
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TELLMATE: TRUSTED EXECUTION FOR LARGE LAN-
GUAGE MODELS AT THE EDGE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) are being increasingly deployed on edge devices
to support real-time inference, preserve user privacy, and enhance energy efficiency.
However, on-device deployment creates a lucrative attack surface for adversaries
to steal the model. Trusted Execution Environments (TEEs) provide hardware-
isolated enclaves to safeguard model parameters. However, existing approaches
either demand costly retraining from substantial architectural modifications or
incur significant communication overhead by protecting parameters across all
layers within the TEE. To address these limitations, we propose TeLLMate, which
helps identify the critical layers of LLMs for TEE protection. TeLLMate delivers
two key capabilities: (1) a methodology for identifying layers critical to model
performance using mathematical analysis. (2) a selective protection algorithm that
minimizes the secure memory footprint while defending against retraining attacks.
Our experimental results demonstrate that TeLLMate offers strong protection
guarantees, resulting in at least a 15× increase in perplexity and close to random-
guess accuracy in zero-shot downstream tasks for the attacker’s replicated model
by including at most 10% of the LLM’s parameters.

1 INTRODUCTION

Large Language Models (LLMs) (Touvron et al., 2023a; Workshop et al., 2023) have demonstrated
exceptional performance in a wide range of applications (Noy & Zhang, 2023; Brown et al., 2020).
To protect user privacy and eliminate network-transfer latency (e.g., delays from weak or variable
mobile signals), LLMs are increasingly run directly on edge devices (Qu et al., 2025). This trend
is particularly prominent in privacy-sensitive applications, such as healthcare, finance, wearables,
smart home assistants, and automotive systems, where on-device deployment of the LLM model
eliminates the need to transmit sensitive user data to the cloud. Despite these benefits, LLM inference
on-device also introduces new security vulnerabilities. Unlike centralized cloud servers, edge devices
are often physically accessible to users. This makes it possible for adversaries to directly extract
model parameters through techniques such as side channel leakage (Batina et al., 2019), illegal
memory accesses (Sun et al., 2021), or query-based model extraction (Jagielski et al., 2020) to carry
out a model-stealing attack. Once extracted, the stolen model can be redistributed, deployed on
unauthorized devices, or exploited for financial gain. Considering the substantial resources and
engineering efforts involved in training LLMs (Cottier et al., 2024), the Intellectual Property (IP) of
the models represents a valuable asset and must be protected.

One promising approach is to put the model in the Trusted Execution Environment (TEE). TEE
is an isolated, secure enclave that protects the data and code inside with respect to confidentiality
and integrity (Lee et al., 2020). However, deploying the entire model inside a TEE for protection is
impractical due to its limited computing and memory resources. For example, even a small DNN
model suffers a roughly 50× increase in latency due to the limited computational capabilities of
TEEs (Tramer & Boneh, 2018). To leverage TEEs for model protection, a common strategy is to
partition the model. However, existing partitioning methods are ill-suited for LLMs. Techniques
developed for smaller DNNs, such as Mirrornet (Liu et al., 2023) and TBNet (Liu et al., 2024),
require specialized architectural modifications and costly retraining, making them impractical for
large-scale LLMs. More recently, TEESlice demonstrates the potential of utilizing TEEs to protect
LLMs by training lightweight, layer-wise modules (i.e., slices) with private data to be placed within
the TEE, while retaining the pre-trained backbone LLMs in the REE. However, TEESlice allocates
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protected slices uniformly across all layers, resulting in substantial communication overhead between
the TEE and REE. As a result, additional weight obfuscation techniques are employed to enhance
security by applying reversible transformations to weight matrices before they are stored or executed
in untrusted environments. However, transformations increase computational and memory overhead,
and attackers may still be able to infer the original weights by analyzing patterns. These challenges
raise a fundamental question: how can we minimize the number of layers placed within the TEE while
still ensuring strong resistance against retraining attacks?

In this work, we propose TeLLMate, a novel algorithmic approach that identifies the most critical
layers of an LLM and strategically places them within the TEE, while executing the remaining layers
outside the enclave for efficiency. TeLLMate makes the following key contributions:

• Critical Layer Identification: Inspired by the well-known phenomenon of outlier activa-
tions in LLMs (Dettmers et al., 2022; Sun et al., 2024), we identify critical outliers in a
few specific layers across various LLMs. These outlier-associated layers (i.e., critical layer)
serve as the functional core of the model, and protecting them from adversaries significantly
degrades the performance of any stolen replicate model.

• Selective Protection Algorithm: Our algorithm pinpoints the smallest set of consecutive
layers that must run inside the TEE to thwart retraining-based model stealing attacks.
By safeguarding only this subset, it slashes the secure-memory footprint and reduces the
communication cost between TEE and REE.

• TeLLMate achieves strong protection for various LLMs by protecting only an exceptionally
small subset of layers (e.g, only 2 out of 32 layers in LLaMA 2-7B). This approach results in
at least a 15× increase in perplexity and random-guess zero-shot accuracy for the attacker’s
surrogate model while including at most 10% of the LLM’s parameters.

