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Abstract

Modeling interactive driving behaviors in complex scenarios remains a funda-
mental challenge for autonomous driving planning. Learning-based approaches
attempt to address this challenge with advanced generative models, removing the
dependency on over-engineered architectures for representation fusion. However,
brute-force implementation by simply stacking transformer blocks lacks a dedicated
mechanism for modeling interactive behaviors that are common in real driving
scenarios. The scarcity of interactive driving data further exacerbates this problem,
leaving conventional imitation learning methods ill-equipped to capture high-value
interactive behaviors. We propose Flow Planner, which tackles these problems
through coordinated innovations in data modeling, model architecture, and learning
scheme. Specifically, we first introduce fine-grained trajectory tokenization, which
decomposes the trajectory into overlapping segments to decrease the complexity
of whole trajectory modeling. With a sophisticatedly designed architecture, we
achieve efficient temporal and spatial fusion of planning and scene information, to
better capture interactive behaviors. In addition, the framework incorporates flow
matching with classifier-free guidance for multi-modal behavior generation, which
dynamically reweights agent interactions during inference to maintain coherent
response strategies, providing a critical boost for interactive scenario understanding.
Experimental results on the large-scale nuPlan dataset and challenging interactive
interPlan dataset demonstrate that Flow Planner achieves state-of-the-art perfor-
mance among learning-based approaches while effectively modeling interactive
behaviors in complex driving scenarios. Official implementation can be found in
https://github.com/DiffusionAD/Flow-Planner|

1 Introduction

Ensuring safe and reliable planning remains the highest priority for autonomous driving systems in
real-world deployment [47]. However, exceptional challenges stem from complex interactions among
traffic participants exhibiting multi-modal driving behaviors [15,42], with the difficulty compounding
as the number of participants increases. While conventional rule-based approaches [16} 150] can
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effectively handle most driving scenarios through explicit human-defined constraints and numerical
optimization, they are constrained by fundamental limitations, often demanding substantial human
engineering efforts and exhibiting poor generalization capability in highly dynamic environments [18].
In contrast, learning-based methods aim to directly learn expert strategies for handling highly
interactive scenarios from real-world driving data [3, [19]. These methods have emerged as the
dominant choice in both academia [24} 57]] and industry [} 27], with the expectation that they can
achieve reasonable planning through increased data volume and model parameters [5].

To model sophisticated interactive behaviors in complex traffic scenarios, a learning-based planner
must generate trajectories that simultaneously address immediate interactions, anticipate future
behaviors of critical traffic participants, and maintain temporally consistent kinematics [19]]. This
process critically depends on effective temporal and spatial fusion with scene information. However,
the heterogeneity of different elements, particularly static map information and dynamic agents’
histories, imposes stringent requirements on the fusion mechanism. Early approaches [25|39] relied
on human priors and over-engineered architectures to capture interactions among traffic participants,
but these methods proved difficult to scale and often delivered suboptimal performance. While
recent work has adopted transformer-based architectures [9] and generative models [57, 35] to
improve scalability and performance, vanilla transformer implementations often fail to effectively
capture intricate interdependencies among heterogeneous information [14}54]. In complex scenarios,
extensive redundant information can obscure critical traffic participant information during fusion [S7],
primarily because these architectures lack specialized designs for interaction modeling.

Moreover, the scarcity of high-quality interactive scenarios in training data leads to a critical lim-
itation: naive behavior cloning methods may converge to biased distributions that fail to capture
interactive driving behaviors [26], frequently resulting in safety-critical failures during closed-loop
evaluation [13]]. Although auxiliary losses can help penalize undesirable behaviors, as commonly done
in imitation learning [[1} 18} 29} 6], they typically compromise training stability and require careful,
case-by-case design. Besides, some methods incorporate prior knowledge, such as pre-searched refer-
ence line [8], anchor trajectory [6,136] and goal point [53]], to guide more diverse driving behaviors,
but often fail to account for legitimate interactive behaviors that conflict with these structural priors.
Alternatively, reinforcement learning 32| 4] can autonomously learn interactive behaviors through
trial-and-error, but introduces new challenges including meticulous reward engineering [31} 33]] and
safety assurance during exploration [S6].

