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Abstract

Transformers provide a class of expressive architectures that are extremely effec-
tive for sequence modeling. However, the key limitation of transformers is their
quadratic memory and time complexity O(L2) with respect to the sequence length
in attention layers, which restricts application in extremely long sequences. Most
existing approaches leverage sparsity or low-rank assumptions in the attention
matrix to reduce cost, but sacrifice expressiveness. Instead, we propose Combiner,
which provides full attention capability in each attention head while maintaining
low computation and memory complexity. The key idea is to treat the self-attention
mechanism as a conditional expectation over embeddings at each location, and
approximate the conditional distribution with a structured factorization. Each loca-
tion can attend to all other locations, either via direct attention, or through indirect
attention to abstractions, which are again conditional expectations of embeddings
from corresponding local regions. We show that most sparse attention patterns
used in existing sparse transformers are able to inspire the design of such factor-
ization for full attention, resulting in the same sub-quadratic cost (O(L log(L)) or
O(L

√
L)). Combiner is a drop-in replacement for attention layers in existing trans-

formers and can be easily implemented in common frameworks. An experimental
evaluation on both autoregressive and bidirectional sequence tasks demonstrates
the effectiveness of this approach, yielding state-of-the-art results on several image
and text modeling tasks.

1 Introduction

The Transformer [1] is a powerful neural network architecture that has demonstrated state-of-the-art
performance in machine translation [2] and many other natural language processing (NLP) tasks
via pretraining, using either unidirectional language modeling [3] or bidirectional language model-
ing [4–8]. It has also achieved excellent results in other domains like image recognition [9], code
understanding [10], speech recognition [11], protein [12], music [13] and image [14] generative mod-
eling. The core component of Transformer is the attention mechanism, which computes dependencies
between all pairs of positions in a sequence. However, for a sequence of length L, the expressiveness
of pairwise attention comes at a quadratic cost O(L2) in both time and memory consumption. This
makes the vanilla Transformer [1] prohibitive for applications that involve long sequences, including
high-resolution images, protein sequences, or raw speech signals [15], where the sequence length L
is often larger than 10, 000 [14].

Recently, there have been several attempts to scale up attention to long sequences. A popular
class of methods sparsifies the attention matrix with different sparsity patterns, including local
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window [16, 17], local+stride [14], log-sparse [18], axial [19, 20], or learnable patterns through
hashing [21] or clustering [22]. Sparse attention enjoys sub-quadratic cost, but is lossy in capturing
all-pair relationships. Generally, sparse attention requires more layers [14, 20, 23] to achieve full
autoregressive or bidirectional dependencies (or receptive fields [20]) for each location in a long
sequence.

Alternatively, another line of research has tried to achieve scalability with an explicit low-rank
assumption [24, 25] on the attention matrix or by using explicit feature maps of some kernels [26].
However these explicit low dimensional approximations might be too restricted for the potentially full
rank attention matrix, which uses exponential kernels that are effectively infinite dimensional [27].
The Performer [28] is among the first works that attempts to approximate regular full-rank attention
with the random feature trick [29]. However such random-feature based approaches [30] require
many more bases to better approximate the exponential kernel [27], and empirically we found it
produces inferior results in some sequence modeling tasks, such as density estimation.

In this paper we propose Combiner, a drop-in replacement for the vanilla quadratic attention mech-
anism with sub-quadratic computation and memory cost. Combiner still achieves full attention
capability within each head of Multi-Head Attention, unlike approaches that adopt sparse or low-rank
approximations. As we will discuss, the standard attention computed at each location can be seen as
the conditional expectation of the value embeddings at all feasible locations given the current location.
Based on such an understanding, Combiner explicitly approximates the conditional distribution
in through a structured factorization of the probability space. Specifically, given a location x, the
probability of attending to location y can be either directly calculated via the query vector of x and
key vector of y, or indirectly through a local abstraction where x first attends to the key vector that
represents a group of locations containing y, and multiplying the probability of choosing y within that
group. We refer to this model as Combiner since the conditional distributions in attention become a
combination between several local attentions and direct attentions. This structured decomposition
enables Combiner to take existing sparse attention patterns and convert them into corresponding
design choices for probability factorizations that achieve full attention. As shown in Figure 1, Com-
biner achieves full attention with the same asymptotic complexity as sparse variants. Combiner can
be easily implemented in most existing deep learning frameworks without the need for specialized
hardware implementation, and is GPU/TPU friendly. In fact, both the fixed and learnable sparse
attention patterns from many existing Transformer variants [14, 18, 20, 22] can be enhanced with
such structured factorizations, with the same order of time or memory cost.