2 BACKGROUND AND RELATED WORK

2.1 MODEL PROTECTION IN THE TRUSTED EXECUTION ENVIRONMENT (TEE)

Trusted Execution Environment (TEE) is a hardware enclave that is isolated from the operating
system. It provides hardware-enforced protection to ensure the confidentiality and integrity of user
code and data. Prominent TEE implementations include Intel SGX (Costan & Devadas, 2016), ARM
TrustZone (Alves & Felton, 2004), and RISC-V Keystone (Lee et al., 2020). In this paper, we follow
prior work and consider the TEE as a secure enclave on a potentially adversarial host device, ensuring
that the data, code, and computations within the TEE are protected. In contrast, the Rich Execution
Environment (REE) refers to the normal operating system and application space. It has full access to
system resources but lacks the security guarantees (GlobalPlatform, 2018). Existing efforts to protect
machine learning models with TEEs can be grouped into two main categories:

Partition-based methods. These approaches split the model into two parts and execute the sensitive
portion inside the TEE. DarkneTZ (Mo et al., 2020) partitions CNN models by executing the first
few sensitive layers inside the TEE while leaving the remaining layers in the REE. However, its
protection strategy is largely empirical and lacks a systematic methodology to determine how many
layers should be protected. Mirrornet (Liu et al., 2023) and TBNet (Liu et al., 2024) restructure DNNs
into dual-branch architectures, then retrain the two-branch model and deploy the lightweight branch
inside TEE for model protection. While effective for small DNNs, the high costs of architectural
modifications and retraining make these methods impractical for LLMs. More recently, TEESlice
(Li et al., 2025) shows the potential to protect LLMs on TEE. It partitions models before training by
fixing a public backbone and training only a private lightweight model (i.e., slice) whose weights
are stored in the TEE. However, slice models are across all layers of the public backbone, and they
require frequent communication between TEE and REE. Also, the vulnerability of protected slice
models to model stealing remains unknown, necessitating the use of weight obfuscation for stronger
protection. In contrast to prior works, we propose an outlier-aware layer selection method tailored for
LLMs, which places only the minimum number of critical layers into the TEE to accommodate its
limited resources while remaining strongly resistant to model stealing attacks.

Weight obfuscation methods. Another line of work obfuscates model weights so that they can be
stored outside the TEE without revealing their true values. ShadowNet (Sun et al., 2023b) obfuscates
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model weights by applying linear transformations and outsourcing the heavy computation to untrusted
accelerators, with the results later restored inside the TEE. However, such linear transformations are
vulnerable to strong attackers, who can monitor memory access patterns, correlate transformation
pairs, and ultimately recover the original weights (Li et al., 2025). CoreGuard(Li et al., 2024b)
and TransLinkGuard(Li et al., 2024a) row-permute the weight matrices of linear layers, while the
TEE applies the corresponding column permutation to the input features. Additionally, they encrypt
the input features so that only the TEE can correctly decrypt and align them, thereby preventing
the attacker from inferring the permutation order. Similarly, Game of Arrows (Wang et al., 2025)
demonstrates that existing weight obfuscation techniques (e.g., scaling, permutation) are insufficient,
as an attacker can still recover the model functionality. They propose more complex matrix–vector
transformations to strengthen the weight obfuscation. Note that in these schemes, only the activation
function is executed inside the TEE, and there are no weight parameters stored within the TEE.
These obfuscation techniques are complementary to our method and could be combined to further
strengthen security.

2.2 OUTLIER ACTIVATIONS IN LLMS

Outlier activations (Dettmers et al., 2022; Sun et al., 2024) have been widely observed in Large
Language Models (LLMs), referring to the phenomenon where an extremely small subset of activation
values (e.g., 1% of the entire activation values) exhibit magnitudes significantly larger than the average
across the same layer. These extreme values, while sparse, have a disproportionate influence on model
behavior and pose unique challenges for model compression techniques, particularly quantization
and pruning. In quantization, which aims to compress the high precision weight/activation (e.g.,
16-bit in floating point) to lower precision (e.g, 4-bit in integer), outliers increase the dynamic
range, leading to severe rounding or clipping errors that degrade model accuracy. To address this,
several outlier-aware quantization methods have been proposed. For example, SmoothQuant (Xiao
et al., 2023) rescales the activations and weights to align their magnitude, reducing the quantization
error. In the context of pruning, which aims to remove a portion of unimportant weights, outliers
complicate magnitude-based importance estimation, as naively pruning them can result in significant
performance degradation. To mitigate this, pruning methods such as Wanda (Sun et al., 2023a)
incorporate activation statistics to indicate the important weights that need to be preserved. Unlike
existing methods that utilize outlier activations to improve LLM compression through pruning or
quantization, our work is the first to leverage outlier activations to identify and protect critical layers
for secure on-device inference.

3 THREAT MODEL

We consider a threat model involving two entities: a defender and an attacker. The defender owns the
model deployed on an edge device, while the attacker aims to extract or replicate the model through
unauthorized access to the device.

Attacker’s Goal and Capability: The goal of the attacker is to steal the model, and the success
metric is to get functionally equivalent weights that could be used to be deployed on the unauthorized
device for financial use. We assume a strong adversary with full access to everything outside the
TEE, including the ability to execute inference and observe inputs and outputs at the TEE boundary.
The attacker is assumed to have full knowledge of the model architecture protected by the TEE.
Although this is not practical in real-world scenarios, it allows for rigorous security analysis. With
access to part of the dataset, attackers attempt to reconstruct the protected components of the model
through model retraining techniques, such as LLM-Streamline (Chen et al., 2024) and Knockoff Nets
(Orekondy et al., 2019).

