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Abstract

Multi-Agent Reinforcement Learning (MARL) struggles with sample inefficiency
and poor generalization [1]. These challenges are partially due to a lack of struc-
ture or inductive bias in the neural networks typically used in learning the policy.
One such form of structure that is commonly observed in multi-agent scenarios
is symmetry. The field of Geometric Deep Learning has developed Equivariant
Graph Neural Networks (EGNN) that are equivariant (or symmetric) to rotations,
translations, and reflections of nodes. Incorporating equivariance has been shown
to improve learning efficiency and decrease error [2]. In this paper, we demonstrate
that EGNNs improve the sample efficiency and generalization in MARL. How-
ever, we also show that a naive application of EGNNs to MARL results in poor
early exploration due to a bias in the EGNN structure. To mitigate this bias, we
present Exploration-enhanced Equivariant Graph Neural Networks or E2GN2. We
compare E2GN2 to other common function approximators using common MARL
benchmarks MPE and SMACv2. E2GN2 demonstrates a significant improvement
in sample efficiency, greater final reward convergence, and a 2x-5x gain in over
standard GNNs in our generalization tests. These results pave the way for more
reliable and effective solutions in complex multi-agent systems.

1 Introduction

Figure 1: An example of how using an equivariant func-
tion approximator shrinks the total search space.

Multi-Agent Reinforcement Learning (MARL)
has found success in various applications such
as robotics [3, 4, 5], complex strategy games [6,
7, 8] and power grid management [9, 10]. How-
ever, MARL algorithms can be slow to train,
difficult to tune, and have poor generalization
guarantees [1, 11]. This is partially because
typical implementations of MARL techniques
use neural networks such as Multi-Layer Per-
ceptrons (MLP) that do not take the underlying
structure into account. The models learn simple input/output relationships with no constraints or
priors on the policies learned. These generic architectures lack a strong inductive bias making them
inefficient in terms of the training samples required.

∗The Johns Hopkins University Applied Physics Lab

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



Symmetries are commonplace in the world. As humans, we exploit symmetries in our daily lives to
improve reasoning and learning. It is a basic concept learned by children. Humans do not need to
relearn how to eat an apple simply because it has been moved from the right to the left. In soccer, if
you have learned to pass to someone on the right, it is easier to learn to pass to someone on the left.
Our objective is to develop agents that are guaranteed to adhere to these basic principles, without
needing to learn every single scenario from scratch.

Figure 2: An example of rotational equivari-
ance/symmetry in MPE simple spread environment.
Note as the agent (in red) positions are rotated, the opti-
mal actions (arrows) are also rotated.

Symmetries are particularly common in MARL.
These occur in the form of equivariance and
invariance. Given a transformation matrix T , if
f(Tx) = f(x) that function is said to be invari-
ant. Similarly, f(.) is equivariant if f(Tx) =
T f(x) [12]. Rotational and reflection symme-
tries (the O(n) symmetry group) are particularly
common in Reinforcement Learning (RL) sce-
narios. For example, consider the Multi-agent
Particle Environment (MPE) [13] benchmark for
MARL which has agents with simple dynamics
and tasks. We note that this scenario adheres to
rotational equivariance. As shown in Figure 2
rotating the agent’s positions results in the op-

timal actions also being rotated. A policy that is rotationally equivariant effectively shrinks the
state-action space for the problem, potentially making the problem easier to learn (Figure 1).

One way to guarantee equivariance to rotations and reflections in MARL is to use an Equivariant
Graph Neural Network [2]. Due to the more complex and equivariant structure of the EGNN, directly
adapting EGNNs to MARL is not straightforward. Specifically, consider action spaces typically
represented as discrete choices (e.g., up, down, left, shoot). Typically the policy over such an action
space is represented using logits (to specify the probability of choosing each action). EGNN outputs
a continuous equivariant output. Mapping this output to logits is non-trivial. Therefore, we ask the
question What is the correct representation of a complex action space when using Equivariant GNNs?

Another specific issue we observed in EGNNs is an exploration bias in the early stages of learning
due to the specific nature of the equivariant computation. This bias can lead to poor initial exploration,
decreasing the probability of the agent finding the optimal policy, and potentially resulting in sub-
optimal convergence. Therefore we ask the question How can we design a GNN equivariant to
rotations, but without early exploration bias?

The main contribution of this paper is Exploration-enhanced Equivariant Graph Neural Networks
(E2GN2). This addresses the two research questions. Specifically, we show how to apply Equivariant
GNNs to complex MARL tasks, to mixed discrete/continuous action spaces, and to mitigate the early
exploration bias. Our contributions can be summarized as:

(1) Our approach is the first to successfully demonstrate Equivariant GNNs for MARL on standard
MARL benchmarks with complex action spaces.

(2) We propose E2GN2 which has no bias in early exploration for MARL and is equivariant to
rotations and reflections.

(3) We evaluate E2GN2 on common MARL benchmarks: MPE [13] and Starcraft Multi-agent
Challenge v2 [14] using PPO. It learns quicker, outperforming standard GNNs and MLPs by up to
2x-5x 2 in sample efficiency on terran and protoss challenges. It is worth noting that E2GN2 is an
improvement on the function approximation for MARL and thus is compatible with most MARL
actor-critic methods.