We validate Combiner on both autoregressive and bidirectional sequence modeling tasks over a
variety of domains including text and images. We show that Combiner can achieve better perplexity
and accuracy when using the same transformer architectures while being much faster in terms
of runtime, and achieves state of the art performance on density estimation on standard datasets
CIFAR-10 (2.77 bits/dim) and ImageNet-64 (3.42 bits/dim), as well as the Long-Range Arena [31].
The implementation of Combiner can be found at https://github.com/google-research/google-
research/tree/master/combiner.

2 Attention as Conditional Expectation

In this section, we revisit the formulation of the standard Transformer [1] from the perspective of
conditional expectation, which inspires the derivation of Combiner.

Without loss of generality, we use a single sequence in the self-attention scenario. Given a sequence
of L embeddings X = [x1, x2, . . . , xL], where X ∈ RL×d and each embedding xi ∈ Rd is a
d-dimensional vector, the core component of Transformer is the multi-head attention, where each
head h is a scaled dot-product attention:

Ah(X) = softmax
(
Qh√
d
K⊤

h

)
Vh,

{
Qh = XWQ

h ,Kh = XWK
h , Vh = XWV

h

}
∈ RL×d, (1)

and the attention vector from each head Ah(X) is concatenated and projected:
MultiHeadAttn(X) = [A1(X), A2(X), . . . , AH(X)]W o,W o ∈ RHd×d. (2)

Here H is the total number of heads per Transformer layer. In this paper, we focus on how to
approximate full attention within each head of multi-head attention. For ease of notation, we drop
the head index h whenever possible, and use lower-case letters xi, qi, ki, vi ∈ Rd to denote rows in
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(D) Combiner-Fixed

(A) Fixed (B) Logsparse

(E) Combiner-Logsparse

Direct Expectation

Local Expectation

(F) Combiner-Axial

(C) Axial

Figure 1: Attention matrices of several instantiations of Combiner in the autoregressive setting. We
transform several sparse attention patterns: Fixed (A) [14], Logsparse (B) [18] and Axial (C) [20]
to Combiner-Fixed (D), Combiner-Logsparse (E) and Combiner-Axial (F). Combiner approximates
the conditional expectation (3) with a combination of direct expectation (blue) and local expectation
(yellow). Our instantiations (D)(E)(F) achieves full attention with the same sub-quadratic complexity.

X,Q,K, V respectively, which corresponds to a location i in the original sequence of length L. We
use [n] to denote the set of positive integers {1, 2, . . . , n}.

For a position i ∈ [L], the attention formulation (1) can be viewed as conditional expectation of rows
in V . Specifically, since softmax outputs a probability distribution, we can rewrite (1) as

A(xi) = Ep(j|i) [vj ] , p(j|i) = 1

Z (xi)
exp

(
qi√
d
k⊤j

)
, (3)

where p(j|i) denotes the conditional probability at position j given the token at position i and
the partition function Z (xi) =

∑
j∈Ωi

exp
(

qi√
d
k⊤j

)
over support Ωi. The support Ωi of p (j|i)

defines the set of valid locations that the i-th token can attend to. For instance, the support set in
autoregressive language modeling (LM) consists of all previous tokens, i.e., ΩLM

i = [i]2; in masked
language modeling (MLM) the support consists of all tokens in the sequence, i.e., ΩMLM

i = [L]. That
is, ΩLM

i and ΩMLM
i represent the full attention capability respectively in the LM and MLM setting.

3 Combiner: Full Attention via Structured Conditional Expectation

The complexity of p (j|i) is the bottleneck of the computation for A (xi). Generally, in existing
sparse transformers, the support of p (j|i) is sparsified to reduce the computation and memory
complexity, e.g., ΩSparse

i ⊊ ΩLM
i for LM and ΩSparse

i ⊊ ΩMLM
i for MLM, but this can lead to either

reduced capacity or limited applicability. We defer detailed discussion of the full capacity of the
model to Appendix A. In this section we introduce the Combiner, which achieves ΩCombiner

i = ΩLM
i

for LM and ΩCombiner
i = ΩMLM

i for MLM, while still maintaining sub-quadratic computation and
memory cost. Below we denote Ωi as the support for full attention if there is no ambiguity or need
to distinguish between LM or MLM. We introduce the main design framework in Section 3.1 and
possible parameterizations in Section 3.2. Then in Section 3.3 we analyze the trade-off of Combiner.