Defender’s Goal and Capability: Following prior work (Zhang et al., 2024a) (Zhang et al., 2024b)
(Sun et al., 2023b), we assume a hardware-enforced TEE that protects confidentiality and integrity for
data inside it, even though the edge device itself is controlled by a malicious adversary. The defender’s
objective is to ensure that only authorized users, verified by the device’s TEE, can access the model.
Due to the high cost of retraining LLMs, the defender cannot modify the model architecture or retrain
it. Instead, they aim to prevent attackers from reconstructing or transplanting the model.
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Figure 1: Model partitioning strategies for LLM protection. * indicates the decoder layer after
removing outlier-associated weights.

4 TELLMATE

4.1 Critical outlier: LLM COLLAPSE BY REMOVING 0.02% WEIGHTS

Intuitively, based on the outlier activation phenomenon, the weights associated with these outliers
are particularly critical from a security perspective and thus warrant stronger protection than other
weights. A straightforward approach to protect LLMs is to place all outlier-associated weights in
Trusted Execution Environment (TEE), while assigning the remaining weights to the Rich Execution
Environment (REE) as shown in Figure 1a. However, such a design poses a high risk of information
leakage and incurs substantial communication overhead between the TEE and REE, as each layer
must be partially computed across both environments, leading to frequent intermediate activation
exchange.

To address this issue, we begin by exploring the characteristics of outlier-associated weights in a
layer-wise manner. In particular, we conduct experiments on various LLMs to examine whether
outliers in different layers contribute equally. To identify the outlier-associated weights in each layer,
we adopt Wanda (Sun et al., 2023a), an activation-aware pruning method that leverages the product
of weight magnitude and activation as an importance score to remove weights. As shown in Figure 2,
it’s particularly intriguing to observe that:

Removal of outlier-associated weights for a few specific layers induces significant performance
degradation or even model collapse, while similar removal from other layers has less effect.

We name these outliers in these specific layers with significant performance degradation as critical
outliers.
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Figure 2: We evaluate the WikiText-2 PPL on four different LLMs by removing the same amount of
the highest outliers from each layer. The parameter size of these outliers only accounts for 0.02% of
the whole model. The actually important outliers in specific layers (marked as critical layers) are
defined as critical outliers.
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Table 1: Perplexity of different attack settings on LLaMA 2-7B, with lower perplexity (i.e., PPL)
values indicating better performance.

Critical Component Surrogate Model Protected Params Ratio PPL (Wiki2) PPL (PTB)
Baseline No attack 0.00% 12.19 47.21
Critical Outliers Outliers 0.02% 12.72 48.30
Critical MLP MLP 2.09% 12.49 86.29
Critical Layer Decoder Layer 3.13% 304577.06 287170.95
Critical Layer MLP 3.13% 26.36 153.16

4.2 LLM PROTECTION BY SECURING THE CRITICAL COMPONENTS IN TEE

The defined critical outlier underscores its importance in maintaining LLM performance, making
it a prime candidate for protection. Building on this insight, we can only place the critical outliers
into the TEE while the remaining weights are executed in the REE. By doing so, it ensures that,
without access to the TEE-protected critical layer, the model’s performance degrades significantly.
Furthermore, as the TEE handles only outliers that occupy ∼ 0.02% weights of the model, the overall
computation and memory cost remains extremely low, aligning well with the limited resources of the
TEE.

The critical outlier is partitioned in the TEE, while the remaining layers are executed in the REE. By
doing so, it ensures that, without access to the TEE-protected critical layer, the model’s performance
degrades significantly. Furthermore, as the TEE handles only one layer, the overall computation and
memory cost remains low, aligning well with the limited resources of the TEE.

Layer
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Layer

Critical 
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Surrogate
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Critical 

Layer

Figure 3: Model retraining attack: The
attacker freezes layers outside the protec-
tion set and trains a surrogate layer based
on the inputs and outputs of the critical
component via an MSE loss, thereby by-
passing the protected layers.

However, as we mentioned in Section 3, since the TEE-
projected components have to communicate with the rest
of the model running in the REE, they expose a boundary
through which an attacker can observe the input and output
activations of the projected components. This exposure en-
ables a model stealing attack - retraining attack, where the
attacker exploits the observed intermediate states to recon-
struct or substitute the functionality of the TEE-projected
components by training a surrogate model.

Therefore, it is critical to evaluate the resistance of the
TEE-projected components to such retraining attacks. To
achieve that, we perform an empirical analysis to study
the resistance of the retraining attack for different types of
critical components. In particular, we conduct experiments
on the LLaMA 2-7B model by gradually increasing the
number of parameters placed in the TEE and evaluating
the attacker’s ability to recover the performance of the
model (i.e., PPL). As shown in the Table 1, we evaluate
three critical components in the TEE for retraining attacks beyond critical outliers: (1) Critical MLP,
which secures the MLP block containing the critical outlier-associated weights; (2) Critical Layer,
which extends the Critical MLP to further place the attention block in the same decoder layer. Note
that, in the standard architecture of LLMs, each decoder layer consists of an attention block followed
by an MLP block; and (3) Critical Layer + Following Layer, which secures the Critical Layer with
one consecutive decoder layer. We summarize our main findings as below:

1) Securing the critical outliers is not resistant to retraining attacks. When a retraining attack uses
the same architecture, the model with only critical outliers protected shows similar performance to
the baseline, indicating limited resistance to surrogate reconstruction.

