
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

LIMITED REFERENCE, RELIABLE GENERATION: RULE-GUIDED TABULAR DATA GENERATION WITH DUAL-GRANULARITY FILTERING

Anonymous authors

Paper under double-blind review

ABSTRACT

Synthetic tabular data generation is increasingly essential in machine learning, supporting downstream applications when real-world and high-quality tabular data is insufficient. Existing tabular generation approaches, such as generative adversarial networks (GANs), diffusion models, and fine-tuned Large Language Models (LLMs), typically require sufficient reference data, limiting their effectiveness in domain-specific datasets with scarce records. While prompt-based LLMs offer flexibility without parameter tuning, they often generate distributionally drifted data with localized redundancy, leading to degradation in downstream task performance. To overcome these issues, we propose *ReFine*, a framework that (i) derives symbolic *if-then* rules from interpretable models and embeds them into prompts to explicitly guide the generation process toward the domain-specific distribution, and (ii) applies a dual-granularity filtering that suppresses over-sampling patterns and selectively refines rare but informative samples to reduce localized redundancy. Extensive experiments on various regression and classification benchmarks demonstrate that *ReFine* consistently outperforms state-of-the-art methods, achieving up to **0.36** absolute improvement in R^2 for regression and **7.50%** relative improvement in F_1 for classification tasks.

1 INTRODUCTION

Tabular data serves as a foundational modality in machine learning, underpinning critical applications in domains such as healthcare, finance, and scientific research (Benjelloun et al., 2020; Ghosh, 2012; Yang et al., 2024; Shankar et al., 2024). However, the collection of large-scale, high-quality tabular datasets is often hindered by strict privacy regulations and the prohibitive costs of expert-driven annotation (Voigt & Von dem Bussche, 2017; Miceli et al., 2020). Such limitations severely restrict effective model training in many tabular applications, thereby motivating the use of synthetic data generation (Hernandez et al., 2022; Shankar et al., 2024).

Previous mainstream methods for tabular data generation are based on non-LLM generative models such as VAEs (Xu et al., 2019), GANs (Zhao et al., 2021) and diffusion models (Kotelnikov et al., 2023). Within the LLM-based paradigm, fine-tuning approaches have demonstrated notable performance (Borisov et al., 2023). Both approaches share a fundamental prerequisite: access to sufficient *reference data*, which is used as the foundation for learning underlying distributions. In practice, this prerequisite is often violated in high-stakes domains, where extremely strict privacy regulations and the rarity of critical events make large-scale, high-quality tabular datasets difficult to obtain (Kovalerchuk & Vityaev, 2005; Ji et al., 2014). For example, in rare disease diagnosis, available datasets may contain only a few dozen records, a scenario commonly referred to as a *low-data regime* (Seedat et al., 2023), which poses severe challenges for data-driven modeling (Raghavan & El Gayar, 2019; Li et al., 2023; Wang et al., 2024a). Consequently, in low-data regimes where only a handful of samples are available, existing generative methods fail to capture underlying distributions and thus struggle to produce high-quality synthetic data (Bommareddy et al., 2022; Fang et al., 2024a; Zhang et al., 2024a). In contrast, prompt-based methods exploit in-context learning to synthesize data without training, offering an alternative for low-data regimes (Seedat et al., 2023; Kim et al., 2024). However, prompt-based methods face two challenges in low-data regimes:

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
Figure 1: Two key challenges in prompt-based LLM tabular data generation in low-data regimes:
(i) **Distributional Drift**: LLMs often generate biased samples by relying on spurious patterns from pretraining rather than real data distribution. (ii) **Localized Redundancy**: Synthetic samples tend to concentrate in limited regions of the feature space due to repeated use of identical prompts.

(i) **Distributional Drift**: Prompt-based methods often over-rely on LLMs' pretrained knowledge, which poorly captures dataset-specific distribution (Zhong et al., 2024). Consequently, generated samples tend to follow spurious patterns inherited from pretraining corpora rather than the true patterns of the target dataset (Sahoo et al., 2024; Stoian et al., 2024a). This mismatch leads to synthetic distributions that drifted from the *real data*. Figure 1 illustrates this issue: when conditioned on a small reference set (blue), the LLM produces *synthetic data* (red) that drift away from the manifold of *real data* (cyan). Many samples populate low-density or unsupported regions, highlighting the LLM's inability to reconstruct the target joint distribution under data scarcity.

(ii) **Localized Redundancy**: Prompt-based generation tends to overproduce high-frequency attribute combinations present in the reference data, while rare but informative patterns are rarely synthesized (Amatriain, 2024; Liu et al., 2023; Zevallos et al., 2023). This overconcentration, which we term localized redundancy, is further amplified when identical prompt templates are reused to generate data in multiple batches. As a result, synthetic samples cluster around a few dominant modes (Kim et al., 2024; Seedat et al., 2023), forming high-density regions (red) that contrast sharply with the broader and more balanced distribution of real data (cyan), as shown in Figure 1.

To systematically address the two key challenges of prompt-based tabular generation in low-data regimes, we propose **ReFine** (Rule-Guided Generation and Dual-GFiltering), a framework comprising two components. To mitigate the distribution of synthetic data often drifted by LLMs in low-data regimes (Challenge i), we introduce **Rules-Guided Generation**, which extracts symbolic *if-then* formulas from interpretable tree-based models. These association rules are embedded into prompts to guide the LLM toward the distribution of the real data. To mitigate localized redundancy that persists despite prompt-based generation (Challenge ii), we propose **Dual-Granularity Filtering**. This component informs a two-level filtering process: chunk-level pruning of dominant high-density modes, and instance-level refinement to retain low-density but informative samples. Our key contributions can be summarized as follows:

- We identify two key challenges of LLM prompt-based methods in tabular data generation in low-data regimes: (i) distributional drift of the synthetic data; and (ii) localized redundancy in the synthetic data.
- To address the two challenges, we propose **ReFine**¹, a framework that constructs *association rules* to guide LLM for tabular data generation, and applies proxy-based distribution estimation with *dual-granularity* filtering to reduce localized redundancy.
- Experimental results demonstrate that **ReFine** consistently outperforms strong baselines, achieving up to **0.36** absolute gain in R^2 for regression and **7.5%** relative improvement in F_1 for classification. Comprehensive ablations further highlight the respective contributions of *Rules-Guided Generation* and *Dual-Granularity Filtering* components.

¹Anonymous code: <https://anonymous.4open.science/r/ReFine-5328>

108
109

2 RELATED WORK

110
111

2.1 NON-LLM TABULAR GENERATION METHOD

112
113
114
115
116
117
118
119

Generative Model-based generation. Many works on tabular data synthesis relied on GANs, diffusion models, and score-based models (Hernandez et al., 2022). Among classical methods, CT-GAN (Xu et al., 2019) extends GANs to handle mixed-type variables but suffers from mode collapse and requires heavy preprocessing. TabDDPM (Kotelnikov et al., 2023) applies diffusion for continuous attributes, yet its iterative denoising is computationally costly and unstable with scarce samples. TABSYN (Zhang et al., 2024b) integrates diffusion with a VAE backbone to better support mixed-type data, but still depends on sufficient training density to avoid spurious correlations. Overall, while effective in abundant-data settings, these models degrade sharply in low-data regimes.

120
121
122
123
124
125
126
127

Constraint-based tabular generation. Another line of work enforces domain validity through hard logical constraints. Early methods embed linear constraints into generative models via *Constraint Layers* (Stoian et al., 2024b). More recently, *Disjunctive Refinement Layers (DRL)* extend this idea to quantifier-free real linear arithmetic (QFLRA), enabling non-convex and disjunctive feasible regions (Stoian & Giunchiglia, 2025). While effective for ensuring semantic validity, such methods face two key drawbacks: they rely on exhaustively specified domain rules, which is rarely feasible in practice, and hard constraints restrict the generation space, thereby limiting diversity.

128
129

2.2 LLM-BASED TABULAR GENERATION METHOD

130
131
132

LLMs have recently gained attention for tabular data generation, which exploit pretrained knowledge to make them well-suited for structured data tasks. Existing approaches fall into two categories: *fine-tuning methods* and *prompt-based methods*.

133
134
135
136
137

Fine-Tuning Methods. Fine-tuning methods adapt LLM parameters to tabular formats and domain constraints. For instance, GReaT (Borisov et al., 2023) fine-tunes GPT-2.5 on tabular corpora, while HARMONIC (Wang et al., 2024b) introduces instruction signals derived from nearest-neighbor relationships. Although effective with abundant reference data, these methods risk severe overfitting when reference data is small, as parameter updates dominate the limited supervision.

138
139
140
141
142
143
144
145
146
147

Prompt-based Methods. Prompt-based methods leverage the in-context learning ability of LLMs, enabling them to generate tabular data by conditioning on a few labeled examples embedded directly in the prompt (Ling et al., 2024). Without modifying model parameters, these methods use prompt design to guide the generation process. EPIC improves representation balance across classes by formatting grouped data and crafting class-aware prompts (Kim et al., 2024). CLLM enhances data quality in low-resource scenarios by combining prompt design with a curation step that filters samples based on model confidence and uncertainty estimates (Seedat et al., 2023). However, prompt-based methods struggle to capture logical dependencies and often suffer from distributional imbalance due to repeated use of identical prompts, limiting their effectiveness in low-data regimes.

148
149

3 METHODOLOGY

150
151
152
153
154
155
156
157
158
159
160
161

Prompt-based tabular generation in low-data regimes suffers from two key issues: *Distributional Drift* and *Localized Redundancy*. To tackle these challenges, we unify our intuition and methodological pipeline in Figure 2. Here, the *Real Distribution (cyan)* denotes the target data manifold, while the *Original Small Dataset (orange)* provides limited supervision. To mitigate *Distributional Drift*, we propose **(1) Rules-Guided Generation**, which extracts *Association Rules (red)* from tree-based models to explicitly capture key feature dependencies. These rules are embedded into prompts, guiding the LLM toward generation that better align with the real distribution. However, static prompting still induces *Localized Redundancy*. To address this, we introduce **(2) Dual-Granularity Filtering**, which prunes dominant high-density chunks while retaining informative but rare samples at the instance level. Together, these two components expand the effective generation space and enhance the fidelity and diversity of the augmented dataset for downstream learning. In what follows, we first formally define the tabular generation task under low-data regimes. Then, we describe our two components for addressing the two primary challenges.

Figure 2: Overall framework of **ReFine** (upper panel), which consists of two components: (1) **Rules-Guided Generation**, which leverage rules to guide LLM generation toward the underlying *Target Distribution*; and (2) **Dual-Granularity Filtering**, which suppresses overrepresented patterns and preserves informative, low-density instances. The geometric view (lower panel) illustrates our insight—how rule-guided prompting anchors generation in a faithful *Generation Space*.

3.1 PROBLEM SETUP

Definition 3.1 Tabular Data Generation in Low-data Regimes. Let $X \subseteq \mathbb{R}^d$ be the d -dimensional feature space and Y the label space (discrete for classification, real-valued for regression). Let $D_{train} = \{(x_i, y_i)\}_{i=1}^N$ be a small labeled dataset independently and identically drawn from the unknown real distribution $p_R(X, Y)$, where $x_i \in X$ and $y_i \in Y$, with N limited to only a few examples. The task defines a generation function \mathcal{G} that maps D_{train} to a synthetic dataset:

$$D_{syn} = \mathcal{G}(D_{train}) = \{(\tilde{x}_j, \tilde{y}_j)\}_{j=1}^M.$$

where $(\tilde{x}_j, \tilde{y}_j)$ is a synthetic sample, and M is the number of synthetic samples, typically satisfying $M \gg N$. The task goal is to generate D_{syn} such that a model trained on it achieves strong predictive performance when evaluated on a held-out real test set $D_{test} \sim p_R$.

3.2 COMPONENT I: RULES-GUIDED GENERATION

We mitigate *Distributional Drift* with **Rules-Guided Generation**, which extracts association rules from limited reference data D_{train} as structural priors to guide generation. Unlike other modalities, tabular data often lack inherent structure and contain many irrelevant features, making it difficult for an LLM to capture feature dependencies from limited data (Fang et al., 2024b). To provide informative guidance, we define *association rules* as *if-then* formulas extracted from decision paths in tree-based models, capturing supervised dependencies between features and labels. Unlike classical association rule mining based on co-occurrence statistics, our rules reflect predictive patterns learned via training. We apply a two-stage LLM-driven procedure to extract reliable *association rules*.

1) Rules Extraction From Top-Performing Trees. We train a Random Forest (RF) on D_{train} and rank trees based on in-sample accuracy, selecting the top- k trees (e.g., $k=3$). Each selected tree provides a set of *if-else* decision rules (Kulkarni & Sinha, 2012; Azad et al., 2025; Khan et al., 2024), yielding diverse local patterns under low-data regimes.