3.1 Local Factorization for Conditional Expectation

The main idea of Combiner is to exploit a hierarchical structure for conditional probability modeling
in (3), which provides the opportunity for reducing computation complexity while maintaining the

2Following the conventional implementation, the input sequence will be “right-shifted” so that the
position i can attent to itself in LM setting.
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same support. Specifically, we introduce support variables Ωr
i , for r = 0, . . . , ni and i ∈ [L]. The

support variables are disjoint, i.e., Ωr
i ∩ Ωs

i = ∅,∀r ̸= s, and ∪ni
r=0Ω

r
i = Ωi. Then we can factorize

p(j|i) as

p(j|i) =
ni∑
r=0

p(j,Ωr
i |i) =

ni∑
r=0

p(j|Ωr
i , i)p(Ω

r
i |i) = p(j|Ωrj

i , i)p(Ω
rj
i |i), (4)

where rj denotes the index of the support to which j belongs. The last equation arises from the fact
that the Ωr

i are disjoint from each other (Ωr
i ∩ Ωs

i = ∅,∀r ̸= s). Therefore, there is only one support,
Ω

rj
i , containing j. The remaining terms, where j ̸∈ Ωr

i for r ̸= rj , are all zero since p (j|Ωr
i , i) = 0.

Furthermore, assume Ω
rj
i is a sufficient statistic, i.e., j and i are independent given Ω

rj
i , we obtain

p(j|i) = p(j|Ωrj
i )p(Ω

rj
i |i). (5)

Given the partition {Ωr
i }

ni

r=0, the attention form in (3) can be rewritten as

A (xi) = Ep(j|i) [vj ] =

ni∑
r=0

∑
j∈Ωr

i

p (j,Ωr
i |i) vj (6)

=
∑
j∈Ω0

i

p̃(j|i)vj

︸ ︷︷ ︸
direct expectation

+
∑ni

r=1 p(Ω
r
i |i)

( ∑
j∈Ωr

i

p(j|Ωr
i )vj

)
︸ ︷︷ ︸

local expectation

, (7)

where we consider direct attention in partition Ω0
i and apply the local factorization (5) to the partition

r = 1, . . . , ni. Here p̃(j|i) ∝ p(j|i) but with different normalization constants, which will be
explained below. We refer to this model as Combiner since the structured attention (7) combines the
direct expectation of Ω0

i and multiple local expectations via p(j|Ωr
i ) and p(Ωr

i |i) to form the final
conditional expectation.

Equivalently, we can also rewrite the structured attention (7) as

A(xi) =
∑

j∈Ωi

[
I(j ∈ Ω0

i )p̃(j|i) +
ni∑
r=1

I(j ∈ Ωr
i )p(j|Ωr

i )p(Ω
r
i |i)

]
︸ ︷︷ ︸

the new effective conditional probability q(j|i)

vj , (8)

where I(·) is a binary indicator function. After reordering, one can see from (8) that we obtain the
effective conditional probability q(j|i) that tries to approximate the original p(j|i). Each probability
term depends on both current location i and other location j, and the expectation is still obtained with
respect to a valid conditional probability (non-negative and sums up to 1 over Ωi).

Requirement for Sub-quadratic Cost. We can immediately see the benefit of this formulation from
the fact that the local expectation in (7) is independent of the position i. The full dependence is
achieved via the multiplier p(Ωr

i |i) where j ∈ Ωr
i . If we can design the local factorization such that:

1. the order of number of terms in (7) for p(·|i), ∀i ∈ [L]:
∑L

i=1(ni + |Ω0
i |) is sub-quadratic; and

2. let U = {Ωr
i }i∈[L],r∈[1,ni] be the unique set of partitions used for local expectation calculation,

then the order of |U| (i.e., the number of unique partitions in U) is sub-quadratic;
3. the order of total number of unique calculations of local expectation across all locations in (7),∑

Ω∈U |Ω| is sub-quadratic;

then one can see that the overall computation and memory cost will be sub-quadratic with full
attention support ΩCombiner

i = Ωi, ∀i ∈ [L]. We will discuss in detail in Section 4 how to instantiate
such a principle by drawing inspiration from existing sparse transformers, and how to convert them
into a full attention model almost for free with identical asymptotic complexity.