2) More weights in TEE enhance resistance to retraining attack. Compared to Critical Outliers and
Critical MLP, Critical Layer has a significantly large PPL on both evaluation datasets, indicating the
model collapse that can not be attacked.

3) MLP surrogate is a stronger retraining attack configuration. Motivated by recent work LLM-
Streamline (Chen et al., 2024), which demonstrates the feasibility of using MLPs to approximate
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Figure 4: Our workflow of TeLLMate consists of three steps: (1) selecting the initial layer based on
standard deviation shift, (2) evaluating its resistance through a simulated model stealing attack, and
(3) iteratively selecting additional layers using layer-wise cosine similarity.

decoder layers for model compression, we modify the attacker’s surrogate architecture from a decoder
layer to an MLP. This change results in modest degradation in model performance, indicating that
the attack remains partially successful as shown in the Figure 1b. We hypothesize that two factors
explain why the Critical Layer surrogate underperforms compared to the Critical MLP surrogate.
First, retraining a surrogate from scratch is substantially more difficult than model compression via
knowledge distillation, where the student model is initialized from the teacher’s weights. Here, the
surrogate has no access to the protected weights and must be trained from random initialization.
Second, the decoder surrogate contains a larger parameter space and self-attention submodules that
are harder to optimize; in particular, randomly initialized Q/K/V weights hinder convergence. By
comparison, an MLP surrogate has fewer parameters and only position-wise operations, enabling more
stable training and making it more effective at approximating the protected layers. Therefore, based
on the analysis of the attacking result, we adopt this surrogate configuration in our retraining-based
attack targeting the protected decoder layer.

Overall, our findings indicate that to achieve strong resistance against retraining attacks, it is necessary
to include additional layers within the TEE beyond the initially selected critical components. However,
this enhanced protection comes at the cost of increased latency and is constrained by the limited
secure compute resources available inside the TEE (Tramer & Boneh, 2018). Furthermore, the
optimal number of layers required for effective protection is unknown and may vary across LLMs
depending on their architecture and scale.

4.3 ITERATIVE AUTO LAYER SELECTION FOR TEE PROTECTION

To address this issue, we propose a method that automatically selects and places a minimal number of
layers into the TEE while ensuring strong resistance against retraining attacks, as shown in Figure 1c.
Specifically, the proposed method includes three stages as illustrated in Figure 4, each answering
one key question: (1) How can we identify the initial layer to be placed in the TEE? (2) How to
quantitatively assess the protective capacity to select more layers against retraining attacks? (3)
Which additional layers should be incorporated into TEE to enhance resistance while keeping the
overall parameter size minimal?
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Figure 5: Layer-wise visualization of the standard deviation shift metric in different LLMs.
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1 Selecting initial layer via standard deviation shift. We begin by selecting the critical layer
to place in the TEE. In the Section 4.1, we identify critical layers using a pruning-based metric,
but this approach is computationally intensive and relies on access to the downstream evaluation
dataset, making it less practical. To address this, we develop a new metric to identify critical layer by
measuring the standard deviation shift in activations between the input and output of each layer:

∆σℓ = |σ(hℓ)− σ(hℓ−1)| (1)

Where a large ∆σℓ suggests that the layer significantly skews the distribution attribute. Empirically,
we find that layers that hold spikes in the standard deviation shift are highly likely to be the critical
layer. For each decoder layer ℓ, we compute the standard deviation shift in activations between the
input and output of each layer. The layer exhibiting the largest shift is treated as the critical layer, as
shown in Figure 5, and it will be necessary to be included by TEE protection.

Although outlier activations appear throughout the model, their impact differs across layers as shown
in Figure 2. We argue that the standard deviation shift, which measures the change in activation
variability between a layer’s input and output, provides a concrete signal of each layer’s influence.
Since this variability is largely caused by outliers, a large shift suggests that the layer plays a
significant role in amplifying them, making it a strong indicator of the outlier contribution across
layers.

2 Evaluating resistance via simulated retraining attack. Once the selected layer is placed in the
TEE, TeLLMate evaluates whether it provides effective resistance against retraining attacks. To do
this, we simulate a realistic threat model in which an adversary attempts to reconstruct the protected
layer using a partial dataset. We use an MLP as the surrogate model for the retraining attack, which
represents a more challenging scenario than replicating the original decoding layer architecture, as
shown in Table 1. To this end, if the trained model can not achieve the predefined performance,
the protection is considered unresistant. In particular, we consider 300 of the Wiki-2 PPL score
as the pre-defined target performance. Note that, if the model has a larger than 300 PPL, which is
∼ 20× than the baseline PPL, it’s safe to be considered to have collapsed, and we will select this
configuration as the optimal protection scheme. Otherwise, we will further add one more layer in the
TEE iteratively until the collapse condition is met.