2) Rule Generalization and Denoising. To construct reliable *association rules*, we apply:

(a) *Rule Generalization*. We prune and consolidate decision paths across top-performing trees, retaining only their core (i.e., high-support, low-depth) branches that reflect stable feature-label dependencies. This produces *if-then* association rules that generalize beyond individual training

216 instances. Treated as conditional templates with the label as premise, these rules enable inverse
 217 reasoning and steer generation toward broader yet distributionally consistent samples.
 218

219 *(b) Rule Denoising.* To reduce variance introduced by symbolic extraction and decoding noise (He
 220 et al., 2024), we apply self-consistency techniques from reasoning tasks (Wang et al., 2023;
 221 Lewkowycz et al., 2022): we perform multiple generations with different seeds and retain only
 222 the most frequently occurring rules. This ensures the resulting rule set is stable and reliable.
 223

224 **3) Tabular Data Generation via Rules-Guided Prompt.** Association rules obtained in Component
 225 I are converted into structured prompts encoding their *if-then* formulas. These prompts constrain the
 226 LLM’s decoding space to enforce meaningful distributional patterns, yielding the synthetic dataset
 D_{syn} that offers distribution-consistent diversity.
 227

228 3.3 COMPONENT II: DUAL-GRANULARITY FILTERING

229 We introduce **Dual-Granularity Filtering** (Component II) to mitigate *localized redundancy* in the
 230 D_{syn} . The procedure operates at two levels: *chunk-level filtering*, which prunes over-represented
 231 modes in high-density regions, and *instance-level filtering*, which filters unreliable samples in low-
 232 density regions. Both stages are guided by a *reference model* \mathcal{M} trained exclusively on D_{train} ,
 233 ensuring that filtering remains consistent with the real data distribution.
 234

235 3.3.1 PROXY-BASED DENSITY ESTIMATION

236 We quantify local redundancy by assigning each synthetic sample to its nearest real anchor and
 237 examining the concentration of synthetic mass around anchors. Concretely, let $\{s_j\}_{j=1}^N$ denote the
 238 $N = |\mathcal{D}_{\text{train}}|$ and let DCR be the mixed-type distance from Borisov et al. (2023). This induces a
 239 discrete *proxy density* over anchors,
 240

$$241 \quad p_j = \frac{1}{|\mathcal{D}_{\text{syn}}|} \cdot \left| \left\{ x_i \in \mathcal{D}_{\text{syn}} \mid j = \arg \min_{1 \leq k \leq n} \text{DCR}(x_i, s_k) \right\} \right|, \quad j = 1, \dots, N. \quad (1)$$

243 where $x_i \in \mathcal{D}_{\text{syn}}$, $s_j \in \mathcal{D}_{\text{train}}$ and p_j is the fraction of synthetic samples whose nearest neighbor
 244 in $\mathcal{D}_{\text{train}}$ is s_j (thus $\sum_j p_j = 1$). We quantify overall concentration with the Gini coefficient $G(p)$;
 245 larger $G(p)$ indicates more *localized redundancy*. For targeted filtering, we split \mathcal{D}_{syn} into high-
 246 density ($\mathcal{D}_{\text{high}}$) and low-density (\mathcal{D}_{low}) sets by $G(p)$.
 247

248 3.3.2 CHUNK-LEVEL FILTERING

250 Samples in $\mathcal{D}_{\text{high}}$ are grouped into chunks of size S , each denoted as \mathcal{C}_r . Each chunk receives a
 251 score based on the average prediction correctness across its members under \mathcal{M} :
 252

$$253 \quad \text{Score}(\mathcal{C}_r) = \frac{1}{|\mathcal{C}_r|} \sum_{(x_i, y_i) \in \mathcal{C}_r} \frac{1}{T} \sum_{t=1}^T \mathbb{1}(\mathbb{P}_{\mathcal{M}_t}(y_i \mid x_i) > 0.5), \quad (2)$$

255 Chunks are then ranked by score, and only a top fraction is retained, with the *pruning ratio* adaptively
 256 scaled by the *redundancy*:

$$257 \quad \text{ratio}_{\text{prune}} = A \ln(G(p)) + B, \quad (3)$$

259 where A and B are fixed constants. This adaptive schedule increases pruning strength with greater
 260 *localized redundancy*, while maintaining flexibility when the *proxy distribution* is balanced.
 261

262 3.3.3 INSTANCE-LEVEL FILTERING

263 In contrast, \mathcal{D}_{low} reflects low-density regions with potentially informative but noisy samples. We
 264 filter samples using *confidence* and *uncertainty* scores derived from the same reference model \mathcal{M} .
 265 Thresholds are modulated by the $G(p)$:

$$266 \quad \text{Conf}_{\text{thresh}} = \mu_{\text{conf}} - G(p) \cdot \sigma_{\text{conf}}, \quad (4)$$

$$267 \quad \text{Uncert}_{\text{thresh}} = \mu_{\text{uncert}} + G(p) \cdot \sigma_{\text{uncert}}.$$

268 Only samples satisfying both $\text{Conf}(x) \geq \text{Conf}_{\text{thresh}}$ and $\text{Uncert}(x) \leq \text{Uncert}_{\text{thresh}}$ are retained,
 269 ensuring filtering that adapts to dataset-specific sparsity.

270 3.3.4 JOINT TUNING VIA SURPRISAL MINIMIZATION
271

272 The only tunable hyperparameter is chunk size S . We determine the optimal S^* by minimizing
273 model surprisal on $\mathcal{D}_{\text{train}}$:

274
$$S^* = \arg \min_S \left[-\frac{1}{|\mathcal{D}_{\text{train}}|} \sum_i \log \mathbb{P}_{\mathcal{M}}(y_i | x_i) \right]. \quad (5)$$

275

276 4 EXPERIMENT
277

280 In this section, we evaluate **ReFine** on downstream tasks and analyze how its two components
281 address the key challenges:

282 1. **Mitigating Distributional Drift**: *How do rules enhance data quality?* Section 4.3 shows that
283 rule-guided generation achieves rule-compliance rates consistent with real data, thereby aligning
284 synthetic samples more faithfully with the target distribution.

285 2. **Reducing Localized Redundancy**: *How does filtering balance the distribution?* Section 4.4
286 shows that a reliable redundancy metric together with dual-granularity filtering prevents overcon-
287 centration, leading to more useful synthetic datasets.

289 4.1 EXPERIMENT SETTINGS
290

291 **Datasets**: To avoid potential *data contamination*—where strong performance on popular bench-
292 marks such as *Adult*, *Heart*, and *Housing* may arise from LLM memorization rather than genuine
293 generalization (Xu et al., 2024a; Ronval et al., 2025), we use `tabmemcheck` (Bordt et al., 2024), a
294 recently proposed tool for detecting memorization in tabular data. Specifically, we apply two of its
295 tests—the *Feature Names* and *Header Test*—to eight candidate datasets. Based on these tests, only
296 *adult* and *heart* are classified as `seen` datasets; the remaining six show no evidence of memorization
297 and are classified as `unseen`; full results are in Appendix B.

298 **Baselines**: (1) *Non-LLM baselines*: (i)CTGAN (Xu et al., 2019), a GAN-based model designed
299 for tabular data generation; and (ii) TABSYN (Zhang et al., 2024b), a score-based generative
300 model that achieves strong performance in sufficient-data settings. (2) *LLM-based baselines*: (i)
301 GREAT (Borisov et al., 2023), which fine-tunes a pretrained GPT 2.5 for tabular data generation;
302 (ii) EPIC (Kim et al., 2024), a prompting-based method that automates dataset construction through
303 instruction-driven generation; and (iii) CLLM (Seedat et al., 2023), which enhances LLM-generated
304 data via instance-level curation. (3) *Constraint-based baseline*: DRL (Stoian & Giunchiglia, 2025),
305 a constraint-driven generator that synthesizes data by solving logical constraints.

306 **Experimental Setup**: We evaluate all models under low-data regimes with $N \in \{30, 60, 90, 120\}$.
307 For each dataset and value of N , we randomly sample 10 training splits, while the remaining data
308 serve as test sets. Evaluation follows the Machine Learning Efficiency (MLE) setting: each method
309 generates 1,000 synthetic samples per split, on which we train an XGBoost (Chen & Guestrin, 2016).
310 Performance is reported as average **F1 score** (classification) or **R²** (regression) over all splits. Further
311 implementation details are provided in Appendix C.

312 4.2 MAIN RESULTS
313

314 Table 10 reports the downstream performance of **ReFine** and representative baselines under four
315 low-data regimes ($N \in \{30, 60, 90, 120\}$). **ReFine** achieves the strong results across all regimes,
316 which improves R^2 by as much as **0.36** and F_1 by up to **7.5%** relative to the strongest prior method
317 (CLLM) on `unseen` datasets, demonstrating robust generalization. The full **ReFine** framework
318 (I+II) outperforms its individual components, achieving higher average ranks across benchmarks.
319 This suggests the integration of both components contributes positively to overall effectiveness. As
320 the amount of training data (N) increases, distribution-modeling capacity of non-LLM baselines,
321 especially TabSyn, becomes more evident—they narrow the gap and occasionally approach LLM
322 methods. This is consistent with their need for denser reference data. At the same time, DRL
323 shows nearly flat performance across N , since it enforces rules as hard constraints during genera-
324 tion. While this guarantees strict rule adherence, it severely limits the diversity of generated samples

324
 325 Table 1: Main results on benchmark datasets. We report F_1 score for classification tasks and R^2
 326 for regression tasks. Unseen datasets (i.e., not included in the LLM’s memory for LLM-based
 327 Generator) are highlighted in blue, and seen datasets are highlighted in red. The best result in each
 328 row is shown in **bold**, and the second-best result is underlined.

Original Data		Non-LLM Methods			LLM-Based Methods					
Datasets	Real	CTGAN	DRL	TABSYN	GREAT	EPIC	CLLM	I \ II	II \ I	I+II
Disease (N=30)	93.68	44.58	39.49	54.79	46.54	32.01	61.89	59.61	<u>64.44</u>	70.22
Game (N=30)	86.0	32.03	33.54	44.13	53.65	13.93	54.12	<u>56.44</u>	45.0	59.13
Apple (N=30)	86.60	47.21	51.33	32.32	<u>58.91</u>	56.10	58.18	57.80	58.66	59.43
GPA (N=30)	47.29	15.76	14.46	19.22	<u>31.57</u>	32.03	40.17	<u>41.21</u>	35.88	43.14
Student (N=30)	0.67	-0.91	-0.01	0.14	0.21	0.35	-0.11	<u>0.37</u>	0.08	0.38
Farm (N=30)	-0.04	-0.51	-0.07	-0.38	-1.03	-0.68	-0.29	-0.44	<u>-0.23</u>	-0.30
Adult (N=30)	76.92	50.47	46.59	62.83	67.45	61.94	73.11	73.04	<u>73.15</u>	73.91
Heart (N=30)	86.71	48.16	38.66	79.40	<u>80.74</u>	81.20	80.47	75.17	80.00	80.14
Disease (N=60)	93.68	30.03	38.25	65.34	52.80	44.05	66.86	75.65	62.58	72.41
Game (N=60)	86.0	31.83	30.10	61.10	54.76	13.16	<u>67.54</u>	61.39	59.81	70.87
Apple (N=60)	86.60	40.40	49.23	27.07	60.33	67.92	<u>68.60</u>	58.71	69.92	66.70
GPA (N=60)	47.29	18.11	15.64	28.48	35.60	32.19	33.17	<u>44.34</u>	21.57	44.58
Student (N=60)	0.67	-0.07	-0.04	-0.14	0.02	-0.63	-0.48	<u>0.27</u>	-0.15	0.34
Farm (N=60)	-0.04	-0.22	-0.16	-0.17	-0.16	-0.21	-0.30	-0.21	-0.12	<u>-0.15</u>
Adult (N=60)	76.92	47.55	49.02	63.58	69.70	62.78	73.94	<u>73.28</u>	72.87	71.48
Heart (N=60)	86.71	49.77	38.14	<u>81.35</u>	80.64	77.55	80.33	81.37	78.15	<u>80.36</u>
Disease (N=90)	93.68	47.18	39.04	69.90	65.32	30.03	74.04	69.74	65.47	76.45
Game (N=90)	86.0	33.67	27.81	65.93	61.17	13.16	59.97	59.44	41.77	62.17
Apple (N=90)	86.60	43.08	38.67	20.69	64.23	<u>73.67</u>	73.43	65.23	72.78	74.88
GPA (N=90)	47.29	14.91	12.24	34.51	36.19	16.28	41.79	<u>47.21</u>	31.56	48.89
Student (N=90)	0.67	-0.02	-0.03	-0.12	0.22	0.32	-0.69	<u>0.34</u>	-0.27	0.47
Farm (N=90)	-0.04	-0.34	-0.05	-0.15	-0.98	-0.16	-0.16	-0.15	-0.14	<u>-0.13</u>
Adult (N=90)	76.92	41.67	47.47	69.77	71.52	66.73	<u>74.11</u>	78.45	73.75	74.10
Heart (N=90)	86.71	42.04	39.03	<u>81.43</u>	81.05	77.65	81.23	82.44	78.74	80.00
Disease (N=120)	93.68	45.30	73.92	62.37	55.70	55.37	78.30	<u>78.97</u>	61.82	81.96
Game (N=120)	86.0	26.95	31.04	<u>63.50</u>	66.32	48.99	61.32	45.48	54.76	61.67
Apple (N=120)	86.60	39.83	34.29	80.54	60.91	<u>79.16</u>	70.66	70.62	68.53	74.96
GPA (N=120)	47.29	16.58	10.63	38.57	51.29	46.61	45.20	40.42	46.95	<u>47.77</u>
Student (N=120)	0.67	0	0.01	0.41	0.23	0.29	0.22	0.21	0.17	<u>0.29</u>
Farm (N=120)	-0.04	-0.05	-0.01	-0.22	-0.18	-0.30	-0.23	-0.10	-0.29	<u>-0.07</u>
Adult (N=120)	76.92	48.12	39.22	68.87	72.58	68.35	71.73	73.36	<u>73.19</u>	72.93
Heart (N=120)	86.71	46.29	38.29	83.80	<u>84.17</u>	71.33	75.24	84.97	75.02	75.93

356 and prevents DRL from exploiting richer evidence when more real data become available. By con-
 357 trast, performance varies significantly among LLM-based methods. EPIC and GREAT lack explicit
 358 generation guidance, which limits their ability to enforce meaningful structure in synthetic data.
 359 The relative advantage of **ReFine** becomes smaller; in some cases (e.g., GPA), CLLM achieves a
 360 slightly higher R^2 . This suggests that rules, while highly beneficial under data scarcity, may add
 361 mild constraints on numeric variability once sufficient reference data is available. Some LLM-based
 362 methods perform well on seen datasets but degrade notably on unseen datasets. This discrepancy
 363 aligns with the *data contamination risk* highlighted in our datasets selection—performance gains
 364 may in part reflect memorization from pretraining rather than true generalization. In contrast, **Re-**
 365 **Fine** maintains stable performance across both, validating its capability for genuine generalization.
 366 **Finally, we verify these trends beyond the main settings.** Supplementary experiments extend
 367 N to $\{160, 200, 300, 500\}$ and include additional downstream evaluators (Logistic/Linear Regres-
 368 sion and pretrained TabPFN). Across all settings and evaluators, **ReFine** remains either the best
 369 or second-best method (Tables 10–13 in Appendix F), reinforcing that its improvements are not
 370 evaluator-specific and persist when more data or alternative inductive biases are introduced.