Remark (Further Hierarchical Decomposition): We introduce the local decomposition with a one
layer partition of support of p(·|i) for simplicity. In fact, such local decompositions can be stacked
further, which introduces a partition tree. Specifically, we can further partition Ωr

i with disjoint
subsets

{
Ωrk

i

}nr

k=1
, and consider local decomposition p(j,Ωr

i |i) = p(j|Ωrkj

i , i)p(Ω
rkj

i |Ωr
i , i)p(Ω

r
i |i),

where kj is the index of sub-region which j belongs to. Thus, we obtain a hierarchical decomposition
of p(j|i), which can also be plugged to (6) and yield a new full attention formulation.
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3.2 Parameterizing Conditional Probabilities

While we obtained a possible way to speed up the standard Transformer via a combination of direct
expectation and local expectations, it is also important to have an efficient design choice for the
probability terms in (7), namely p̃(j|i) from direct expectation, p(j|Ωr

i ) from local expectation and
p(Ωr

i |i) for r ∈ [1, ni]. For simplicity we use the scaled dot-product, which means that we will
associate positions i, j and variable sets Ωr

i with the corresponding embedding representation, and
thus the probability is proportional to the exponential of the embedding inner products. Specifically:

• p̃(j|i): As this term is for the direct expectation, we can let p̃(j|i) ∝ exp( qi√
d
k⊤j ), which is the same

as vanilla attention (3) but with different normalizations, which will be explained in Equation 9.
• p(Ωr

i |i): This term aims to capture the joint event probability, i.e., p(Ωr
i |i) ∝ exp

(
qi√
d
k⊤Ωr

i

)
. Thus

the design choice of kΩr
i

should make an abstraction of the corresponding support Ωr
i . We find

kΩr
i
= max poolingj∈Ωr

i
kj already provides good empirical results without introducing additional

parameters; we can also use DeepSets [32] to obtain such abstraction.
• p(j|Ωr

i ): This term is the probability of getting j within this local span Ωr
i . We make p(j|Ωr

i ) ∝
exp

(
qΩr

i√
d
k⊤j

)
, where we use max pooling or DeepSets over {qj}j∈Ωr

i
to obtain qΩr

i
similarly.

Normalizing Probability Terms. The terms in each local expectation p(j|Ωr
i ), ∀j ∈ Ωr

i can be
normalized within the local span; the direct expectation p̃(j|i) and the terms in p(Ωr

i |i) should be
normalized together,

Z(xi) =
∑

j∈Ω
(0)
i

exp

(
qi√
d
k⊤j

)
+

ni∑
r=1

exp

(
qi√
d
k⊤Ωr

i

)
, (9)

and Z(xi) is the normalizing constant when calculating p̃(j|i) and p(Ωr
i |i).

3.3 Trade-offs in Combiner

Combiner achieves full attention with reduced cost without making explicit sparsity or low-rank
assumptions over the attention matrix. However this efficiency gain is not free. In this section we
discuss the limitations of the simplification made by Combiner, and provide a simple workaround.

Structured Attention Approximation. We obtain the local decomposition (5) under the conditional
independence assumption. Therefore, the local expectation in (7) is independent of the position i,
this suggests that any two locations i1 and i2 with Ωr

i1
= Ωr

i2
= Ω would have linearly dependent

attention scores over the region Ω. Formally, the probabilities formed by the effective conditional
distribution a⃗(Ω)i1 =

[
q(j1|i1), q(j2|i1), . . . , q(j|Ωr

i1
||i1)

]
=

p(Ωr
i1

|i1)
p(Ωr

i2
|i2) a⃗(Ω)i2 . In other words, the

rank of the sub-matrix over the same partition in the resulting attention matrix is 1, therefore, the
attention matrix is locally low-rank based on the partition. On the other hand, the direct expectation
fully attends to each position in sub-support Ω0, which ensures the full-rank block. These two
attention schemes make the attention matrix of Combiner structured. Compared with the low-rank
approximation for attention [26, 28, 30], which is inspired from random features [29] in the kernel
community, a structured approximation that exploits both the locally low-rank and full-rank blocks
has been proved more powerful theoretically and empirically in large-scale kernel machines [27].

Improving Expressiveness Using a Mixture Model. One way to further improve the expressive-
ness of the local factorization is to use a mixture model. This idea is adapted from the mixture of
softmaxs [33] to obtain high-rank softmax layer in language modeling. Let ω be a certain partition
of the support (i.e., collection of Ωr

i ) of Ωi, then one can easily use A(xi) =
1
M

∑M
m=1 A(xi;ωm)

to compute the attention, where each component of the mixture A(xi;ωm) is the term (7) using a
specific factorization plan ωm. Empirically we find two components are already sufficient to improve
performance.

4 Combiner Instantiations

In this section we show several local factorization schemes satisfying the requirements in Section 3.1.
As we will see, Combiner is able to convert several sparse transformers [14, 18, 20–22] into full
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attention, with the same order of computation and memory consumption. One can also design other
factorization patterns, which can be easily instantiated in Combiner.

4.1 Combiner-Fixed

The Sparse Transformer [14] is one of the most representative variants that can achieve O(L
√
L)

computation and memory cost with sparse attention. Here we show how to convert this fixed pattern
proposed in [14] (Figure 1(A)) into a factorization plan, and instantiate a full attention variant named
the Combiner-Fixed (Figure 1(D)).