3 Iteratively selecting additional layers via layer-wise cosine similarity. To strengthen resistance
against model retraining attacks, we expand one additional layer into the TEE for each iteration
step. To minimize the number of layers that are placed in TEE and ensure strong resistance, two key
criteria must be satisfied: (1) the selected layer should offer greater resistance to retraining attack
than others, and (2) it should be directly connected to the existing protected layers to avoid exposing
intermediate activations in TEE that can be exploited for retraining attack.

To achieve that, we first draw on insights from previous works on layer sensitivity and pruning
robustness (Frankle & Carbin, 2018; Gromov et al., 2024), which suggest that weights or layers
difficult to prune, those whose removal leads to significant performance degradation, are also harder to
approximate. Such that, the proposed standard deviation shift is a potential metric to select more layers.
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Figure 6: Cosine similarity guided
selection.

However, as shown in the Figure 5, although it can clearly
indicate a few critical layers, the rest of the layers often have
similar values, making them difficult to distinguish. To ad-
dress this limitation, we draw inspiration from recent layer
pruning works such as ShortGPT (Men et al., 2024) and LLM-
Streamline (Chen et al., 2024), which show that layers with
high cosine similarity between input and output activations
tend to contribute less to model performance and are thus more
suitable for pruning. Building on this, TeLLMate examines
layers adjacent to the critical layer or current protected set P .
For each candidate, we compute cosine similarity between the
input and output activations, which can be formulated as:

cos _sim(hℓ−1,hℓ) =
h⊤
ℓ−1hℓ

∥hℓ−1∥2 ∥hℓ∥2
. (2)

After that, TeLLMate appends the candidate with lower cosine similarity to the protection set. This
creates a new configuration of the protection scheme and TeLLMate goes to Step 2 for simulation.
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Table 2: Overall attack performance evaluation on text generation perplexity and average CMQA
0-shot accuracy of various LLMs under different protection settings. The better the protection, the
lower the performance.

Model Method Selected Layer index PPL (Wiki2) ↑ PPL (PTB) ↑ CMQA ↓ Params Ratio FLOPs Ratio

LLaMA 2-7B
Baseline – 12.19 47.21 66.79 0.00% 0.00%

TeLLMate-C [1] 26.36 153.16 53.27 3.13% 3.13%
TeLLMate-F [0,1] 4710.54 3559.06 36.19 6.25% 6.25%

LLaMA 2-13B
Baseline – 10.98 56.15 69.27 0.00% 0.00%

TeLLMate-C [3] 12.22 59.49 68.82 2.50% 2.50%
TeLLMate-F [0,1,2,3] 4079.78 5108.48 35.03 10.00% 10.00%

LLaMA 3-8B
Baseline – 14.14 27.96 70.17 0.00% 0.00%

TeLLMate-C [1] 20.37 36.95 66.32 3.13% 3.13%
TeLLMate-F [0,1] 1007.44 1284.55 35.88 6.25% 6.25%

Mistral 0.3-7B
Baseline – 15.14 31.12 70.39 0.00% 0.00%

TeLLMate-C [1] 262.12 438.91 35.44 3.13% 3.13%
TeLLMate-F [0,1] 217695.49 386990.95 38.99 6.25% 6.25%

Qwen 3-8B
Baseline – 21.13 42.36 69.67 0.00% 0.00%

TeLLMate-C [6] 102.00 184.70 50.43 2.78% 2.78%
TeLLMate-F [6,7] 324.16 753.70 40.13 5.56% 5.56%

The loop iterates until either (i) the attack fails or (ii) a user-defined protection budget Lmax is reached.
The final protection set thus represents the minimal collection of layers that must be protected within
the TEE against retraining-based model-stealing attacks, considering resource constraints.

5 EXPERIMENT

5.1 EXPERIMENT SETUP

We evaluate the effectiveness of TeLLMate by assessing the performance of surrogate models (i.e.
PPL) trained by the attacker, as discussed in Section 4.2. Specifically, we conduct experiments
using five open-source LLMs: LLaMA 2-7B, LLaMA 2-13B (Touvron et al., 2023b), LLaMA 3-8B
(Grattafiori et al., 2024), Mistral 0.3-7B (Jiang et al., 2023), Qwen 3-8B (Yang et al., 2025). Following
a similar experimental setup as prior work (Chen et al., 2024), we use 1% of the SlimPajama-6B
dataset (DKYoon/SlimPajama-6B (Soboleva et al., 2023)) to train the attacker’s surrogate model.
This corresponds to approximately 30,000 samples, each containing 2048 tokens, totaling around
0.06 billion tokens. Detailed training hyperparameters are provided in the Section A.2.

We compare model protection efficacy under three configurations: (1) Baseline, which is the original
dense model; (2) TeLLMate-C, which protects only the critical layer identified through standard
deviation shift analysis in Section 4.2; and (3) TeLLMate-F, which applies the full TeLLMate
to generate an optimal protection scheme based on the iterative selection workflow described in
Section 4.3. We evaluate model functionality using three metrics: perplexity (PPL) on WikiText-2
(Merity et al., 2016) (Wiki2), perplexity on Penn Treebank (Marcus et al., 1993) (PTB), and zero-shot
accuracy on the CommonsenseQA (CMQA) benchmark suite including BoolQ (Clark et al., 2019),
PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2019),
ARC-Easy (Clark et al., 2018), ARC-Challenge (Clark et al., 2018), and OpenbookQA (Mihaylov
et al., 2018), applied through the EleutherAI LM Harness pipeline (Gao et al., 2024).