4.3 MITIGATING DISTRIBUTIONAL DRIFT

371 *How do rules enhance data quality?* To assess the extent to which generated samples adhere to
 372 the extracted *association rules*, we define the *Rule Compliance Rate* (RCR). Given a dataset S
 373 and a set of association rules \mathcal{R} , RCR is the percentage of samples in S that satisfy all rules in
 374 \mathcal{R} . We compare *rule-guided* and *prompt-only* generation across three representative datasets and
 375 four low-data regimes ($N=30/60/90/120$), evaluating both rule adherence (RCR) and downstream
 376 utility. Table 2 shows that under extreme low-data regimes ($N=30$), rule-guided generation signif-

Figure 3: t-SNE visualization of *Real Data*, *Rule-Guided* synthetic data, and *Prompt-only* synthetic data on the *Disease* dataset across varying training sizes ($N=30/60/90/120$).

stantly compensates for the lack of distributional evidence: compared to prompt-only generation, it produces samples with both higher rule adherence and stronger downstream utility (MLE). As N increases ($N=60/120$), the difference becomes most evident in *distributional alignment*. For instance, in the Disease dataset, prompt-only data attains superficially higher RCR but deviates from the real distribution and yields much lower utility. By contrast, rule-guided data achieves RCR values closer to real data and substantially improves utility. This indicates that high but distorted RCR is not reliable, and that the true advantage of rules lies in correcting such bias and aligning the synthetic distribution with the target one. The t-SNE visualizations (Figure 3) further support this finding: rule-guided samples form distributions that remain close to the real manifold, whereas prompt-only samples drift into unsupported regions. Overall, rules effectively mitigate *distributional drift* and enhance the utility of synthetic data across regimes.

We conduct further studies on *Component I* to assess both robustness and design effectiveness (Appendix D). Results show that while performance remains stable across different top- k values, structured rule formats (i.e., “if-then”) and self-consistency denoising yield clear improvements, validating the effectiveness of our design.

4.4 REDUCING LOCALIZED REDUNDANCY

How does filtering balance the distribution? To answer this, we compare different *redundancy* metrics and granularity settings and evaluate their impact on downstream utility (MLE) across datasets and data regimes. Table 3 reveals two key insights. (i) Not all redundancy metrics are equally effective. Although both Gini and entropy can measure redundancy, Gini consistently yields higher MLE across datasets and training sizes (N), particularly under data-scarce conditions. This indicates that redundancy in prompt-generated data is primarily driven by a small number of highly repeated patterns, rather than widespread noise. Gini better captures this structure by emphasizing inequality, whereas entropy averages over all regions, giving undue weight to rare, possibly noisy instances and thereby underestimating redundancy. These results emphasize dominant concentrations (e.g. Gini) are better suited to detect and suppress it. (ii) Redundancy in LLM-generated data manifests at multiple scales—both within individual samples and across batch-level concentrations. As shown in

Table 2: Comparison of *rule-guided* data vs. *prompt-only* data across three datasets and varying training sizes ($N=30/60/90/120$). The better results are in bold.

	D_{test}	D_{train}	Rule Guided	D_{syn}	Prompt-only	D_{syn}
	RCR(%)	RCR(%)	RCR(%)	MLE	RCR(%)	MLE
Disease (N=30)	21.4	33.3	16.3	59.61	12.2	48.70
GPA (N=30)	64.5	70.0	56.7	41.21	33.8	26.85
Student (N=30)	33.9	36.7	46.4	0.37	15.9	-0.11
Disease (N=60)	25.5	31.7	30.9	75.65	71.1	54.32
GPA (N=60)	51.5	61.7	49.1	44.34	22.5	15.44
Student (N=60)	80.2	13.3	16.1	0.27	15.6	-0.49
Disease (N=90)	31.3	44.4	41.6	69.74	66.8	68.85
GPA (N=90)	61.1	51.1	52.7	47.21	26.4	27.07
Student (N=90)	53.2	46.7	55.4	0.34	26.8	-0.70
Disease (N=120)	28.7	38.3	30.7	76.56	52.8	55.52
GPA (N=120)	52.6	53.3	40.8	40.42	31.6	44.13
Student (N=120)	57.7	54.2	67.7	0.21	17.2	-0.46

432 Table 3: Evaluation of different redundancy metrics (Gini vs. Entropy) and filtering granularities
 433 (Instance-only, Chunk-only, Dual) within *Component II*.

	Redundancy Metric				Different Granularity		
	Gini		Entropy		Instance	Chunk	Dual
	Value	MLE	Value	MLE	Only	Only	Granularity
Disease (n=30)	0.40	70.22	0.13	68.87	69.29	63.88	70.22
GPA (n=30)	0.23	43.14	0.06	39.88	39.39	41.02	43.14
Student (n=30)	0.58	0.38	0.31	0.36	0.39	0.35	0.38
Disease (n=60)	0.68	72.41	0.30	72.03	71.77	68.81	72.41
GPA (n=60)	0.23	44.58	0.03	38.53	43.25	45.04	44.58
Student (n=60)	0.61	0.34	0.20	0.31	0.32	0.19	0.34
Disease (n=90)	0.40	72.86	0.21	76.45	71.65	71.97	76.45
GPA (n=90)	0.25	48.89	0.02	46.91	47.62	46.55	48.89
Student (n=90)	0.58	0.47	0.20	0.43	0.45	0.38	0.47
Disease (n=120)	0.35	81.96	0.14	78.97	80.48	69.74	81.96
GPA (n=120)	0.29	47.77	0.08	45.12	42.99	40.77	47.77
Student (n=120)	0.31	0.29	0.09	0.33	0.05	0.45	0.29

451 Table 3, dual-granularity filtering consistently outperforms instance-only and chunk-only strategies
 452 across datasets and training sizes, confirming the necessity of addressing both levels. Instance-
 453 level filtering effectively removes noisy outliers but fails to capture global distributional imbalances.

454 In contrast, chunk-level filtering
 455 suppresses dominant high-density
 456 modes but may retain *localized redundancy*. By integrating both scales
 457 signals, dual-granularity filtering
 458 achieves more balanced coverage
 459 and higher downstream utility.
 460 This effect is visually illustrated in
 461 Figure 4: chunk-level filtering flattens
 462 overrepresented modes, while
 463 instance-level filtering enriches the
 464 long-tail regions—together restoring
 465 a more uniform and informative
 466 synthetic distribution.

467 We further validate the robustness of
 468 *Component II* in Appendix E. The Gini-driven pruning function peaks at intermediate retention,
 469 striking a balance between diversity and redundancy removal. Notably, Gini values stabilize with as
 470 few as 1,000 samples, confirming its suitability as a stable redundancy signal across generations.

471 Figure 4: Proxy modes distribution before and after *dual-
 472 granularity filtering*.

473 5 CONCLUSION

474 We present **ReFine**, a two-component framework that addresses fundamental limitations of prompt-
 475 based LLM tabular generation in low-data regimes. Our approach integrates symbolic *if-then* rules
 476 derived from interpretable models to enforce domain-specific feature distribution, while employing
 477 dual-granularity filtering to mitigate localized redundancy inherent in batch generation processes.
 478 The framework demonstrates consistent improvements across diverse benchmarks, achieving up to
 479 0.36 absolute gain in R^2 and 7.5% relative improvement in F_1 over existing methods. Component-
 480 wise analysis reveals that rule-guided generation effectively captures dataset-specific dependencies
 481 often overlooked by pre-trained models, while dual-granularity filtering successfully rebalances syn-
 482 thetic distributions through coordinated chunk-level and instance-level selection strategies. Never-
 483 theless, the current implementation of chunk-level retention utilizes empirically derived logarithmic
 484 scaling, potentially limiting generalizability under extreme distributional scenarios. Future research
 485 directions include exploring adaptive retention functions and establishing theoretical foundations for
 improved cross-domain robustness and generalization. We leave this as an avenue for future work.

486 REFERENCES

487

488 Xavier Amatriain. Prompt design and engineering: Introduction and advanced methods. *arXiv*
489 *preprint arXiv:2401.14423*, 2024.

490 Mohammad Azad, Tasnemul Hasan Nehal, and Mikhail Moshkov. A novel ensemble learning
491 method using majority based voting of multiple selective decision trees. *Computing*, 107(1):
492 42, 2025.

493

494 Omar Benjelloun, Shiyu Chen, and Natasha Noy. Google dataset search by the numbers. In *Inter-*
495 *national semantic web conference*, pp. 667–682. Springer, 2020.

496

497 Sahithi Bommareddy, Javed Ahmad Khan, Rohit Anand, et al. A review on healthcare data privacy
498 and security. *Networking Technologies in Smart Healthcare*, pp. 165–187, 2022.

499

500 Sebastian Bordt, Harsha Nori, Vanessa Rodrigues, Besmira Nushi, and Rich Caruana. Elephants
501 never forget: Memorization and learning of tabular data in large language models. In *Conference*
502 *on Language Modeling (COLM)*, 2024.

503

504 Vadim Borisov, Kathrin Seßler, Tobias Leemann, Martin Pawelczyk, and Gjergji Kasneci. Language
505 models are realistic tabular data generators. In *ICLR*, 2023.

506

507 Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In *Proceedings of the*
508 *22nd ACM SIGKDD international conference on knowledge discovery and data mining*, pp. 785–794,
509 2016.

510

511 Xi Fang, Weijie Xu, Fiona Anting Tan, Jian Zhang, Ziqing Hu, Yanjun Qi, Scott Nickleach, Diego
512 Socolinsky, Srinivasan Sengamedu, and Christos Faloutsos. Large language models (llms) on tabu-
513 lar data: Prediction, generation, and understanding—a survey. *arXiv preprint arXiv:2402.17944*,
514 2024a.

515

516 Xi Fang, Weijie Xu, Fiona Anting Tan, Jian Zhang, Ziqing Hu, Yanjun (Jane) Qi, Scott Nickleach,
517 Diego Socolinsky, "SHS" Srinivasan Sengamedu, and Christos Faloutsos. Large language models
518 (llms) on tabular data: Prediction, generation, and understanding - a survey. *Transactions on*
519 *Machine Learning Research*, 2024b.

520

521 Sakti P Ghosh. Statistical relational tables for statistical database management. *IEEE Transactions*
522 *on Software Engineering*, (12):1106–1116, 2012.

523

524 Mingqian He, Yongliang Shen, Wenqi Zhang, Zeqi Tan, and Weiming Lu. Advancing process
525 verification for large language models via tree-based preference learning. In *Proceedings of the*
526 *2024 Conference on Empirical Methods in Natural Language Processing*, pp. 2086–2099, 2024.

527

528 Mikel Hernandez, Gorka Epelde, Ane Alberdi, Rodrigo Cilla, and Debbie Rankin. Synthetic data
529 generation for tabular health records: A systematic review. *Neurocomputing*, 493:28–45, 2022.

530

531 Zhanglong Ji, Zachary C Lipton, and Charles Elkan. Differential privacy and machine learning: a
532 survey and review. *arXiv preprint arXiv:1412.7584*, 2014.

533

534 Azal Ahmad Khan, Omkar Chaudhari, and Rohitash Chandra. A review of ensemble learning and
535 data augmentation models for class imbalanced problems: Combination, implementation and
536 evaluation. *Expert Systems with Applications*, 244:122778, 2024.

537

538 Jinhee Kim, Taesung Kim, and Jaegul Choo. Epic: Effective prompting for imbalanced-class data
539 synthesis in tabular data classification via large language models. *Advances in Neural Information*
540 *Processing Systems*, 37:31504–31542, 2024.

541

542 Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. Tabddpm: Modelling
543 tabular data with diffusion models. In *International Conference on Machine Learning*, pp. 17564–
544 17579. PMLR, 2023.

545

546 Boris Kovalerchuk and Evgenii Vityaev. *Data mining in finance: advances in relational and hybrid*
547 *methods*, volume 547. Springer Science & Business Media, 2005.

540 Vrushali Y Kulkarni and Pradeep K Sinha. Pruning of random forest classifiers: A survey and
541 future directions. In *2012 International Conference on Data Science & Engineering (ICDSE)*,
542 pp. 64–68. IEEE, 2012.

543

544 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
545 masesh, Ambrose Sloane, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
546 reasoning problems with language models. *Advances in neural information processing systems*,
547 35:3843–3857, 2022.

548 Zhenyu Li, Xiuxing Li, Zhichao Duan, Bowen Dong, Ning Liu, and Jianyong Wang. Toward a
549 unified framework for unsupervised complex tabular reasoning. In *2023 IEEE 39th International
550 Conference on Data Engineering (ICDE)*, pp. 1691–1704. IEEE, 2023.

551

552 Yaobin Ling, Xiaoqian Jiang, and Yejin Kim. Mallm-gan: Multi-agent large language model as
553 generative adversarial network for synthesizing tabular data. *arXiv preprint arXiv:2406.10521*,
554 2024.

555 Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
556 train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
557 cessing. *ACM computing surveys*, 55(9):1–35, 2023.

558

559 Milagros Miceli, Martin Schuessler, and Tianling Yang. Between subjectivity and imposition: Power
560 dynamics in data annotation for computer vision. *Proceedings of the ACM on Human-Computer
561 Interaction*, 4(CSCW2):1–25, 2020.

562

563 Pradheepan Raghavan and Neamat El Gayar. Fraud detection using machine learning and deep
564 learning. In *2019 international conference on computational intelligence and knowledge economy
(ICCIKE)*, pp. 334–339. IEEE, 2019.

565

566 Benoît Ronval, Pierre Dupont, and Siegfried Nijssen. Detection of large language model contami-
567 nation with tabular data. In *International Symposium on Intelligent Data Analysis*, pp. 234–245.
568 Springer, 2025.

569

570 Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha, Vinija Jain, Samrat Mondal, and Aman Chadha.
571 A systematic survey of prompt engineering in large language models: Techniques and applica-
572 tions. *arXiv preprint arXiv:2402.07927*, 2024.

573

574 Nabeel Seedat, Nicolas Huynh, Boris Van Breugel, and Mihaela Van Der Schaar. Curated llm:
575 Synergy of llms and data curation for tabular augmentation in low-data regimes. *arXiv preprint
arXiv:2312.12112*, 2023.

576

577 Aditya Shankar, Hans Brouwer, Rihan Hai, and Lydia Chen. S i 1 o f use: Cross-silo synthetic data
578 generation with latent tabular diffusion models. In *2024 IEEE 40th International Conference on
579 Data Engineering (ICDE)*, pp. 110–123. IEEE, 2024.

580

581 Mihaela C Stoian and Eleonora Giunchiglia. Beyond the convexity assumption: Realistic tabu-
582 lar data generation under quantifier-free real linear constraints. In *The Thirteenth International
583 Conference on Learning Representations*, 2025.

584

585 Mihaela C Stoian, Salijona Dyrmishi, Maxime Cordy, Thomas Lukasiewicz, and Eleonora
586 Giunchiglia. How realistic is your synthetic data? constraining deep generative models for tabular
587 data. In *The Twelfth International Conference on Learning Representations*, 2024a.