To address these challenges, we propose Flow Planner, an advanced learning-based framework
melding coordinated innovations in data modeling, architecture design, and learning schemes to
enhance interactive driving behavior modeling for autonomous driving planning. Specifically, we
first break down the complexity of full-trajectory modeling by decomposing it into overlapping
segments. This fine-grained tokenization preserves kinematic continuity within each segment while
enabling localized feature extraction through segment-specific token representations. Second, our
framework enhances interactive behavior modeling through spatiotemporal fusion of scene and
planning tokens. Inspired by scale-adaptive attention [38]], it dynamically optimizes receptive fields
for each token to enable effective extraction of critical information. This process also projects hetero-
geneous conditions from different scene inputs into a unified representation space, further improving
performance. Finally, to enable multi-modal behavior generation in complex driving scenarios, we
adopt flow matching loss [37]], which offers simpler implementation and faster convergence compared
to diffusion-based approaches [57]. Building upon classifier-free guidance [22} 37]], our framework
dynamically reweights neighboring agent interactions during inference to maintain coherent plan-
ning strategies. Compared to naive behavior cloning approaches, this scene-information-enhanced
generation mechanism provides substantial improvements in interactive scenario understanding.
Experimental results on the large-scale real-world benchmark nuPlan and challenging interactive
benchmark interPlan show that Flow Planner establishes state-of-the-art performance in closed-loop
evaluation among learning-based planners, while demonstrating human-like interactive behaviors in
complex traffic scenarios.

2 Related Work

Rule-based Planning Methods. Rule-based planners determine driving behaviors through manually
specified rules, offering interpretable and practically viable solutions that have been validated in
both simulation [13] and real-world deployments [16} 134, |51]]. Despite their widespread use, these
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Figure 1: Overview of the Flow Planner framework.

methods rely heavily on handcrafted heuristics, which limits their scalability and effectiveness in
complex interactive driving scenarios.

Learning-based Planning Methods. Conventional imitation learning-based methods for autonomous
driving initially relied on CNN [2,[32}121]] or RNN [1]] architectures. While modern transformer-based
approaches [24, 27, 29, 6] offer improved scalability, they introduce new challenges in interactive
behavior modeling. Specifically, effective interactive behavior modeling requires an efficient fusion
mechanism to handle heterogeneous scene information, where spatial-temporal interactions between
different scene elements (e.g., lanes and neighboring agents) cannot be adequately resolved through
simple parameter stacking [9} |46 41]. While some approaches employ complex architectural
designs [25139], these solutions often limit the transformer’s scalability potential. Although auxiliary
loss functions [, 8} 29} 16]] can encourage safe behaviors in complex scenarios through penalties,
they fundamentally fail to develop true interactive driving capabilities in models and may result in
overly conservative behaviors [56]. Reinforcement learning 31, 33]] provides a solution to achieve
interactive behavior beyond data capabilities, but due to limitations such as safety exploration and
reward design, the application of autonomous driving still remains at the simulation level [12, 4] or
simple real-world scenario [32} 44]. Thus, how to improve the model’s ability to capture interactive
driving behavior and further improve the performance of imitation learning remains a challenge.

Generative Models for Planning. Recent work has demonstrated generative models’ strong expres-
siveness for autonomous driving tasks [57, 30} [58]]. Autoregressive approaches [46} [7], as a class
of generative modeling methods, enable each timestep’s action to incorporate both environmental
information and previous actions, thereby enhancing modeling capacity. But these methods inherently
suffer from error accumulation over time. Diffusion models [45} 23] and flow matching models [37],
as the most advanced generative models, share similar denoising processes for generating data from
noise. Both demonstrate strong expressiveness in modeling complex distributions [[10], making them
particularly suitable for autonomous driving behavior modeling. However, existing methods still rely
heavily on prior knowledge (e.g., anchor trajectories [36] or goal points [53]]). Although such strong
priors can stimulate multi-modal driving behaviors, they tend to cause the model to neglect interactive
behaviors with traffic participants. Diffusion Planner [S7] attempts to improve interactive behavior
modeling by jointly generating both the ego planning and predictions for neighboring vehicles without
requiring prior knowledge. However, its interactions are constrained to a fixed number of nearest
vehicles, which restricts potential interactions with important distant agents, and the architecture
lacks specific designs for an effective fusion mechanism. Therefore, there still lacks a design to
further push the limits of generative models for interactive behavior modeling.

3 Method

In this section, we provide a brief introduction to trajectory generation in planning tasks and present
Flow Planner, a novel approach that emphasizes interactive behavior modeling, as shown in Figure
From the data modeling perspective, we propose fine-grained trajectory tokenization to achieve
expressive trajectory modeling. Subsequently, we design a well-curated architecture that enhances in-
teractive behavior modeling through thorough spatiotemporal fusion. Finally, we adopt flow matching
with classifier-free guidance to further enhance multi-modal and interactive driving behaviors.



3.1 Problem Formulation

Our work primarily focuses on the planning module of autonomous driving systems, utilizing pro-
cessed perception as input and evaluating planning capabilities through closed-loop testing [[19]. The
trajectory generation task can be formulated as a conditional generation problem, where the trans-
formation from a source distribution p(7p) (typically standard Gaussian) to a target data distribution
q(m1|C) (e.g., planning trajectories 7; with scene information C) is represented by a probability path.
The model vy(+) is trained to predict the velocity along the path connecting sample pairs (7q, 71)
drawn from the source and target distributions, using the objective [37]:

L =B 0(0,1) p(r0),a(m )00 (76, H{C) — ve (70, 1), )]

where 7 = «;71 + 0479 and the ground truth velocity ve(7¢,t) = 7t = &1 + 479 is the time
derivative of the interpolation between source and target points. The distinction between ODE-based
diffusion models and flow matching models lies in their respective designs of probability paths.