5.2 EXPERIMENTAL RESULTS

The results in Table 2 highlight the strong effectiveness of our framework. Across all models, applying
our full protection TeLLMate-F results in a substantial increase in perplexity, demonstrating strong
resistance to model retraining attacks. For example, the perplexity of LLaMA 3-8B on WikiText-2
rises from 14.14 to 1007.44 (71 × increase). Notably, for Mistral 0.3-7B, the perplexity increases by
about 14k times, indicating that our method effectively collapses the model performance. Moreover,
we find that this strong protection can be achieved with minimal iterations of TeLLMate. In most
cases, securing just two decoder layers suffices to induce substantial degradation. Notably, the selected
layers tend to appear in the early stages of the network, aligning with our findings in Section 4.1 and
prior work on layer sensitivity in transformer models (Ma et al., 2023). Moreover, we also observe
that the selected protected layers differ across model architectures. For instance, in Qwen 3-8B the
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protected layers are [6,7], while they are [0,1] in LLaMA 2-7B and Mistral 0.3-8B models. For
LLaMA 2-13B, four layers are selected into the protected set P , corresponding to 10% of the model’s
parameters. This is a reasonable proportion given the model’s larger size and deeper architecture.

Table 3: Perplexity results on Wiki2 and
PTB for LLaMA2-13B under different
4-layer protection configurations.

Selected Layer index PPL (Wiki2)
Dense 10.98
TeLLMate-F [0,1,2,3] 4079.78
Random [3, 4, 5, 6] 16.82
Random [8,9,10,11] 12.30
Random [10,11,12,13] 12.23
Random [15,16,17,18] 12.25

Beyond perplexity, we evaluate zero-shot generalization
using CMQA, a composite benchmark of seven common-
sense reasoning tasks. As shown in Table 2. LLaMA
2-7B’s overall CMQA accuracy drops from 66.79% to
36.19% under full protection, demonstrating that our
method significantly disrupts model reasoning ability and
usability in downstream tasks. Despite its strong effective-
ness, our full method maintains low overhead. Across all
models tested close to the scale of 7-8B parameters, the
parameter protection ratio remains under 6.25%, making
our approach lightweight and suitable for deployment in
resource-constrained secure environments such as TEE.
Detailed accuracy on specific tasks is provided in the Section A.6.

In comparison, the TeLLMate-C leads to mild performance degradation. For example, in LLaMA
2-13B, WikiText-2 perplexity increases from 10.98 to 12.22. This moderate degradation highlights the
limitations of single critical layer protection, as the attackers can get a partially functional surrogate
model under this configuration. These observations align with our analysis in Section 4.2.

5.3 EFFECTIVENESS OF AUTO LAYER SELECTION

To further validate the proposed layer selection algorithm, we compared the protection set TeLLMate-
F against four randomly selected four-layer configurations on LLaMA2-13B. As shown in Table 3,
none of the random selections achieved performance comparable to that of the protection set identified
by TeLLMate, highlighting the benefit of our targeted selection strategy.

Table 4: Impact of Cosine Similarity Guidance for The
Protected Layer Section on Model Perplexity.

Model Strategy PPL (Wiki2) PPL (PTB)

LLaMA 2-7b
TeLLMate-C 26.36 153.16
w/o cosine 346.04 1216.56
w/ cosine 4710.54 3559.06

LLaMA 3-8b
TeLLMate-C 20.37 36.95
w/o cosine 25.39 45.25
w/ cosine 1007.44 1284.55

Mistral 0.3-7b
TeLLMate-C 262.12 438.91
w/o cosine 111.34 262.79
w/ cosine 194064.39 291104.64

In addition, we conduct an ablation study
to investigate the impact of cosine sim-
ilarity guidance. As shown in Table 4,
we compare three protection configura-
tions: (1) protecting only the critical layer
(TeLLMate-C), (2) adding an adjacent
layer not selected by our method, and (3)
adding an additional layer selected based
on cosine similarity. Results show that
cosine-guided selection leads to signifi-
cantly stronger protection. For example,
in the LLaMA 3-8B model on WikiText-
2, adding a non-guided adjacent layer in-
creases perplexity slightly from 20.37 to 25.39. In contrast, incorporating the cosine-selected layer
leads to a dramatic increase in perplexity to 1007.44, about 50×. The result highlights that naive
inclusion of nearby layers without our method may offer only marginal security benefits, while
our cosine similarity-based approach enables a targeted and data-efficient protection scheme that
maximizes defense strength under strict memory constraints.