(4) We showcase E2GN2’s ability to generalize to scenarios it wasn’t trained on, due to the equivari-
ance guarantees. This results in 5x performance over GNNs

2For terran, E2GN2 reaches 0.4 win rate after about 1.25× 106 timesteps, GNN reaches ~0.4 after 5× 106

timesteps and MLP maxes out at ~0.3 win rate after 10× 106 timesteps. For Protoss, E2GN2 reaches 0.4 win
rate after 2.5× 106 timesteps, and GNN and MLP do not reach 0.4 within 10× 106 timesteps. See figure 6.
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2 Related Works

A key theoretical foundation for our paper is [15], which formulated the structure for equivariant
MDPs. One important takeaway is that if a reward is equivariant to a transformation/symmetry, we
want the policy and dynamics to be equivariant to that symmetry. However, this work was limited to
very simple dynamics with discrete actions such as cart-pole. [16] followed up with equivariance
in multi-agent, but was again limited to simple problems. Their method is specifically formulated
and tested on small discrete grid world problems with simple dynamics and discrete up, down,left
actions. For example, the trafic control problem has an input of a 7x7 grid. Extending their work to
continuous environments with large state spaces, large mixed discrete/continuous action spaces is not
straightforward without significant modifications.

Contemporary to our research, [17] demonstrated E(3) equivariant networks on simple cooperative
navigation problems. However, their results on more complex tasks, such as Starcraft, did not excel
over the baseline. Additionally, they used SEGNN [18] which can result in very slow training times,
making tuning difficult and cumbersome. Others took the approach [19] of attempting to learn
symmetries via an added loss term. However, since this approach needed to learn the symmetries in
parallel with learning it did not have the same guarantees as Equivariant GNNs, and did not result in
significant performance gains. Another work [20] demonstrated rotation equivariance for complex
robotic manipulation tasks. This work, while promising, was for single-agent RL and used image
observations and many problems don’t have access to image observations.

AI research in chemistry has taken a particular interest in adding symmetry constraints to GNNs.
Works such as EGNN, [2] SEGNN, [18] E3NN, [21] and Equivariant transformers have demonstrated
various approaches to encoding symmetries in GNNs. In this paper, we chose to focus on EGNN due
to its simplicity, high performance, and quick inference time. Other works took a different approach,
such as [22], which proposes Equivariant MLPs, solving a constrained optimization problem to
encode a variety of symmetries. Unfortunately, in our experience, the inference time was slow, and
we preferred a network with a graph structure such as EGNN.

3 Background

3.1 MARL

Multi-agent reinforcement learning (MARL) considers problems where multiple learning agents
interact in a shared environment. The goal is for the agents to learn policies that maximize long-term
reward through these interactions. Typically, MARL problems are formalized as Markov games [23].
A Markov game for N agents is defined by a set of states S, a set of actions A1, ...,AN for each
agent, transition probabilities P : S ×A1 × ...×AN × S → [0, 1], and reward functions R1, ...RN

mapping each state and joint action to a scalar reward.

The goal of each agent i is to learn a policy πi(ai|s) that maximizes its expected return: J(πi) =

Eπ1, ..., πN

[∑T
t=0 γ

tRi(st, a
1
t , ..., a

N
t )

]
Where T is the time horizon, γ ∈ (0, 1] is a discount factor, and ajt ∼ πj(·|st). The presence
of multiple learning agents makes this more complex than single-agent RL due to issues such as
non-stationarity and multi-agent credit assignment.

3.2 Equivariance

Crucial to equivariance is group theory. A group is an abstract algebraic object describing a symmetry.
For example, O(3) describes the set of continuous rotation symmetries. A group action is an
element of that particular group. To describe how groups o perate on data we use representations of
group actions. A representation can be described as a mapping from a group element to a matrix,
ρ : G → GL(m) where ρ(g) ∈ Rm×m Or instead we can more simply use: Lg : X → X where
g ∈ G where Lg is the matrix representation of the group element g ∈ G [24].

A function is equivariant to a particular group or symmetry if transforming the input is equivalent to
transforming the function output. More formally, Tgf(x) = f(Lgx) for g ∈ G, Lg : X → X and
Tg : Y → Y . Related to equivariance is the key concept of invariance, that is a function does not
change with a transformation to the input: f(x) = f(Lgx). [24]
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Previous work [16] has shown that if a Markov game has symmetries in the dynamics and the reward
function then the resulting optimal policy will be equivariant and the value function will be invariant.
That is, V (Lgs) = V (s) and π(Lgs) = Kgπ(s) where Lg and Kg , with g ∈ G are transformations
to the state and action respectively.

3.3 Equivariant Graph Neural Network

Equivariant Graph Neural Networks [2] (EGNN) are an extension of a standard Graph Neural
Network. EGNNs are equivariant to the E(n) group, that is, rotations, translations, and reflections
in Euclidean space. EGNNs have two vectors of embeddings for each graph node i: the feature
embeddings denoted by hl

i, and coordinate embeddings denoted by ul
i, where l denotes the neural

network layer. The equations describing the forward pass for a single layer are below:

mij = ϕe

(
hl
i,h

l
j , ∥

(
ul
i − ul

j

)
∥2
)

(1)

ul+1
i = ul

i + C
∑
j ̸=i

(
ul
i − ul

j

)
ϕu (mij) (2)

mi =
∑
j ̸=i

mij , hl+1
i = ϕh

(
hl
i,mi

)
(3)

Here ϕ represents a multi-layer perceptron, where ϕe : Rn 7→ Rm, ϕu : Rm 7→ R, and ϕh :
Rm+p 7→ Rp. The key difference between EGNN and GNN is the addition of coordinate embeddings
ui and equation 2, which serves to update the coordinate embeddings in a manner that is equivariant
to transformations from E(n). Note that ui will be equivariant and hi will be invariant to these
transformations [2].

As noted in Section 1, application of EGNN to MARL is not straightforward. In the following section,
we discuss these issues in more depth and present our solution towards addressing them.

4 Methods

In this section, we address both theoretically and empirically how the output of EGNN is biased by
the input, leading to suboptimal exploration in RL. To mitigate this issue, we introduce Exploration-
enhanced Equivariant Graph Neural Networks (E2GN2) as a method that ameliorates this bias,
leading to improved exploration.