3.2 Model Architecture

Flow Planner is a transformer-based generative model for motion planning that effectively fuses
noisy trajectory 7 with scene condition C'. The architecture overview is presented in Figure|T]

Scene Encoder. We consider the vectorized driving scene information. For each neighboring
agent (e.g., vehicle, pedestrian, cyclist), we represent its past T' timestep information as Fcighbor €
RT*Hneighbor where H. neighbor 1 the dimension of state information including coordination, velocity,
size, and the type of different agents. For each lane, we interpolate the centerline into /N uniformly
distributed points. Each point contains coordinates, corresponding boundary vectors, speed limit
information, and traffic light status, represented as Fl,,e € RN *Hane  To maximize scenario
information preservation while maintaining model efficiency, we employ separate MLP-Mixer
architectures [48]] to encode both agent and lane features, following [57]:

F = F +MLP,,(F),F = F + MLP .1 (F), 2)

where MLP,., and MLP ., are two separate MLPs operating on sequence and feature dimensions
respectively, and F' is the information of neighboring agents F},cighbor OF lanes Fi,ne. Additionally,
we consider static objects, encoded using another MLP. The navigation information is represented
similarly to lane information and is processed by a separate MLP-Mixer.

Fine-grained Trajectory Tokenization. We start by rethinking the trajectory tokenization in
autonomous driving planning, an area that has received inadequate research attention despite its critical
importance. Prevalent methods [57, 9} 36] use a single token to represent the whole trajectory, which
maintains kinematic consistency [28]] but suffers from inefficient scene context fusion due to over-
compression. Alternative approaches utilizing either discrete timestep tokens [[11] or autoregressive
generation [46] successfully achieve temporal fusion within trajectories. However, these methods
inevitably encounter compounding error accumulation, presenting a fundamental limitation for
closed-loop autonomous driving applications.

To address these limitations, we propose a balanced modeling framework featuring fine-grained
trajectory tokenization that preserves temporal interaction patterns while ensuring consistent behavior
across all planning horizons. Specifically, the noised trajectory 7 = (x1, x2, ..., z1,) introduced in
Section which comprises L points in total, is first divided into K segments, each containing L
points. Additionally, the neighboring segments share an overlap with a length Lgyeriqp to ensure the
consistency and smoothness of the resembled trajectory. Next, a shared MLP is used to transform the
noised segments into the ego-trajectory tokens:

FE = MLP (s, Tk 1y oy i) k= 1,2, .., K, 3)

ego

where ¥ = (k — 1)(Lseg — Loveriap) is the start timestep of the trajectory segment, and rk =
(k — 1)(Lseg — Loveriap) + Lseg is the end timestep. Note that timesteps in trajectories differ
conceptually from noise step ¢ in generative models. After that, we adopt the sinusoidal position
encoding [52]] to inject temporal information. Finally, we concatenate all the segment tokens along

the sequence dimension to obtain the ego feature: F,,, = Concat (Felgo7 N FEI;O .

Interaction-enhanced Spatiotemporal Fusion. Although fine-grained trajectory tokenization
provides more expressive representations for behavior modeling, the efficient fusion of spatiotemporal



information remains unresolved. This process requires bidirectional interaction among numerous
information-sparse tokens to enable comprehensive scene understanding and behavior modeling.
Another critical challenge lies in effectively fusing these heterogeneous modalities, such as the static
information of lanes and the dynamic information of agents. These challenges are what vanilla
transformer attention [9} (8} 157 fails to accomplish effectively.

Inspired by recent work in text-to-image generation [14}54], where cross-modality feature fusion
is performed in a unified space, we first process heterogeneous features through separate adaptive
LayerNorm (adalLN) modules [43]], projecting them into a shared latent space where both timestep
conditions and navigation information are injected via modulation mechanisms [57]. Then the
processed tokens from one scenario, including the features of lanes Fj,,., neighboring agents
Fcighbor and ego planning trajectory [ g,, are concatenated along the sequence dimension:

Fyi0par = Concat (adaLN (Figne) , adaLN (F,cighbor) s adaLN (Fego)) - %)

For the subsequent fusion of all tokens Fg;p4;, a critical observation reveals that interaction intensity
between traffic participants correlates strongly with their spatial distances. For instance, excessively
distant roads and vehicles may introduce noise that degrades planning performance [57]]. Inspired
by scale-adaptive self-attention [38]], we employ learnable receptive fields for individual tokens to
incorporate spatial guidance during feature fusion. This is achieved through spatial distance-scaled
attention score adjustment:

FglobalWQ (FglObalWK)T
Vd

where W, W WV are the pre-projection weights used to generate query, key, and value for the
attention mechanism [52]], D is the pairwise Euclidean distance matrix of the tokens, and A is the
receptive scaler generated by a simple linear projection of the tokens. Intuitively, tokens representing
traffic participants beyond a certain distance are assigned smaller attention scores, making them
less influential in the computation and enabling more adaptive resource allocation. Then, the global
feature is decomposed into modality-specific tokens, where each modality undergoes distinct adaLN
and FFN projections to further mitigate the heterogeneous modality gap:

-Flane7 Fneighbor7 Fego = Chunk (Fglobal) ) (6)
Eane =V (Eane) ) Fneighbor =v (Fneighbor> 7Fego =v (Fego) 3
where U is the abbreviation of the FFN(adaLN(-)). Building upon the foundation established in
Eq. @-(6), our architecture employs stacked transformer blocks to progressively refine spatiotemporal
interactions. Finally, a standard self-attention layer is used for final aggregation. The features are then
processed through token pooling to obtain ego planning tokens, followed by a final layer W [43}157]
that transforms these representations into the ego vehicle’s planned trajectory.

Fyiobar = Softmax( — X D)Fyopa W, )

3.3 Guided Trajectory Generation via Flow Matching

With the enhanced model architecture established, we want to push the upper-bound performance
for imitation learning in trajectory generation. Compared to conventional behavior cloning, gen-
erative models show better expressiveness in modeling multi-modal and interactive driving behav-
iors [S7]. The most compelling aspect of generative models lies in their ability to dynamically
reweight conditional signals during inference through classifier-free guidance [22]], thereby amplify-
ing conditional influence to achieve superior conditioned generation. Specifically, we enhance the
conventional behavior cloning approach by combining the scene-conditioned planning trajectory
distribution ¢(71|C) with an unconditioned distribution ¢(7), yielding an enhanced distribution
G(m1|C)ocq(m1) = q(m1|C)¥, where w > 1 is the weighting parameter that controls the condition
signal strength. Intuitively, the model learns both the planning behavior without scene conditions and
the behavior with scene conditions, enabling it to implicitly capture the behaviors induced by scene
conditions. This approach strengthens the understanding of complex driving scenarios and improves
interactive behavior modeling. Building upon this framework, we can sample from distribution
G(m1|C) using the guided velocity field as follows [22]:

0e(12, t|C) = (1 — w)ve (73, 1) + woe (72, E|C). @)

The remaining challenge involves training the model to estimate velocities in Eq. (7). We address this
by training a single model with Bernoulli-masked conditions as follows [55]:

Lfiow = Eiv(0,1),0~B,p(ro)sa(r )70 (76, E/ (L= b) - C + b - &) — 1|, (8)



In Eq. (), we employ the reparameterization trick to directly predict ground-truth trajectories.
This formulation proves mathematically equivalent to the velocity prediction loss in Eq. (I)) [37].
Additionally, we employ the optimal transport path [40, 49] widely used in flow matching, where
the velocity estimation follows vy (7¢,t|C) = (79(7t,t|C) — 70) /t. The same approach applies to
unconditioned velocities vy (7¢,t). Finally, we obtain the guided velocity from Eq. (7) and employ an
ODE solver for trajectory generation.

Notably, the conditioned information can be flexibly selected in our framework. In practice, we
specifically mask neighboring vehicle information in Eq. (§)), as we empirically find this to be most
critical for interactive driving behavior. As shown in Figure [1| the unconditioned model fails to
account for neighboring vehicles, while the conditioned model overreacts to the nearest vehicle with
overly conservative planning behavior. In contrast, our classifier-free guided approach successfully
generates reliable planning results that appropriately respond to neighboring vehicle dynamics.

3.4 Implementation Details

In our implementation, the entire scenario is first transformed into an ego-centric front-left-up
coordinate. To ensure training stability and input consistency, input data as well as ground truth
trajectories are first normalized using static measures extracted from training data. In addition, data
augmentation [S7]] has been demonstrated as effective in improving the robustness of planning outputs.
During training, the ego vehicle’s state at the current frame is first randomly perturbed, and a quintic
polynomial is used for interpolating a new trajectory, serving as the ground truth of the augmented
sample. During inference, the second-order midpoint method [37] is used for the flow ODE solver.
In addition, to ensure the consistency of the generated trajectory, we introduce an extra consistency
loss Lonsist on the segment overlap during training. Specifically, given the predicted segments, we
apply L2 loss on the overlap of neighboring predicted segments:

K—1
Loeonsist = _ Z Rkl pht Lk )2 )
K-14 ’

where 7#%+1 denotes the portion of the predicted trajectory from segment k that overlaps with
segment k + 1, and 7*+1:¥ represents the portion of the predicted trajectory from segment k + 1 that
overlaps with segment k. This consistency loss is added to the flow matching loss with a loss scaling
hyperparameter o > 0 to form the final objective £ = L4,y + & - Leonsist. Note that the converged
model is equivalent to the one supervised by merely the vanilla flow matching objective. During
inference, the predicted values of the overlapping areas are averaged in a straightforward manner to
generate the final prediction.