In the fixed-sparse attention, the support is Ωsparse MLM
i = {j : j mod s = 0} ∪ {j : j ≡ i (div s)}

where s is a hyper-parameter, div is integer division, and j ≡ i (div s) denotes that the quotients of
i and j w.r.t. s are the same. In the autoregressive case, Ωsparse LM

i = Ωsparse MLM
i ∩ [i]. Please refer

to Figure 1(A) for an illustration of the LM version.

Our design of ωMLM
fixed has the following form:

Ω0
i = {j : j ≡ i (div s)} ,Ωr

i =
{
j : j div s = r, j /∈ Ω0

i

}
,∀r ∈ [L div s], ∀i ∈ [L] (10)

where each local expectation is performed in each span of size s, and there are totally L div s spans
across all locations. For each position i ∈ [L], there are (s + (L div s)) terms in (7) ; the local
expectation has (L div s) terms . The overall complexity is O(L · (s+ 2(L div s))). The optimal s
is O(

√
L), and we can achieve O(L

√
L) computation and memory complexity, which is the same

as [14] but here we gain full attention capability in each attention head. For the LM case, we can
simply have ωLM

fixed : {Ωr
i ∩ [i] | Ωr

i ∈ ωMLM
fixed }, which has the same O(L

√
L) optimal complexity.

4.2 Combiner-Logsparse

The Logsparse Transformer is proposed in [18] and can theoretically achieve O(L logL) cost. The
general idea is to make the size of support Ωsparse

i no larger than ⌈log2 i⌉. For the ease of notation,
we first define bits(n) = [b1, b2, . . . , b⌈log2 n⌉] to be the binary representation of integer n, with
bt ∈ {0, 1} the coefficient of basis 2t. Thus we have n =

∑⌈log2 n⌉
t=1 bt ∗2t. One of the possible design

choices to make Logsparse in the LM case is Ωsparse LM
i =

{
sufft :=

∑⌈log2 i−1⌉
τ=t bτ ∗ 2τ

}⌈log2 i−1⌉

t=1
∪

{i}, i.e., attend to the location indices that equal to the suffix sum of the weighted bits(i− 1), as well
as location i itself. This serves as our base sparse version as shown in Figure 1(B).

To exploit this scheme in the Combiner framework, we can define ⌈log2 n⌉ non-overlapping supports,
where Ωr

i = [suffr] \ [suffr+1] with the boundary case [suff⌈log2 i−1⌉+1] = ∅. Note that for the
ease of notation, some of the Ωr

i are empty which will be ignored. In this case, the direct attention
set Ω0

i includes {i}, as well as {i− 1} when i is an even number. Such a factorization leads to
Combiner-Logsparse, as shown in Figure 1(E). From the Figure, we observe that in total we will
have span summaries for every 2, 4, 8, . . . , 2⌊log2 L⌋ locations, resulting in total

∑⌊log2 L⌋
t=1 ⌊ L

2t ⌋ or
O(L) summaries. Each location i will select at most O(log(i)) non-overlapping spans to cover the
full support Ωi, and thus, the total cost will be O (L logL). We leave the design of MLM case to
Appendix B.

4.3 Combiner-Axial

The Axial Transformer [20] builds the attention along each axis of the input data. Without loss
of generality, we focus on 2D case where the input sequence is reshaped into a matrix of size
n×m = L. Specifically, the location i in original sequence will be in rowi = (i− 1) div m+ 1 and
coli = (i− 1) mod m+ 1. We show how to simply enable full attention with factorization on 2D
matrix, hence Combiner-Axial.

The sparse axial has Ωsparse MLM
i = {j : j − 1 ≡ i− 1(mod m)} ∪ {j : j − 1 ≡ i− 1(div m)}, and

Ωsparse LM
i = Ωsparse MLM

i ∩ [i], which all have at most O(m + n) entries for each i, as illustrated
in Figure 1(C). We propose several factorization schemes to make it an attention with full support.

• ωLM
axial-vertical: Ω

0
i = Ωsparse LM

i , and Ωr
i = {j : j ≡ r(mod m)} ∩ [i− coli], for r ∈ [m] \ {coli}. As

depicted in Figure 2(A), Ωr
i corresponds to the column r above rowi, where we use max pooling to
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(A) Combiner-Axial-Vertical (B) Combiner-Axial-Horizontal

Attention matrix Attention matrixReshaped sequence

Figure 2: Attention matrices and sequence being attended (e.g., a 3x4 image) of vertical and horizontal
variants of Combiner-Axial. Blue and yellow correspond to direct and local attention respectively for
location i (purple). Locations connected by arrows correspond to the same support Ωr.

obtain the abstraction. To obtain such abstraction for all the locations, we can leverage the cummax
operator for each column to efficiently obtain the prefix-max.