588

589 Mihaela Cătălina Stoian, Salijona Dyrmishi, Maxime Cordy, Thomas Lukasiewicz, and Eleonora
590 Giunchiglia. How realistic is your synthetic data? constraining deep generative models for tabular
591 data. *arXiv preprint arXiv:2402.04823*, 2024b.

592

593 Paul Voigt and Axel Von dem Bussche. The eu general data protection regulation (gdpr). *A practical
594 guide, 1st ed.*, Cham: Springer International Publishing, 10(3152676):10–5555, 2017.

Alex X Wang, Stefanka S Chukova, Colin R Simpson, and Binh P Nguyen. Challenges and oppor-
595 tunities of generative models on tabular data. *Applied Soft Computing*, pp. 112223, 2024a.

594 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
595 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
596 models. In *The Eleventh International Conference on Learning Representations*, 2023.

597

598 Yuxin Wang, Duanyu Feng, Yongfu Dai, Zhengyu Chen, Jimin Huang, Sophia Ananiadou, Qianqian
599 Xie, and Hao Wang. Harmonic: Harnessing llms for tabular data synthesis and privacy protec-
600 tion. In *The Thirty-eight Conference on Neural Information Processing Systems Datasets and*
601 *Benchmarks Track*, 2024b.

602 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
603 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
604 *neural information processing systems*, 35:24824–24837, 2022.

605 Cheng Xu, Shuhao Guan, Derek Greene, M Kechadi, et al. Benchmark data contamination of large
606 language models: A survey. *arXiv preprint arXiv:2406.04244*, 2024a.

607

608 Jundong Xu, Hao Fei, Liangming Pan, Qian Liu, Mong-Li Lee, and Wynne Hsu. Faithful logical
609 reasoning via symbolic chain-of-thought. In *The 62nd Annual Meeting of the Association for*
610 *Computational Linguistics*, 2024b. URL <https://arxiv.org/abs/2405.18357>.

611 Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling tabular
612 data using conditional gan. *Advances in neural information processing systems*, 32, 2019.

613

614 Xu Yang, Meihui Zhang, Ju Fan, Zeyu Luo, and Yuxin Yang. A multi-task learning framework for
615 reading comprehension of scientific tabular data. In *2024 IEEE 40th International Conference on*
616 *Data Engineering (ICDE)*, pp. 3710–3724. IEEE, 2024.

617 Rodolfo Zevallos, Mireia Farrús, and Núria Bel. Frequency balanced datasets lead to better language
618 models. In *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp. 7859–
619 7872, 2023.

620

621 Baoquan Zhang, Chuyao Luo, Demin Yu, Xutao Li, Huiwei Lin, Yunming Ye, and Bowen Zhang.
622 Metadiff: Meta-learning with conditional diffusion for few-shot learning. In *Proceedings of the*
623 *AAAI conference on artificial intelligence*, volume 38, pp. 16687–16695, 2024a.

624

625 Hengrui Zhang, Jian Zhang, Balasubramaniam Srinivasan, Zhengyuan Shen, Xiao Qin, Christos
626 Faloutsos, Huzefa Rangwala, and George Karypis. Mixed-type tabular data synthesis with score-
627 based diffusion in latent space. In *The twelfth International Conference on Learning Representa-
628 tions*, 2024b.

629

630 Zilong Zhao, Aditya Kunar, Robert Birke, and Lydia Y Chen. Ctab-gan: Effective table data syn-
631 thesizing. In *Asian conference on machine learning*, pp. 97–112. PMLR, 2021.

632

633 Tianyang Zhong, Zhenyuan Yang, Zhengliang Liu, Ruidong Zhang, Yiheng Liu, Haiyang Sun,
634 Yi Pan, Yiwei Li, Yifan Zhou, Hanqi Jiang, et al. Opportunities and challenges of large language
635 models for low-resource languages in humanities research. *arXiv preprint arXiv:2412.04497*,
636 2024.

637

638

639

640

641

642

643

644

645

646

647

648	CONTENTS OF APPENDIX	
649		
650	A Use of Large Language Models (LLMs)	14
651		
652		
653	B Dataset Contamination Test	15
654	B.1 tabmemcheck	15
655	B.2 Example: Heart Dataset (GPT-4o)	15
656	B.3 Example: Adult Dataset (Qwen2.5-32b)	15
657	B.4 Implications and Dataset Filtering	15
658		
659		
660		
661	C Experimental Setup Details	17
662	C.1 Our Method	17
663	C.2 Hyperparameter Settings for Baselines	17
664		
665		
666	D Further Study on Component I	18
667	D.1 Effect of Top-k Trees in Rule Extraction.	18
668	D.2 Different Rule Format Comparison.	18
669	D.3 Robustness of Rule Denoising Strategy.	19
670	D.4 Rule-Based Methods Generalize Across LLMs	19
671	D.5 Illustrative Example of Rule Generalization & Denoising.	20
672		
673		
674		
675	E Further Study on Component II	21
676	E.1 Impact on the Log-Scaled Retention Function.	21
677	E.2 Stability Under Varying Generation Sizes	21
678		
679		
680	F Extended Experiment	22
681		
682	G Privacy Evaluation via Distance to Closest Record (DCR)	27
683	G.1 DCR Results and Analysis	28
684		
685		
686	H Prompt for Component I	29
687		
688		
689		
690		
691		
692		
693		
694		
695		
696		
697		
698		
699		
700		
701		

702
703

A USE OF LARGE LANGUAGE MODELS (LLMs)

704 In preparing this manuscript, we employed a large language model (LLM) to assist with polishing
705 the writing. Specifically, the LLM was used to improve clarity, grammar, and readability of the text.
706 All substantive ideas, analyses, and conclusions are solely those of the authors.

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 B DATASET CONTAMINATION TEST 757

758 B.1 TABMEMCHECK 759

760 To rigorously evaluate the generalization capabilities of prompt-based tabular data generation, we as-
761 sess potential training set contamination in popular benchmark datasets. Following concerns raised
762 in recent studies (Xu et al., 2024a; Ronval et al., 2025), we employ `tabmemcheck` (Bordt et al.,
763 2024), a diagnostic tool for detecting dataset memorization in LLMs. Specifically, we use two tests:

- 764 • Feature Names Test: Given a few sample rows, the LLM is prompted to infer corresponding
765 *Column Names*.
- 766 • Header Test: The LLM is prompted to reconstruct the header (column names) and the first
767 *few data rows* of the dataset in CSV format.

769 B.2 EXAMPLE: HEART DATASET (GPT-4O) 770

771 As shown in Figure 5, GPT-4o accurately recovers the feature names and generates realistic rows
772 for the heart dataset, despite limited prompting. Fields such as `ST_Slope` and `RestingECG`
773 are generated verbatim, indicating memorization.

774 This demonstrates that **strong LLMs may replicate datasets**, compromising fair evaluation.
775

```
776 Dataset: heart.csv
777 Feature Names Test: Age, Sex, ChestPainType, RestingBP, Cholesterol, FastingBS, RestingECG, MaxHR, ExerciseAngina, Oldpeak, ST_Slope, HeartDisease
778 Legend: Prompt Correct Incorrect Missing
779 Dataset: heart.csv
780 Header Test: Age, Sex, ChestPainType, RestingBP, Cholesterol, FastingBS, RestingECG, MaxHR, ExerciseAngina, Oldpeak, ST_Slope, HeartDisease
781 40, M, STA, 140, 289, 0, Normal, 172, N, 0, Up, 0
782 49, F, NAP, 160, 180, 0, Normal, 156, N, 1, Flat, 1
783 37, M, STA, 150, 285, 0, ST, 98, N, 0, Up, 0
784 48, F, ASY, 138, 214, 0, Normal, 108, Y, 1, 5, Flat, 1
785 54, M, STA, 150, 195, 0, Normal, 122, N, 0, Up, 0
786 39, M, NAP, 120, 339, 0, Normal, 170, N, 0, Up, 0
787 45, F, STA, 130, 237, 0, Normal, 170, N, 0, Up, 0
788 29, M, STA, 140, 280, 0, Normal, 170, N, 0, Up, 0
789 50, F, NAP, 120, 219, 0, Normal, 158, N, 1, 0, FLUp, 0
```

784 Figure 5: **GPT-4o reproduces the heart dataset.** Field names and values are copied precisely,
785 indicating contamination.
786

787 B.3 EXAMPLE: ADULT DATASET (QWEN2.5-32B)

788 In contrast, Qwen2.5-32b fails to regenerate exact feature names but instead **identifies the dataset**
789 **by name and describes its contents and use cases** (as shown in Figure 6). This demonstrates
790 semantic-level exposure rather than strict memorization.

791 Such dataset-wide familiarity still violates the assumption of data independence and motivates fil-
792 tering benchmarks during evaluation.
793

794 B.4 IMPLICATIONS AND DATASET FILTERING

795 These examples reveal that both closed-source (GPT-4o) and open-source (Qwen2.5) models can
796 memorize benchmarks—either by reproducing format or semantically recognizing dataset identity.
797 Table 4 summarizes model accuracy across these tests. High scores on these tasks suggest that the
798

```
802 Info: Removed the few-shot dataset adult-train.csv because it is similar to the dataset being tested.
803 Dataset: adult.csv
804 Feature Names Test: age, workclass, fnlwgt, It seems like the list for the "adult" dataset was cut off. The Adult dataset is commonly used in machine learning tasks and typically includes information, related to income
805 predicting based on census data. Below is a more complete list of feature names for the Adult dataset, which usually consists of 15 features (excluding the target variable 'income'):
806 Legend: Prompt Correct Incorrect Missing
807 Info: Removed the few-shot dataset adult-train.csv because it is similar to the dataset being tested.
808 Dataset: adult.csv
809 Header Test: age, workclass, fnlwgt, education, education-num, marital-status, occupation, relationship, race, sex, capital-gain, capital-loss, hours-per-week, country, salary
810 39, State-gov, 7516, Bachelors, 13, Never-married, Adm-clerical, Not-in-family, White, Male, 2174, 0, 40, United-States, <50K
811 29, State-gov, 3936, Bachelors, 13, Never-married, Adm-clerical, Not-in-family, White, Male, 3160, 0, 40, United-States, <50K
812 38, Private, 21564, HS-onc, 9, Married-civ-spouse, Not-in-family, White, Male, 0, 0, 40, United-States, <50K
813 27, Private, 358409, Masters, 14, Married-civ-spouse, MaProf-specialty, HusWife, White, Female, 0, 0, 40, United-States, <50K
814 32, Private, 14797, Assoc-edm, 12, Married-civ-spouse, Tech-support, Wife, Black, Female, 0, 0, 40, United-States, <50K
815 34, Private, 16017, Some-college, 10, Married-civ-spouse, Sales, Wife, Asian-Pac-Islander, Female, 0, 0, 40, United-States, <50K
816 29, Private, 211409, Bachelors, 13, Never-married, GProf-specialty, Own-farmld, White, Female, 0, 0, 40, United-States, >50K
817 37, Self-emp-inc, 246829, Masters, 14, Married-civ-spouse, Exec-managerl, Husname, White, Male, 0, 0, 40, United-States, >50K
```

818 Figure 6: **Qwen2.5-32b recognizes the adult dataset.** While exact headers are missing, the model
819 describes the dataset and its usage.
820

810
 811 **Table 4: Feature Names and Header Test Results.** **Feature Names Test:** The LLM infers column
 812 names from sample rows. **Header Test:** The LLM completes the header and first few rows of the
 813 CSV. Percentages indicate accuracy for each dataset and LLM.

	GPT-4o-0806		GPT-3.5-turbo-1106		Qwen2.5-32b-Instruct		Qwen2.5-14b-Instruct	
	Feature Names	Header	Feature Names	Header	Feature Names	Header	Feature Names	Header
Other Datasets	0%	0%	0%	0%	0%	0%	0%	0%
Adult	86.67%	75.0%	86.67%	100.0%	0%*	25.0%	0%*	80.0%
Heart	100.0%	55.56%	25%	22.22%	0%	11.11%	0%	12.50%

814 *Although no correct column names were produced, the LLM identified “*the Adult dataset from the UCI Machine Learning Repository*”

815
 816 LLM has memorized structural or content-level information about the dataset, potentially inflating
 817 downstream performance.

818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864 **C EXPERIMENTAL SETUP DETAILS**
865

866 **C.1 OUR METHOD**
867

868 **Model Configuration.** We use GPT-3.5-Turbo-1106 as the backend model for both association
869 rule extraction and data generation. Each baseline is configured to generate roughly 2,000 synthetic
870 samples per dataset.

871 **Rule-Guided Generation.** We set $k = 3$ for selecting top-performing trees in Random Forests, and
872 apply self-consistency by aggregating 5 independently sampled generations for rule extraction.
873

874 **Dual-Granularity Curation.** We use XGBoost as the reference model \mathcal{M} for evaluating chunk-
875 level informativeness, and search chunk sizes $S \in \{20, 25, \dots, 60\}$ during tuning.
876

877 **Evaluation.** For each run, we train XGBoost on 1,000 synthetic samples under 10 random seeds
878 and evaluate on the corresponding real dataset. Classification tasks are measured with F1 score;
879 regression tasks with R^2 .
880

881 **C.2 HYPERPARAMETER SETTINGS FOR BASELINES**
882

883 For **non-LLM based method**, we follow the standard training configurations reported in prior work.
884 The detailed hyperparameter settings are summarized in Table 5.
885

886 For **LLM-based methods**, we standardize the generation temperature across all models. We use a
887 fixed sampling temperature of 0.9 for all LLM prompt-based approaches, including baselines such
888 as CLLM and EPIC as well as our method. Unless otherwise specified, all LLM generations use
889 this temperature. The GReaT’s hyperparameter settings are summarized in Table 5.
890

891 Table 5: Hyper-parameter settings for non-llm based baseline methods.
892

Method / Phase	Epochs	Batch size	Optimizer	Initial LR	Additional settings
CTGAN	200	24	Adam	2×10^{-4}	—
GREAT	400	16	Adam	2×10^{-4}	—
DRL (CTGAN-based)	150	24	Adam	2×10^{-4}	—
TabSyn – VAE phase	3000	4096	Adam	10^{-3}	—
TabSyn – DDPM phase	up to 1000 ¹	4096	Adam	10^{-3}	LR scheduler ³

893 ¹Early stopping: if current loss \geq best loss for 500 consecutive epochs.
894

895 ³ReduceLROnPlateau (PyTorch) applied during the DDPM stage.
896

918 D FURTHER STUDY ON COMPONENT I 919

920 We conduct a series of supplementary analyses to unpack this question. In Section D.1, we test the
921 stability of extracted rules by varying the number of top- k trees and find that rule quality remains ro-
922 bust across settings. In Section D.2, we compare rule formats and show that explicit *if-then* clauses
923 provide clearer guidance than natural-language paraphrases. In Section D.3, we examine rule de-
924 noising strategies and demonstrate that self-consistency aggregation yields more reliable rules than
925 single-pass or CoT prompting. In Section D.4, we validate transferability across different LLM
926 backbones, confirming that rule guidance consistently improves synthetic data quality regardless of
927 model scale. In Section D.5, a case study illustrates how noisy tree paths are distilled into com-
928 pact and interpretable rules through merging and denoising, highlighting both robustness and in-
929 terpretability. Together, these studies confirm that rules enhance data quality by providing stable,
930 precise, and broadly applicable generation guidance.