4 Experiments

In this section we conducted extensive experiments to demonstrate the performance of our model.
We will start by briefly introducing the benchmarks on which the experiments are performed, and the
primary baselines we compared our model with. Next, we will focus on several representative cases
that intuitively illustrate the advantage of our method, comparing it with the previous state-of-the-art
method in specific scenarios. Then, we will delve into the details of our designs and showcase their
effectiveness through a further ablation study.

t=1s t=7s t=09s t=13s

Figure 2: A typical out-of-distribution scenario in interPlan benchmark: nudging around crashed vehicles.
Flow Planner demonstrate strong scene understanding ability and generation adaptability in the situation that is
totaly unseen in the training data.



4.1 Experimental Setup

Benchmarks. In this study, our model is trained on nuPlan [19] featuring a large-scale real-world
driving dataset collected across four different cities. This dataset covers up to 75 scenario types,
including diverse scenarios with multi-vehicle interaction and complex lane structures. Specifically,
the model is trained on the 1M training split, following [S7]. For evaluation, the model is tested
on both nuPlan and interPlan [20], and we mainly focus on the closed-loop performance of the
planners, where an LQR controller is used for simulation. We test the model in both non-reactive and
reactive settings using the following three benchmarks in nuPlan: (1) Vall4 [13]], a validation dataset
with 1118 scenarios in total; (2) Test14-random [9]]: over 200 randomly selected scenarios from the
scenario types assigned by the nuPlan Planning Challenge; and (3) Test14-hard [9]: a collection
of the worst-performing scenarios by rule-based PDM [13]], comprising 272 scenarios. Each of
the three benchmarks covers 14 different types of scenarios respectively. We argue that the Vall4
benchmark can evaluate model’s performance and capability more comprehensively owing to its
sufficient capacity, while Test14-random benchmark may introduce extra uncertainty, hindering the
fairness of evaluation. Whereas Flow Planner achieves overall state-of-the-art performance across
three benchmarks, we primarily leveraged Vall4 for further experiments. In addition, we evaluate our
model using the full-scale interPlan benchmark, which contains 335 challenging interactive scenarios
with specially augmented traffic agents quantity and behavior, as shown in Fig. [2] in reactive mode.
This benchmark highlights model’s capability of modeling interactive behavior in complex and
unexpected scenarios, providing a more appropriate evaluation of our method.

Baselines. For a comprehensive analysis of the effectiveness of our method, we conduct comparative
experiments with prevailing methods, including rule-based, imitation learning, and hybrid methods
that refine the learning-based model with rule-based trajectory post-processing. Specifically, we
compare our method with the following baselines:

IDM [50]:a classic rule-based method, also used for neighboring vehicles control in closed-loop
reactive evaluation;

PDM [13]:the first place of nuPlan contest, which proposed a rule-based model (PDM-Closed), a
learning-based model (PDM-Open) as well as a hybrid version (PDM-Hybrid), all relying on road
centerline;

PLUTO [8]: an imitation learning-based model with extra contrastive objectives and post-
processing;

* GameFormer [23]]: a transformer-based model for interactive prediction based on game-theory,
with extra refinement process;

* Diffusion Planner [57]]: the state-of-the-art model based on diffusion model for multi-modal
trajectory generation.
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Figure 3: Visualization of interaction behaviors. Two challenging scenarios with distinctive interactions in
closed-loop testing, including: (a) changing lane and (b) unprotected left turn in the closed-loop test. The
trajectories illustrated here include: the future planning of ego vehicle, the ego history, and the neighbor history.
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Table 1: The overall performance of Flow Planner and other learning-based baseline models. Evaluation is
conducted in both non-reactive and reactive mode. The highest score of each benchmark is marked with
and the second-best scores appear in bold. In addition, we use * to mark the methods directly leveraging road
centerline extracted from the map.