• ωLM
axial-horizontal: similar as ωaxial-vertical except that each Ωr

i summarizes the row r before rowi and
excludes coli (Figure 2(B)).

• ωLM
axial-rowmajor: Ω

0
i = {j : j − 1 ≡ i− 1(div m)} ∩ [i], i.e., elements in the same row are directly

attended, while Ωr
i = {j : j ≡ r(div m)} ∩ [i− coli] captures the rows before rowi. This structure

is similar to Combiner-Fixed, except for the way that the abstraction (and thus the local expectation)
is computed. Combiner-Fixed computes the abstraction only based on r of partition Ωr

i , where
ωaxial-rowmajor depends on both r and the column coli (Figure 1(F)).

In all cases above, the cost is similar to the Axial Transformer [20], which is O(L
√
L) if we reshape

the sequence to a 2D matrix with n,m = O(
√
L). We defer the MLM case to Appendix C.

4.4 Combiner-Learnable

Inspired by the Reformer [21] and Routing Transformer [22], we can also learn the factorization
plan ω from the data. We illustrate this with Routing Transformer and provide a way to enable full
attention in Routing Transformer following the Combiner principle.

For a specific layer, suppose we have a learned disjoint region (or cluster in Routing Transformer)
{Ωr}nr=1 where ∪rΩ

r = [L]. In Routing Transformer, we simply have Ωsparse MLM
i = Ωri where Ωri

denotes the region where position i belongs to. To define the Combiner factorization, we let
ωrouting MLM : Ω0

i = Ωri , Ωr
i = Ωr \ Ω0

i , ∀r ∈ [ni]. (11)
Note that ni = n (i.e., number of learned clusters) for all locations. The above factorization can only
work for MLM. LM requires the following definition:

ωrouting LM : Ω0
i = Ωri ∩ [i], Ωr

i =
(
Ωr \ Ω0

i

)
∩ [i], ∀r ∈ [ni]. (12)

In general, both LM and MLM can have sub-quadratic cost when n = O(
√
L). However, routing

variants (including the Routing Transformer) require a gather operation, which can be slow on
TPUs (see illustration in Appendix D).

5 Experimental Evaluation

We evaluate Combiner with different full attention patterns on both autoregressive and bidirectional
sequence modeling tasks, covering a wide range of input data from images to texts. All tasks
considered involve long sequences for up to 12,000 in length, some of which prevent the applicability
of the vanilla transformer. We compare Combiner with state-of-the-art Transformers. We also perform
a series of ablation studies where all of the models being compared use the exact same architecture
that only differ in the attention module, avoiding individual tricks employed in the original works
(e.g., using both learnable and fixed patterns in Routing Transformer [22]). Details to reproducing all
experimental results can be found in Appendix E.
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Table 1: Ablation results in Bits per Dimension (Bits/Dim) on CIFAR-10 and ImageNet-64.

Model Layers CIFAR-10 ImageNet-64

Reformer [21] 6 - 3.740
Performer [28] 6 3.335 3.719

Logsparse [18] 6 4.253 4.351
Combiner-Logsparse (Ours) 6 3.366 3.795

Fixed [14] 6 3.408 3.696
Combiner-Fixed (Ours) 6 3.321 3.654

Axial [20] 6 3.666 4.032
Combiner-Axial (Ours) 6 3.050 3.585
Combiner-Mixture (Ours) 6 3.040 3.585

Reformer [21] 12 - 3.710
Performer [28] 12 3.310 3.636
Routing Transformer [22] 12 2.950 -
Combiner-Mixture (Ours) 12 2.885 3.504

5.1 Autoregressive Sequence Modeling

In this subsection, we first perform density estimation on text and image using Combiner.

5.1.1 Language Modeling Table 2: LM Perplexity on Wiki-40B (Main).

Model Perplexity
Transformer-2k [1] 17.26
Performer-2k [28] 19.66
Routing-2k [22] 20.85

Fixed-2k [14] 18.04
Combiner-Fixed-2k (Ours) 17.70

Axial-2k [20] 20.82
Combiner-Axial-2k (Ours) 17.56

Combiner-Fixed-8k (Ours) 16.60
Combiner-Axial-8k (Ours) 16.49

Table 3: LM Perplexity on Wiki-40B (Ablation).