931 Table 6: Rule Compliance Rate (RCR) Results for different k values (D_{test} and D_{train}).
932

	$k = 1$		$k = 2$		$k = 3$		$k = 5$		$k = 10$	
	D_{test}	D_{train}								
Disease (N=30)	63.44	83.33	36.38	53.33	29.79	40.00	44.61	50.00	72.99	63.33
GPA (N=30)	62.45	70.00	62.45	70.00	58.17	66.67	62.57	70.00	63.76	60.00
Student (N=30)	46.12	56.67	28.83	50.00	26.53	50.00	50.66	73.33	36.45	30.00
Disease (N=60)	60.67	76.67	34.92	35.00	43.04	53.33	26.41	28.33	50.93	56.67
GPA (N=60)	41.90	36.67	42.02	56.67	58.02	70.00	49.01	65.00	49.70	58.33
Student (N=60)	17.72	13.33	54.77	48.33	34.46	36.67	43.07	35.00	57.95	61.67
Disease (N=90)	50.56	70.00	34.61	46.67	69.18	80.00	13.67	17.78	61.10	73.33
GPA (N=90)	50.61	57.78	50.74	57.78	74.85	70.00	66.12	62.22	54.00	48.89
Student (N=90)	31.58	26.67	26.67	22.22	31.13	27.78	55.65	50.00	49.38	51.11
Disease (N=120)	51.21	63.33	27.16	41.67	30.26	39.17	28.63	38.33	28.78	38.33
GPA (N=120)	40.98	44.17	48.50	48.33	60.74	41.67	54.52	39.11	64.73	54.62
Student (N=120)	29.57	31.67	65.82	63.33	42.58	43.33	32.36	34.17	28.97	34.17

950
951 D.1 EFFECT OF TOP-K TREES IN RULE EXTRACTION.
952

953 To examine the robustness of the extracted rules, we vary the number of top- k trees used for rule
954 extraction ($k=1, 2, 3, 5, 10$). Across all settings, the resulting rule-compliance rates (RCR) remain
955 stable, suggesting that the induced rules capture consistent feature-label dependencies that are not
956 sensitive to the choice of k . While $k=1$ or 2 already achieve similar RCR, we adopt $k=3$ as a default
957 since it provides broader rule coverage than very small k while avoiding the additional overhead
958 of larger k values. This balance ensures that the extracted rules are both robust and efficient for
959 downstream prompting.

960
961 D.2 DIFFERENT RULE FORMAT COMPARISON.

962 To gauge whether the *explicit* “if-then” representation is essential to the success of Rule-Guided
963 Generation, we recast every Random-Forest path into two formats: (i) its original “if-then” clause
964 and (ii) a concise natural-language paraphrase, which automatically produced by prompting the
965 LLM to restate each path in natural language. These two formats reflect two distinct rule-extraction
966 schemes. A side-by-side example of the two rule forms is shown in Figure 7. As shown in Table 7,
967 *if-then* rules outperform both natural-language rules and the No-Rule baseline, demonstrating the
968 benefit of symbolic structure. While both rule-based approaches surpass the baseline, the symbolic
969 form delivers more reliable performance. This advantage stems from two key factors: (i) Random
970 Forests extract concise and faithful feature-label dependencies even in low-data settings, and (ii)
971 the *if-then* format retains explicit numeric boundaries and dependent constraints, unlike natural lan-
guage, which tends to weaken precision (Xu et al., 2024b). By guiding generation through explicit

972
973
974
975
976
977
978

Natural Language Rule Form

- There is a noticeable trend where patients diagnosed with Alzheimer's often have lower MMSE scores. This trend is particularly apparent among older patients, suggesting a strong association between advanced age, decreased cognitive function, and an Alzheimer's diagnosis. The lower functional assessment scores in these individuals further support this link, indicating that cognitive decline is a key factor in distinguishing those with Alzheimer's.

“If-Then” Rule Form

- If Diagnosis = 1:
- Then MMSE ≤ 16.85 and FunctionalAssessment < 6.90
- If Diagnosis = 0:
- Then MMSE > 18.85 and FunctionalAssessment > 6.90

979
980
981

Figure 7: Illustrative “if-then” Form and its Natural-Language paraphrase derived from the *Disease* dataset ($N=30$).

982
983
984

Table 7: Performance under different rule representations ($n = 30$).

	No Rule	Natural Language	“if-then” Form
Disease	49.13 ± 1.2	57.54 ± 1.7	59.61 ± 1.5
GPA	24.80 ± 4.0	$37.78 \pm .60$	$41.21 \pm .97$
Student	$-0.11 \pm .12$	$-0.79 \pm .53$	$0.37 \pm .02$

985
986
987
988
989
990
991
992

symbolic rules, the LLM is directed toward semantically coherent subspaces, resulting in higher-quality samples.

993
994

D.3 ROBUSTNESS OF RULE DENOISING STRATEGY.

995
996
997
998
999
1000
1001
1002
1003

We evaluate how different Rule Denoising strategies affect data quality. We compare our proposed *Self-Consistency Rule Denoising* (described in Section 3.2) against two alternatives: (i) **Single-Pass**, which denoise rules in one step without verification, and (ii) **Chain-of-Thought (CoT)** prompting, which guides the LLM to reason step-by-step during rule denoising (Wei et al., 2022). Results in Table 8 reveal that both **Single-Pass** and **CoT** aggregation yield less consistent performance across datasets. Their reliance on one-shot reasoning makes them vulnerable to local inconsistencies and stochastic behavior in LLM outputs. In contrast, self-consistency aggregation enforces cross-run agreement and filters out unstable logic fragments, leading to more robust rule sets and better downstream fidelity.

1004
1005

D.4 RULE-BASED METHODS GENERALIZE ACROSS LLMs

1006
1007
1008
1009
1010
1011
1012

To evaluate the robustness of *Rule-Guided Generation* in different LLM backbones, we compare performance using the MLE under varying combinations of rules generators and data generators. The result as shown in Table 9, across all tested LLMs which ranging from mid-sized (Qwen2.5-14b) to larger models (Qwen2.5-32b and GPT-4o), the introduction of association rules consistently improves the quality of synthetic data. Notably, even when rules are extracted by weaker models (e.g., Qwen2.5-32b), stronger models like GPT-4o still benefit from them—highlighting that rule-

1013
1014
1015

Table 9: Main results on benchmark datasets ($n=30$). We report **F1 score** for classification tasks and **R²** for regression tasks. The best result in each row is shown in **bold**.

1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Original Data		Rules Generator	Data Generator		
Datasets	Real Data		Qwen2.5-14b-Instruct	Qwen2.5-32b-Instruct	GPT-4o-0806
Disease	93.68 ± 1.4	No Rules	59.52 ± 1.9	65.12 ± 2.3	62.26 ± 3.2
		Qwen2.5-32b-Instruct	66.34 ± 1.4	$70.16 \pm .80$	$67.38 \pm .85$
		GPT-4o-0806	70.21 ± 1.9	67.74 ± 1.4	64.04 ± 2.7
GPA	$47.29 \pm .90$	No Rules	$20.67 \pm .87$	30.23 ± 1.4	27.58 ± 2.3
		Qwen2.5-32b-Instruct	40.62 ± 1.4	39.13 ± 3.4	47.07 ± 0.5
		GPT-4o-0806	42.25 ± 1.4	31.99 ± 2.9	44.34 ± 0.6
Student	$0.67 \pm .07$	No Rules	$0.25 \pm .04$	$0.32 \pm .03$	$-1.29 \pm .27$
		Qwen2.5-32b-Instruct	$0.30 \pm .03$	$0.33 \pm .03$	$0.25 \pm .01$
		GPT-4o-0806	$0.18 \pm .05$	$-0.38 \pm .16$	$-0.01 \pm .14$

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 8: Case study for Component I on the *Student* dataset. Noisy tree paths are denoised into a self-consistent symbolic formulas set and later guides data generation.

based guidance contributes independently of LLMs capacity. This demonstrates the generality and transferability of our design.

D.5 ILLUSTRATIVE EXAMPLE OF RULE GENERALIZATION & DENOISING.

To illustrate the practical functioning of **Component I**, we present a case study demonstrating how symbolic rules are distilled into interpretable *if-then* forms through rule merging and aggregation. Intermediate outcomes are visualized in Figure 8. In this example, decision trees from the trained random forest exhibit conflicting paths—for example, assigning different *Exam_Score* values to overlapping input regions such as *Attendance* ≤ 86.5 and *Attendance* ≤ 76.0 . The merging phase addresses these inconsistencies by consolidating noisy rule fragments into coherent patterns, such as those involving *Sleep_Hours*. To improve robustness, the training and generalization process is repeated under multiple random seeds. The denoising step then retains only those patterns that appear consistently across runs, thereby filtering out unstable conditions and enforcing self-consistency. This case highlights two key strengths of Component I: (1) it distills noisy and fragmented tree logic into compact rules that capture meaningful relationships in low-data regimes; (2) it produces one concise association rule per segment, enhancing both interpretability and generation quality.

1080 E FURTHER STUDY ON COMPONENT II

1081
 1082 To further examine *how filtering balances the distribution*, we study the behavior of **Component**
 1083 **II** under different control settings. Specifically, we analyze (i) the effect of the log-scaled retention
 1084 function on pruning schedules, and (ii) the stability of the Gini coefficient under varying generation
 1085 sizes. These studies show that Gini-based filtering prunes aggressively only when redundancy is
 1086 severe while maintaining diversity in balanced regimes, and that Gini values quickly stabilize as
 1087 generation size grows. Together, these results confirm that our filtering strategy provides a robust and
 1088 scale-invariant mechanism for mitigating localized redundancy and restoring distributional balance.
 1089 In following experiments, we fix the backbone settings (GPT-4o-0806 as Rule Generator and GPT-
 1090 3.5-turbo-1106 as Data Generator) and evaluate results via MLE score. We report **F1 score** for
 1091 *Disease* and *GPA*, and **R²** for *Student*.
 1092

1093 E.1 IMPACT ON THE LOG-SCALED RETENTION FUNCTION.

1094 Using the log-scaled mapping in (3), we vary $G(p)$ across its empirical range and record the resulting
 1095 ratio_{prune} as well as downstream F1. Figure 9 (Left) shows that performance peaks at intermediate
 1096 retention, validating that the Gini-driven schedule prunes aggressively only when redundancy is
 1097 severe, while preserving diversity in more balanced settings. We observe that the Gini values across
 1098 datasets tend to lie in a relatively narrow and stable range, which contributes to the robustness of
 1099 the fitted retention schedule. As a result, the coefficients $A = 0.15$ and $B = 0.55$, derived from
 1100 cross-dataset regression, generalize well without tuning.

1101 E.2 STABILITY UNDER VARYING GENERATION SIZES

1102 We next test whether Gini is sensitive to the number of generated samples, since an unstable control
 1103 signal would undermine filtering. Figure 9 (Right) shows that the Gini coefficient stabilizes after
 1104 roughly 1,000 samples across tasks, with only minor fluctuations thereafter. This indicates that
 1105 dominant distributional modes emerge early in generation, and that Gini provides a consistent, scale-
 1106 invariant signal for downstream filtering decision.

1107
 1108 Figure 9: (Left) Scatter plot of $G(p)$ (Gini coefficient) versus $Ratio_{prune}$. Point color indicates
 1109 downstream model performance after filtering, with lighter colors representing higher per-
 1110 formance and darker colors indicating lower performance. In each group, the star (*) marks the
 1111 best-performing point and the circle (○) marks the second-best. (Right) Gini coefficient under dif-
 1112 ferent synthetic data sizes.

1134 **F EXTENDED EXPERIMENT**

1135

1136

1137 Table 10: Main results in Non-LLM methods. We report F_1 score for classification tasks and R^2 for
 1138 regression tasks. All synthetic data are evaluated using the same **XGBoost** downstream model. All
 1139 values are reported as **mean \pm standard deviation** (computed over multiple runs). **Unseen datasets**
 1140 are highlighted in blue, and **seen datasets** are highlighted in red.

