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ABSTRACT

Synthetic tabular data generation is increasingly essential in machine learning,
supporting downstream applications when real-world and high-quality tabular
data is insufficient. Existing tabular generation approaches, such as generative
adversarial networks (GANs), diffusion models, and fine-tuned Large Language
Models (LLMs), typically require sufficient reference data, limiting their effec-
tiveness in domain-specific datasets with scarce records. While prompt-based
LLMs offer flexibility without parameter tuning, they often generate distribu-
tionally drifted data with localized redundancy, leading to degradation in down-
stream task performance. To overcome these issues, we propose ReFine, a frame-
work that (i) derives symbolic if~then rules from interpretable models and embeds
them into prompts to explicitly guide the generation process toward the domain-
specific distribution, and (ii) applies a dual-granularity filtering that suppresses
over-sampling patterns and selectively refines rare but informative samples to re-
duce localized redundancy. Extensive experiments on various regression and clas-
sification benchmarks demonstrate that ReFine consistently outperforms state-of-
the-art methods, achieving up to 0.36 absolute improvement in R? for regression
and 7.50% relative improvement in F for classification tasks.

1 INTRODUCTION

Tabular data serves as a foundational modality in machine learning, underpinning critical applica-
tions in domains such as healthcare, finance, and scientific research (Benjelloun et al.,[2020; |Ghosh)
2012; |Yang et al., 2024; [Shankar et al.l 2024). However, the collection of large-scale, high-quality
tabular datasets is often hindered by strict privacy regulations and the prohibitive costs of expert-
driven annotation (Voigt & Von dem Busschel [2017; [Micel1 et al.,|2020). Such limitations severely
restrict effective model training in many tabular applications, thereby motivating the use of synthetic
data generation (Hernandez et al., 2022} |Shankar et al., 2024).

Previous mainstream methods for tabular data generation are based on non-LLM generative mod-
els such as VAEs (Xu et al., 2019), GANs (Zhao et al.| [2021)) and diffusion models (Kotelnikov:
et al., 2023). Within the LLM-based paradigm, fine-tuning approaches have demonstrated notable
performance (Borisov et al., [2023). Both approaches share a fundamental prerequisite: access to
sufficient reference data, which used as the foundation for learning underlying distributions. In
practice, this prerequisite is often violated in high-stakes domains, where extremely strict privacy
regulations and the rarity of critical events make large-scale, high-quality tabular datasets difficult to
obtain (Kovalerchuk & Vityaev, 2005} Ji et al.l 2014)). For example, in rare disease diagnosis, avail-
able datasets may contain only a few dozen records, a scenario commonly referred to as a low-data
regime (Seedat et al., 2023)), which poses severe challenges for data-driven modeling (Raghavan &
El Gayar, [2019; [Li et al} 2023 |Wang et al.| 2024a)). Consequently, in low-data regimes where only
a handful of samples are available, existing generative methods fail to capture underlying distribu-
tions and thus struggle to produce high-quality synthetic data (Bommareddy et al.,2022; [Fang et al.,
2024a}; [Zhang et al, 2024a) In contrast, prompt-based methods exploit in-context learning to syn-
thesize data without training, offering an alternative for low-data regimes (Seedat et al., 2023} |[Kim
et al.,[2024). However, prompt-based methods face two challenges in low-data regimes:
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Figure 1: Two key challenges in prompt-based LLM tabular data generation in low-data regimes:
(1) Distributional Drift: LLMs often generate biased samples by relying on spurious patterns from
pretraining rather than real data distribution. (ii) Localized Redundancy: Synthetic samples tend
to concentrate in limited regions of the feature space due to repeated use of identical prompts.

(1) Distributional Drift: Prompt-based methods often over-rely on LLMs’ pretrained knowledge,
which poorly captures dataset-specific distribution (Zhong et al [2024). Consequently, generated
samples tend to follow spurious patterns inherited from pretraining corpora rather than the true pat-
terns of the target dataset (Sahoo et al., 2024} [Stoian et al.,2024al). This mismatch leads to synthetic
distributions that drifted from the real data. Figure [I|illustrates this issue: when conditioned on a
small reference set (blue), the LLM produces synthetic data (red) that drift away from the manifold
of real data (cyan). Many samples populate low-density or unsupported regions, highlighting the
LLM’s inability to reconstruct the target joint distribution under data scarcity.

(ii) Localized Redundancy: Prompt-based generation tends to overproduce high-frequency at-
tribute combinations present in the reference data, while rare but informative patterns are rarely
synthesized (Amatriain} 2024} [Liu et al., 2023}, Zevallos et al.,[2023). This overconcentration, which
we term localized redundancy, is further amplified when identical prompt templates are reused to
generate data in multiple batches. As a result, synthetic samples cluster around a few dominant
modes (Kim et al.}, 2024} [Seedat et al.|[2023)), forming high-density regions (red) that contrast sharply
with the broader and more balanced distribution of real data (cyan), as shown in Figure]

To systematically address the two key challenges of prompt-based tabular generation in low-data
regimes, we propose ReFine (Rule-Guided Generation and Dual-Granularity Filtering), a frame-
work comprising two components. To mitigate the distribution of synthetic data often drifted by
LLMs in low-data regimes (Challenge i), we introduce Rules-Guided Generation, which extracts
symbolic if~then formulas from interpretable tree-based models. These association rules are em-
bedded into prompts to guide the LLM toward the distribution of the real data. To mitigate lo-
calized redundancy that persists despite prompt-based generation (Challenge ii), we propose Dual-
Granularity Filtering. This component informs a two-level filtering process: chunk-level pruning
of dominant high-density modes, and instance-level refinement to retain low-density but informative
samples. Our key contributions can be summarized as follows:

* We identify two key challenges of LLM prompt-based methods in tabular data generation in
low-data regimes: (i) distributional drift of the synthetic data; and (ii) localized redundancy
in the synthetic data.

* To address the two challenges, we propose ReFineEI, a framework that constructs associa-
tion rules to guide LLM for tabular data generation, and applies proxy-based distribution
estimation with dual-granularity filtering to reduce localized redundancy.

» Experimental results demonstrate that ReFine consistently outperforms strong baselines,
achieving up to 0.36 absolute gain in R? for regression and 7.5% relative improvement in
F for classification. Comprehensive ablations further highlight the respective contribu-
tions of Rules-Guided Generation and Dual-Granularity Filtering components.

