained shadow mask from
different aspects. We use the Balanced Error Rate (BER) metric to measure the position and boundary
of the shadows. In addition, to evaluate the accuracy of predicted shadow opacity, we propose a new
metric termed Weighted Shadow Error (WSE). Since non-shadow areas typically dominate most
images, commonly used metrics like RMSE may overlook subtle opacity variations within shadow
regions. As a result, WSE incorporates a weighted strategy that emphasizes shadow region accuracy
by computing a region-aware RMSE, thereby offering a more balanced assessment of fine-grained
shadow detection performance.

WSE =

1−
∑N

i=1[A
gt
i ̸=0]

N∑N
i=1[A

gt
i ̸=0]

N

 · RMSEsdr + RMSEnsdr, (11)

where Agt
i represents the alpha value of shadow for each pixel. RMSEsdr and RMSEnsdr are the root

mean square error of the shadow and non-shadow regions, respectively.

5.2 Results

Qualitative Evaluation. Visual comparisons on the ISTD [43] and FSD datasets are presented in
Figure 4. Different from existing methods that predict only binary masks for shadow regions, our
approach can further capture the degree of shadow degradation in the scene accurately. Moreover, by
explicitly modeling shadow opacity, our method substantially reduces both false positives and false
negatives. Take the second row as an example. Our method delivers fine-grained detection results
around the shadow boundaries of the tree leaves, demonstrating clear advantages in predicting precise
shadow characteristics.

Quantitative Evaluation. We compare the performance of our method with state-of-the-art shadow
detection methods in Table 2. As the existing shadow datasets do not contain ground truth opacity
annotations, we extract the brightness difference between shadowed and shadow-free images as the
ground truth value for the opacity shadow mask. Our method achieves the best or second-best BER
scores among all compared methods, significantly validating the effectiveness of the shadow opacity
guidance. Note that our method achieves a greater performance gain on the FSD dataset than on the
ISTD dataset. The primary reason is that our FSD dataset includes a diverse range of challenging
cases featuring soft shadow boundaries and varied opacity levels. Thus, these results highlight the
strength of our method in handling diverse shadow characteristics in complex scenarios.
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Method BER ↓ RMSE ↓ WSE ↓
AutoEncoder 4.01 0.0919 10.49
w/o Fopa 1.97 - -
w/o Fpos 2.82 0.0637 5.93
w/o SOA 2.16 0.0744 6.02
Ours (full) 1.78 0.0699 5.78

Table 3: Ablation study of different components.

Method BER ↓ RMSE↓ WSE↓
w/o Lgrad and Lopa 3.27 - -
w/o Lgrad and Larea 2.34 0.0725 6.81
w/o Lgrad 2.03 0.0691 6.74
w/o Larea 1.86 0.0682 6.03
Ours (full) 1.78 0.0669 5.78

Table 4: Ablation study of different losses.

5.3 Ablation Study

We evaluate the impact of different components, losses, and training strategies of our pipeline on the
FSD dataset. Further analysis on different datasets are provided in the supplementary material.

Method BER ↓ RMSE ↓ WSE ↓
w/o cum. 2.18 0.1505 10.83
η = 0.3 1.93 0.0635 6.21
η = 0.4 1.83 0.0984 6.16
η = 0.6 1.80 0.0675 6.17
η = 0.5 1.78 0.0669 5.78

Table 5: Ablation study of the training strategy.

Component Analysis. We first introduce a
naive baseline (i.e., AutoEncoder) with a simple
encoder and decoder architecture. We then con-
duct two ablations for the SFS module. Specif-
ically, we remove the position feature branch
(i.e., w/o Fpos) and the opacity feature branch
(i.e., w/o Fopa) individually. We further remove
the SOA module (i.e., w/o SOA) to examine the
effect of the shadow opacity augmentation strat-
egy. As shown in Table 3, these components
play essential roles in resolving ambiguities in fine-grained shadow characteristics.