4.1 Biased Exploration in EGNN Policies

An important component of reinforcement learning is exploration. Practitioners often use a policy
parameterized by a Gaussian distribution, where the mean is determined by the policy network output,
and the standard deviation is a separately learned parameter. Best practices are that the actions
initially have a zero mean distribution to get a good sampling of potential state-action trajectories, i.e.,
π(ai|s) ∼ N(0, σ). Below we show that an EGNN will initially have a non-zero mean distribution,
which can cause problems in early training.

Theorem 1 Given a layer l of an EGNN with randomly initialized weights, with the equivari-
ant component input vector ul

i ∈ Rn, equivariant output vector ul+1
i ∈ Rn and the multi-

layer perceptron ϕu : Rm 7→ R, where the equivariant component is updated as: ul+1
i =

ul
i + C

∑
j ̸=i

(
ul
i − ul

j

)
ϕu (mij). Then the expected value of the output vector is approximately

the expected value of the input vector:

E
[
ul+1
i

]
≈ E

[
ul
i

]
Furthermore, given a full EGNN with L layers then the expected value of the network output is
approximately the expected value of the network input

E
[
uL
i

]
≈ E

[
u0
i

]
(See appendix A for proof.)
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Corollary 1.1 Given a policy for agent i represented by an EGNN and parameterized with a Gaussian
distribution, and the equivariant component of the state seqi the policy will have the following
distribution:

πi(ai|s) ∼ N(seqi , σ)

(See Appendix A for proof.)

In many cases seqi is the agent’s position. Corollary 1.1 indicates that an agent’s action distribution will
be skewed towards its own position. If the magnitude of the state representation seqi is significantly
larger than σ, the agent may output actions approximately equal to its position. We refer to this
phenomenon, where agent actions are biased towards replicating the input state as the action, as the
early exploration bias. Such bias is not conducive to effective exploration, potentially limiting the
agent’s ability to discover and converge to optimal solutions.

Examples of early exploration bias Suppose there is an agent placed at the position ui = [2, 0],
and its objective is to reach the origin (i.e. 0). The agent needs an action of less than 0 to move to
the left. Since its action using the EGNN is close to Gaussian distributed with a mean of 2, then
P (X < 0) ≈ 0.02. If the agent moves 0.25 with each action, then the probability of the agent
reaching the center objective in eight steps is 2.9e-8. On the other hand, the agent has a high likelihood
of moving toward infinity as each move away increases the likelihood of moving towards infinity.
This example shows that the bias leads to a low probability of finding the solution, which is especially
harmful in sparse reward environments.

Figure 3: An example of biased learning in MPE simple
spread environment. Left: We observed the behavior
of the EGNN agents in this early training phase. Each
agent moved away from the origin due to the EGNN
bias. Right: Note the very low reward in early training
steps due to the biased policies moving away from the
goals.

To confirm our hypothesis on EGNN early ex-
ploration bias, we conducted a simple experi-
ment. We trained a Proximal Policy Optimiza-
tion (PPO) [3] agent on the MPE simple-spread
problem. This problem consists of three agents
that seek to navigate to three goals cooperatively;
the agents are rewarded based on the sum of the
minimum distance from each target to an agent.
We give further details of this set up and training
procedure in the experiments section. Figure
3 shows the results. The EGNN policy biased
the agents to move in the direction of their cur-
rent position, causing them to move away from
the origin and receive low rewards. Due to the
dense rewards and simplicity of the problem, the
EGNN agent was able to overcome this initial

bias and still solve the problem. However, in more complex problems this early bias could cause
more problems. Even if an agent finds an optimal trajectory, it will be a relatively small proportion of
the sampled trajectories and may result in sub-optimal convergence.

4.2 Exploration-Enhanced EGNNs

As discussed previously, EGNN’s severe early exploration bias can decrease learning performance. In
this section, we propose our solution to this problem in the form of Exploration-enhanced Equivariant
Graph Neural Networks (E2GN2). To create E2GN2 we make the following modification to Equation
2 of the equivariant component of EGNN:

ul+1
i = ul

iϕu2
(mi) + C

∑
j ̸=i

(
ul
i − ul

j

)
ϕu (mij)) (4)

where ϕu2
(mi) : Rm → R is an MLP parameterized by u2. The remaining layer update equations

of the EGNN remain the same.

Theorem 2 Given a L layer E2GN2 with randomly initialized weights, where the equivariant
component is updated as: ul+1

i = ul
iϕu2(mi) + C

∑
j ̸=i

(
ul
i − ul

j

)
ϕu (mij)). Then the expected

value of the output vector is approximately the expected value of the input vector:

E
[
ul+1
i

]
≈ 0
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Corollary 2.1 Given a policy for agent i represented by an E2GN2 and parameterized with a
Gaussian distribution the policy will have the following distribution:

πi(ai|s) ∼ N(0, σ)

Thus we see that E2GN2 should have unbiased early exploration for the equivariant component
of the actions. The primary difference between EGNN and E2GN2 is the addition of ϕu2

, which
serves to offset the bias from the previous layer (or input) ul

i To validate that this did indeed solve
the exploration bias we tested E2GN2 on the same MPE simple spread environment. We observe in
Figure 3 that E2GN2 did indeed have unbiased behavior when it came to early exploration, as the
agents had smooth random actions, and the reward did not drastically decrease.

Analysis of E2GN2 Equivariance Here we verify that E2GN2 still retains EGNN’s guarantee of
equivariance to rotations and reflections.

Theorem 3 E2GN2 is equivariant to transformations from the O(n) group. In other words, it is
equivariant to rotations and reflections.