! Anonymous code: |https://anonymous . 4open.science/r/ReFine-5328


https://anonymous.4open.science/r/ReFine-5328

2 RELATED WORK

2.1 NON-LLM TABULAR GENERATION METHOD

Generative Model-based generation. Many work on tabular data synthesis relied on GANs, dif-
fusion models, and score-based models (Hernandez et al., [2022). Among classical methods, CT-
GAN (Xu et al.,[2019) extends GANs to handle mixed-type variables but suffers from mode collapse
and requires heavy preprocessing. TabDDPM (Kotelnikov et al., 2023)) applies diffusion for continu-
ous attributes, yet its iterative denoising is computationally costly and unstable with scarce samples.
TABSYN (Zhang et al.l [2024b) integrates diffusion with a VAE backbone to better support mixed-
type data, but still depends on sufficient training density to avoid spurious correlations. Overall,
while effective in abundant-data settings, these models degrade sharply in low-data regimes.

Constraint-based tabular generation. Another line of work enforces domain validity through hard
logical constraints. Early methods embed linear constraints into generative models via Constraint
Layers|Stoian et al.|(2024b)). More recently, Disjunctive Refinement Layers (DRL) extend this idea to
quantifier-free real linear arithmetic (QFLRA), enabling non-convex and disjunctive feasible regions
Stoian & Giunchiglial(2025). While effective for ensuring semantic validity, such methods face two
key drawbacks: they rely on exhaustively specified domain rules, which is rarely feasible in practice,
and hard constraints restrict the generation space, thereby limiting diversity.

2.2 LLM-BASED TABULAR GENERATION METHOD

LLMs have recently gained attention for tabular data generation, which exploit pretrained knowledge
to make them well-suited for structured data tasks. Existing approaches fall into two categories:
fine-tuning methods and prompt-based methods.

Fine-Tuning Methods. Fine-tuning methods adapt LLM parameters to tabular formats and domain
constraints. For instance, GReaT (Borisov et al.,|2023)) fine-tunes GPT-2.5 on tabular corpora, while
HARMONIC (Wang et al., [2024b)) introduces instruction signals derived from nearest-neighbor re-
lationships. Although effective with abundant reference data, these methods risk severe overfitting
when reference data is small, as parameter updates dominate the limited supervision.

Prompt-based Methods. Prompt-based methods leverage the in-context learning ability of LLMs,
enabling them to generate tabular data by conditioning on a few labeled examples embedded directly
in the prompt. Without modifying model parameters, these methods use prompt design to guide the
generation process. EPIC improves representation balance across classes by formatting grouped data
and crafting class-aware prompts (Kim et al.,2024). CLLM enhances data quality in low-resource
scenarios by combining prompt design with a curation step that filters samples based on model
confidence and uncertainty estimates (Seedat et al.,|2023). However, prompt-based methods struggle
to capture logical dependencies and often suffer from distributional imbalance due to repeated use
of identical prompts, limiting their effectiveness in low-data regimes.

3 METHODOLOGY

Prompt-based tabular generation in low-data regimes suffers from two key issues: Distributional
Drift and Localized Redundancy. To tackle these challenges, we unify our intuition and method-
ological pipeline in Figure Here, the Real Distribution (cyan) denotes the target data mani-
fold, while the Original Small Dataset ( ) provides limited supervision. To mitigate Distri-
butional Drift, we propose (1) Rules-Guided Generation, which extracts Association Rules (red)
from tree-based models to explicitly capture key feature dependencies. These rules are embedded
into prompts, guiding the LLM toward generation that better align with the real distribution. How-
ever, static prompting still induces Localized Redundancy. To address this, we introduce (2) Dual-
Granularity Filtering, which prunes dominant high-density chunks while retaining informative but
rare samples at the instance level. Together, these two components expand the effective generation
space and enhance the fidelity and diversity of the augmented dataset for downstream learning. In
what follows, we first formally define the tabular generation task under low-data regimes. Then, we
describe our two components for addressing the two primary challenges.
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Figure 2: Overall framework of ReFine (upper panel), which consists of two components: (1)
Rules-Guided Generation, which leverage rules to guide LLM generation toward the underlying
Target Distribution; and (2) Dual-Granularity Filtering, which suppresses overrepresented pat-
terns and preserves informative, low-density instances. The geometric view (lower panel) illustrates
our insight—how rule-guided prompting anchors generation in a faithful Generation Space.

3.1 PROBLEM SETUP

Definition 3.1 Tabular Data Generation in Low-data Regimes. Let X C R be the d-dimensional
feature space and Y the label space (discrete for classification, real-valued for regression). Let
Dyin = {(zi,y:)}Y| be a small labeled dataset independently and identically drawn from the
unknown real distribution pr(X,Y), where x; € X and y; € Y, with N limited to only a few
examples. The task defines a generation function G that maps D, to a synthetic dataset:

Dsyn = g(Dtrain) = {(ija gj)}]]wzl

where (Z,7;) is a synthetic sample, and M is the number of synthetic samples, typically satisfying
M > N. The task goal is to generate Dy, such that a model trained on it achieves strong predictive
performance when evaluated on a held-out real test set D5y ~ PR.

3.2 COMPONENT I: RULES-GUIDED GENERATION

We mitigate Distributional Drift with Rules-Guided Generation, which extracts association rules
from limited reference data Dy, as structural priors to guide generation. Unlike other modalities,
tabular data often lack inherent structure and contain many irrelevant features, making it difficult for
an LLM to capture feature dependencies from limited data (Fang et al., [2024b). To provide infor-
mative guidance, we define association rules as if-then formulas extracted from decision paths in
tree-based models, capturing supervised dependencies between features and labels. Unlike classical
association rule mining based on co-occurrence statistics, our rules reflect predictive patterns learned
via training. We apply a two-stage LLM-driven procedure to extract reliable association rules.

1) Rules Extraction From Top-Performing Trees. We train a Random Forest (RF) on Dy, ,;, and
rank trees based on in-sample accuracy, selecting the top-k trees (e.g., k=3). Each selected tree
provides a set of if-else decision rules (Kulkarni & Sinha, 2012; |Azad et al.| 2025; |[Khan et al.,
2024), yielding diverse local patterns under low-data regimes.

