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ABSTRACT

In machine learning fairness, training models which minimize disparity across dif-
ferent sensitive groups often leads to diminished accuracy, a phenomenon known
as the fairness-accuracy trade-off. The severity of this trade-off fundamentally
depends on dataset characteristics such as dataset imbalances or biases, and there-
fore using a universal fairness requirement across datasets remains questionable
and can often lead to models with varying and substantially low utility. To address
this, we present a computationally efficient approach to approximate the fairness-
accuracy trade-off curve tailored to individual datasets, backed by rigorous sta-
tistical guarantees. By utilizing the You-Only-Train-Once (YOTO) framework,
our approach mitigates the computational burden of having to train multiple mod-
els when approximating the trade-off curve. Moreover, we introduce confidence
intervals around this curve, offering a statistically grounded perspective on accept-
able range of fairness violations for any given accuracy threshold. Our empirical
evaluation which includes applications to tabular data, computer vision and nat-
ural language datasets, underscores that our approach can guide practitioners in
accuracy-constrained fairness decisions across various data modalities.

1 INTRODUCTION

One of the key challenges in fairness for machine learning is to train models that minimize the
disparity across various sensitive groups such as race or gender (Caton & Haas, 2020; Ustun et al.,
2019; Celis et al., 2019). This often comes at cost of reduced model accuracy, a phenomenon termed
fairness-accuracy trade-off in literature (Valdivia et al., 2021; Martinez et al., 2020). In practice,
this trade-off can differ significantly across datasets, depending on factors such as dataset biases,
imbalances etc. (Agarwal et al., 2018; Bendekgey & Sudderth, 2021; Celis et al., 2021).

This raises significant challenges for deploying these models in practical settings. For instance, it is
not evident whether one should adopt the same disparity threshold for different tasks. Consider two
crime datasets: Dataset A has records from a community where crime rates are uniformly distributed
across all racial groups, whereas dataset B comes from a community where historical factors have
resulted in a disproportionate crime rate among a specific racial group. Intuitively, training models
which are racially agnostic is more challenging for the latter, due to the unequal distribution of crime
rates across racial groups in the former. Thus, applying uniform fairness guidelines to both datasets
necessitates careful consideration to account for their distinct characteristics and underlying biases.

This example underscores one of the main challenges in fairness for machine learning models. More
specifically, setting a uniform requirement for fairness while also adhering to essential accuracy
benchmarks is impractical across diverse datasets. Hence, the literature requires a principled guide-
line for the range of achievable fairness violations. To put it concretely, the question becomes:

For a given dataset, model class, and accuracy, what is the range of permissible fairness violation?

One way to answer this question is by having access to the ground truth fairness-accuracy trade-off
curve (see Fig 1), where the curve shows for each attainable accuracy, what the minimum achievable
fairness violation is, i.e. this could serve as a manual to look up reasonable fairness violations given
a target accuracy. Unfortunately this curve is often unavailable and hence, various optimization
techniques have been proposed to approximate the curve ranging from regularization (Bendekgey &
Sudderth, 2021; Olfat & Mintz, 2020) to adversarial learning (Zhang et al., 2018; Yang et al., 2023).
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Figure 1: The ground truth and es-
timated trade-offs between accuracy
and fairness. The green area depicts
the range of admissible fairness vi-
olations for a given accuracy. The
pink area shows suboptimal accuracy-
fairness trade-offs, while the blue area
shows unlikely-to-be-achieved ones.

Nevertheless, the problem with these aforementioned meth-
ods is that recovering the whole curve can be computation-
ally very expensive as it essentially requires retraining hun-
dreds if not thousands of models to obtain a good approxi-
mation of the trade-off curve (see Figure 1 where each dot
corresponds to a separately trained model).

In this paper, we introduce a computationally efficient
method to approximate the optimal fairness-accuracy trade-
off curve, supported by rigorous statistical guarantees. On a
high level, our method is divided into two steps. Firstly, our
approach adapts a technique from Dosovitskiy & Djolonga
(2020) called You-Only-Train-Once (YOTO) to the fairness
setting. This framework allows us to train only one model
that can represent a range of fairness-accuracy trade-offs,
thereby significantly reducing computational demands. De-
tails on the YOTO framework and how it is incorporated in
our setting will be discussed in Section 3.1. Secondly, once
we obtain an estimate of the trade-off curve, we turn to its
reliability. Inspired by recent work on risk-controlling pre-
diction sets (Bates et al., 2021), we construct confidence in-
tervals using the estimated trade-off curve and theoretically
prove that the ground truth curve will lie in the interval with
high probability. This gives us statistically backed evidence to express the range of admissible fair-
ness violations conditioned on a given accuracy, allowing us to make statements such as:

For a given dataset, model class, and accuracy, the permissible range of fairness violation is x to y.