(See appendix A for proof.)

Retaining our symmetries to rotations and reflections is important, since it should increase our sample
efficiency and generalization. Note that E2GN2 is no longer equivariant to translations. However, in
MARL translation equivariance is not necessarily a benefit. For example, consider the MPE problem
with a translational equivariant policy. If we shift an agent to be 10 units right, this will add 10 to the
action as well, causing it to move to the right! Essentially, this is adding an undesirable bias to the
policy output: π(s+ b) = π(s) + b However, we can expect O(n) policy equivariance to improve
our sample efficiency in MARL, and it is key that E2GN2 retains this guarantee.

4.3 Adapting Architectures for Complex Action Spaces

Applying EGNN/E2GN2 to sophisticated MARL problems requires careful consideration. Many
MARL environments have discrete action spaces or mixed continuous-discrete action spaces. Some
components of these action spaces may be invariant and others may be equivariant. Further com-
plicating the problem, MARL requires the neural networks to output parameters for a probability
distribution (which is sampled for use in exploration). For continuous actions, agents typically use a
gaussian and for discrete actions agents generally use logits. Unfortunately, it is not straightforward
to map the distinct invariant and equivariant coordinate embeddings onto a single distribution in a
manner that preserves equivariance.

A core benefit of the GNN structure in MARL is the scalability afforded by permutation equivariance:
the ability to handle a variable number of agents without retraining. For example, [25] demonstrates
using a GNN to train N agents, then to control N + 1 agents without retraining. However, this
example did not operate with discrete or mixed action spaces or equivariant structures as we do here.
Improperly mapping GNN outputs to logits risks losing this scalability.

To address these issues, we propose leveraging the GNN’s graph structure to output different compo-
nents of the action space from different nodes in an equivariant manner:

• Discrete Actions & Invariant Components: the invariant feature embeddings hi of each
agent’s node are used to output discrete logits/actions and other invariant components. For
action spaces with both equivariant and invariant components, this can be used as the ’action
type selector’ to select which type of action to apply at that type step (ie move action or
targeting action).

• Continuous Spatial Actions: the equivariant coordinate embeddings ui of each agent’s
node are used for continuous spatial actions such as movement.

• Targeting Specific Entities: for multi-agent environments with entities beyond the learning
agents (e.g., enemies), logits for discrete actions pertaining to each entity (e.g., which enemy
to target) are output from that entity’s corresponding node. This enables the discrete action
space to scale with the number of agents.
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Figure 4: An example of using an Equivariant Graph Neural Network in MARL. Note that the state must be
structured as a graph with each node having an equivariant ui and invariant hi component. As discussed in 4.3,
the output of the policy uses ui for equivariant (typically spatial) actions, and the hi for invariant components of
the actions

Each of these components is parameterized as a distribution (ie logits or gaussian), resulting in one to
three seperate distributions (depending on the environment and which components are used). After
the exploration phase samples from each of these distributions, the final action can be constructed
from each of these components via concatenation or the action selection component.

This formulation enables us to retain the permutation equivariance and scalability of a GNN. An
alternative to our approach is to add an MLP at the end of the GNN to convert the GNN outputs to
the mixed action spaces. This will lose the scalability/locality of the neural network. For example,
if you add two more agents how do you modify the final MLP to expand the action space? In our
formulation, whenever an new entity i is added to the environment, we can simply add the node
N + 1 to the graph. The action space of the GNN will now be supplemented with uN+1 and hN+1,
allowing us to expand the action space without retraining.

By structuring the GNN output in this manner, we can handle discrete or mixed discrete-continuous
action spaces while retaining the equivariance of EGNN/E2GN2 and the flexibility of GNNs to a
variable number of agents and entities. This approach allows MARL agents based on equivariant
GNNs to be applied to challenging environments with minimal restrictions on the action space
complexity. Indeed this approach was key to enabling the success of EGNN/E2GN2 on SMACv2.

5 Experiments

We seek to answer the following questions with our experiments: (1) Do rotationally equivariant
policy networks and rotationally invariant value networks improve training sample efficiency?
(2) Does E2GN2 improve learning and performance over EGNN? (3) Does Equivariance indeed
demonstrate improved generalization performance?

To address these questions, we use common MARL benchmarks: the multi-agent particle-world
environment (MPE) [13] and Starcraft Multi-agent Challenge version 2 (SMACv2) [14]. Our
experiments show that equivariance does indeed lead to improved sample efficiency, with E2GN2 in
particular performing especially well. We also demonstrate that generalization is guaranteed across
rotational transformations.

We want to focus our experiments on the neural networks’ effects on MARL performance. To isolate
the impact of the network architecture, we avoid using specialized tips and tricks sometimes employed
in MARL [26]. This allows us to demonstrate that our proposed networks can improve performance
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without relying on these additional techniques. Thus we use a common standardized open source
MARL training library RLlib [27]. We use the default multi-agent PPO algorithm, which does not
use a centralized critic. We followed the basic hyperparameter tuning guidelines set forth in [26].
That is, we use a large training batch and mini-batch size, low numbers of SGD iterations, and a small
clip rate. Further hyperparameter details are found in appendix B.

We compare our results with common neural networks used for MARL benchmarks: multi-layer
perceptrons (MLP), and GNNs (we use a GNN structure similar to equations 1, 3, see appendix B
for details ). We also compare with the approach from [17] which we refer to as E3AC in our plots.
Recall that E3AC also uses neural networks that guarantee equivariance: SEGNN. We integrated
E3AC into RLLIB to ensure the RL training procedure remained consistent across our comparisons.
Note that the majority of MARL papers on SMAC/SMACv2 use MLPs as the base network. We
also compare with GNNs to show the improvement is not primarily due to the graph structure. For
the main paper results, we assume full observability since we have not explicitly tackled the partial
observability problem yet. In future work, we will seek to remedy this. However, to be thorough we
performed experiments with partial observability, resulting in surprising success using E2GN2 (see
appendix C).