6 CONCLUSION

We propose TeLLMate, a secure and efficient framework that leverages TEE to protect the LLM
against model retraining attacks. TeLLMate identifies the critical layer for model performance and
employs an iterative algorithm to progressively expand the protected set. The generated optimal
protection scheme balances the trade-off between latency and security. Experimental results show that
our method achieves strong protection guarantees, increasing the attacker’s model perplexity by at
least 15× and random-guess zero-shot accuracy while requiring only 10% of the model’s parameters
to be enclosed within the TEE.
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Reproducibility Statement. We provide an anonymous implementation of our method, including
scripts for critical layer identification, protection scheme generation, retraining attack, and evaluation
scripts, in the Supplementary Material of the submission. Additional details, such as hyperparameters
and experimental settings, are described in the main text and appendix to ensure full reproducibility.
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A APPENDIX

A.1 LLM USAGE

In accordance with the ICLR 2026 policy on large language model (LLM) usage, we disclose that
LLM-based tools (e.g., ChatGPT) were used solely to aid in polishing the writing and improving the
clarity of exposition. They were not used for research ideation, experimental design, data analysis, or
other substantive contributions. All scientific content, results, and conclusions are the responsibility
of the authors.

A.2 DETAILED EXPERIMENTAL SETUP

To conduct the retraining attack, a 1% subset of SlimPajama-6B is used, consisting of 30,000 training
samples (each with 2048 tokens, approximately 0.06B tokens) and 3,000 evaluation samples of the
same length. Training is conducted for 20 epochs with a batch size of 32. The learning rate is set to
1e-3, with a minimum learning rate of 2.5e-5 and a maximum of 1e-3. Weight decay is configured
to 1e-4. We adopt a cosine scheduler to perform learning ratio scheduling. We have a 3% warmup
step in the first epochs. All model parameters are set to bfloat16 precision by default if no other
notification exists. All experiments are conducted on a cloud computing server with an AMD EPYC
9554 CPU, 318.6 GB of memory, 400GB NVME SSD, and one Nvidia H100 80GB GPU.

A.3 ALGORITHM BLOCK

Algorithm 1 Iterative Auto Layer Selection for TEE Protection
Input: Pre-trained LLM with L decoder layers {ℓ1, . . . , ℓL};
Attack simulation routine RETRAINATTACK(·) returning perplexity;
Target perplexity PPLtarget (default = 1000).
Output: Minimal protection set P to be enclosed in the TEE.

1 /*Stage 1: Select initial layer via std-dev shift*/
2 for ℓ← 1 to L do
3 Compute ∆σℓ with Eq. (1);
4 ℓ⋆ ← max

ℓ
∆σℓ

5 P ← {ℓ⋆}

6 /*Stage 2: Evaluate resistance via retraining attack*/
7 Function Evaluate(P):
8 ppl← RETRAINATTACK(P) // implement retraining attack
9 return ppl

10 if ppl ≥ PPLtarget then // attack collapsed
11 return P

12 /*Stage 3: Iteratively enlarge P via cosine similarity*/
13 while ppl < PPLtarget do
14 C ← adjacent, unprotected layers of P
15 foreach c ∈ C do
16 Compute cos _simc with Eq. (2);
17 c⋆ ← min

c∈C
cos _simc

18 P ← P ∪ {(c⋆)}
19 Evaluate(P)
20 return P
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A.4 TELLMATE ON QUANTIZED LLMS

Edge devices typically support low-bit arithmetic (e.g., INT4/INT8), making quantization essential
for deploying LLMs under resource constraints. To this end, we evaluate whether TeLLMate remains
effective when applied to a quantized model on an edge device. Here, we use the AWQ (Lin et al.,
2024) framework as a representative quantization method.

We apply TeLLMate to LLaMA 2-7B AWQ, a 4-bit quantized model, and compare its performance
under different scenarios.

• ✗ indicates the attacker trains the surrogate model using bf16 precision, matching the
original precision of LLaMA 2-7B without quantization, while ignoring computational
overhead.

• ✓denotes that the attacker also adopts int4 quantization-aware training (QAT), aligning
with the precision of the deployed model.

• ⟳ represents a setting where the quantization scales are updated during training instead of
being fixed.

From Table 5, we observe a significant perplexity increase when the attacker is constrained to int4
precision with QAT (✓), compared to using higher-precision (bf16) training (✗). This is attributed to
activation noise and approximation errors introduced by quantization that degrade the attacker’s ability
to recover the protected model’s performance. Also, enabling scale updates (⟳) provides additional
robustness in some settings, likely due to better alignment with the quantization distribution during
surrogate training. These results demonstrate that TeLLMate retains strong protective effectiveness
under realistic deployment constraints, showing compatibility with low-bit quantized inference and
quantization-friendly frameworks.

Table 5: Evaluation of TeLLMate on quantized models. We report performance (perplexity on
WikiText-2 and PTB, plus CMQA 0-shot accuracy) for LLaMA 2-7B AWQ under various TeLLMate
settings. Higher perplexity (↑) and lower accuracy (↓) imply stronger protection.
Legend: “✗” = no QAT (bf16 surrogate), “✓” = QAT with fixed scale, “⟳” = QAT with scale update.

Method PPL (Wiki2) ↑ PPL (PTB) ↑ CMQA 0-shot ↓
Baseline 12.19 47.21 66.79
Baseline (AWQ) 12.57 48.94 66.36

TeLLMate-C 26.36 153.16 53.27
TeLLMate-C (✗) 36.37 209.30 53.41
TeLLMate-C (✓) 173.51 644.68 37.78
TeLLMate-C (✓, ⟳) 46.70 209.30 47.79

TeLLMate-F 4710.54 3559.06 36.19
TeLLMate-F (✗) 5928.34 5231.74 35.32
TeLLMate-F (✓) 15138.55 20691.95 35.12
TeLLMate-F (✓, ⟳) 6717.69 7150.95 35.29

A.5 COMPUTATIONAL COST ANALYSIS

Regarding the computational cost of our algorithm, we separate the whole process into two parts:
protection scheme generation and adversarial attack simulation.