Vall4 Test14-hard Test14
Type Planner
NR R NR R NR R
Expert Log-replay 93.53 80.32 85.96 68.80 94.03 75.86
IDM 75.60 77.33 56.15 62.26 70.39 74.42
PDM-Closed 92.84 92.12 65.08 75.19 90.05 91.63
PDM-Hybrid 92.77 92.11 65.99 76.07 90.10 91.28
Rule-based
& Hybrid GameFormer 79.94 79.78 68.70 67.05 83.88 82.05
PLUTO 92.88 76.88 80.08 76.88 92.23 90.29
Diffusion Planner w/ refine. 94.26 92.90 78.87 82.00 94.80 91.75

Flow Planner w/ refine. (Ours) 94.31 92.38 78.64 80.25 94.79 92.40

PDM-Open* 53.53 54.24 33.51 35.83 52.81 57.23
GameFormer w/o refine. 13.32 8.69 7.08 6.69 11.36 9.31
PlanTF 84.27 76.95 69.70 61.61 85.62 79.58
Learning-based  p[ yTQ w/o refine.* 88.89 78.11 70.03 59.74 89.90 78.62
Diffusion Planner 89.87 82.80 75.99 69.22 89.19 82.93
Flow Planner (Ours) 90.43 83.31 76.47 70.42 89.88 82.93

Table 2: Performance of different planners in specific scenarios of Vall4, where "Intersection" cor-
responds to the "Starting straight traffic light intersection traversal" scenario.

Planner Starting right turn Starting left turn Intersection Waiting for pedestrian
PLUTO (w/o refinement) 80.19 86.51 90.08 84.65
Diffusion Planner 78.10 87.96 94.57 91.65
Flow Planner (Ours) 83.23 90.60 94.81 93.25

4.2 Main Results and Case Study

Main Results. The overall evaluation results are shown in Table[ll Flow Planner achieves state-of-
the-art performance in the learning-based settings, without rule-based refinement. It is noteworthy
that Flow Planner achieves 90.43 on Vall4, which is the largest and most representative benchmark
of the three. As far as we know, it is the first learning-based method to surpass the 90-score mark
without any prior knowledge on this benchmark, while other learning-based models require extra
rule-based refinement to reach 90+ performance. With the similar post-processing module in [57], our
model Flow Planner w/ refine. achieved competitive performance on the nuPlan benchmark compared
with previous rule-based and hybrid methods. To find out the specific improvement brought by our
method, we further report the performance of Flow Planner and baseline methods in several specific
types of scenarios in nuPlan. As is shown in Table 2] Flow Planner outperforms the two strong
baselines significantly in scenarios where interaction with neighboring vehicles is frequent, including
unprotected left turns and traffic light intersections. In addition, on the interPlan benchmark in which
most scenarios require dense interaction with the environment, as is shown in Table|3] we achieve
8.92-point improvement over Diffusion Planner, demonstrating the strong capability of interactive
modeling. It can also be inferred from the table that Flow Planner exhibits robust interactive behavior
modeling ability even when interacting with jaywalking pedestrians, whose behavior is tricky to
predict due to the lack of relevant data and their volatile movement.

Case Study. To further demonstrate the effectiveness of our method, we select representative
interactive scenarios to compare the behavior of different models in the closed-loop testing. As
is shown in Figure we selected two scenarios from nuPlan benchmark, and report the different
behavior of our Flow Planner and Diffusion Planner. Specifically, in (a), Diffusion Planner failed
to account for a vehicle approaching quickly from the rear-left. It changed lanes despite being



Table 3: Performance of different planners on interPlan and scores on specific scenarios

Planner Overall Score Nudge Around High Traffic Density Jaywalk
PlanTF 47.70 49.40 58.85 33.94
PLUTO (w/o refinement) 58.47 71.56 67.25 25.48
Diffusion Planner 52.90 60.48 49.71 26.20
Flow Planner (Ours) 61.82 72.96 67.21 43.57

slower than the approaching car, resulting in a collision. In contrast, Flow Planner recognized the
fast-approaching vehicle and, realizing that the safety distance was insufficient, aborted the lane
change to avoid collision; while in (b), Diffusion Planner did not consider a right-turning vehicle from
the oncoming lane. It entered the turn at a low speed, leading to a collision. Flow Planner, however,
identified that the right-turning vehicle would arrive later and chose a higher entry speed, safely
completing the turn. More closed-loop planning results where Flow Planner exhibits interactive
behavior modeling capability are shown in Appendix [A]

4.3 Ablation Studies

We ablate the key designs of our method to further study their effects on model performance. The
overall ablation path is shown in Table[d] where we start with a base model by simply stacking self
attention layers to form the decoder while keeping the scene encoder unchanged. The model is then
gradually enriched to form the final architecture, so as to better reflect the improvements gained from
each component.

Table 4: Ablation path of key components on nuPlan(Val14) and interPlan, and performance on specific interPlan
scenarios. Below we use NA for Nudge Around, HTD for High Traffic Density and JW for Jaywalk

Components nuPlan(Vall4) interPlan NA HTD Jw

Base 88.10 41.27 50.61 38.18 27.99
+ Trajectory Tokenization in Eq. 88.33 44.14 4327 48.11 52.73
+ Scale-Adaptive Attention in Eq. ( 88.77 46.25 5131 4428 3442
+ Separate adalLN & FFN in Eq. (6) 89.54 58.22 64.46 60.08 43.16
+ Classifier-free Guidance in Section 90.43 61.82 7296 67.21 43.57

Table 5: Ablation on

~
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1 88.48
4 89.43
16 89.27
20 90.43
40 89.32
80 87.75

Figure 4: Tlustration of the influence of token number on trajectory quality.