5.1 Training Environments

From the MPE environment ([13]), we use two environments to benchmark our performance: co-
operative navigation also known as spread, and predator-prey, also known as tag. The MPE tag
environment consists of three RL-controlled agents seeking to catch a third evader agent. For easier
comparison, we use a simple heuristic algorithm to control the evader agent. The evader simply
moves in the opposite direction of the pursuers. The other MPE environment is the cooperative
navigation or simple spread. In this environment, each agent seeks to minimize the distance between
all obstacles. To better test equivariance, for the MPE environments we use continuous actions instead
of the default discrete actions.

Next we test on SMACv2, a much more difficult environment than MPE. In SMACv2, the units are
heterogenous with different capabilities (with different attack ranges, total health, and sometimes
action spaces). The unit types are randomized at the beginning of the scenario. The actions include
more components than simply movement (such as in MPE), agents can move and attack. The goals
are more complex as well. Instead of simply navigating cooperatively as in MPE, the agents must
learn attack formations and strategies. Sometimes it may be optimal to sacrifice health or allies in
the purpose of the greater strategic objective. SMACv2 has three basic scenarios defined by the unit
types: terran, protoss, and zerg. We use 5 agents for each team, and the initial position configuration
termed "surrounded" (see fig 7)

Figure 5: Comparing PPO learning performance on MPE with
various Neural Networks. (TOP) reward as a function of environ-
ment steps. We show the standard errors computed across 10 seeds.
(BOTTOM) reward as a function of wall clock time

The SMACv2 action space poses an
interesting problem for GNN struc-
tures. A key advantage of GNNs is
the permutation equivariance, which
leads to scalability without retraining.
The default SMACv2 agents will out-
put simply a discrete action determin-
ing movement or target for shooting.
For our purposes, we modify the ac-
tion space to be a mixed action space.
This consists of a continuous vector
for movement actions, a discrete ac-
tion determining the attack target, and
a boolean determining if the agent
should shoot, move or no-op (to be
complete, we include plots with a dis-
crete action space in appendix C). As
discussed in section 4.3 this will both
prove a greater test for our algorithms
and allow for the GNN to scale to
larger numbers of agents.
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Figure 6: Comparing performance of PPO on SMACv2 with various Neural Networks representing the policy
and value function. Each chart represents a different race from the SMACv2 environment. We show the standard
errors computed across 10 seeds.

5.2 Training Results

We present the results from our training in this section. The results for MPE in Figure 5 are averaged
across 10 seeds. As discussed previously, EGNN has poor early performance due to the early
exploration bias. Despite this poor exploration, EGNN outperforms GNNs and MLPs, demonstrating
the power of equivariance in MARL. Similarly, we note that in MPE tag, E2GN2 results in a strong
final agent, while EGNN suffers in the initial training phases. We see that E2GN2 is able to greatly
outperform EGNN’s final reward, partly due to superior early exploration.

In figure 5 we also compare the wall clock time required to train each algorithm. Note that these
were all trained on the same hardware and using the same training algorithm (RLLIBs PPO). E3AC
remains competitive in sample efficiency on MPE spread, but it requires nearly four hours to gather
one million time steps, compared to less than one hour for E2GN2. This is likely due to the SEGNN
[18] underlying structure used by E3AC, which is slower due to the be slower for inference time. We
also note that E2GN2 does manage to outperform E3AC on MPE Tag.

Next, we review the results from SMACv2 in Figure 6; these results are averaged across 10 seeds. The
equivariant networks have a clear improvmement in sample efficiency over the MLP and GNN. On
the terran environment, EGNN once again learns slower in the initial phases, but due to equivariance,
it outperforms MLP/GNN. For protoss, we note that EGNN performs well but has a high variance for
its performance. E3AC struggles to perform well on SMACv2, likely since it was unable to resolve
the hurdle we addressed in section 4.3. Instead for SMACv2 E3AC used a simple MLP for the policy
and SEGNN for the value function [17]. The training speed and performance for E2GN2 is especially
impressive since this environment is much more complex than the MPE.

5.3 Generalization

Figure 7: SMACv2 initialization schemes used for test-
ing generalization

Thus far we have demonstrated that equivariance
does indeed lead to improved sample efficiency.
The next question to answer is whether equiv-
ariance leads to improved generalization. We
test this by using the ’surrounded’ initial config-
uration from SMACv2 shown in figure 7. By
default, the agents are randomly generated in all
directions (along specific axes). To test general-
ization, we only initialize agents on the left side
of the map (i.e., surrounded left). We then test to see if the agents are able to generalize when they
are tested with initial positions starting on the right (called surrounded right), and with the default
surrounded configuration (termed Surrounded All or Surrounded). Theoretically, the equivariant
network should see equivalent performance between the training and testing initialization, due to the
guarantee of rotational equivariance for movement, and invariance for shooting actions.