Loss Analysis. The effects of different losses are examined in Table 4. We first remove Lgrad and
Lopa to study the importance of shadow opacity guidance. We then remove Lgrad and Larea separately
or totally. The results show that compared to using Lrecon alone, the integration of Lgrad, Larea, and
Lopa enhance the fine-grained shadow detection performance significantly.

Training Analysis. We also ablate the cumulative learning strategy in Table 5. We retrain the model
without using the cumulative learning strategy (i.e., w/o cum.), and use different η values to control
the decay rate of µ. The results show that η = 0.5 achieves the best performance across all metrics.

Methods Input Masks All Shadow Non-Shadow
PSNR↑ SSIM↑ MAE↓ PSNR↑ SSIM↑ MAE↓ PSNR↑ SSIM↑ MAE↓

IS
T

D
+

DC-ShadowNet [22] NA 25.03 0.926 7.77 31.06 0.976 12.62 27.03 0.961 6.82
DeS3 [23] NA 31.38 0.958 3.94 36.49 0.989 6.56 34.70 0.972 3.40

BMNet [57] FDRNet [55] 32.41 0.962 3.40 36.59 0.989 6.65 35.96 0.978 2.83
HomoFormer [47] FDRNet [55] 32.41 0.953 3.51 38.84 0.991 5.31 34.58 0.966 3.17

ShadowDiffusion [12] FDRNet [55] 34.08 0.968 3.12 40.12 0.992 5.15 36.66 0.978 2.74
ShadowDiffusion [12] Ours 34.06 0.969 3.11 39.49 0.992 5.28 37.22 0.981 2.68

SR
D

DC-ShadowNet [22] NA 31.53 0.955 4.65 34.00 0.975 7.70 35.53 0.981 3.65
DeS3 [23] NA 34.11 0.968 3.56 37.91 0.986 5.27 37.45 0.984 3.03

SAM-helps-shadow [50] NA 30.72 0.952 4.79 33.94 0.979 7.44 33.85 0.981 3.74
ShadowFormer [11] DHAN [3] 32.46 0.957 4.28 35.55 0.982 6.14 36.82 0.983 3.54

DHAN [3] DHAN [3] 30.51 0.949 5.67 33.67 0.978 8.94 34.79 0.979 4.80
BMNet [57] DHAN [3] 31.69 0.956 4.46 35.05 0.981 6.61 36.02 0.982 3.61

Inpaint4Shadow [27] DHAN [3] 33.27 0.967 3.81 36.73 0.985 5.70 36.70 0.985 3.27
Homoformer [47] DHAN [3] 35.37 0.972 3.33 38.81 0.987 4.25 39.45 0.988 2.85

ShadowDiffusion [12] DHAN [3] 34.73 0.970 3.63 38.72 0.987 4.98 37.78 0.985 3.44
ShadowDiffusion [12] FDRNet [55] 34.23 0.972 3.50 37.31 0.985 5.04 38.61 0.986 2.90
ShadowDiffusion [12] Ours 34.84 0.974 3.27 42.06 0.995 3.32 36.45 0.986 3.28

Table 6: Quantitative comparisons with the shadow removal methods on ISTD+ [26] and SRD [35]
datasets. NA indicates that no mask input is required. The best and the second results are highlighted
in bold and underlined, respectively.
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Figure 5: Shadow removal results. Given the input image (1st row), we show shadow removal results
from ShadowDiffusion [12] with binary masks (2nd row), our opacity masks (3rd row), and the
ground truth (4th row).

 Input  Background EditingObject-Shadow Assoication Foreground Editing

opacity shadow mask

object mask

Figure 6: Shadow editing results. Given the input image (1st column), we extract the opacity
shadow mask with the corresponding object (2nd column). Multiple editing operations can be further
conducted, and corresponding fine-grained shadow characteristics will be changed adaptively. For
example, replacing the background (3rd column) or changing the foreground object (4th column).

5.4 Applications

Benefiting from our model for fine-grained shadow detection, we explore three downstream applica-
tions here. Please refer to the supplementary material for additional details and results.