Model Perplexity
Transformer-2k [1] 17.26

Combiner-DeepSets-Max-8k (Ours) 16.29
Combiner-DeepSets-Mean-8k (Ours) 16.48

Combiner-Max-8k (Ours) 16.60
Combiner-Mean-8k (Ours) 16.54

For language modeling, we focus on the Wiki-40B-
En dataset [34], which consists of clean Wikipedia
pages in English. We use a sentence piece model
with vocabulary size 32K to tokenize the text and
measure the perplexity at the sentence piece level.
To ensure fair comparison, all models being com-
pared again have the same number of layers and
hidden sizes, are are implemented under the same
code base.

Table 2 shows the results of the comparison. As we
can see, under 2k sequence length, Combiner vari-
ants are consistently better than their correspond-
ing baselines, and are very close to the standard
Transformer. When sequence length goes to 8k, the
standard Transformer runs out of memory, whereas
Combiner continues to achieve improved perplex-
ity, surpassing the result of Transformer-2k. If we
further use DeepSets to calculate the summariza-
tion terms qΩr

i
and kΩr

i
, we may further achieve

lower perplexity as shown in Table 3.

5.1.2 Image Generative Models

CIFAR-10. We first perform a sanity check where we compare sparse attention baselines against
Combiner with full attention under the same architecture on the CIFAR-10 dataset. The sequence
length is 3072. For all the methods, we use a same 6-layer transformer with 8 attention heads and
512 embedding dimensions. We train all models for 500k iterations using batch size 32 on TPU v2.
As shown in Table 1, given the same model architecture, Combiner-X performs significantly better
than the base model X under the bits per dimension (BPD) metric on the 10,000 test images. In
particular, Combiner significantly decreases BPD by 0.887, 0.087, and 0.626 compared to the base
models Logsparse, Fixed and Axial, respectively. Note that all of the Combiner variants achieve
better performance than the best of the base models. This demonstrates the advantage of Combiner
over the baselines given the same 6-layer architecture. We observe a similar trend under a 12-layer
architecture.
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Table 4: Bits per Dimension (Bits/Dim) on CIFAR-10 and ImageNet-64.

CIFAR-10 Bits/Dim

PixelCNN [15] 3.03
PixelCNN++ [36] 2.92
Image Transformer [16] 2.90
PixelSNAIL [37] 2.85
Sparse Transformer [14] 2.80
Combiner-Axial (ours) 2.77

ImageNet 64x64 Bits/Dim

PixelCNN [15] 3.57
Parallel Multiscale [38] 3.70
Glow [39] 3.81
SPN [40] 3.52
Sparse Transformer [14] 3.44
Axial Transformer [20] 3.44
Routing Transformer [22] 3.43
Combiner-Axial (ours) 3.42

Following the 128-layer architecture in Child et al. [14], we apply Combiner-Axial and achieve
state-of-the-art performance, 2.77 BPD on CIFAR-10, as listed in Table 4. We run all of the models
in Table 4 without data augmentation [35].

ImageNet-64. We also evaluate performance under the autoregressive setting on ImageNet-64,
where sequence length is 12,288. We first perform the same analysis as CIFAR-10 and compare
Combiner-X with the baselines using the same model architecture. As shown in Table 1, Combiner
consistently outperforms the baselines with the same attention pattern. We further apply Combiner-
Axial to a 30-layer Transformer, which achieves state-of-the-art performance on density estimation
on ImageNet-64, demonstrating the effectiveness of full attention achieved by Combiner.

5.2 Bidirectional Sequence Modeling

Besides autoregressive tasks, we also evaluate Combiner on a set of standard bidirectional tasks to
show the general applicability of the method.

5.2.1 Long-Range Arena

Long-Range Arena (LRA) is a unified benchmark [31] for probing the capability of efficient trans-
formers on handling long sequences. We evaluate our models on five tasks from LRA: ListOps, Text
Classification, Retrieval, Image Classification and Pathfinder. All of the tasks are sequence-level
multi-class classification. Please refer to the original LRA paper for more details.