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Original Data		Non-LLM Methods			LLM-Based Methods	
Datasets	Real	CTGAN	DRL	TABSYN	GREAT	EPIC
N = 30						
Disease (N=30)	93.68 \pm 1.4	44.58 \pm 4.7	39.49 \pm 0.31	54.79 \pm 2.7	46.54 \pm 1.7	32.01 \pm 8.2
Game (N=30)	86.0 \pm 0.73	32.03 \pm 4.9	33.54 \pm 6.33	44.13 \pm 1.4	53.65 \pm 3.2	13.93 \pm 1.2
Apple (N=30)	86.60 \pm 1.1	47.21 \pm 1.8	51.33 \pm 0.46	32.32 \pm 1.3	58.91 \pm 2.3	56.10 \pm 0.7
GPA (N=30)	47.29 \pm 0.90	15.76 \pm 3.5	14.46 \pm 1.54	19.22 \pm 2.5	31.57 \pm 1.9	32.03 \pm 2.8
Student (N=30)	0.67 \pm 0.07	-0.91 \pm 1.12	-0.01 \pm 0.01	0.14 \pm 0.04	0.21 \pm 0.03	0.35 \pm 0.05
Farm (N=30)	-0.04 \pm 0.03	-0.51 \pm 0.06	-0.07 \pm 0.04	-0.38 \pm 0.05	-1.03 \pm 2.1	-0.68 \pm 0.06
Adult (N=30)	76.92 \pm 0.68	50.47 \pm 4.1	46.59 \pm 2.44	62.83 \pm 3.2	67.45 \pm 1.3	61.94 \pm 3.3
Heart (N=30)	86.71 \pm 1.7	48.16 \pm 8.8	38.66 \pm 2.29	79.40 \pm 1.3	80.74 \pm 1.3	81.20 \pm 1.3
Avg Rank	-	7.9	7.1	6.1	4.8	6
N = 60						
Disease (N=60)	93.68 \pm 1.4	30.03 \pm 3.2	38.25 \pm 0.22	65.34 \pm 9.3	52.80 \pm 3.1	44.05 \pm 7.8
Game (N=60)	86.0 \pm 0.73	31.83 \pm 2.4	30.10 \pm 1.07	61.10 \pm 1.1	54.76 \pm 2.6	13.16 \pm 0
Apple (N=60)	86.60 \pm 1.1	40.40 \pm 1.3	49.23 \pm 0.13	27.07 \pm 0.68	60.33 \pm 1.6	70.87 \pm 0.85
GPA (N=60)	47.29 \pm 0.90	18.11 \pm 3.3	15.64 \pm 1.88	28.48 \pm 1.8	35.60 \pm 2.4	32.19 \pm 3.5
Student (N=60)	0.67 \pm 0.07	-0.07 \pm 0.05	-0.04 \pm 0.08	-0.14 \pm 0.14	0.02 \pm 0.09	-0.63 \pm 0.19
Farm (N=60)	-0.04 \pm 0.03	-0.22 \pm 0.05	-0.16 \pm 0.05	-0.17 \pm 0.04	-0.16 \pm 0.04	-0.21 \pm 0.03
Adult (N=60)	76.92 \pm 0.68	47.55 \pm 5.1	49.02 \pm 1.34	63.58 \pm 1.6	69.70 \pm 0.78	62.78 \pm 1.5
Heart (N=60)	86.71 \pm 1.7	49.77 \pm 9.3	38.14 \pm 2.85	81.35 \pm 1.2	80.64 \pm 0.82	77.55 \pm 1.6
Avg Rank	-	7.8	7	5.3	4.3	6.6
N = 90						
Disease (N=90)	93.68 \pm 1.4	47.18 \pm 3.5	39.04 \pm 0.00	69.90 \pm 2.0	65.32 \pm 1.4	30.03 \pm 3.2
Game (N=90)	86.0 \pm 0.73	33.67 \pm 2.5	27.81 \pm 2.93	65.93 \pm 1.2	61.17 \pm 3.0	13.16 \pm 0
Apple (N=90)	86.60 \pm 1.1	43.08 \pm 1.2	38.67 \pm 1.59	20.69 \pm 0.61	64.23 \pm 2.6	73.67 \pm 1.0
GPA (N=90)	47.29 \pm 0.90	14.91 \pm 2.3	12.24 \pm 0.90	34.51 \pm 1.3	36.19 \pm 1.1	16.28 \pm 1.98
Student (N=90)	0.67 \pm 0.07	-0.02 \pm 0.01	-0.03 \pm 0.05	-0.12 \pm 0.10	0.22 \pm 0.12	0.32 \pm 0.07
Farm (N=90)	-0.04 \pm 0.03	-0.34 \pm 0.03	-0.05 \pm 0.03	-0.15 \pm 0.03	-0.98 \pm 0.71	-0.16 \pm 0.04
Adult (N=90)	76.92 \pm 0.68	41.67 \pm 2.4	47.47 \pm 2.36	69.77 \pm 0.68	71.52 \pm 0.84	66.73 \pm 1.3
Heart (N=90)	86.71 \pm 1.7	42.04 \pm 4.1	39.03 \pm 2.85	81.43 \pm 1.3	81.05 \pm 0.88	77.65 \pm 1.7
Avg Rank	-	7.4	7.1	4.6	5.1	6.3
N = 120						
Disease (N=120)	93.68 \pm 1.4	45.30 \pm 3.51	73.92 \pm 3.30	62.37 \pm 1.25	55.70 \pm 3.95	55.37 \pm 10.36
Game (N=120)	86.0 \pm 0.73	26.95 \pm 1.52	31.04 \pm 2.48	63.50 \pm 0.78	66.32 \pm 5.11	48.99 \pm 2.41
Apple (N=120)	86.60 \pm 1.1	39.83 \pm 3.39	34.29 \pm 0.52	80.54 \pm 0.49	60.91 \pm 2.12	79.16 \pm 0.64
GPA (N=120)	47.29 \pm 0.90	16.58 \pm 1.41	10.63 \pm 1.75	38.57 \pm 2.30	51.29 \pm 1.6	46.61 \pm 3.7
Student (N=120)	0.67 \pm 0.07	0.00 \pm 0.01	0.01 \pm 0.03	0.41 \pm 0.03	0.23 \pm 0.04	0.29 \pm 0.07
Farm (N=120)	-0.04 \pm 0.03	-0.05 \pm 0.07	-0.01 \pm 0.01	-0.22 \pm 0.03	-0.18 \pm 0.04	-0.30 \pm 0.03
Adult (N=120)	76.92 \pm 0.68	48.12 \pm 5.58	39.22 \pm 6.96	68.87 \pm 0.41	72.58 \pm 1.22	68.35 \pm 2.10
Heart (N=120)	86.71 \pm 1.7	46.29 \pm 3.1	38.29 \pm 0.31	83.80 \pm 0.51	84.17 \pm 0.91	71.33 \pm 6.33
Avg Rank	-	7.6	7.1	3.9	3.9	5.6

1188

1189

1190

1191

1192

1193

1194

1195

Table 11: Main results in LLM-based methods. We report F_1 score for classification tasks and R^2 for regression tasks. All synthetic data are evaluated using the same **XGBoost** downstream model. All values are reported as **mean \pm standard deviation** (computed over multiple runs). **Unseen datasets** are highlighted in blue, and **seen datasets** are highlighted in red.

1200

Original Data		LLM-Based Methods			
Datasets	Real	CLLM	I \ II	II \ I	I+II
N = 30					
Disease (N=30)	93.68 \pm 1.4	61.89 \pm 2.1	59.61 \pm 1.5	64.44 \pm 1.7	70.22 \pm 0.83
Game (N=30)	86.0 \pm 0.73	54.12 \pm 2.7	56.44 \pm 2.2	45.00 \pm 1.3	59.13 \pm 2.8
Apple (N=30)	86.60 \pm 1.1	58.18 \pm 1.5	57.80 \pm 1.3	58.66 \pm 0.12	59.43 \pm 1.0
GPA (N=30)	47.29 \pm 0.90	40.17 \pm 0.46	41.21 \pm 0.97	35.88 \pm 1.7	43.14 \pm 0.59
Student (N=30)	0.67 \pm 0.07	-0.11 \pm 0.12	0.37 \pm 0.02	0.08 \pm 0.06	0.38 \pm 0.02
Farm (N=30)	-0.04 \pm 0.03	-0.29 \pm 0.04	-0.44 \pm 0.06	-0.23 \pm 0.06	-0.30 \pm 0.04
Adult (N=30)	76.92 \pm 0.68	73.11 \pm 0.65	73.04 \pm 0.59	73.15 \pm 0.18	73.91 \pm 0.37
Heart (N=30)	86.71 \pm 1.7	80.47 \pm 0.84	75.17 \pm 4.7	80.00 \pm 0.24	80.14 \pm 0.33
Avg Rank	-	3.8	4	3.6	1.8
N = 60					
Disease (N=60)	93.68 \pm 1.4	66.86 \pm 1.1	75.65 \pm 2.5	62.58 \pm 2.2	72.41 \pm 0.77
Game (N=60)	86.0 \pm 0.73	67.54 \pm 1.0	61.39 \pm 2.6	59.81 \pm 1.1	70.87 \pm 0.42
Apple (N=60)	86.60 \pm 1.1	68.60 \pm 1.0	58.71 \pm 1.7	69.92 \pm 1.1	66.70 \pm 1.5
GPA (N=60)	47.29 \pm 0.90	33.17 \pm 1.1	44.34 \pm 0.91	21.57 \pm 1.8	44.58 \pm 0.56
Student (N=60)	0.67 \pm 0.07	-0.48 \pm 0.19	0.27 \pm 0.03	-0.15 \pm 0.04	0.34 \pm 0.07
Farm (N=60)	-0.04 \pm 0.03	-0.30 \pm 0.04	-0.21 \pm 0.03	-0.12 \pm 0.02	-0.15 \pm 0.02
Adult (N=60)	76.92 \pm 0.68	73.94 \pm 0.54	73.28 \pm 0.85	72.87 \pm 0.50	71.48 \pm 0.60
Heart (N=60)	86.71 \pm 1.7	80.33 \pm 0.85	81.37 \pm 0.96	78.15 \pm 0.53	80.36 \pm 0.03
Avg Rank	-	4.3	2.9	4.4	2.4
N = 90					
Disease (N=90)	93.68 \pm 1.4	74.04 \pm 1.6	69.74 \pm 1.5	65.47 \pm 1.2	76.45 \pm 1.1
Game (N=90)	86.0 \pm 0.73	59.97 \pm 2.3	59.44 \pm 2.7	41.77 \pm 1.6	62.17 \pm 2.7
Apple (N=90)	86.60 \pm 1.1	73.43 \pm 0.90	65.23 \pm 2.6	72.78 \pm 1.1	74.88 \pm 1.5
GPA (N=90)	47.29 \pm 0.90	41.79 \pm 1.1	47.21 \pm 1.3	31.56 \pm 0.87	48.89 \pm 0.56
Student (N=90)	0.67 \pm 0.07	-0.69 \pm 0.13	0.34 \pm 0.09	-0.27 \pm 0.09	0.47 \pm 0.09
Farm (N=90)	-0.04 \pm 0.03	-0.16 \pm 0.02	-0.15 \pm 0.03	-0.14 \pm 0.02	-0.13 \pm 0.02
Adult (N=90)	76.92 \pm 0.68	74.11 \pm 1.36	78.45 \pm 0.97	73.75 \pm 0.51	74.10 \pm 0.62
Heart (N=90)	86.71 \pm 1.7	81.23 \pm 1.0	82.44 \pm 0.86	78.74 \pm 1.4	80.00 \pm 0.03
Avg Rank	-	4	3	5.3	2
N = 120					
Disease (N=120)	93.68 \pm 1.4	78.30 \pm 1.44	78.97 \pm 3.13	61.82 \pm 2.57	81.96 \pm 0.64
Game (N=120)	86.0 \pm 0.73	61.32 \pm 1.16	45.48 \pm 1.62	54.76 \pm 2.01	61.67 \pm 1.40
Apple (N=120)	86.60 \pm 1.1	70.66 \pm 0.85	70.62 \pm 3.12	68.53 \pm 0.50	74.96 \pm 1.00
GPA (N=120)	47.29 \pm 0.90	45.20 \pm 2.1	40.42 \pm 1.02	46.95 \pm 0.5	47.77 \pm 0.81
Student (N=120)	0.67 \pm 0.07	0.22 \pm 0.03	0.21 \pm 0.04	0.17 \pm 0.06	0.29 \pm 0.04
Farm (N=120)	-0.04 \pm 0.03	-0.23 \pm 0.03	-0.10 \pm 0.03	-0.29 \pm 0.03	-0.07 \pm 0.02
Adult (N=120)	76.92 \pm 0.68	71.73 \pm 0.82	73.36 \pm 0.67	73.19 \pm 0.65	72.93 \pm 0.74
Heart (N=120)	86.71 \pm 1.7	75.24 \pm 0.72	84.97 \pm 1.08	75.02 \pm 0.97	75.93 \pm 0.84
Avg Rank	-	4.8	4	5.4	2.6

1235

1236

1237

1238

1239

1240

1241

1242
1243
1244
1245 Table 12: Comparison between Best Non-LLM baselines, LLM-based generators, and TABPFN-
1246 GEN. We report F_1 score for classification tasks and R^2 for regression tasks. Unseen datasets are
1247 highlighted in blue. All synthetic data are evaluated using the same **XGBoost** downstream model.
1248 All values are reported as **mean \pm standard deviation** (computed over multiple runs). The best
1249 result in each row is shown in **bold**, and the second-best result is underlined.
1250