The results of our tests are shown in Table 1. As expected E2GN2 has stellar generalization
performance. The win rate remains the same from the training configuration (Surrounded Left) to
Surrounded Right. We see an increase in win rate when testing in Surrounded All. This is likely
because this Surrounded All is an easier scenarion; the enemy is divided into more groups, so the
agents can defeat the smaller groups one at a time. As we mentioned in the abstract, this table

9



Table 1: Generalization Win Rate in SMACv2. Note that E2GN2 retains high performance, while GNN and
MLP lose performance when generalizing

Environment Network Training Initialization Testing Initialization
Surrounded Left Surrounded Right Surrounded All

E2GN2 0.57 ±.01 0.55 ±.01 0.63 ±.01
Terran GNN 0.51 ±.02 0.11 ±.02 0.32 ±.02

MLP 0.33 ±.02 0.12 ±.02 0.24 ±.02

E2GN2 0.59 ±.01 0.56 ±.02 0.57 ±.02
Protoss GNN 0.5 ±.02 0.14 ±.01 0.32 ±.01

MLP 0.42 ±.02 0.17 ±.02 0.27 ±.02

E2GN2 0.35 ±.02 0.32 ±.02 0.29 ±.02
Zerg GNN 0.4 ±.02 0.07 ±.01 0.21 ±.01

MLP 0.21 ±.02 0.05 ±.01 0.12 ±.01

indicates that for the Surrounded Right generalization test E2GN2 has ~5x the performance of GNN
and MLP.

Next, in Table 2 we test E2GN2’s ability to scale to various numbers of agents without retraining.
We use the agents trained in SMACv2 from Figure 6 for these tests. We do not include the MLP
agent since it cannot scale up without retraining. Note that the method described in section 4.3 was
essential to enable scaling between agents. For example, if we passed the GNN output to a final MLP
to map to the discrete action space this wouldn’t be scalable to more agents.

The results for scalability confirm that both E2GN2 and GNN are able to maintain performance with
larger numbers of agents. As the number of agents gradually increases the win rate does slowly
decrease. E2GN2 does seem to have a slightly steeper loss in performance in the Zerg domain, which
was also the most difficult domain for the initial training phase. We believe this is due to the higher
complexity of the Zerg scenario, with certain unit types (banelings) that can explode to damage many
other agents.

6 Conclusion and Future Work

In this paper, we have demonstrated that E2GN2 merits strong consideration for many MARL
applications. We addressed several important problems including the early exploration bias and
how to apply it to complex action spaces. The sample-efficiency has dramatically improved, and
there are now guarantees of generalization built into the network. There is still further work to do,
such as handling the partial or incomplete symmetries. Furthermore this approach would need to be
improved further to be applied to environments with angular momentum and accelerations, which are
not included in these benchmarks. Currently, we expect that the improvement gained from E2GN2 in
MARL will depend on the amount of rotational symmetry applicable in the observations. We believe
that building on this work can be helpful to deploying MARL agents with a greater degree of trust
(due to the guarantees). This could be helpful in many fields such as robotics, medicine, and power
systems. In summation, the results of this paper provide a solid foundation upon which to build.

Table 2: Generalization Win Rate: Testing RL agents ability to scale to different numbers of agents (originally
trained with 5 agents)

Environment Network Training Setup Testing Setup
5 Agents 4 Agents 6 Agents 7 Agents 8 Agents

E2GN2 0.69 ±.02 0.65 ±.02 0.63 ±.02 0.62 ±.02 0.54 ±.04
Terran GNN 0.45 ±.01 0.44 ±.01 0.42 ±.02 0.39 ±.01 0.32 ±.02

E2GN2 0.62 ±.03 0.61 ±.02 0.59 ±.03 0.47 ±.04 0.37 ±.03
Protoss GNN 0.39 ±.02 0.37 ±.01 0.36 ±.03 0.30 ±.02 0.21 ±.02

E2GN2 0.36 ±.03 0.32 ±.03 0.31 ±.01 0.23 ±.01 0.18 ±.03
Zerg GNN 0.28 ±.04 0.28 ±.02 0.25 ±.03 0.2 ±.02 0.15 ±.02
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Appendix and Supplemental Material

A Proofs

A.1 EGNN Bias Proof

Here we prove our assertion that the EGNN layers have biased outputs, and thus poor exploration.

We start by showing that E [ϕu(mij)] ≈ 0. We do this by computing the expected value of a single
neural network layer.

An individual neural network layer is defined as y = Wx+ b where b is a N-by-1 vector, W is a
N-by-M matrix and x is a M-by-1 vector. Note that similar to [28] we initialize the elements in W to
be mutually independent and share the same distribution. x is initialized similarly. and x and W are
independent. Thus for each element (subscript l ) of the equation, we have:

E [yl] =
∑

E [wlxl] + E [bl] = nlE [wlxl] + E [bl] = nlE [wl]E [xl] + E [bl]

We can expect wl and bl to be zero mean, since many commonly used initializers use either uniform,
or normal distribution, with zero mean [28]. This results in:

= nl ∗ 0 ∗ E [xl] + 0 = 0

Thus, we can assume that for an individual layer the output is 0, since the final layer of any mlp is 0,
we can see that E [ϕu(mij)] ≈ 0

Next we show that E
[
uL
i

]
≈ E

[
u0
i

]
. Recall that uL

i is the Lth layer of ith node of the equivariant
component of the network. We take the expectation over a sampling of the inputs ui and hi, treating
each as a random variable. Note that ui and uj will have identical distributions, since each node will
be sampled in the same manner. We start our proof by taking the expected value of the output:

E
[
ul+1
i

]
= E

ul
i + C

∑
j ̸=i

(
ul
i − ul

j

)
ϕx (mij)

 = E
[
ul
i

]
+ C

∑
j ̸=i

E
[(
ul
i − ul

j

)
ϕx (mij)

]

= E
[
ul
i

]
+ C

∑
j ̸=i

E
[
ul
iϕu (mij)

]
− E

[
ul
jϕu (mij)

]
≈ E

[
ul
i

]
+ C

∑
j ̸=i

E
[
u0
i

]
E [ϕu (mij)]− E

[
u0
j

]
E [ϕu (mij)]