Hence, our proposed intervals together with the estimated trade-off curve, allow practitioners to
decide whether the current model meets acceptable standards of fairness given the dataset, model
class, and accuracy constraints. The contributions of this paper are three-fold:
• We present a methodology of obtaining a range of permissible fairness violations for any given

dataset and any desired model accuracy chosen dynamically at inference time, which provides
practitioners with a convenient tool for fairness decision-making.

• To do so, we introduce a technical framework to construct confidence intervals with statistical
guarantees on the optimal fairness-accuracy trade-off curve in a computationally efficient way.
Moreover, we extend our intervals to the setting where sensitive attributes are scarce in the data.

• Lastly, we empirically show across various data modalities that our intervals indeed contain the
trade-off curves of SOTA fairness methods, ranging from regularized to adversarial methods.

Outline: Section 2 introduces the notation and problem setup. Section 3 details our proposed
method for establishing computationally efficient and statistically valid confidence intervals on the
true trade-off curve. Section 4 discusses related work and Section 5 provides empirical evaluation
of our method. The paper concludes in Section 6, where we discuss limitations and future work.

2 PRELIMINARIES

Notation Throughout this paper, we consider a binary classification, where each training sample
is composed of triples, (X,A, Y ). X ∈ X denotes a vector of features, A ∈ A indicates a sensitive
attribute, and Y ∈ Y := {0, 1} represents a label. To make this more concrete, if we take loan default
prediction as the classification task, an individual could be represented such that their income level,
loan amount, and previous payment records are embodied inX; their racial identity is represented by
A; and their loan default status is Y . Having established the notation, for completeness, we provide
some commonly used fairness violations Φfair(h) ∈ [0, 1] in the setting when Y = A = {0, 1}:

Demographic Parity (DP): DP condition states that the selection rates for all sensitive groups are
equal, i.e. P(h(X) = 1 | A = a) = P(h(X) = 1) for any a ∈ A. The absolute DP violation is:

ΦDP(h) := |P(h(X) = 1 | A = 1)− P(h(X) = 1 | A = 0)|.
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Equalized Opportunity (EOP): EOP condition states that the true positive rates for all sensitive
groups are equal, i.e. P(h(X) = 1 | A = a, Y = 1) = P(h(X) = 1 | Y = 1) for any a ∈ A. The
absolute EOP violation for the case when A = {0, 1} is defined as:

ΦEOP(h) := |P(h(X) = 1 | A = 1, Y = 1)− P(h(X) = 1 | A = 0, Y = 1)|.

2.1 PROBLEM SETUP

For a model class H (e.g., neural networks) and a given accuracy threshold ψ ∈ [0, 1], we de-
fine the optimal accuracy-fairness trade-off τ∗fair(ψ) as the minimum attainable fairness violation,
minh∈H Φfair(h), subject to the constraint that the accuracy of the model is above a certain threshold
ψ, i.e. acc(h) ≥ ψ, where acc(h) is the accuracy of a model h, i.e.

τ∗fair(ψ) := min
h∈H

Φfair(h) subject to acc(h) ≥ ψ. (1)

For an unattainable accuracy threshold ψ′, we define τ∗fair(ψ
′) = 1. Given any dataset, the trade-off

curve τ∗fair helps us characterize dataset fairness, a notion we use to describe the fairness properties
of the dataset. Our goal is to reliably estimate this trade-off curve τ∗fair : [0, 1] → [0, 1]. This is
contrary to Agarwal et al. (2018), which optimize model accuracy subject to fairness constraints.

Obtaining the exact ground-truth trade-off curve τ∗fair defined in Eq. (1) is inherently challenging for
several reasons. First, we are limited by the confines of a finite dataset, which restricts our ability to
compute the exact values of accuracy acc(h) and fairness violation Φfair(h). Second, the constrained
optimization problem in Eq. (1) required to obtain the value of τ∗fair(ψ) is non-trivial to solve exactly
and may require training separate models across different accuracy constraints.

High-level road map: Given these limitations, we seek to quantify the plausible range of optimal
accuracy-fairness trade-offs for a given dataset using a two-step approach:

1. Firstly, we empirically estimate the trade-off curve τ∗fair using YOTO (Dosovitskiy & Djolonga,
2020), a computationally efficient methodology that avoids having to train multiple models.