2) Rule Generalization and Denoising. To construct reliable association rules, we apply:

(a) Rule Generalization. We prune and consolidate decision paths across top-performing trees,
retaining only their core (i.e., high-support, low-depth) branches that reflect stable feature—label
dependencies. This produces if—then association rules that generalize beyond individual training



instances. Treated as conditional templates with the label as premise, these rules enable inverse
reasoning and steer generation toward broader yet distributionally consistent samples.

(b) Rule Denoising. To reduce variance introduced by symbolic extraction and decoding noise (He
et al., 2024), we apply self-consistency techniques from reasoning tasks (Wang et al., 2023}
Lewkowycz et al., 2022): we perform multiple generations with different seeds and retain only
the most frequently occurring rules. This ensures the resulting rule set is stable and reliable.

3) Tabular Data Generation via Rules-Guided Prompt. Association rules obtained in Component
I are converted into structured prompts encoding their if~then formulas. These prompts constrain the
LLM’s decoding space to enforce meaningful distributional patterns, yielding the synthetic dataset
Dy, that offers distribution-consistent diversity.

3.3 COMPONENT II: DUAL-GRANULARITY FILTERING

We introduce Dual-Granularity Filtering (Component II) to mitigate localized redundancy in the
Dygyy. The procedure operates at two levels: chunk-level filtering, which prunes over-represented
modes in high-density regions, and instance-level filtering, which filters unreliable samples in low-
density regions. Both stages are guided by a reference model M trained exclusively on D,
ensuring that filtering remains consistent with the real data distribution.

3.3.1 PROXY-BASED DENSITY ESTIMATION

We quantify local redundancy by assigning each synthetic sample to its nearest real anchor and
examining the concentration of synthetic mass around anchors. Concretely, let {s; j-vzl denote the
N = |Dyyainland let DCR be the mixed-type distance from (Borisov et al[2023). This induces a
discrete proxy density over anchors,

{SCZ‘ € Dsyn

. j=1,...,N. (1)

P j =arg min DCR(;, Sk-)}

Dl

where x; € Dgyn, 5; € Dirain and pj is the fraction of synthetic samples whose nearest neighbor
in Dyyain 18 55 (thus ) ;pj = 1). We quantify overall concentration with the Gini coefficient G(p);

larger G(p) indicates more localized redundancy. For targeted filtering, we split Dsy,, into high-
density (Dhpign) and low-density (Diqy) sets by G(p).

3.3.2 CHUNK-LEVEL FILTERING

Samples in Dy;,ep, are grouped into chunks of size S, each denoted as C,.. Each chunk receives a
score based on the average prediction correctness across its members under M:

1
ICr

Chunks are then ranked by score, and only a top fraction is retained, with the pruning ratio adaptively
scaled by the redundancy:

1 X
Z T Z“A (P, (yi | 2:) > 0.5), )

(-757‘,7?/1,)667‘ t=1

Score(C,) =

ratioprune = AIn(G(p)) + B, 3)

where A and B are fixed constants. This adaptive schedule increases pruning strength with greater
localized redundancy, while maintaining flexibility when the proxy distribution is balanced.

3.3.3 INSTANCE-LEVEL FILTERING

In contrast, D)., reflects low-density regions with potentially informative but noisy samples. We
filter samples using confidence and uncertainty scores derived from the same reference model M.
Thresholds are modulated by the G(p):
Confiresh = feont — G(p) * Oconf
Uncertmresh = funcert + G(p) * Ouncert-

Only samples satisfying both Conf(x) > Confypesn and Uncert(z) < Uncertyyesn are retained,
ensuring filtering that adapts to dataset-specific sparsity.

4)



3.3.4 JOINT TUNING VIA SURPRISAL MINIMIZATION

The only tunable hyperparameter is chunk size S. We determine the optimal S* by minimizing
model surprisal on Dtrain:

1

S* = T ——
e [Dtrain]

> logPad(ys | )| - )

This process produces a filtered dataset that enables the model to align with the target distribution.

4 EXPERIMENT

In this section, we evaluate ReFine on downstream tasks and analyze how its two components
address the key challenges:

1. Mitigating Distributional Drift: How do rules enhance data quality? Section [4.3] shows that
rule-guided generation achieves rule-compliance rates consistent with real data, thereby aligning
synthetic samples more faithfully with the target distribution.

2. Reducing Localized Redundancy: How does filtering balance the distribution? Section [4.4]
shows that a reliable redundancy metric together with dual-granularity filtering prevents overcon-
centration, leading to more useful synthetic datasets.

4.1 EXPERIMENT SETTINGS

Datasets: To avoid potential data contamination—where strong performance on popular bench-
marks such as Adult, Heart, and Housing may arise from LLM memorization rather than genuine
generalization (Xu et al., [2024ajRonval et al., 2025), we use tabmemcheck (Bordt et al.,|2024)), a
recently proposed tool for detecting memorization in tabular data. Specifically, we apply two of its
tests—the Feature Names and Header Test—to eight candidate datasets. Based on these tests, only
adult and heart are classified as seen datasets; the remaining six show no evidence of memorization
and are classified as unseen ; full results are in Appendix

Baselines: (1) Non-LLM baselines: (i))CTGAN (Xu et al., 2019), a GAN-based model designed
for tabular data generation; and (ii) TABSYN (Zhang et al., [2024b), a score-based generative
model that achieves strong performance in sufficient-data settings. (2) LLM-based baselines: (i)
GREAT (Borisov et al., [2023)), which fine-tunes a pretrained GPT 2.5 for tabular data generation;
(i1) EPIC (Kim et al., 2024), a prompting-based method that automates dataset construction through
instruction-driven generation; and (iii) CLLM (Seedat et al.,[2023), which enhances LLM-generated
data via instance-level curation. (3) Constraint-based baseline: DRL (Stoian & Giunchiglial [2025)),
a constraint-driven generator that synthesizes data by solving logical constraints.