≈ E
[
ul
i

]
+ C

∑
j ̸=i

ul
i0− ul

j0 = ul
i

E
[
ul+1
i

]
≈ E

[
ul
i

]
Thus,

E
[
uL
i

]
... ≈ E

[
u1
i

]
≈ E

[
u0
i

]
Where we used the assumption that E

[
ul
jϕu (mij)

]
≈ E

[
ul
j

]
E [ϕu (mij)]

The corollary: πi(ai|s) ∼ N(seqi , σ) is a simple result from the fact that the equivariant action for
an agent is the output of the coordinate embedding of the EGNN: uL

i . Here we assume the standard
deviation is a separately trained parameter and not a function of the EGNN. If this is the case, then
the policy mean E [π(ai|s)] = E

[
uL
i

]
≈ E

[
u0
i

]
= E [seqi ] (by definition)
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A.2 Proof E2GN2 is Unbiased

Here we show that E2GN2 leads to unbiased early exploration. We begin with the equation for the
E2GN2 layer:

ul+1
i = ul

iϕu2(mij) + C
∑
j ̸=i

(
ul
i − ul

j

)
ϕu (mij))

Next we take the expected value of the output:

E
[
ul+1
i

]
= E

[
ul+1
i ϕu2(mij)

]
+ C

∑
j ̸=i

E
[
ul
iϕu (mij)

]
− E

[
ul
jϕu (mij)

]
≈ E

[
ul+1
i

]
E [ϕu2(mij)] + C

∑
j ̸=i

E
[
ul
i

]
E [ϕu (mij)]− E

[
ul
j

]
E [ϕu (mij)]

≈ E
[
ul+1
i

]
0 + C

∑
j ̸=i

E
[
ul
i

]
0 − E

[
ul
j

]
0 = 0

Thus we see that for each layer E
[
ul+1
i

]
≈ 0 and therefore E

[
uL
i

]
≈ 0. Similar to before, we used

the assumption that Where we used the assumption that E
[
ul
jϕu (mij)

]
≈ E

[
ul
j

]
E [ϕu (mij)] and

E
[
ul
jϕu2(mij)

]
≈ E

[
ul
j

]
E [ϕu2(mij)]

Similar to the first corollary the result: πi(ai|s) ∼ N(0, σ) follows mostly from the definition and the
above proof. The corollary πi(ai|s) ∼ N(0, σ) is a simple result from the fact that the equivariant
action for an agent is the output of the coordinate embedding of the EGNN: uL

i . Here we assume the
standard deviation is a separately trained parameter and not a function of the EGNN. If this is the
case, then the policy mean E [π(ai|s)] = E

[
uL
i

]
≈ 0 (by definition)

A.3 Equivariance and Invariance of E2GN2

We follow the structure of [2] for how to show equivariance. Note that [2] showed that ϕu (mij) will
be invariant to E(n) transformations. This should still hold in our case as we make no modifications
to mij , similarly ϕu2 (mij) will be invariant to translations. To show equivariance to rotations and
reflections we show that applying a transformation T to the input, results in a tranformation to the
output. That is: f(Tul

i) = Tul
i where f(.) is the update equation of E2GN2:

Tul
iϕu2(mi) + C

∑
j ̸=i

(
Tul

i − Tul
j

)
ϕu (mij)

= Tul
iϕu2(mi) + TC

∑
j ̸=i

(
ul
i − ul

j

)
ϕu (mij)

= Tul
iϕu2(mi) + TC

∑
j ̸=i

(
ul
i − ul

j

)
ϕu (mij)

= T

ul
iϕu2(mi) + C

∑
j ̸=i

(
ul
i − ul

j

)
ϕu (mij)

 = Tul+1
i

Since there are no modifications to E2GN2 update equation for hi, then E2GN2 should retain
invariance to transformations from E(n). More precisely (using the fact that the initial mij is
invariant to translations from [2]), if we translate the input ui by b:

(ul
i + b)ϕu2(mi) + C

∑
j ̸=i

(
(ul

i + b)− (ul
j + b)

)
ϕu (mij)

= bϕu2(mi) + ul
iϕu2(mi) + C

∑
j ̸=i

(
ul
i − ul

j

)
ϕu (mij) = bϕu2(mi) + ul+1

i ̸= b+ ul+1
i

This shows that E2GN2 is not translation equivariant.
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B Additional Training Details

Hyperparameters value

train batch size 8000
mini-batch size 2000

PPO clip 0.1
learning rate 25e-5

num SGD iterations 15
gamma 0.99
lambda 0.95

Table 3: PPO Hyperparameters for SMACv2

Hyperparameters value

train batch size 2000
mini-batch size 1000

PPO clip 0.2
learning rate 30e-5

num SGD iterations 10
gamma 0.99
lambda 0.95

Table 4: hyperparameters for MPE

MLP uses two hidden layers of 64 width each for MPE and 128 for SMACv2. All MLPs in the GNNs
use 2 layers with a width of 32. For both MPE and GNN structures we use separate networks for the
policy and value functions.

Graph Structure The graph structure for MPE environments is set as a complete graph. The graph
structure for SMACv2 is complete among the agent controlled units (or all of the friendly nodes),
and each friendly node alse has an edge to each of the enemy controlled units. This was an attempt to
model what we imagine a real world scenario to look like (agents see the enemies, communicate with
allies, but do not see the enemies communication signals)

Graph Inputs For MPE environments the input invariant feature for each node h0
i is the id (pursuer,

evader, or landmark). For SMACv2, h0
i is made up of the features: health, shield unit type, and

team. For each u0
i is set as the position of node i. For MPE there is also a velocity feature, which we

incoporate following the procedure described in [2]

Graph Outputs for Value function Similar to the visual in section 4.3, the value function output
comes from the invariant component of the agent’s node of final layer of the EGNN/E2GN2. In other
words the value function is: hL

i where is L the final layer, and i is the agent in making the decision.