Shadow Removal. The opacity shadow mask provides rich information by explicitly encoding
pixel-wise attenuation coefficients, enabling precise characterization of shadow degradation levels on
the background. To validate its practical utility, we reformulate the training pipeline of ShadowDif-
fusion [12] by replacing its binary shadow mask input with our continuous opacity map. Such an
adaptation can dynamically adjust denoising strength based on shadow opacity and preserve natural
illumination transitions at shadow boundaries through opacity-guided attention modulation.

Quantitative comparisons against existing shadow removal methods are presented in Table 6. The
results show that the shadow removal model trained with the opacity shadow mask achieves substantial
improvements. Note that our method obtains greater performance gains on shadow regions than on
non-shadow regions. The primary reason is that our method is specifically designed to handle shadow
opacity, while non-shadow regions dominate most images, masking shadow-specific improvements.
For example, on the SRD dataset [35] that contains more complex scenes and soft shadows, the
PSNR value for shadow regions shows substantial enhancement, validating the effectiveness of the
opacity guidance strategy. Qualitative comparisons in Figure 5 further highlight our advantages in
shadow removal visual quality, particularly for shadows with light-color or blurred boundaries.

9



Input Ours Input Ours
Figure 7: Failure cases. Our model may fail on images with complex shadow interactions.

Shadow Editing. Shadows often complicate image editing by hindering consistent manipulation of
objects and their associated shading. However, by employing the proposed opacity shadow mask,
we can simplify such a process by enabling synchronized adjustments of shadows and objects. As
shown in Figure 6, the opacity shadow mask can be treated as a detachable shadow layer and edited
alongside the object. Specifically, given an input image, we utilize the proposed model to extract
an opacity shadow mask with the corresponding object. Multiple editing operations can be further
conducted, and corresponding fine-grained shadow characteristics will be changed adaptively. For
example, we can replace the background in the input image with a new one, or modify the position
and size of the corresponding object in the image.

3D reconstruction. Fine-grained shadow opacity variations (e.g., penumbra width and transparency
gradients) provide critical cues about scene geometry, such as occluder distance and light source
intensity, which are highly valuable for 3D reconstruction. Following the shadow-driven neural
rendering framework [40], we apply our continuous opacity maps, rather than binary masks from
FDRNet [55] used before, for the 3D reconstruction application. Our method achieved RMSE values
of 0.00957 and 0.00531 for the Bunny and CUBE scenes, respectively, significantly lower than
FDRNet [55]’s 0.01074 and 0.00777. These results demonstrate that leveraging fine-grained shadow
properties can enhance geometric reconstruction accuracy, particularly under texture-less or complex
lighting conditions.

Discussion. The transparency information embedded in the opacity shadow mask provides ad-
ditional benefits for scene understanding. First, it enables precise modeling of shadow-object
interactions by quantifying the opacity gradient at shadow boundaries, which can guide existing
shadow generation models to synthesize more realistic soft shadows with adaptive opacity. The
pixel-wise opacity map serves as a physical prior for illumination decomposition, allowing joint
optimization of shadow removal and scene relighting tasks. In dynamic scenes with moving objects,
the temporal consistency of opacity values can be leveraged to enhance video shadow stabilization
algorithms, reducing flickering artifacts during editing.

Although our model works well in various shadow scenarios, it may fail in some challenging cases.
As illustrated in Figure 7, it would be difficult for our model to predict accurate shadow opacity when
multiple shadow interactions exist in complex scenarios. A potential solution to this problem is to
adopt the instance shadow strategy to distinguish specific object-shadow associations. As future work,
we would like to explore more shadow characteristics to boost the scene understanding ability.