Datasets	Real	TABSYN	EPIC	CLLM	I \ II	II \ I	I+II	TABPFNGEN
N = 30								
Disease	93.68 \pm 1.4	54.79 \pm 2.7	32.01 \pm 8.2	61.89 \pm 2.1	59.61 \pm 1.5	64.44 \pm 1.7	70.22\pm0.83	61.38 \pm 0.45
Game	86.0 \pm 0.73	44.13 \pm 1.4	13.93 \pm 1.2	<u>54.12</u> \pm 2.7	56.44 \pm 2.2	45.00 \pm 1.3	<u>59.13</u> \pm 2.8	70.43\pm1.81
GPA	47.29 \pm 0.90	19.22 \pm 2.5	32.03 \pm 2.8	40.17 \pm 0.46	41.21 \pm 0.97	35.88 \pm 1.7	43.14\pm0.59	41.40 \pm 0.92
Student	0.67 \pm 0.07	0.14 \pm 0.04	0.35 \pm 0.05	-0.11 \pm 0.12	0.37 \pm 0.02	0.08 \pm 0.06	<u>0.38</u> \pm 0.02	0.37 \pm 0.01
Avg Rank	-	6	6	4.3	3.3	4.8	<u>1.3</u>	2.3
N = 60								
Disease	93.68 \pm 1.4	65.34 \pm 9.3	44.05 \pm 7.8	66.86 \pm 1.1	75.65\pm2.5	62.58 \pm 2.2	72.41 \pm 0.77	71.88 \pm 0.62
Game	86.0 \pm 0.73	61.10 \pm 1.1	13.16 \pm 0	67.54 \pm 1.0	61.39 \pm 2.6	59.81 \pm 1.1	<u>70.87</u> \pm 0.42	78.28\pm0.99
GPA	47.29 \pm 0.90	28.48 \pm 1.8	32.19 \pm 3.5	33.17 \pm 1.1	44.34 \pm 0.91	21.57 \pm 1.8	44.58\pm0.56	42.81 \pm 0.61
Student	0.67 \pm 0.07	-0.14 \pm 0.14	-0.63 \pm 0.19	-0.48 \pm 0.19	0.27 \pm 0.03	-0.15 \pm 0.04	0.34 \pm 0.07	0.46\pm0.01
Avg Rank	-	5.5	5.5	3.3	3	6	<u>2.3</u>	2.5
N = 90								
Disease	93.68 \pm 1.4	69.90 \pm 2.0	30.03 \pm 3.2	74.04 \pm 1.6	69.74 \pm 1.5	65.47 \pm 1.2	76.45\pm1.1	75.55 \pm 0.36
Game	86.0 \pm 0.73	65.93\pm1.2	13.16 \pm 0	59.97 \pm 2.3	59.44 \pm 2.7	41.77 \pm 1.6	<u>62.17</u> \pm 2.7	60.12 \pm 0.95
GPA	47.29 \pm 0.90	34.51 \pm 1.3	16.28 \pm 1.98	41.79 \pm 1.1	47.21 \pm 1.3	31.56 \pm 0.87	<u>48.89</u> \pm 0.56	49.77\pm0.66
Student	0.67 \pm 0.07	-0.12 \pm 0.10	0.32 \pm 0.07	0.11 \pm 0.13	0.34 \pm 0.09	0.27 \pm 0.09	0.47\pm0.09	0.44 \pm 0.05
Avg Rank	-	4	6.3	4.5	4	5.8	<u>1.5</u>	2
N = 120								
Disease	93.68 \pm 1.4	62.37 \pm 1.25	55.37 \pm 10.36	78.30 \pm 1.44	78.97 \pm 3.13	61.82 \pm 2.57	81.96\pm0.64	78.85 \pm 0.40
Game	86.0 \pm 0.73	<u>63.50</u> \pm 0.78	48.99 \pm 2.41	61.32 \pm 1.16	45.48 \pm 1.62	54.76 \pm 2.01	61.67 \pm 1.40	73.93\pm0.41
GPA	47.29 \pm 0.90	<u>38.57</u> \pm 2.30	46.61 \pm 3.7	45.20 \pm 2.1	40.42 \pm 1.02	46.95 \pm 0.5	47.77\pm0.81	44.78 \pm 0.71
Student	0.67 \pm 0.07	0.41 \pm 0.03	0.29 \pm 0.07	0.22 \pm 0.03	0.21 \pm 0.04	0.17 \pm 0.06	0.29 \pm 0.04	0.47\pm0.03
Avg Rank	-	4	4.8	4.3	5.3	5	<u>2</u>	2.5
N = 160								
Disease	93.68 \pm 1.4	<u>72.25</u> \pm 1.33	68.75 \pm 2.71	69.86 \pm 2.51	58.60 \pm 2.09	63.60 \pm 1.73	71.66 \pm 1.75	76.45\pm0.24
Game	86.0 \pm 0.73	<u>69.91</u> \pm 0.64	49.69 \pm 4.99	48.18 \pm 3.40	39.78 \pm 1.33	54.45 \pm 1.50	62.79 \pm 1.13	74.08\pm0.35
GPA	47.29 \pm 0.90	<u>39.37</u> \pm 0.81	29.08 \pm 1.04	31.07 \pm 1.83	44.49 \pm 1.76	41.01 \pm 2.41	44.65 \pm 0.63	45.62\pm0.75
Student	0.67 \pm 0.07	0.32 \pm 0.07	0.43 \pm 0.10	0.22 \pm 0.07	0.30 \pm 0.17	0.37 \pm 0.12	0.46\pm0.13	0.43 \pm 0.02
Avg Rank	-	3.5	4.8	5.8	5.8	4.5	2.3	<u>1.3</u>
N = 200								
Disease	93.68 \pm 1.4	64.53 \pm 1.49	55.30 \pm 6.14	73.72 \pm 1.98	68.58 \pm 2.13	71.96 \pm 2.86	74.25 \pm 1.38	78.07\pm0.84
Game	86.0 \pm 0.73	77.92\pm0.69	55.19 \pm 6.76	51.19 \pm 2.06	44.68 \pm 3.78	61.56 \pm 0.68	61.98 \pm 1.52	69.18 \pm 2.03
GPA	47.29 \pm 0.90	41.59 \pm 0.86	40.88 \pm 0.94	36.40 \pm 3.18	43.92 \pm 1.42	38.73 \pm 0.00	44.68 \pm 0.51	46.26\pm0.90
Student	0.67 \pm 0.07	0.39 \pm 0.11	<u>0.51</u> \pm 0.04	0.24 \pm 0.06	0.50 \pm 0.08	0.20 \pm 0.07	0.52\pm0.02	0.50 \pm 0.01
Avg Rank	-	4	4.8	5.5	4.5	5.3	2	<u>1.8</u>
N = 300								
Disease	93.68 \pm 1.4	<u>77.26</u> \pm 1.18	35.37 \pm 2.47	67.31 \pm 1.59	68.65 \pm 4.11	66.02 \pm 1.73	73.31 \pm 2.82	78.96\pm0.51
Game	86.0 \pm 0.73	77.64\pm0.56	54.23 \pm 4.23	46.69 \pm 2.05	47.58 \pm 3.79	47.25 \pm 2.47	61.67 \pm 1.23	71.90 \pm 1.61
GPA	47.29 \pm 0.90	39.86 \pm 1.29	37.77 \pm 0.63	39.67 \pm 2.14	42.98 \pm 0.05	43.98 \pm 0.96	46.72\pm1.12	46.09 \pm 1.44
Student	0.67 \pm 0.07	<u>0.54</u> \pm 0.01	0.44 \pm 0.03	-0.03 \pm 0.06	0.50 \pm 0.05	-0.17 \pm 0.06	0.55\pm0.01	0.54 \pm 0.01
Avg Rank	-	2.5	5.8	6.3	4.3	5.3	2	<u>1.8</u>
N = 500								
Disease	93.68 \pm 1.4	69.93 \pm 1.41	65.26 \pm 3.15	67.56 \pm 2.83	61.41 \pm 3.90	68.55 \pm 2.44	72.48 \pm 1.97	78.52\pm0.26
Game	86.0 \pm 0.73	80.33\pm1.26	61.38 \pm 5.18	53.88 \pm 1.77	69.37 \pm 2.33	65.33 \pm 1.19	75.95 \pm 1.57	79.60 \pm 0.89
GPA	47.29 \pm 0.90	40.17 \pm 1.20	36.35 \pm 0.95	30.14 \pm 2.30	37.90 \pm 1.94	35.93 \pm 0.98	40.30 \pm 0.65	43.13\pm0.74
Student	0.67 \pm 0.07	0.57\pm0.01	0.54 \pm 0.02	-0.28 \pm 0.08	0.46 \pm 0.04	0.03 \pm 0.22	0.52 \pm 0.01	<u>0.56</u> \pm 0.01
Avg Rank	-	2	5	6.3	5	5.5	2.8	<u>1.5</u>

1296
1297
1298
1299
1300

1301 Table 13: Comparison between Non-LLM baselines, LLM-based generators, and TABPFNGEN.
1302 All results are evaluated with the **TABPFN** downstream model and reported as mean \pm standard
1303 deviation. **Unseen datasets** are highlighted in blue. The best result in each row is shown in **bold**,
1304 and the second-best result is underlined.

1305

Datasets	Real	TABSYN	EPIC	CLLM	I(w/oII)	II(w/oI)	I+II	TABPFNGEN
N = 30								
Disease	96.12 \pm 0.28	55.35 \pm 2.26	33.69 \pm 9.38	68.09 \pm 1.89	55.50 \pm 0.40	61.34 \pm 1.78	69.45\pm0.23	56.75 \pm 0.83
Game	90.11 \pm 0.31	38.31 \pm 2.11	37.33 \pm 5.61	<u>58.54\pm1.72</u>	50.80 \pm 2.35	51.66 \pm 0.00	51.36 \pm 0.81	69.18\pm2.03
GPA	71.07 \pm 1.48	16.37 \pm 1.84	30.38 \pm 2.28	<u>40.26\pm0.50</u>	<u>41.84\pm1.27</u>	36.55 \pm 0.00	42.33\pm0.64	39.12 \pm 0.39
Student	0.73 \pm 0.00	0.18 \pm 0.05	0.28 \pm 0.04	-0.26 \pm 0.14	0.40 \pm 0.02	0.15 \pm 0.00	0.44 \pm 0.01	0.54\pm0.01
Avg Rank	-	6	6	3.5	3.8	4.3	2	2.5
N = 60								
Disease	96.12 \pm 0.28	62.56 \pm 0.94	27.33 \pm 1.53	70.84\pm2.19	62.66 \pm 1.61	63.70 \pm 0.65	68.50 \pm 1.00	69.22 \pm 1.27
Game	90.11 \pm 0.31	57.03 \pm 1.76	50.84 \pm 4.16	<u>65.79\pm1.49</u>	59.88 \pm 2.70	54.43 \pm 0.95	63.25 \pm 0.00	75.87\pm1.18
GPA	71.07 \pm 1.48	29.09 \pm 0.85	38.26 \pm 1.50	<u>36.20\pm2.81</u>	45.12 \pm 0.64	27.30 \pm 0.00	48.89\pm0.25	47.45 \pm 0.87
Student	0.73 \pm 0.00	0.11 \pm 0.12	0.29 \pm 0.05	-0.48 \pm 0.11	0.27 \pm 0.05	-0.03 \pm 0.04	0.35 \pm 0.02	0.54\pm0.01
Avg Rank	-	5.5	5.3	3.8	4	5.8	2.3	1.5
N = 90								
Disease	96.12 \pm 0.28	71.90 \pm 1.24	28.39 \pm 2.57	77.01\pm1.10	54.44 \pm 2.97	67.25 \pm 2.29	62.84 \pm 1.06	73.04 \pm 2.0
Game	90.11 \pm 0.31	39.48 \pm 1.05	54.31 \pm 2.00	<u>66.10\pm2.21</u>	55.64 \pm 2.01	48.52 \pm 1.77	67.46 \pm 2.31	72.83\pm0.63
GPA	71.07 \pm 1.48	35.49 \pm 1.54	14.58 \pm 1.92	<u>46.62\pm0.79</u>	48.48 \pm 1.55	37.89 \pm 1.93	49.49 \pm 0.55	52.33 \pm 0.43
Student	0.73 \pm 0.00	0.21 \pm 0.09	0.38 \pm 0.05	-0.27 \pm 0.15	0.48 \pm 0.03	0.14 \pm 0.04	0.53\pm0.01	0.53 \pm 0.01
Avg Rank	-	5.3	5.8	3.8	4	5.3	2.5	1.3
N = 120								
Disease	96.12 \pm 0.28	64.04 \pm 1.55	31.89 \pm 9.27	71.33\pm1.31	62.33 \pm 4.82	63.08 \pm 2.65	64.65 \pm 1.95	68.87 \pm 2.74
Game	90.11 \pm 0.31	57.47 \pm 0.96	53.76 \pm 1.43	<u>74.16\pm0.78</u>	60.56 \pm 2.40	62.54 \pm 0.00	69.62 \pm 0.70	74.81\pm0.57
GPA	71.07 \pm 1.48	37.13 \pm 4.26	44.32 \pm 1.83	<u>47.43\pm2.11</u>	42.36 \pm 1.23	38.67 \pm 2.03	41.06 \pm 1.76	57.26\pm1.10
Student	0.73 \pm 0.00	0.05 \pm 0.08	0.54 \pm 0.02	-0.50 \pm 0.16	0.46 \pm 0.07	0.04 \pm 0.03	0.56\pm0.02	0.53 \pm 0.01
Avg Rank	-	5.5	4.8	3	4.8	5.3	3	1.8
N = 160								
Disease	96.12 \pm 0.28	74.48\pm0.73	68.65 \pm 3.92	68.76 \pm 3.19	58.26 \pm 2.59	66.83 \pm 1.18	69.35 \pm 1.40	73.16 \pm 0.25
Game	90.11 \pm 0.31	64.91 \pm 1.07	52.97 \pm 6.99	<u>66.82\pm3.05</u>	51.38 \pm 4.03	53.43 \pm 2.10	58.69 \pm 0.92	74.34\pm0.75
GPA	71.07 \pm 1.48	34.39 \pm 0.84	44.14 \pm 3.00	<u>45.72\pm0.44</u>	50.60 \pm 0.64	42.47 \pm 2.13	50.97\pm0.17	41.90 \pm 0.56
Student	0.73 \pm 0.00	0.36 \pm 0.09	0.51 \pm 0.03	-1.06 \pm 0.15	<u>0.56\pm0.02</u>	-0.86 \pm 0.04	0.56\pm0.01	0.50 \pm 0.02
Avg Rank	-	4	4.5	4	4.3	5.5	2.3	3.3
N = 200								
Disease	96.12 \pm 0.28	68.05 \pm 1.15	62.53 \pm 5.31	69.56 \pm 1.75	69.97 \pm 2.37	71.14 \pm 0.93	71.42 \pm 1.02	73.37\pm1.46
Game	90.11 \pm 0.31	64.73 \pm 6.83	55.00 \pm 0.75	<u>72.15\pm1.45</u>	49.36 \pm 2.42	64.08 \pm 1.33	65.07 \pm 2.17	85.32\pm0.51
GPA	71.07 \pm 1.48	37.51 \pm 1.29	43.25 \pm 0.90	<u>45.75\pm0.44</u>	47.37 \pm 0.94	41.27 \pm 2.75	48.80\pm0.58	42.32 \pm 0.67
Student	0.73 \pm 0.00	0.48 \pm 0.03	0.47 \pm 0.11	0.05 \pm 0.09	<u>0.53\pm0.01</u>	0.11 \pm 0.00	0.55\pm0.02	0.53 \pm 0.01
Avg Rank	-	5.3	5.5	4.3	3.8	5	1.8	2.3
N = 300								
Disease	96.12 \pm 0.28	77.54\pm0.64	36.97 \pm 2.97	69.55 \pm 3.10	63.23 \pm 4.46	63.81 \pm 1.14	71.46 \pm 3.67	75.89 \pm 0.58
Game	90.11 \pm 0.31	78.80 \pm 0.97	61.16 \pm 6.76	<u>66.01\pm1.25</u>	51.63 \pm 1.22	56.64 \pm 1.64	65.03 \pm 1.18	86.15\pm0.69
GPA	71.07 \pm 1.48	<u>38.52\pm0.69</u>	39.44 \pm 1.13	44.72 \pm 0.98	43.71 \pm 0.74	<u>46.75\pm1.42</u>	47.10\pm0.26	44.84 \pm 0.63
Student	0.73 \pm 0.00	0.48 \pm 0.03	0.47 \pm 0.11	0.04 \pm 0.10	0.53 \pm 0.01	0.19 \pm 0.04	0.55\pm0.01	0.54 \pm 0.01
Avg Rank	-	3.5	5.8	4.5	5.3	4.8	2.3	2
N = 500								
Disease	96.12 \pm 0.28	74.57 \pm 0.91	75.00 \pm 1.47	68.03 \pm 1.73	66.29 \pm 1.56	64.74 \pm 0.99	68.79 \pm 1.04	77.32\pm0.73
Game	90.11 \pm 0.31	80.55 \pm 0.73	63.73 \pm 6.80	80.08 \pm 1.50	70.13 \pm 4.25	73.50 \pm 2.38	78.44 \pm 0.25	88.33\pm0.31
GPA	71.07 \pm 1.48	<u>36.60\pm0.96</u>	46.48\pm1.01	<u>45.28\pm0.63</u>	40.00 \pm 0.90	38.44 \pm 1.08	42.55 \pm 0.48	42.68 \pm 1.06
Student	0.73 \pm 0.00	<u>0.56\pm0.01</u>	0.53 \pm 0.01	-0.99 \pm 0.19	0.50 \pm 0.01	-0.60 \pm 0.13	0.57\pm0.03	<u>0.56\pm0.01</u>
Avg Rank	-	3.5	3.5	4.3	5.5	6	3.3	1.8

1346
1347
1348
1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

Table 14: Comparison between Best Non-LLM baselines and LLM-based generators. All results are evaluated using a fixed **Linear/Logistic Regression** downstream model. All numbers are reported as **mean \pm standard deviation**. Unseen datasets are highlighted in blue. The best result in each row is shown in **bold**, and the second-best result is underlined.