Graph Outputs for Policy For MPE environments the actions are forces in a particular direction,
thus the action output for agent i is uL

i where L is the final layer.

Section 4.3 discussed applying EGNN to more sophisticated action spaces. Specifically for SMACv2
the discrete action space has an equivariant component (movements) and an invariant component
(shoot). The outputs for the equivariant component of EGNN/E2GN2 are continuous values, mapping
these values to logits is not straightforward. Furthermore, they would need to be mapped onto
the same distribution of logits being represented by the shoot commands. We solve this problem
by having three distributions output by the GNN structure: the continuous/equivariant movement
gaussian distribution, the discrete/invariant distribution, and a third distribution that determines
whether we should move or shoot. After the RL sampling from each distribution is performed for
the actions, then the three components of the action can be converted to the final action for either a
mixed discrete-continuous action space or a discrete action space.
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Graph Neural Network details We used the same GNN as the EGNN paper: Specifically, we use
equations 1 and 3, but update equation 1 to be mij = ϕ(hi, hj , xi, xj). For convenience we rewrite
the GNN equations describing a single layer here:

mij = ϕe

(
hl
i,h

l
j

)
, mi =

∑
j ̸=i

mij , hl+1
i = ϕh

(
hl
i,mi

)

Recall that ϕh and ϕe are two layer MLPs. Note that the GNN only has one variable hi per node
(compared to the two variables of hi and ui of EGNN/E2GN2). The features inputs are similar to
an EGNN but with the two invariant/equivariant components concatenated together. The output for
GNN will all come from the variable h as there is no need to distinguish between equivariant and
invariant outputs (the action may be composed across several nodes, see above and figure 4).

Hardware For training hardware, we trained the graph-structured networks using various GPUs.
Many were trained on an A100, but that is certainly not necessary, they didn’t need that much space.
MLPs were trained on CPUs. We typically used 4 rollout workers across 4 CPU threads, so each
training run used 5 CPU threads.

Further Notes/details on SMACv2 SMACv2 ([14]) is a modification of the original SMAC ([29]).
Since SMAC had deterministic initialization and static scenarios it turns out policies could memorize
the solution. In each scenario, there is a pre-specified number of agents on each team (we use 5
agents for each team). In each scenario, the agents are randomly initialized in a specific formation.
For this work, we use the initial position configuration termed "surrounded" (see fig 7). Finally, it
is important to note that SMACv2 will randomly sample unit types from 3 different units (for each
scenario). We use the same policy network for each agent but have the unit type as an input in the
observation space, so each policy must learn to condition its behavior on the unit type.

C Supplementary Results

Below we include supplementary results we believe interesting to understanding further E2GN2’s
performance.

Figure 8: These results are using SMACv2 with the ’surrounded’ initialization and 5 agents. Specifically, here
we map the actions from the mixed discrete-continuous actions back to the default SMACv2 discrete action
space. This is done by simply rounding the continuous actions to the nearest axis. These results are using the
standard SMACv2 action input.
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Figure 9: These results are using SMACv2 with the ’surrounded’ initialization and 5 agents. Specifically, the
observations here are partially observable. Note that E2GN2 still performs well with partial observability.

Figure 10: These results are using SMACv2 with the ’surrounded’ initialization and 5 agents. Specifically,
the observations here are partially observable. In all other experiments we recenter the states at 0 (standard in
MARL). Here we did perform the recentering. Note how important this step is for EGNN. Without the centering
of observations the EGNN is assuming rotational equivariance around the wrong center. Interestingly, this seems
to have little impact on E2GN2’s performance.

Figure 11: These were trained on SMACv2 using the ’surrounded’ initialization with 5 agents. We were curious
how an MLP would perform using the mixed continuous/discrete action space vs all discrete. Note that our
E2GN2 is still able to outperform both.
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Figure 12: SMACv2 has various initial position configurations. Here we show the results using the ’Surrounded
and Reflect’ initial configuration.

Figure 13: SMACv2, Surrounded and Reflect, 5 agents. Here we dive deeper into the performance when trained
on individual unit types (instead of a mix of unit types). Top Row: Only Marine, stalker or Zergling units Bottom
Row: Only Marauder, Zealot or hydralisk unit
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Table 5: Generalization Win Rate: Training on 5 agents in Surrounded-Left configuration, Testing on 7 agents in
all configurations

Environment Network Training Initialization (but with 7 agents) Testing Initialization
Surrounded Left Surrounded Right Surrounded All

E2GN2 0.362 0.354 0.432
Terran GNN 0.383 0.095 0.246

E2GN2 0.431 0.418 0.424
Protoss GNN 0.415 0.206 0.083

E2GN2 0.207 0.156 0.145
Zerg GNN 0.320 0.047 0.153
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We believe that our charts and tables reflect the claims made in the abstract
and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we discuss these briefly in the conclusion and results.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

20



Justification: Yes we provide our proofs and rationale in the appendix

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We specifically used an open-source MARL library (RLlib) for our RL training.
The code for EGNN is available online. We described any modifications we made to the
environments, as well as hyperparameters and training details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Much of the necessary code is available online. Part of this work was developed
for a private company, and permission for the full code release was not given.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, we mention that we selected hyperparameters following guidelines set by
[26], and included the hyperparameters used, the unspecified ones were simply the RLlib
default parameters.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The charts all had confidence intervals (95 percent), computed using the
standard seaborn package.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We describe this in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, we believe this work adheres to the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss this in the conclusion.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We did not release data or code.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cited the code library used. RLlib uses an Apache license 2.0
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: There were no new assets introduced.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: There were no human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects in this work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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