Table 5: Experimental results on Long-Range Arena benchmark.
Model ListOps Text Retrieval Image Pathfinder Avg
Chance 10.00 50.00 50.00 10.00 50.00 34.00

Transformer 36.38 64.27 57.46 42.44 88.81 57.87

Local Attention 15.95 52.98 53.39 41.46 84.64 49.68
Sparse TRans. 35.78 63.58 59.59 44.24 83.90 57.42
Longformer 36.03 62.85 56.89 42.22 86.68 56.93
Linformer 35.49 53.94 52.27 38.56 86.17 53.28
Reformer 36.30 56.10 53.40 38.07 79.18 52.61

Sinkhorn Trans. 34.20 61.20 53.83 41.23 73.36 52.76
Synthesizer 36.50 61.68 54.67 41.61 81.61 55.21

BigBird 37.08 64.02 59.29 40.83 86.75 57.59
Linear Trans. 17.15 65.90 53.09 42.34 88.13 53.32

Performer 36.00 65.40 53.82 42.77 88.76 57.35

Combiner-Fixed 36.65 64.99 59.81 41.67 88.59 58.34
Combiner-Axial 36.15 64.36 56.10 41.33 88.43 57.27

As shown in Table 5, Combiner is able to match the performance of vanilla Transformer and achieves
even better performance in some tasks. Following the protocol of LRA, all methods use the same
architecture and hyperparameters for a controllable comparison. We use the numbers from Tay et al.
[31] for all tasks except for Pathfinder. Since we were unable to reproduce the original Pathfinder
results using the default setup in LRA Github repository, we rerun all the baselines using Pathfinder-
inter configuration to conduct fair comparison. However, as the benchmark is still of small-scale and
the LRA official website discourages hyperparameter tuning, Table 5 should be treated as results for
the test bench of expressiveness compared to vanilla Transformer.
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Table 6: MLM perplexity on C4 dataset.

Model Perplexity
Transformer-2k [1] 4.552

BigBird-2k [41] 4.696
Performer-2k [28] 10.940

Fixed-2k [14] 5.279
Combiner-Fixed-2k (Ours) 5.170

Axial-2k [20] 5.370
Combiner-Axial-2k (Ours) 4.809

Routing-2k [22] 6.703
Combiner-Routing-2k (Ours) 6.539

BigBird-8k [41] 4.542
Combiner-Axial-8k (Ours) 4.190
Combiner-Fixed-8k (Ours) 4.139
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Figure 3: We measure the inference runtime and memory usage
for eight models. Overall Combiner has similar speed with
Performer and its sparse counterpart but Vanilla Transformer
quickly goes OOM when sequence length grows.

5.2.2 Masked Language Modeling

As the core element of BERT langauge pretraining [5], masked language modeling (MLM) refers to
the task of reconstructing tokens that are randomly masked out in the input sequence. As with the
LM task, we use perplexity as the main metric, which correlates relatively well with down-stream
task performance. Specifically, we use the large scale C4 dataset [8] for training and evaluation,
and consider different sequence lengths. Following the original BERT setup, we mask out 15% of
the tokens in each input sequence. The comparison is summarized in Table 6. Similar to the LM
result, different Combiner variants consistently outperform their corresponding baselines under 2k
sequence length. However, apart from the standard Transformer, Combiner-2k also falls behind
BigBird-2k. We conjecture that this is related to the special design in BigBird such as all tokens can
always attend to the <cls> token directly, which is only applicable in non-causal problems. That
said, when we further increase sequence length to 8k, the standard Transformer runs into OOM issue,
whereas Combiner not only outperforms BigBird but also substantially surpasses Transformer-2k.
This suggests that Combiner can truly benefit from scaling learning to longer sequence lengths.

5.3 Runtime and Memory Usage of Combiner

Here we evaluate the inference runtime and memory usage of five baselines – Transformer, Performer,
BigBird, Sparse-Fixed and Sparse-Axial, as well as three variants of Combiner– Combiner-Fixed,
Combiner-Axial and Combiner-Mixture. We run inference of all the models on a TPU v3-16 (16
cores x 16GB) with batch size 16, and we test sequences of length from 210 to 214. As shown
in Figure 3, Combiner instantiations achieve comparable runtime and memory usage with their
sparse counterpart and Performer. Note Combiner achieves much better empirical performance
than the sparse models and Performer. Combiner-Mixture has the same asymptotic complexity with
Combiner-Fixed and Combiner-Axial, however, since it requires running two partition plans, it is
slower than Combiner-Fixed and Combiner-Axial. Due to the gather operation required by the
random attention which is not very TPU/GPU friendly, BigBird is very computationally expensive.
And the Transformer model quickly runs out of memory when sequence length increases.

6 Conclusion

Inspired by the conditional expectation view of attention mechanism, we propose Combiner, a
drop-in replacement of the attention module. By introducing structured decomposition to the
conditional probability, Combiner achieves full attention capability while maintaining sub-quadratic
computational and memory cost. We instantiate several Combiner variants converting existing sparse
transformers to full attention. Combiner achieves state-of-the-art performance on both autoregressive
and bidirectional tasks for image and text modeling, showing benefits in both modeling effectiveness
and runtime efficiency. Future work includes additional factorization pattern designs, as well as
applications of Combiner in domains like bioinformatics and speech.
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