Experimental Setup: We evaluate all models under low-data regimes with N € {30, 60, 90, 120}.
For each dataset and value of N, we randomly sample 10 training splits, while the remaining data
serve as test sets. Evaluation follows the Machine Learning Efficiency (MLE) setting: each method
generates 1,000 synthetic samples per split, on which we train an XGBoost (Chen & Guestrin,[2016).
Performance is reported as average F1 score (classification) or R? (regression) over all splits. Further
implementation details are provided in Appendix

4.2 MAIN RESULTS

Table [I] reports the downstream performance of ReFine and representative baselines under four
low-data regimes (N € {30, 60,90,120}). ReFine achieves the strong results across all regimes,
which improves R? by as much as 0.36 and F} by up to 7.5% relative to the strongest prior method
(CLLM) on unseen datasets, demonstrating robust generalization. The full ReFine framework
(I+II) outperforms its individual components, achieving higher average ranks across benchmarks.
This suggests the integration of both components contributes positively to overall effectiveness. As
the amount of training data (/V) increases, distribution-modeling capacity of non-LLM baselines,
especially TabSyn, becomes more evident—they narrow the gap and occasionally approach LLM
methods. This is consistent with their need for denser reference data. At the same time, DRL shows




Table 1: Main results on benchmark datasets. We report I score for classification tasks and R2
for regression tasks. Unseen datasets (i.e., not included in the LLM’s memory for LLM-based

Generator) are highlighted in blue, and seen datasets are highlighted in red. The best result in each
row is shown in bold, and the second-best result is underlined.

Original Data | Non-LLM Methods | LLM-Based Methods
Datasets | Real | CTGAN| DRL | TABSYN| GREAT | EPIC | CLLM | I\Il | H\I | I+I
Disease (N=30) 93.68 44.58 39.49 54.79 46.54 32.01 61.89 59.61 64.44 70.22
Game (N=30) 86.0 32.03 33.54 44.13 53.65 13.93 54.12 56.44 45.0 59.13
Apple (N=30) 86.60 47.21 51.33 32.32 5891 56.10 58.18 57.80 58.66 59.43
GPA (N=30) 47.29 15.76 14.46 19.22 31.57 32.03 40.17 41.21 35.88 43.14
Student (N=30) 0.67 -0.91 -0.01 0.14 0.21 0.35 -0.11 0.37 0.08 0.38
Farm (N=30) -0.04 -0.51 -0.07 -0.38 -1.03 -0.68 -0.29 -0.44 -0.23 -0.30
Adult (N=30) 76.92 50.47 46.59 62.83 67.45 61.94 73.11 73.04 73.15 73.91
Heart (N=30) 86.71 48.16 38.66 79.40 80.74 81.20 80.47 75.17 80.00 80.14
Disease (N=60) 93.68 30.03 38.25 65.34 52.80 44.05 66.86 75.65 62.58 7241
Game (N=60) 86.0 31.83 30.10 61.10 54.76 13.16 67.54 61.39 59.81 70.87
Apple (N=60) 86.60 40.40 49.23 27.07 60.33 67.92 68.60 58.71 69.92 66.70
GPA (N=60) 47.29 18.11 15.64 28.48 35.60 32.19 33.17 44.34 21.57 44.58
Student (N=60) 0.67 -0.07 -0.04 -0.14 0.02 -0.63 -0.48 0.27 -0.15 0.34
Farm (N=60) -0.04 -0.22 -0.16 -0.17 -0.16 -0.21 -0.30 -0.21 -0.12 -0.15
Adult (N=60) 76.92 47.55 49.02 63.58 69.70 62.78 73.94 73.28 72.87 71.48
Heart (N=60) 86.71 49.77 38.14 81.35 80.64 77.55 80.33 81.37 78.15 80.36
Disease (N=90) 93.68 47.18 39.04 69.90 65.32 30.03 74.04 69.74 65.47 76.45
Game (N=90) 86.0 33.67 27.81 65.93 61.17 13.16 59.97 59.44 41.77 62.17
Apple (N=90) 86.60 43.08 38.67 20.69 64.23 73.67 73.43 65.23 72.78 74.88
GPA (N=90) 47.29 14.91 12.24 34.51 36.19 16.28 41.79 47.21 31.56 48.89
Student (N=90) 0.67 -0.02 -0.03 -0.12 0.22 0.32 -0.69 0.34 -0.27 047
Farm (N=90) -0.04 -0.34 -0.05 -0.15 -0.98 -0.16 -0.16 -0.15 -0.14 -0.13
Adult (N=90) 76.92 41.67 47.47 69.77 71.52 66.73 74.11 78.45 73.75 74.10
Heart (N=90) 86.71 42.04 39.03 8143 81.05 77.65 81.23 82.44 78.74 80.00
Disease (N=120) 93.68 45.30 73.92 62.37 55.70 55.37 78.30 78.97 61.82 81.96
Game (N=120) 86.0 26.95 31.04 63.50 66.32 48.99 61.32 45.48 54.76 61.67
Apple (N=120) 86.60 39.83 34.29 80.54 60.91 79.16 70.66 70.62 68.53 74.96
GPA (N=120) 47.29 16.58 10.63 38.57 51.29 46.61 45.20 40.42 46.95 47.717
Student (N=120) 0.67 0 0.01 0.41 0.23 0.29 0.22 0.21 0.17 0.29
Farm (N=120) -0.04 -0.05 -0.01 -0.22 -0.18 -0.30 -0.23 -0.10 -0.29 -0.07
Adult (N=120) 76.92 48.12 39.22 68.87 72.58 68.35 71.73 73.36 73.19 72.93
Heart (N=120) 86.71 46.29 38.29 83.80 84.17 71.33 75.24 84.97 75.02 75.93

nearly flat performance across IV, since it enforces rules as hard constraints during generation. While
this guarantees strict rule adherence, it severely limits the diversity of generated samples and pre-
vents DRL from exploiting richer evidence when more real data become available. By contrast,
performance varies significantly among LLM-based methods. EPIC and GREAT lack explicit gen-
eration guidance, which limits their ability to enforce meaningful structure in synthetic data. The
relative advantage of ReFine becomes smaller; in some cases (e.g., GPA), CLLM achieves a slightly
higher R?. This suggests that rules, while highly beneficial under data scarcity, may add mild con-
straints on numeric variability once sufficient reference data is available. Some LLM-based methods
perform well on seen datasets but degrade notably on unseen datasets . This discrepancy aligns
with the data contamination risk highlighted in our datasets selection—performance gains may in
part reflect memorization from pretraining rather than true generalization. In contrast, ReFine main-
tains stable performance across both, validating its capability for genuine generalization.