6 Conclusion

In this paper, we make the first attempt to investigate fine-grained shadow detection by exploiting
shadow opacity characteristics in the scene. To this end, we propose a learning-based model that
explicitly captures shadow position and opacity variations. In addition, we construct the first fine-
grained shadow detection (FSD) dataset with opacity annotations across varied scenarios. Extensive
qualitative and quantitative results show that our model can predict fine-grained shadow characteristics,
achieving superior performance over the baselines and enhancing a wide range of applications,
including shadow removal, shadow editing, and 3D reconstruction.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide a detailed and accurate description of the paper’s contributions
and scope in both the abstract and the concluding paragraph of the references.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are mentioned in the discussion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the network architectures and hyperparameters required for the
experiments in both the paper and supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We will release the dataset and code to the community.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide detailed descriptions of all the training and test details, including
backbones, hyperparameters, and optimizers.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Our experiment does not contain statistical analysis.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the hardware specifications required for the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research adheres to the NeurIPS Code of Ethics. It addresses potential
societal impacts, avoids harmful applications, and ensures fairness and transparency in
methodologies.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No datasets with potential privacy and security risks appeared in the paper.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All third-party assets (code, data, models) are properly credited with their
original sources cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This study does not involve any crowdsourced experiments or research with
human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

This Appendix provides extended technical details and experimental analyses to support the main
paper. We elaborate on the construction of the FSD dataset across diverse scenarios: indoor/outdoor
environments, single/multiple light sources, shadow overlaps, and varying illumination intensities.
We describe the physics-based rendering pipeline in Blender Cycles, leveraging path tracing to
simulate realistic shadow interactions governed by radiometric principles. We elaborate in detail on
the calculation process of the ground truth values for the opacity shadow mask and supplement the
qualitative experimental results of shadow detection. Additionally, we further analyze and present the
qualitative experimental results of shadow removal using the opacity shadow mask.

A FSD Dataset

A.1 Additional details

When constructing the dataset, we considered a variety of scenarios encompassing indoor and outdoor
environments, varying from single to multiple light sources, weak to strong lighting conditions, and
situations with overlapping shadows. The dataset comprises shadow-free images, instance masks,
binary shadow masks, self-shadow masks, and opacity shadow masks.

For indoor object models, we source 1030 models from Google Scanned Objects [7]. To prevent
interference within the dataset, we manually exclude cases where a model consists of multiple
separate parts. Human models are selected from free models on Sketchfab [21] based on quality,
resulting in a manual selection of 59 models. In outdoor settings, we incorporate HDRI textures from
Ambient CG [4] and Poly Haven. To ensure data quality, scenes with extremely weak lighting or
existing shadows are excluded, leading to a final selection of 26 scenes. Below are some examples of
scenes included in the dataset.

Origin image Shadow free

Origin image Shadow free

Instance Mask binary mask

self shadow opacity mask

Instance Mask binary mask

self shadow opacity mask

Figure 8: Indoor, single light

Indoor, Single Light Scenario. In indoor settings, a cubic space serves as the base for constructing
the scenes. A total of 428 floor textures from Poly Haven are utilized to adorn the indoor space.
Subsequently, 1-5 objects are randomly positioned near the world coordinate origin, with their sizes
randomly adjusted to diversify the dataset. The placement strategy for objects in this single-light
indoor scenario (refer to Figure. 8) involves distributing the xyxy coordinates within a narrow strip
area to simulate common real-world object arrangements. For this scenario, a single light source
(such as parallel light or SUN in Blender) is employed to replicate indoor reflection effects, aligning
with typical indoor scene configurations. The variability in light sources encompasses factors like
intensity, blur level (indicating the softness of shadows), light direction, position, and other parameters.
Regarding the camera settings in both indoor and outdoor scenes, the position and angle of the camera
are randomized, excluding specifications such as focal length and sensor size.
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Origin image Shadow free

binary mask (1) binary mask (2)

opacity mask (1) opacity mask (2)

binary mask (1) binary mask (2)

opacity mask (1) opacity mask (2)

Figure 9: Indoor, multiple lights

Indoor, multiple lights. In more intricate scenarios (refer to Figure. 9), the presence of multiple
light sources may give rise to various shadow phenomena. This particular scenario has received
limited attention in prior research. To enrich the dataset’s scope, we have included this scenario
to expand its comprehensiveness. In this setting, objects are placed with completely random xyxy
coordinates. As for lighting, we have implemented a strategy to randomly generate lighting effects,
encompassing point light (POINT in Blender), sunlight (parallel light, SUN), spotlight (SPOT), and
area light (AREA). The selection of light types and quantities is randomized, and the attributes of the
lights are determined in a similar random fashion as previously described.