1369

1370

Datasets	Real	CTGAN	DRL	TabSyn	GReaT	EPIC	CLLM	I+II
N = 30								
Disease	79.88 \pm 1.13	47.76 \pm 3.77	34.52 \pm 0.90	61.51 \pm 2.43	61.75 \pm 3.34	26.06 \pm 0.00	<u>62.85\pm0.88</u>	67.91\pm1.03
Game	77.62 \pm 0.63	27.69 \pm 3.32	19.79 \pm 3.99	20.45 \pm 1.05	<u>32.89\pm11.78</u>	35.47 \pm 3.15	<u>37.67\pm0.95</u>	41.87\pm1.47
GPA	47.95 \pm 1.88	10.75 \pm 3.46	10.75 \pm 3.46	32.15 \pm 5.34	<u>39.68\pm1.14</u>	38.46 \pm 1.50	27.94 \pm 1.33	43.21\pm0.40
Student	0.64 \pm 0.00	-0.93 \pm 0.15	-0.11 \pm 0.08	0.28 \pm 0.03	<u>0.40\pm0.02</u>	0.25 \pm 0.00	0.20 \pm 0.02	0.41\pm0.01
Avg Rank	-	5.8	6.3	4.3	2.8	4.3	3.5	1
N = 60								
Disease	79.83 \pm 1.40	52.11 \pm 3.48	28.47 \pm 0.57	<u>57.78\pm1.68</u>	46.67 \pm 10.65	26.06 \pm 0.00	50.29 \pm 2.13	66.18\pm0.92
Game	77.62 \pm 0.64	30.39 \pm 2.33	29.48 \pm 4.18	<u>49.52\pm18.14</u>	31.71 \pm 10.26	36.83 \pm 0.95	42.47 \pm 0.93	55.87\pm1.25
GPA	48.28 \pm 1.81	18.35 \pm 1.17	22.39 \pm 2.69	<u>21.85\pm1.95</u>	<u>35.41\pm1.96</u>	32.21 \pm 1.32	16.82 \pm 1.60	39.56\pm0.11
Student	0.65 \pm 0.00	-0.11 \pm 0.05	-0.48 \pm 0.26	0.28 \pm 0.07	<u>0.39\pm0.02</u>	0.37 \pm 0.03	-0.31 \pm 0.02	0.39\pm0.01
Avg Rank	-	5	6	3.3	3.3	4.3	5	1
N = 90								
Disease	80.06 \pm 0.68	47.81 \pm 1.80	39.04 \pm 0.00	62.12 \pm 1.01	62.05 \pm 0.86	26.45 \pm 0.00	<u>65.59\pm1.54</u>	66.29\pm0.36
Game	77.69 \pm 0.89	30.37 \pm 4.44	25.28 \pm 3.77	69.21\pm0.59	34.64 \pm 13.34	<u>59.37\pm1.06</u>	31.56 \pm 0.61	56.15 \pm 2.33
GPA	48.32 \pm 1.64	15.39 \pm 4.21	16.02 \pm 2.00	<u>36.62\pm2.87</u>	32.56 \pm 4.86	14.52 \pm 2.30	25.55 \pm 0.75	44.77\pm0.51
Student	0.64 \pm 0.00	-0.07 \pm 0.03	-0.04 \pm 0.05	0.06 \pm 0.09	<u>0.40\pm0.11</u>	0.35 \pm 0.07	-0.22 \pm 0.02	0.44\pm0.01
Avg Rank	-	5.8	5.8	2.5	3.3	4.8	4.5	1.5
N = 120								
Disease	79.56 \pm 1.04	39.63 \pm 4.16	56.92 \pm 1.59	61.33 \pm 1.40	43.92 \pm 7.95	26.11 \pm 0.00	<u>65.71\pm2.01</u>	72.54\pm1.00
Game	77.55 \pm 0.34	26.56 \pm 2.60	35.73 \pm 5.78	56.33\pm1.45	41.82 \pm 13.59	46.40 \pm 1.22	47.09 \pm 2.09	49.85 \pm 0.50
GPA	50.55 \pm 1.30	17.81 \pm 2.14	14.25 \pm 3.64	<u>40.79\pm3.42</u>	27.45 \pm 11.06	31.89 \pm 1.51	38.50 \pm 0.29	44.48\pm0.77
Student	0.64 \pm 0.00	0.01 \pm 0.05	0.03 \pm 0.05	0.55 \pm 0.02	0.53 \pm 0.02	0.57\pm0.02	-0.18 \pm 0.01	0.47 \pm 0.02
Avg Rank	-	6.3	5.5	2	4.5	4	3.8	2

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404 G PRIVACY EVALUATION VIA DISTANCE TO CLOSEST RECORD (DCR)

1414 Figure 10: Distance to closest record (DCR) distributions for the DISEASE dataset, comparing synthetic
 1415 data generated by **ReFine** to the original train set.

1424 Figure 11: Distance to closest record (DCR) distributions for the GAME dataset, comparing synthetic
 1425 data generated by **ReFine** to the original train set.

1435 Figure 12: Distance to closest record (DCR) distributions for the DISEASE dataset, comparing synthetic
 1436 data generated by **ReFine** to the original train set.

1447 Figure 13: Distance to closest record (DCR) distributions for the DISEASE dataset, comparing synthetic
 1448 data generated by **ReFine** to the original train set.

1450 To assess whether synthetic samples inadvertently reproduce training records, we follow prior work
 1451 on tabular data synthesis and report the *Distance to Closest Record (DCR)*. For each generated
 1452 instance s_{gen} , DCR computes its distance to the nearest neighbour in the original training set T_{train} :

$$1454 \text{DCR}(s_{\text{gen}}) = \min_{x \in T_{\text{train}}} d(s_{\text{gen}}, x), \quad (6)$$

1456 where the mixed-type distance $d(\cdot, \cdot)$ is defined as an L_1 distance on numerical features and a 0/1
 1457 contribution for categorical features (0 if equal, 1 otherwise). Small DCR values, particularly those
 close to 0, would indicate potential memorization or replication of training instances.

1458 G.1 DCR RESULTS AND ANALYSIS
1459
1460 Figures 10–13 report DCR histograms for four unseen datasets (Disease, Game, GPA, Student)
1461 under training sizes $N \in \{30, 60, 90, 120\}$. Each histogram shows the distance between a generated
1462 sample and its closest training instance, computed using **DCR**.
1463 Across all datasets and all low-data regimes, two consistent observations emerge:
1464
1465 **(i) No evidence of memorization.** Even at the smallest data setting ($N = 30$), the DCR mass re-
1466 mains well separated from zero: we do not observe spikes at distance 0 nor anomalous concentration
1467 near 0. This indicates that ReFine does not reproduce training records verbatim, despite the extreme
1468 data scarcity.
1469
1470 **(ii) Stable privacy behaviour as N increases.** As N grows from 30 to 120, the DCR distribu-
1471 tion shifts slightly toward smaller values—reflecting the fact that more structure becomes identifi-
1472 able—but it remains broad and non-degenerate. Importantly, the distributions never collapse toward
1473 zero, showing that increased data availability does not lead to sample-level leakage.
1474
1475 In summary, ReFine maintains strong privacy behaviour across all low-data settings: it improves
1476 downstream learning without memorizing or leaking individual training records, even when only 30
1477 examples are available.
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

1512 H PROMPT FOR COMPONENT I

1513

1514

1515 Generalization Prompt

1516 You are an intelligent assistant responsible for transforming nested if-else classification logic into generalized, structured rules for data
1517 generation. These rules involve a target label called Diagnosis (values 0 or 1) determined by thresholds across multiple input features such
1518 as MMSE, FunctionalAssessment, ADL, SystolicBP, SleepQuality, etc.

1519 Your task consists of three main steps:

1520 **1521 ### Step 1: Parse If-Else Logic into Flat Rule Format**

1522 Given one or more nested if-else decision structures (represented by placeholders), flatten them into a set of human-readable rule
1523 statements. Each statement must describe the conditions that lead to a specific Diagnosis assignment.

1524 **1525 #### Input:**
1526 `{if_else_logic}`

1527 Repeat this process for all provided if-else blocks. The output should be a set of conditions grouped by Diagnosis.

1528 **1529 ### Step 2: Merge Similar Diagnosis Rules Across Samples**

1530 Merge rules belonging to the same Diagnosis across multiple samples.

1531 **1532 #### Merging Logic:**
1533 – Identify all rules corresponding to a given Diagnosis.
1534 – For each feature (e.g., MMSE), extract the relevant conditions across all rules.
1535 – Instead of strictly choosing the second smallest or second largest value, focus on:

1536 1. **1537 **Maintaining differentiation**** between adjacent Diagnosis, ensuring that boundaries between different Diagnosis are clearly defined
1538 and preserved.
1539 2. **1540 **Maximizing generalization****, meaning that overlapping condition ranges should be merged in such a way that it still respects the
1541 distinctions while covering the broadest possible range.

1542 **1543 ### Step 3: Output Final Rule Set**

1544 Produce a **1545 **final set of generalized rules****, but **1546 **only one rule per Diagnosis**** (0 or 1). The rules should strictly incorporate only
1547 mention in the **1548 **Key Features with Importance****, **1549 **strictly**** following this format:

1550 – If Diagnosis = 0, then [CONDITION1] and [CONDITION2] ...
1551 – If Diagnosis = 1, then [CONDITION1] and [CONDITION2] ...

1552 Where each condition is a feature threshold based on the merging strategy above, using only the **1553 **Key Features with Importance****. Each
1554 rule should focus on these features, and you should only have one rule for each Diagnosis.

1555 Make sure your output:
1556 – Uses readable formatting
1557 – Maintains clear zones between different Diagnoses, – Maintains clear **1558 **while allowing overlap where necessary****
1559 – Uses inclusive and exclusive operators appropriately (i.e., $>$, \geq , $<$, \leq)
1560 – Properly incorporates feature importance to prioritize significant features
1561 – Avoids overly specific or restrictive rules

1562 Figure 14: **Rule Generalization Prompt.** We prune and consolidate decision paths across top-
1563 performing trees, retaining only their core (i.e., high-support, low-depth) branches that reflect stable
1564 feature-label dependencies. This yields generalized *if-then* rules that extend beyond specific training
1565 instances. Treated as conditional templates with the label as premise, these rules enable inverse
1566 reasoning and guide sample generation toward broader yet distributionally faithful regions of the
1567 data space.

1566 **Denoising Prompt**
1567
1568 You are an intelligent assistant tasked with applying a self-consistency methodology to combine multiple sets of regression-derived
1569 interval-based rules.
1570
1571 You have received five independently generated rule-sets from multiple executions of previous analysis steps. Each rule-set consists of
1572 interval-based rules predicting continuous-values (e.g., MMSE) with specific conditions. Your goal is to integrate these five sets of rules
1573 into one consistent, summarized, and robust rule set.
1574
1575 **### Input: (Insert your five independently generated rule-sets below)**
1576
1577 **{Rule Set 1}, ... ,{Rule Set 5}**
1578
1579 **### Step 1: Identify Consistent and Robust Rule Patterns**
1580
1581 For each predicted feature (e.g., Diagnosis), examine all five rule-sets and perform the following:
1582
1583

- Identify stable, frequently occurring conditions and intervals across rule-sets.
- For intervals appearing consistently (at least 3 out of 5 times), retain them as robust and representative intervals.
- If intervals differ slightly across sets, choose interval bounds that reflect the majority consensus, using [mean(min_values),
1584 mean(max_values)].

1585 **### Step 2: Generate a Single Consistent Interval-based Rule Set (Self-consistency)**
1586
1587 Produce a single final integrated rule-set incorporating the majority consensus intervals clearly. Format rules as follows:
1588
1589

- If [Predicted Feature] = [label], then [CONDITION1] and [CONDITION2]...

1590 Ensure the final output:
1591

- Clearly represents stable intervals identified across multiple rule-sets.
- Uses inclusive/exclusive operators properly ($>$, \geq , $<$, \leq).
- Avoids overly broad intervals, prioritizing clarity and consistency.

1593 **Figure 15: Rule Denoising Prompt.** To mitigate variance introduced by symbolic extraction and
1594 decoding noise (He et al., 2024), we adopt self-consistency strategies commonly used in reasoning
1595 tasks (Wang et al., 2023; Lewkowycz et al., 2022). Multiple generations are sampled using different
1596 random seeds, and only the most frequently occurring rules are retained. This procedure stabilizes
1597 the extracted rule set and ensures its reliability for downstream generation.
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

```
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
```

$$\text{RMSE}_i = \sqrt{\frac{1}{T} \sum_{t=1}^T (\hat{y}_{i,t} - y_i)^2}.$$