2. Secondly, we obtain valid confidence intervals on the minimum attainable fairness violation
τ∗fair(ψ) using a held-out calibration dataset, denoted as Dcal. Specifically, given α ∈ (0, 1),
we construct confidence intervals Γα

fair ⊆ [0, 1] which satisfies guarantees of the form:

P(τ∗fair(Ψ) ∈ Γα
fair) ≥ 1− α.

Here, Γα
fair is computed using a held-out calibration dataset Dcal, Ψ ∈ [0, 1] are random variables

obtained using calibration data Dcal. The probability guarantee above is marginal over both Ψ
and Γfair, which is analogous to the guarantees obtained using conformal prediction (Vovk et al.,
2005; Angelopoulos & Bates, 2021). For more details see Section 3.2.

3 METHODOLOGY

In this section, we will demonstrate how the above mentioned 2-step approach offers a practical
as well as statistically sound methodology for reliable estimation of τ∗fair(ψ). Figure 1 provides an
illustration of our proposed confidence intervals Γα

fair and shows how they can be interpreted as a
range of ‘admissible’ values of fairness violations for models h with acc(h) ≥ ψ. In particular, if
for a classifier h0 with acc(h0) ≥ ψ, the fairness violation value Φfair(h0) lies above the confidence
intervals Γα

fair (i.e., the pink region in Fig. 1), then h0 is likely to be suboptimal in terms of the
fairness violation, i.e., Φfair(h0) can be reduced while keeping the accuracy fixed. On the other hand,
the fairness violation below the confidence interval Γα

fair (the blue region in Figure 1) is unlikely to
be achieved by models with acc(h) ≥ ψ. Next, we outline how to construct such intervals.

3.1 STEP1: EFFICIENT ESTIMATION OF TRADE-OFF CURVE

The first step of constructing the intervals is to approximate the trade-off curve by recasting the
problem into a constrained optimization objective. The optimization problem formulated in Eq. (1)
is however, often too complex to solve, because the accuracy acc(h) and fairness violations Φfair(h)
are both non-smooth (Agarwal et al., 2018; Bendekgey & Sudderth, 2021). These constraints make
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it hard to use standard optimization methods that rely on gradients (Kingma & Ba, 2014). To get
around this issue, previous works in the fairness literature (Agarwal et al., 2018; Bendekgey &
Sudderth, 2021) replace the non-smooth constrained optimisation problem with a smooth surrogate
loss. Here, we consider parameterized family of classifiers H = {hθ : X → R | θ ∈ Θ} (such as
neural networks) with predictions Ŷ = 1(hθ(X) > 0), trained using the regularized loss:

Lλ(θ) = E[LCE(hθ(X), Y )] + λLfair(hθ). (2)

where, LCE is the cross-entropy loss for the classifier hθ and Lfair(hθ) is a smooth relaxation of the
fairness violation Φfair (Bendekgey & Sudderth, 2021; Lohaus et al., 2020). The parameter λ ∈ R≥0

in Lλ modulates the accuracy-fairness trade-off with lower values of λ favouring higher accuracy
over reduced fairness violation and vice-versa. Therefore, given an (achievable) accuracy threshold
ψ, there exists a value of λ ≥ 0 such that the loss Lλ(θ) in Eq. (2) provides a smooth surrogate loss
for the constrained optimisation problem in Eq. (1). For more details, we refer the interested reader
to Bendekgey & Sudderth (2021) for examples of such regularizers.

Now that we defined the optimization objective, obtaining the trade-off curve becomes straight-
forward by simply optimizing over a grid of λ’s. Let θ∗λ ∈ Θ be the minimiser of loss Lλ, i.e.
θ∗λ = argminθ∈Θ E[LCE(hθ(X), Y )] + λLfair(hθ), then we can approximate τ∗fair(ψ) pointwise by:

τ∗fair(ψ) ≈ min
i∈{1,...,k}

{Φ̂fair(hθ∗
λi
) | âcc(hθ∗

λi
) ≥ ψ}, (3)

where Φ̂fair(hθ) and âcc(hθ) denote the empirical fairness violation and accuracy of the classifier
Ŷ = 1(hθ(X) > 0) on some held-out data. However, training multiple models can be computation-
ally expensive, especially when the model class H are large-scale models (e.g. neural networks).
Moreover, the accuracy and fairness violations acc(hθ∗

λ
),Φfair(hθ∗

λ
) may not vary continuously with

changing values of λ, and a small increase in the value of λ could lead to a large shift in the accuracy
and fairness violations (Bendekgey & Sudderth, 2021). Consequently, it is challenging to find mod-
els which have an accuracy close to a given value ψ as the λ parameter offers little control over the
model accuracy acc(hθ∗

λ
). Next, to circumvent these challenges, we employ neural networks with

loss-conditional training which were originally proposed by Dosovitskiy & Djolonga (2020).