Shadow overlaps. When multiple light sources are utilized, shadow intersections occur (see
Figure. 9), a phenomenon that cannot be adequately elucidated by a binary shadow mask alone. Our
dataset intentionally includes scenarios featuring shadow intersections. The distinction between this
and multiple-light scenarios lies in the placement strategy of objects and lights. Specifically, two
objects are positioned to form a specific angle, after which two point light sources are placed in the
directions of these objects (from the origin to each object) to generate intersecting shadows.

Origin image Shadow free

Origin image Shadow free

Instance Mask binary mask

self shadow opacity mask

Instance Mask binary mask

self shadow opacity mask

Figure 10: Outdoor, weak light

Outdoor, weak light. For all outdoor scenes, we create a hemisphere and utilize HDRI textures
to establish the environment, thereby integrating lighting details from the textures organically. In
instances of low lighting intensity (refer to Figure. 10), shadows exhibit a blurred and ghosted
appearance, rendering binary shadow masks less efficient for shadow elimination. Given that the
lighting details are predetermined by the texture, the only elements subject to randomness are the
camera angles and the placement of objects.
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Instance Mask binary mask

self shadow opacity mask

Instance Mask binary mask
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Figure 11: Outdoor, strong light

Outdoor, strong light. In outdoor environments characterized by intense lighting conditions (see
Figure. 11), representative of real-world settings, shadows tend to be distinct and deep. Our dataset
comprises a substantial quantity of such scenes. The primary contrast between these two outdoor
setups lies in the HDRI textures employed.

Once the scene is set up, we employ keyframe animation to produce the initial image, a shadow-free
rendition, and all desired annotations for each object. Blender sequentially generates the animation
frame by frame, which is later subjected to post-processing. Due to inherent noise in the original
opacity shadow mask from Blender Cycles, we begin by applying noise reduction techniques.
Subsequently, we derive the binary shadow mask based on the opacity shadow mask. Following the
processing of all samples, we compile a JSON file to document our datasets in the format specified
by SOBA [44]. Comprehensive details regarding the scene setup will be released.

B Additional Shadow Detection Results

B.1 Shadow Rendering Process

Blender Cycles uses the path tracing algorithm, which is based on the following equation:

Lo(p, ωo) = Le(p, ωo) +

∫
Ω

fr(p, ωi, ωo)Li(p, ωi)n · ωidωi (12)

It uses radiometry to describe lighting more accurately, resulting in more realistic images. The term
Li(p, ωi)n · ωi describes the radiance of the light coming from solid angle ωi in the environment,
contributing to the radiance at point p. Thus,

∫
Ω
Li(p, ωi)n · ωidωi represents the contribution of all

light rays in the hemisphere Ω, i.e. all light in the environment. The term fr determines how much
light will be reflected. Although with numerous BSDF, BRDF models available, they only determine
the material of the object. The determinant of shadows is the term Li .The term Le represents the
object’s self-emission.

The ground truth opacity shadow mask αgt is calculated from the shadow image S and the shadow-
free image F . The specific steps are as follows: first, convert Sand F to the YCbCr color space and
extract the Y channel, then compute the ratio of YS to YF ,apply a low-pass filter to remove noise,
and finally obtain αgt through thresholding.