4.3 MITIGATING DISTRIBUTIONAL DRIFT

How do rules enhance data quality? To assess the extent to which generated samples adhere to
the extracted association rules, we define the Rule Compliance Rate (RCR). Given a dataset S
and a set of association rules R, RCR is the percentage of samples in S that satisfy all rules in
R. We compare rule-guided and prompt-only generation across three representative datasets and
four low-data regimes (N=30/60/90/120), evaluating both rule adherence (RCR) and downstream
utility. Table |2 shows that under extreme low-data regimes (/N =30), rule-guided generation signif-
icantly compensates for the lack of distributional evidence: compared to prompt-only generation, it
produces samples with both higher rule adherence and stronger downstream utility (MLE). As N
increases (N=60/120), the difference becomes most evident in distributional alignment. For in-
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Figure 3: t-SNE visualization of Real Data, Rule-Guided synthetic data, and Prompt-only synthetic
data on the Disease dataset across varying training sizes (N=30/60/90/120).

stance, in the Disease dataset, prompt-only data attains superficially higher RCR but deviates from
the real distribution and yields much lower utility. By contrast, rule-guided data achieves RCR
values closer to real data and substantially improves utility. This indicates that high but distorted
RCR is not reliable, and

that the true advantage of Table 2: Comparison of rule-guided data vs. prompt-only data across
rules lies in correcting such  three datasets and varying training sizes (N=30/60/90/120). The

bias and aligning the syn- petter results are in bold.
thetic distribution with the

target one. The t-SNE vi- Diest Dyrain | Rule Guided Dy | Prompt-only Dy,
sualizations (Figure EI) fur- RCR(%) RCR(%) | RCR(%) MLE | RCR(%) MLE
ther support this finding:  Disease (N=30) 21.4 333 163 59.61 12.2 48.70
rule-guided samples form  GPA (N=30) 64.5 70.0 56.7 41.21 33.8 26.85
distributions that remain  Student (N=30) 33.9 36.7 46.4 0.37 15.9 -0.11
close to the real manifold, pjgeace (N=60) 25.5 31.7 30.9 75.65 71.1 54.32
whereas prompt-only sam-  gpa (N=60) 51.5 61.7 49.1 44.34 225 15.44
ples drift into unsupported  student (N=60) 80.2 13.3 16.1 0.27 156  -0.49
;Z%iﬁ/rg'y gﬁ?;zltle 2;;‘;;;; Discase (N=90) | 31.3 444 416 6974 | 668 6885
; ) GPA (N=90) 61.1 51.1 52.7 47.21 26.4 27.07
tional drift and enhance o ;o N_o0) 532 46.7 55.4 0.34 268  -0.70
the utility of synthetic data
across regimes. Disease (N=120) | 28.7 38.3 30.7 76.56 52.8 55.52
GPA (N=120) 52.6 533 40.8 40.42 31.6 44.13
We conduct further studies  Student (N=120) | 57.7 542 67.7 0.21 17.2 -0.46

on Component I to assess

both robustness and design

effectiveness (Appendix [D). Results show that while performance remains stable across different
top-k values, structured rule formats (i.e., “if-then”) and self-consistency denoising yield clear im-
provements, validating the effectiveness of our design.

4.4 REDUCING LOCALIZED REDUNDANCY

How does filtering balance the distribution? To answer this, we compare different redundancy met-
rics and granularity settings and evaluate their impact on downstream utility (MLE) across datasets
and data regimes. Table[3|reveals two key insights. (i) Not all redundancy metrics are equally effec-
tive. Although both Gini and entropy cab measure redundancy, Gini consistently yields higher MLE
across datasets and training sizes (/V), particularly under data-scarce conditions. This indicates that
redundancy in prompt-generated data is primarily driven by a small number of highly repeated pat-
terns, rather than widespread noise. Gini better captures this structure by emphasizing inequality,
whereas entropy averages over all regions, giving undue weight to rare, possibly noisy instances and
thereby underestimating redundancy. These results emphasize dominant concentrations (e.g. Gini)
are better suited to detect and suppress it. (ii) Redundancy in LLM-generated data manifests at
multiple scales—both within individual samples and across batch-level concentrations. As shown in
Table 3] dual-granularity filtering consistently outperforms instance-only and chunk-only strategies
across datasets and training sizes, confirming the necessity of addressing both levels. Instance-
level filtering effectively removes noisy outliers but fails to capture global distributional imbalances.



Table 3: Evaluation of different redundancy metrics (Gini vs. Entropy) and filtering granularities
(Instance-only, Chunk-only, Dual) within Component I1.

| Redundancy Metric I Different Granularity

| Gini Entropy || Instance | Chunk | Dual
| Value MLE | Value MLE || Only | Only | Granularity

Disease (n=30) 040 70.22 | 0.13 68.87 69.29 63.88 70.22

GPA (n=30) 0.23 4314 | 0.06 39.88 39.39 41.02 43.14

Student (n=30) 0.58 0.38 | 0.31 0.36 0.39 0.35 0.38

Disease (n=60) 0.68 7241 | 030 72.03 71.77 68.81 72.41

GPA (n=60) 0.23 44.58 | 0.03 38.53 43.25 45.04 44.58

Student (n=60) 0.61 0.34 0.20 0.31 0.32 0.19 0.34

Disease (n=90) 040 7286 | 0.21 76.45 71.65 71.97 76.45

GPA (n=90) 0.25 48.89 | 0.02 4691 47.62 46.55 48.89

Student (n=90) 0.58 047 | 020 043 0.45 0.38 0.47

Disease (n=120) | 0.35 81.96 | 0.14 78.97 80.48 69.74 81.96

GPA (n=120) 0.29 47.77 | 0.08 45.12 42.99 40.77 47.77

Student (n=120) | 0.31 029 | 0.09 033 0.05 0.45 0.29
In contrast, chunk-level filtering Chunk- | " I o o

. . . Level nstance-Level Filtering Before Filtering

suppresses dominant high-density o012 Fitoring after Filtering
modes but may retain localized re- 0.10 1

dundancy. By integrating both scales
signals, dual-granularity filtering g
achieves more balanced coverage °° B
and higher downstream utility.
This effect is visually illustrated in o002
F]gure chunk—level ﬁlterlng ﬂat_ 0.00 Dif:ferent Modes Densities (Sorted) in Proxy Distribution
tens overrepresented modes, while

instance-level filtering enriches the  Figure 4: Proxy modes distribution before and after dual-
long-tail reg1ons—togethe.tr 1esOring  oranularity filtering.
a more uniform and informative

synthetic distribution.