The result of the protection scheme generation is provided in Table 6. This process involves an offline,
one-time search for the protected layers, performed once per model, and therefore has no impact on
runtime latency or memory during real-time inference.

Furthermore, for adversarial attack simulation, we compared its training time and memory usage
against a baseline that retrains the same surrogate model while freezing the entire LLM, similar to
standard partial-layer fine-tuning (denoted as “Full LLM”). As shown in the Table 7, our training
strategy significantly reduces both training time and memory consumption.
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Table 6: Time and memory cost comparison for generating a protection scheme on various target
model scales.

Model Protection Scheme Time Protection Scheme Memory
LLaMA2-7B 4 min 45 s 26668 MiB
LLaMA2-13B 9 min 10 s 42040 MiB

Table 7: Training attack time and memory cost comparison on various target model scales.

Model Method Loaded Layers Batch size Total Training Attack Time Training Attack Memory

LLaMA2-7B Full LLM 32 2 3280 min 45432 MiB
Ours 2 32 201 min 39904 MiB

LLaMA2-13B Full LLM 40 2 8000 min 80678 MiB
Ours 4 32 880 min 80868 MiB

A.6 DETAILED ZERO-SHOT ACCURACY OF TELLMATE

We evaluate zero-shot generalization using CMQA, a composite benchmark of seven commonsense
reasoning tasks. As shown in Table 8. LLaMA 2-7B’s overall CMQA accuracy drops from 66.79%
to 36.19% under full protection. On specific tasks like ARC-e, accuracy falls to near-random levels
from 76.30% to 26.22%, demonstrating that our method significantly disrupts model reasoning ability
and usability in downstream tasks. It is also important to note that BoolQ, PIQA, and ARC-e are
binary classification tasks, whereas the remaining tasks involve four classes. Among them, BoolQ
has a label imbalance, with approximately 60% positive examples. While TeLLMate-F shows slightly
higher accuracy than TeLLMate-C on certain tasks, both models actually have effectively collapsed,
as their predictions are no better than random guessing.

Table 8: Detailed accuracy of various LLMs under different attack settings on commonsense QA
benchmarks. The better the protection, the lower the performance.

Model Method BoolQ ↓ PIQA ↓ Hella. ↓ Winogr. ↓ ARC-e ↓ ARC-c ↓ OBQA ↓ Average ↓

LLaMA 2-7B
Baseline 77.71 78.07 76.00 68.98 76.30 46.25 44.20 66.79

TeLLMate-C 70.67 67.79 54.96 57.93 58.12 33.19 30.20 53.27
TeLLMate-F 40.03 53.48 30.15 50.12 26.22 27.30 26.00 36.19

LLaMA 2-13B
Baseline 80.55 79.11 79.39 72.22 79.46 48.98 45.20 69.27

TeLLMate-C 80.06 78.29 78.08 72.85 78.28 49.40 44.80 68.82
TeLLMate-F 37.83 52.88 25.98 47.67 25.88 28.75 26.20 35.03

LLaMA 3-8B
Baseline 81.28 79.65 79.13 72.61 80.09 53.41 45.00 70.17

TeLLMate-C 79.76 76.93 76.34 67.48 75.72 47.44 40.60 66.32
TeLLMate-F 40.37 56.20 28.03 49.41 29.71 21.25 26.20 35.88

Mistral 0.3-7B
Baseline 82.08 80.25 80.44 73.88 79.63 52.22 44.20 70.39

TeLLMate-C 38.38 53.97 29.42 49.41 28.79 21.93 26.20 35.44
TeLLMate-F 61.87 52.99 25.97 50.59 25.17 28.92 27.40 38.99

Qwen 3-8B
Baseline 86.61 76.93 74.96 67.72 83.63 56.48 41.40 69.67

TeLLMate-C 72.11 63.55 53.60 54.85 49.41 29.69 29.80 50.43
TeLLMate-F 52.57 58.43 33.10 50.28 35.90 24.23 26.40 40.13
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A.7 ROBUSTNESS AGAINST PUBLIC-WEIGHT INITIALIZATION

Table 9: Comparison of perplexity scores across Wiki2, PTB, and CMQA under different initialization
methods.

Method PPL (Wiki2) ↑ PPL (PTB) ↑ CMQA ↓
Dense 10.98 56.15 66.79
Initialized randomly (TeLLMate-F) 4710.54 3559.06 36.19
Initialized from corresponding public weight 4757.53 3632.19 37.63

To evaluate whether access to public pretrained weights strengthens the model stealing attack, we
conducted a new experimental study on the LLaMA2-7B model. Specifically, we initialize the
surrogate MLP not from random weights, but from the corresponding MLP block in a publicly
available LLaMA2-7B model that has been fine-tuned on GSM8K. This simulates a strong adversary
who can leverage weights closely aligned with the victim’s parameters. As shown in Table 9, even
under this enhanced attack model, our protection scheme remains robust, with perplexity scores
nearly identical to those obtained with random initialization.
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