αgt = max(t, f(
YS

YF
)) (13)

Here, YS and YF represent the Y channels of the shadow image and the shadow-free image in the
YCbCr color space, respectively. f denotes a low-pass filtering operation with σ = 0.5, and t is the
threshold, which is set to 0.1 in this paper.
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Figure 12: The figure demonstrates the shadow image, the shadow-free image, and the extracted
opacity shadow mask. Compared to the binary mask, the opacity shadow mask not only indicates the
location of the shadows but also reveals the intensity of the shadows and the degree of background.

 Input Image BDRAR DSC FDRNet Ours (binary) GTOurs (opacity)

Figure 13: The figure illustrates qualitative comparison results between ours and the state-of-the-art
methods on the SRD dataset [35], our method exhibits significant advantages in visual quality.

Figure 13 presents additional experimental results on the SRD dataset [35]. Our method outperforms
the state-of-the-art approaches across multiple examples,our method demonstrates exceptional perfor-
mance in fine-grained shadow detection. For instance, in rows 2 and 4, our method can predict the
transparency changes of shadows, while in rows 1 and 5, it achieves more precise detection of soft
shadow boundaries. These results further validate the reliability of the shadow detection approach
guided by shadow opacity.

B.2 Ablation Study

Qualitative comparison. The ablation results in Figure 14 validate our design: the opacity mask
enables robust shadow positioning and transparency estimation, complemented by Lgrad for regulating
gradient smoothness and Larea for boosting accuracy in extreme scenarios.
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Figure 14: Qualitative comparison results of different ablated versions of our model.

Method BER ↓ Shadow↓ Non Shad.↓
w/o Lgrad and Lopa 1.73 0.92 2.53
w/o Lgrad and Larea 1.55 2.21 0.88
w/o Lgrad 1.50 2.25 0.75
w/o Larea 1.46 2.15 0.77
Ours (full) 1.32 1.67 0.96

Table 7: Ablation study on ISTD.

Quantitative Evaluation. We addi-
tionally conducted an ablation study
of our loss functions on the ISTD
dataset [43]. As it lacks ground truth
annotations for shadow opacity, we
employed the Balanced Error Rate
(BER) metric for evaluation. The re-
sults, presented in the table below,
demonstrate that our full model out-
performs all ablated versions, validating the effectiveness of our design choices.

C Additional Shadow Removal Results
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Figure 15: We compared the results of using binary masks and opacity masks for shadow removal in
training the ShadowDiffusion[12] model on SRD Dataset [26]. The results indicate that using opacity
masks instead of binary masks for annotation leads to better visual effects.

In our shadow removal experiments, we improved upon the state-of-the-art ShadowDiffusion [12]
method. Specifically, we replaced the binary shadow mask with the detection results from our method
for training, while keeping other hyperparameters and optimization strategies consistent with the
original ShadowDiffusion. The experiments were conducted on an RTX 4090 GPU, with the training
epochs set to 1000. We employed the Adam optimizer (with momentum parameters of (0.9, 0.999))
and an initial learning rate of 3 × 10−5. The model weights were initialized using the Kaiming
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Figure 16: Results of different inputs on the LRSS [10] dataset using ShadowDiffusion [12].

initialization technique [15], and an exponential moving average (EMA) strategy with a decay rate of
0.9999 was applied across all experiments.

Figure 15 showcases the performance superiority of the model trained using opacity shadow masks
compared to the model trained with binary shadow masks across various test images. The qualitative
analysis demonstrates that, under the same training conditions, the utilization of opacity shadow masks
enables the model to effectively eliminate shadows while maintaining more detailed information
about the underlying scene. Particularly in complex scenarios with blurred shadow boundaries, the
model trained with opacity shadow masks shows notably enhanced performance.

To validate the effectiveness of the opacity shadow mask, we conducted supplementary experiments
on the LRSS soft shadow dataset [10], which contains 46 pairs of shadow and shadow-free images.
The experiments adopted a strategy of training on the SRD dataset [26] and evaluating on the
LRSS dataset [10]. As illustrated in Figure. 16, the opacity shadow mask demonstrated significant
advantages in restoring soft shadow edges and background textures, thereby fully validating its
effectiveness.
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