Trajectory Tokenization. The choice of trajectory segment number and the length of overlap directly
affect the balance of consistency and flexibility of the generated trajectory. Therefore, we trained
different models with different choices of segment number, and evaluated them on Vall4, as shown
in Table[5]and Figure 4] Note that the overlap length is set to 0 when the segment length is 1 (fully
scattered) or 80 (whole trajectory), and half the length of the trajectory segment in other cases. It can
be revealed from the table and figure that as the length of segments increases, the smoothness of the



generated trajectory increases as well as the model performance. However, when the trajectory is
coarsely segmented, the trajectory tokens become cumbersome to model the multi-modal distribution
of interactive behavior since a single token is responsible for a relatively long horizon of trajectory,
which can contain several different interactions with neighboring agents.

Scale-Adaptive Attention and Separate AdaLLN and FFN. Scale-adaptive attention enables more
efficient feature fusion between numerous tokens extracted from the scenario. However, there
exists inherent heterogeneity between the features collected from different types of instances in the
scenario, and thus the straightforward implementation of adaptive attention does not introduce visible
improvement. With the separate adaLN and FFN modules projecting the heterogeneous features
into a shared space, a prominent performance improvement can be seen from Table ] when the
scale-adaptive attention is cooperatively implemented.

Classifier-free Guidance. The scale of classifier-free guidance iS  Taple 6: Ablation on the scale of
a flexible hyperparameter that can be tuned at inference. Therefore,  cjagsifier-free guidance on Vall4.
we ablated different choices of guidance scale using the same check-

point. The results are illustrated in Table[6] It can be seen from CFG Scale

the table that as the scale of guidance increases, the model’s per- Score
formance also improves. However, an overwhelmingly large scale 1.65 89.64
can also lead to deterioration in performance, since the norms of the 1.70 89.89
conditioned and unconditioned velocity are not perfectly aligned, L.75 90.14
and a scale too large may lead to irreversible deviation on the flow 1.80 90.43
path. Ideally, a proper scale applied during inference can induce even 1.85 90.00
better performance compared with the fully conditioned generation, 1.90 89.63

as is shown in Figure[T}

5 Conclusion

We introduce Flow Planner, a novel learning-based framework for autonomous driving planning that
advances interactive behavior modeling through three coordinated innovations. First, fine-grained
trajectory tokenization enables expressive behavior representation. A well-designed architecture
then facilitates comprehensive spatiotemporal fusion to enhance interaction modeling. Finally, flow
matching combined with classifier-free guidance captures the multi-modal nature of real driving
behaviors, which further attunes to interactive behavior during inference. Over the nuPlan benchmark,
Flow Planner achieves state-of-the-art closed-loop performance among imitation-learning methods,
while demonstrating capability in modeling interactive behaviors in complex driving scenarios. Due
to space limit, more discussion on limitations and future direction can be found in Appendix [E]
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: [NA|
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: [NA|
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Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

 If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: This paper has no theory.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: [NA]
Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We will open-source the code upon acceptance.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: [NA|
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: [NA]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: [NA]
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: [NA |
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No pretrained LLMs are used.
Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: [NA|
Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets are introduced.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We have no human subjects.
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We have no human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM is not a core component in this paper.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Visualization of Closed-loop Planning Results
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Figure 5: Interaction cases in closed-loop results (part 1).
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Figure 5: Interaction cases in closed-loop results (part 2).
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Figure 6: Interaction cases in interPlan closed-loop results.

B Implementations of Training

Data Preprocessing. A scenario in nuPlan contains versatile scene information, whereas not all of it
is used for model prediction. In our method, the model takes the lanes, neighboring agents (vehicles,
pedestrians, cyclers etc.), navigation information and static objects from the scenario as input. These
scenario inputs are collected into tensors once and for all, and can be reused during training.