We further validate the robustness of Component II in Appendix |[El The Gini-driven pruning func-
tion peaks at intermediate retention, striking a balance between diversity and redundancy removal.
Notably, Gini values stabilize with as few as 1,000 samples, confirming its suitability as a stable
redundancy signal across generations.

5 CONCLUSION

We present ReFine, a two-component framework that addresses fundamental limitations of prompt-
based LLM tabular generation in low-data regimes. Our approach integrates symbolic if-then rules
derived from interpretable models to enforce domain-specific feature distribution, while employing
dual-granularity filtering to mitigate localized redundancy inherent in batch generation processes.
The framework demonstrates consistent improvements across diverse benchmarks, achieving up to
0.36 absolute gain in R? and 7.5% relative improvement in F over existing methods. Component-
wise analysis reveals that rule-guided generation effectively captures dataset-specific dependencies
often overlooked by pre-trained models, while dual-granularity filtering successfully rebalances syn-
thetic distributions through coordinated chunk-level and instance-level selection strategies. Never-
theless, the current implementation of chunk-level retention utilizes empirically derived logarithmic
scaling, potentially limiting generalizability under extreme distributional scenarios. Future research
directions include exploring adaptive retention functions and establishing theoretical foundations for
improved cross-domain robustness and generalization. We leave this as an avenue for future work.
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A USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this manuscript, we employed a large language model (LLM) to assist with polishing
the writing. Specifically, the LLM was used to improve clarity, grammar, and readability of the text.
All substantive ideas, analyses, and conclusions are solely those of the authors.

B DATASET CONTAMINATION TEST

B.1 TABMEMCHECK

To rigorously evaluate the generalization capabilities of prompt-based tabular data generation, we as-
sess potential training set contamination in popular benchmark datasets. Following concerns raised
in recent studies (Xu et al., 2024a; [Ronval et al.| 2025), we employ tabmemcheck (Bordt et al.,
2024), a diagnostic tool for detecting dataset memorization in LLMs. Specifically, we use two tests:

 Feature Names Test: Given a few sample rows, the LLM is prompted to infer corresponding
Column Names.

* Header Test: The LLM is prompted to reconstruct the header (column names) and the first
few data rows of the dataset in CSV format.

B.2 EXAMPLE: HEART DATASET (GPT-40)

As shown in Figure 5| GPT-40 accurately recovers the feature names and generates realistic rows
for the heart dataset, despite limited prompting. Fields such as ST_Slope and RestingECG
are generated verbatim, indicating memorization.

This demonstrates that strong LL.Ms may replicate datasets, compromising fair evaluation.

Dataset: heart.csv
Feature Names Test:
Legend: Prompt
Dataset: heart.csv
Header Test: Age,Se
4 4

Figure 5: GPT-40 reproduces the heart dataset. Field names and values are copied precisely,
indicating contamination.

B.3 EXAMPLE: ADULT DATASET (QWEN2.5-32B)

In contrast, Qwen2.5-32b fails to regenerate exact feature names but instead identifies the dataset
by name and describes its contents and use cases (as shown in Figure [6). This demonstrates
semantic-level exposure rather than strict memorization.

Such dataset-wide familiarity still violates the assumption of data independence and motivates fil-
tering benchmarks during evaluation.

B.4 IMPLICATIONS AND DATASET FILTERING

These examples reveal that both closed-source (GPT-40) and open-source (Qwen2.5) models can
memorize benchmarks—either by reproducing format or semantically recognizing dataset identity.
Table [ summarizes model accuracy across these tests. High scores on these tasks suggest that the
LLM has memorized structural or content-level information about the dataset, potentially inflating
downstream performance.
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Info: Removed the feu-shot dataset adult-train.csv because it is similar to the dataset being tested.

Figure 6: Qwen2.5-32b recognizes the adult dataset. While exact headers are missing, the model
describes the dataset and its usage.

Table 4: Feature Names and Header Test Results. Feature Names Test: The LLM infers column
names from sample rows. Header Test: The LLM completes the header and first few rows of the
CSV. Percentages indicate accuracy for each dataset and LLM.

\ GPT-40-0806 GPT-3.5-turbo-1106 Qwen2.5-32b-Instruct Qwen2.5-14b-Instruct

\ Feature Names  Header \ Feature Names  Header \ Feature Names  Header \ Feature Names Header
Other Datasets 0% 0% 0% 0% 0% 0% 0% 0%
Adult 86.67% 75.0% 86.67% 100.0% 0% 25.0% 0% 80.0%
Heart 100.0% 55.56% 25% 22.22% 0% 11.11% 0% 12.50%

*Although no correct column names were produced, the LLM identified “the Adult dataset from the UCI Machine Learning Repository”

C EXPERIMENTAL SETUP DETAILS

Model Configuration. We use GPT-3.5-Turbo-1106 as the backend model for both association
rule extraction and data generation. Each baseline is configured to generate roughly 2,000 synthetic
samples per dataset.

Rule-Guided Generation. We set k£ = 3 for selecting top-performing trees in Random Forests, and
apply self-consistency by aggregating 5 independently sampled generations for rule extraction.

Dual-Granularity Curation. We use XGBoost as the reference model M for evaluating chunk-
level informativeness, and search chunk sizes S € {20, 25, ...,60} during tuning.

Evaluation. For each run, we train XGBoost on 1,000 synthetic samples under 10 random seeds
and evaluate on the corresponding real dataset. Classification tasks are measured with F1 score;
regression tasks with 2.