* Lanes: alane is represented by a sequence of 20 points sampled from the past 2 seconds at 10 Hz,
each of which contains the coordinates of the lane center line and lane boundary line, as well as the
connecting vector of center line and lane traffic signal; up to 70 lanes are fed into the model;

* Agents: the nearest 32 agents to the ego vehicle is encoded as the model input, and each agent
contains the historical trajectories in the past 2 seconds at 10Hz, and states in the current frame;

* Navigation: represented by 5 lanes along the assigned direction, saved in the same form as lanes;
* Static Objects: the static obstacles in the scenario, represented by a vector containing the position
in the ego centric coordinates at the current frame and the specific type of the obstacle;

Transformation and Normalization. The original data in nuPlan is recorded in the world coordinates,
in which the starting point of the ego vehicle can appear in any place, introducing unnecessary

24



complexities for training. Therefore, to unify the numerical value of model input, we first transform
the entire scenario into the ego-centric front-left-up coordinate, in which the state of the ego vehicle
at the first frame of each scenario is (X = 0,Y = 0,6 = 0), and the coordinates of other scenario
instances are transformed accordingly. Specifically, given the world coordinates of the ego vehicle
(X,Y,0), the transformation from the original coordinates (x,y) to the transformed coordinates
(', ") can be formulated as

! cosf sinf —Xcosf—ysinf] [z
y | =|—sinf cosf Xsinf—Ycosb ||y (10)
1 0 0 1 1

In addition, the original scale of coordinates varies in different scenario. To ensure the numerical
stability, we normalized the coordinates and trajectories with statics from training data via z-score

along the x-axis and scaled along the y-axis [9, 57]. The model directly predicts the normalized
future trajectory, and it is then denormalized into the scale of the real-world trajectory.

Data Augmentation. Following previous practice [57]], we applied data augmentation for more
robust generation. The initial states, including coordinates, velocities and heading angle, of the ego
vehicle are first perturbed with random offsets. Then the perturbed initial states and the states at the
20-th frame are used as the boundary condition to solve a new quintic polynomial to replace the first
20 frames of the original ground truth trajectory. Intuitively, this augmentation forces the model
to output a feasible future trajectory even when the ego vehicle is not properly placed on the road,
enabling self-correction when the vehicle is driving off the road.

C Experimental Details

The training is conducted on 8 NVIDIA A6000 GPUs, using the 1M training data split from nuPlan.
The model is trained for over 200 epochs with a batch size of 2048. We used AdamW optimizer for
training, and the learning rate is set to be 5 x 10~%. In addition, we used exponential moving average
(EMA) to stablize the training process, with 0.999 weight decay. During inference, we used a simple
midpoint solver to solve the flow ODE, with only four steps of ODE simulation. The frequency
of model inference is approximately 12Hz. The details for training and inference can be found in
Table.[7]

Table 7: Hyperparameters of Flow Planner

Type Parameter Symbol Value
Num. neighboring vehicles - 32
Num. past timestamps T 21
Dim. neighboring vehicles  Dyeighbor 11
Num. lanes - 70
Num. points per polyline — 20

Training  Dim. lanes vehicles Diane 12
Num. navigation lanes - 25
Num. encoder block - 3
Num. decoder block - 4
Dim. encoder hidden layer - 192
Dim. decoder hidden layer - 256
Num. multi-head - 8
Len. trajectory segment Leg 20
Len. trajectory overlap Loyeriap 10
Flow path - Conditional OT

Inference Temperature' . - 1.0
Flow ODE simulation step - 4

D Benchmarks and Baselines

Benchmark Details. For the nuPlan benchmark, we used the Val14, Test14-random and Test14-hard
benchmarks for evaluation as stated in Sectiondl Each of the benchmarks contains the 14 scenarios
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specified by the nuPlan leaderboard respectively. The models are tested in two modes: non-reactive
and reactive. In the non-reactive settings, the neighboring vehicles and other traffic participants
strictly follow their trajectories in the record and will not react to the ego vehicle; on the contrary,
in the reactive mode, the neighboring vehicles are controlled by the rule-based IDM [50]]. However,
the reaction generated by IDM can sometimes be suboptimal and lead to unnatural behavior of
surrounding vehicles. For the interPlan benchmark, we chose the full-scale test set, with 335 specially
augmented out-of-distribution scenarios. The models are all evaluated in reactive mode.

Baseline Reproduction. We followed [57] to reproduce the baselines on the nuPlan. In addition, we
picked three competitive baselines for further compare on interPlan. For Diffusion Planner, we used
the official implementation to reproduce the results, and the model is trained for 500 epochs, which is
more than twice the number of Flow Planner.

E Limitation & Discussion & Future Work

The inference speed of Flow Planner currently represents its main limitation. While our shift from
diffusion to flow matching has improved sampling efficiency, the system achieves only a speed
marginally faster than 10 Hz on an A6000 GPU, where 10 Hz is the requirement for industrial
deployment [[16]. The main reason leading to low sampling efficiency is that the spatiotemporal
self-attention mechanism remains computationally intensive. Future work will explore acceleration
techniques like the shortcut model [17] to address these constraints without sacrificing planning
quality. Besides, for the interactive behavior modeling, we still use an implicit design to enhance this
capability. The whole method is still an imitation learning-based method, facing the problem of data
quality and data forgetting issues. Maybe we can use the reinforcement learning approach to further
enhance the capability of interactive behavior modeling, but there is still a long way to go to tackle
problems for real-world vehicle implementation.
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