D FURTHER STUDY ON COMPONENT I

We conduct a series of supplementary analyses to unpack this question. In Section we test the
stability of extracted rules by varying the number of top-k trees and find that rule quality remains ro-
bust across settings. In Section[D.2] we compare rule formats and show that explicit if~then clauses
provide clearer guidance than natural-language paraphrases. In Section we examine rule de-
noising strategies and demonstrate that self-consistency aggregation yields more reliable rules than
single-pass or CoT prompting. In Section [D.4] we validate transferability across different LLM
backbones, confirming that rule guidance consistently improves synthetic data quality regardless of
model scale. In Section [D.5] a case study illustrates how noisy tree paths are distilled into com-
pact and interpretable rules through merging and denoising, highlighting both robustness and in-
terpretability. Together, these studies confirm that rules enhance data quality by providing stable,
precise, and broadly applicable generation guidance.

D.1 EFFECT OF TOP-K TREES IN RULE EXTRACTION.

To examine the robustness of the extracted rules, we vary the number of top-k trees used for rule
extraction (k=1, 2, 3,5,10). Across all settings, the resulting rule-compliance rates (RCR) remain
stable, suggesting that the induced rules capture consistent feature—label dependencies that are not
sensitive to the choice of k. While k=1 or 2 already achieve similar RCR, we adopt k=3 as a default
since it provides broader rule coverage than very small £ while avoiding the additional overhead
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Table 5: Rule Compliance Rate (RCR) Results for different k values (Dyegy and Digyin)-

k=1 k=2 k=3 k=5 k=10
D test D train D test D train D test D train D test D train D test D train

Disease (N=30) | 63.44 83.33 | 36.38 53.33 | 29.79 40.00 | 44.61 50.00 | 72.99 63.33
GPA (N=30) 62.45 70.00 | 62.45 70.00 | 58.17 66.67 | 62.57 70.00 | 63.76 60.00
Student (N=30) | 46.12 56.67 | 28.83 50.00 | 26.53 50.00 | 50.66 73.33 | 36.45 30.00

Disease (N=60) | 60.67 76.67 | 34.92 35.00 | 43.04 53.33 | 26.41 2833 | 5093 56.67
GPA (N=60) 4190 36.67 | 42.02 56.67 | 58.02 70.00 | 49.01 65.00 | 49.70 58.33
Student (N=60) 17.72  13.33 | 54.77 4833 | 3446 36.67 | 43.07 35.00 | 57.95 61.67

Disease (N=90) 50.56 70.00 | 34.61 46.67 | 69.18 80.00 | 13.67 17.78 | 61.10 73.33
GPA (N=90) 50.61 57.78 | 50.74 57.78 | 74.85 70.00 | 66.12 62.22 | 54.00 48.89
Student (N=90) 31.58 26.67 | 26.67 2222 | 31.13 27.78 | 55.65 50.00 | 49.38 51.11

Disease (N=120) | 51.21 63.33 | 27.16 41.67 | 30.26 39.17 | 28.63 38.33 | 28.78 38.33
GPA (N=120) 40.98 44.17 | 4850 4833 | 60.74 41.67 | 54.52 39.11 | 64.73 54.62
Student (N=120) | 29.57 31.67 | 65.82 63.33 | 42.58 43.33 | 32.36 34.17 | 2897 34.17

-
- There is a noticeable trend where patients diagnosed with Alzheimer's
often have lower MMSE scores. This trend is particularly apparent
among older patients, suggesting a strong association between advanced
age, decreased cognitive function, and an Alzheimer's diagnosis. The
lower functional assessment scores in these individuals further support
this link, indicating that cognitive decline is a key factor in

distinguishing those with Alzheimer's. )
-

- If Diagnosis = 1:

- Then MMSE < 16.85 and Functional Assessment < 6.90
- If Diagnosis = 0:

- Then MMSE > 18.85 and Functional Assessment > 6.90

Figure 7: Illustrative “if—then” Form and its Natural-Language paraphrase derived from the Disease
dataset (N=30).

of larger k values. This balance ensures that the extracted rules are both robust and efficient for
downstream prompting.

D.2 DIFFERENT RULE FORMAT COMPARISON.

To gauge whether the explicit “if—then” representation is essential to the success of Rule-Guided
Generation, we recast every Random-Forest path into two formats: (i) its original “if—then” clause
and (ii) a concise natural-language paraphrase, which automatically produced by prompting the
LLM to restate each path in natural language. These two formats reflect two distinct rule-extraction
schemes. A side-by-side example of the two rule forms is shown in Figure[7] As shown in Table|[6]
if-then rules outperform both natural-language rules and the No-Rule baseline, demonstrating the
benefit of symbolic structure. While both rule-based approaches surpass the baseline, the symbolic
form delivers more reliable performance. This advantage stems from two key factors: (i) Random
Forests extract concise and faithful feature—label dependencies even in low-data settings, and (ii)
the if~then format retains explicit numeric boundaries and dependent constraints, unlike natural lan-
guage, which tends to weaken precision (Xu et al., 2024b). By guiding generation through explicit
symbolic rules, the LLM is directed toward semantically coherent subspaces, resulting in higher-
quality samples.

D.3 ROBUSTNESS OF RULE DENOISING STRATEGY.

We evaluate how different Rule Denoising strategies affect data quality. We compare our proposed
Self-Consistency Rule Denoising (described in Section[3.2)) against two alternatives: (i) Single-Pass,
which denoise rules in one step without verification, and (ii) Chain-of-Thought (CoT) prompting,
which guides the LLM to reason step-by-step during rule denoising (Wei et al.l [2022). Results
in Table [/| reveal that both Single-Pass and CoT aggregation yield less consistent performance
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Table 6: Performance under different rule rep- ~ Table 7: Performance under different rule de-

resentations (n = 30). noising strategies (n = 30).
| NoRule | Natural Language | “if-then” Form | Single-Pass | CcoT | Self-Consistency
Disease | 49.13 £1.2 57.54 + 1.7 59.61 +1.5 Disease | 54.26 + 3.2 | 58.46 4+ .98 59.61 + 1.5
GPA 24.80 + 4.0 37.78 + .60 41.21 + .97 GPA 24.80 +4.0 | 38.48 + .82 41.21 + .97
Student | —0.11 £ .12 —0.79 £ .53 0.37 £ .02 Student | 0.35 + .06 0.35 &+ .02 0.37 + .02

Table 8: Main results on benchmark datasets (n=30). We report F1 score for classification tasks and
R? for regression tasks. The best result in each row is shown in bold.

Original Data \ \ Data Generator
Rules Generator

Datasets | Real Data | | Qwen2.5-14b-Instruct | Qwen2.5-32b-Instruct | GPT-40-0806
No Rules 59.52+1.9 65.12 + 2.3 62.26 + 3.2

Disease | 93.68 & 1.4 | Qwen2.5-32b-Instruct 66.34 £ 1.4 70.16 + .80 67.38 £ .85
GPT-40-0806 70.21 = 1.9 67.74+1.4 64.04 £ 2.7

No Rules 20.67 £ .87 30.23+14 27.58 + 2.3

GPA 47.29 +£ .90 | Qwen2.5-32b-Instruct 40.62+1.4 39.13 £ 34 47.07 + 0.5
GPT-40-0806 4225+ 14 31.99+29 44.34 £ 0.6

No Rules 0.25 + .04 0.32 4+ .03 —1.29 + .27

Student | 0.67 £.07 | Qwen2.5-32b-Instruct 0.30 .03 0.33 £.03 0.25 + .01
GPT-40-0806 0.18 .05 —0.38 &+ .16 —0.01+.14

across datasets. Their reliance on one-shot reasoning makes them vulnerable to local inconsistencies
and stochastic behavior in LLM outputs. In contrast, self-consistency aggregation enforces cross-
run agreement and filters out unstable logic fragments, leading to more robust rule sets and better
downstream fidelity.

D.4 RULE-BASED METHODS GENERALIZE ACROSS LLMS

To evaluate the robustness of Rule-Guided Generation in different LLM backbones, we compare
performance using the MLE under varying combinations of rules generators and data generators.
The result as shown in Table [8] across all tested LLMs which ranging from mid-sized (Qwen2.5-
14b) to larger models (Qwen2.5-32b and GPT-40), the introduction of association rules consistently
improves the quality of synthetic data. Notably, even when rules are extracted by weaker models
(e.g., Qwen2.5-32b), stronger models like GPT-4o still benefit from them—highlighting that rule-
based guidance contributes independently of LLMs capacity. This demonstrates the generality and
transferability of our design.

Selection of Top-PrecisionTrees Structural Consolidation
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e N T TTTTTTTTETTT ~f Score € [62.0, 65.0], Then Attendance < 85.0 and Hours_Studied < 5.0
return Score = 65.5 - If Score € [65.0, 68.0], Then Attendance < 86.5 and Access_to_Resources > 1.5
: N ~If Score € [68.0,73.0], Then Attendance > 85.0 and Sleep_Hours < 7.0

~1f Score € [70.0,75.0], Then Attendance > 85.0 and Hours_Studied > 6.0

( Results under Different Seeds )

Maintain Self-Consistency

return Score = 62.5 return Score = 69.2 | | return Score = 74.7

]
]
]
1
! Y
1
1
1
1
1

Consistency Selection

return Score = 67.2 return Score = 68.0 -

Figure 8: Case study for Component I on the Student dataset. Noisy tree paths are denoised into a
self-consistent symbolic formulas set and later guides data generation.
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Figure 9: (Left) Scatter plot of G(p) (Gini coefficient) versus Ratiopyun.. Point color indi-
cates downstream model performance after filtering, with lighter colors representing higher per-
formance and darker colors indicating lower performance. In each group, the star (x) marks the
best-performing point and the circle (o) marks the second-best. (Right) Gini coefficient under dif-
ferent synthetic data sizes.

D.5 ILLUSTRATIVE EXAMPLE OF RULE GENERALIZATION & DENOISING.

To illustrate the practical functioning of Component I, we present a case study demonstrating how
symbolic rules are distilled into interpretable if~then forms through rule merging and aggregation.
Intermediate outcomes are visualized in Figure [§] In this example, decision trees from the trained
random forest exhibit conflicting paths—for example, assigning different Exam_Score values to
overlapping input regions such as Attendance < 86.5 and Attendance < 76.0. The merging phase
addresses these inconsistencies by consolidating noisy rule fragments into coherent patterns, such as
those involving Sleep_H ours. To improve robustness, the training and generalization process is re-
peated under multiple random seeds. The denoising step then retains only those patterns that appear
consistently across runs, thereby filtering out unstable conditions and enforcing self-consistency.
This case highlights two key strengths of Component I: (1) it distills noisy and fragmented tree logic
into compact rules that capture meaningful relationships in low-data regimes; (2) it produces one
concise association rule per segment, enhancing both interpretability and generation quality.

E FURTHER STUDY ON COMPONENT II

To further examine how filtering balances the distribution, we study the behavior of Component
IT under different control settings. Specifically, we analyze (i) the effect of the log-scaled retention
function on pruning schedules, and (ii) the stability of the Gini coefficient under varying generation
sizes. These studies show that Gini-based filtering prunes aggressively only when redundancy is
severe while maintaining diversity in balanced regimes, and that Gini values quickly stabilize as
generation size grows. Together, these results confirm that our filtering strategy provides a robust and
scale-invariant mechanism for mitigating localized redundancy and restoring distributional balance.
In following experiments, we fix the backbone settings (GPT-40-0806 as Rule Generator and GPT-
3.5-turbo-1106 as Data Generator) and evaluate results via MLE score. We report F1 score for
Disease and GPA, and R? for Student.

E.1 IMPACT ON THE LOG-SCALED RETENTION FUNCTION.

Using the log-scaled mapping in , we vary G(p) across its empirical range and record the resulting
ratioprune as well as downstream F1. Figure E] (Left) shows that performance peaks at intermediate
retention, validating that the Gini-driven schedule prunes aggressively only when redundancy is
severe, while preserving diversity in more balanced settings. We observe that the Gini values across
datasets tend to lie in a relatively narrow and stable range, which contributes to the robustness of
the fitted retention schedule. As a result, the coefficients A = 0.15 and B = 0.55, derived from
cross-dataset regression, generalize well without tuning.
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E.2 STABILITY UNDER VARYING GENERATION SIZES

We next test whether Gini is sensitive to the number of generated samples, since an unstable control
signal would undermine filtering. Figure [9] (Right) shows that the Gini coefficient stabilizes after
roughly 1,000 samples across tasks, with only minor fluctuations thereafter. This indicates that
dominant distributional modes emerge early in generation, and that Gini provides a consistent, scale-
invariant signal for downstream filtering decision.
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