3.1.1 LOSS-CONDITIONAL FAIRNESS TRAINING

As we describe above, a popular approach for approximating the accuracy-fairness trade-off τ∗fair(ψ)
involves training multiple models hθ∗

λ
over a discrete grid of λ hyperparameters with the regularized

loss Lλ. To avoid the computational overhead of training multiple models, Dosovitskiy & Djolonga
(2020) propose ‘You Only Train Once’ (YOTO) a methodology of training one model hθ : X ×Λ→
R, which takes λ ∈ Λ ⊆ R as an additional input, and is trained such that at inference time hθ(·, λ′)
recovers the classifier obtained by minimising Lλ′ .

Recall that we are interested in minimising the family of losses Lλ, parameterized by λ ∈ Λ
(Eq. (2)). Instead of fixing λ, YOTO solves an optimisation problem where the parameter λ is
sampled from a distribution Pλ. As a result, during training the model observes many different val-
ues of λ and learns to optimise the loss Lλ for all of them simultaneously. At inference time, the
model can be conditioned on a chosen parameter value λ′ and recovers the model trained to optimise
Lλ′ . The loss being minimised can thus be expressed as follows:

argmin
hθ:X×Λ→R

Eλ∼Pλ
[E[LCE(hθ(X,λ), Y )] + λLfair(hθ(·, λ))] . (4)

Having trained a YOTO model, the trade-off curve τ∗fair(ψ) can be approximated by simply plugging
in the values of λ at inference time and thus avoiding additional training. From a theoretical point
of view, Dosovitskiy & Djolonga (2020) prove that given a large enough model capacity, the above
optimisation problem is equivalent to optimising the loss Lλ separately for different values of λ as
the minimum for both losses are the same (Dosovitskiy & Djolonga, 2020, Proposition 1). In other
words, under the assumption of large enough model capacity, training the loss-conditional YOTO
model performs as well as the separately trained models while only requiring a single model. To be
clear, although the model capacity assumption might be hard to verify in practice, our experimental
section has shown that the trade-off curves estimates τ̂∗fair(ψ) obtained using YOTO models are
consistent with the ones obtained using separately trained models.
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It should be noted, as is common in optimization problems, that the estimated trade-off curve τ̂∗fair(ψ)
may not align precisely with the true trade-off curve τ∗fair(ψ). This discrepancy originates from two
key factors. Firstly, the limited size of the training and evaluation datasets influences the estimation
of τ̂∗fair(ψ). Secondly, we opt for a computationally tractable loss function instead of tackling the
original constrained optimization problem, as stated in Eq. (1). To account for the estimation errors
in τ̂∗fair(ψ), we next show how YOTO model hθ : X × Λ → R can be used to construct confidence
intervals, designed to contain the true trade-off curve τ∗fair(ψ) with high probability.

3.2 STEP2: CONSTRUCTING CONFIDENCE INTERVALS

In this section, we outline how to construct confidence intervals (CIs) for the optimal trade-off
curve τ∗fair(ψ) defined in Eq. (1). Specifically, we assume access to a held-out calibration dataset
Dcal := {(Xi, Ai, Yi)}i which is disjoint from the training data. Given a level α ∈ [0, 1], we
construct CIs Γα

fair ⊆ [0, 1] using Dcal, which provide probabilistic guarantees of the form:

P(τ∗fair(Ψ) ∈ Γα
fair) ≥ 1− α. (5)

Here, it is important to note that Ψ ∈ [0, 1] are random variables obtained from the calibration data
Dcal, and the guarantee in Eq. (5) holds marginally over Ψ and Γα

fair. We emphasize that our results
in this section do not rely on a specific model class and for the sake of generality, we will outline our
methodology in terms of general classifiers h first and subsequently establish how the results apply
to YOTO models specifically. Before we construct intervals on τ∗fair, our methodology involves first
constructing CIs using Dcal on accuracy acc(h) and fairness violation Φfair(h) for a given model h,
denoted as Cα

acc(h) and Cα
fair(h) respectively, which satisfy:

P(acc(h) ∈ Cα
acc(h)) ≥ 1− α and P(Φfair(h) ∈ Cα

fair(h)) ≥ 1− α.
One possible way to construct these confidence intervals involves using assumption-light concentra-
tion inequalities such as Hoeffding’s inequality. To be more concrete for acc(h):
Lemma 3.1 (Hoeffding’s inequality). Given a classifier h : X → Y , we have that,

P
(

acc(h) ∈
[
âcc(h)− δ, âcc(h) + δ

])
≥ 1− α,

where âcc(h) :=
∑

(Xi,Ai,Yi)∈Dcal

1(h(Xi)=Yi)
|Dcal| and δ :=

√
1

2|Dcal| log (
2
α ).

Lemma 3.1 illustrates that we can use Hoeffding’s inequality to construct confidence interval
Cα

acc(h) = [âcc(h)−δ, âcc(h)+δ] on acc(h) such that the true acc(h) will lie inside the interval with
probability 1− α. Analogously, we are also able to establish confidence intervals for fairness viola-
tions, denoted as Φfair(h), albeit subject to certain nuanced challenges. Due to space constraints, we
have detailed the specific methodology for the fairness violation in Appendix B. Next, we outline
how to derive confidence intervals for the minimum achievable fairness τ∗fair, satisfying Eq. (5).

3.2.1 UPPER CONFIDENCE INTERVALS

Here, we outline how to obtain one-sided upper confidence intervals on the minimum attainable
accuracy constrained fairness τ∗fair(Ψ) of the form Γα

fair = [0, Uα
fair], which satisfies the probabilistic

guarantee in Eq. (5). To this end, given a classifier h ∈ H, our methodology involves constructing
one-sided lower CI on the accuracy acc(h) and upper CI on the fairness violation Φfair(h). We make
this concrete in the following result:
Proposition 3.2. Given classifier h ∈ H, let Lα

acc, U
α
fair ∈ [0, 1] be such that

P(acc(h) ≥ Lα
acc) ≥ 1− α/2 and P(Φfair(h) ≤ Uα

fair) ≥ 1− α/2.
Then, P (τ∗fair(L

α
acc) ≤ Uα

fair) ≥ 1− α.

Recall our original goal of constructing a one-sided confidence interval on the minimum attainable
fairness violation for models with accuracy at least ψ (i.e., τ∗fair(ψ)). Proposition 3.2 can be used
to construct such intervals by first finding a model h ∈ H for which the lower CI on accuracy,
Lα

acc, satisfies Lα
acc ≥ ψ. Then, since τ∗fair is a monotonically increasing function, we have that

τ∗fair(ψ) ≤ τ∗fair(L
α
acc) and since Uα

fair is an upper CI for τ∗fair(L
α
acc), it follows that Uα

fair can also serve
as an upper CI for τ∗fair(ψ). Proposition 3.2 can straightforwardly be applied to YOTO models:
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Corollary 3.3. Let hθ : X × Λ→ R be a YOTO model, and for λ0 ∈ Λ, let Lα
acc, U

α
fair be s.t.

P(acc(hθ(·, λ0)) ≥ Lα
acc) ≥ 1− α/2 and P(Φfair(hθ(·, λ0)) ≤ Uα

fair) ≥ 1− α/2.

Then, P(τ∗fair(L
α
acc) ≤ Uα

fair) ≥ 1− α.

Finally, it is important to note that the Proposition 3.2 and Corollary 3.3 do not rely on any assump-
tions regarding the optimality of the trained classifiers. This means that the upper confidence in-
tervals will remain valid even if the classifier h is not trained well (and hence achieves sub-optimal
accuracy-fairness trade-offs), although in such cases the confidence interval may be conservative.
Next, we show how to construct one-sided lower confidence intervals on τ∗fair(ψ).

3.2.2 LOWER CONFIDENCE INTERVALS
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Figure 2: Visual representa-
tion of the difference between
the ground truth optimal and
model achieved trade-offs.

Here, we explain at an intuitive level why obtaining lower confi-
dence intervals on τ∗fair(ψ) is more challenging than obtaining upper
confidence intervals. Suppose that h ∈ H is such that acc(h) = ψ,
then since τ∗fair denotes the minimum attainable fairness violation
(Eq. (1)), we have that τ∗fair(ψ) ≤ Φfair(h). Therefore, any valid up-
per confidence interval on Φfair(h) will also be valid for τ∗fair(ψ).
However, a lower bound on Φfair(h) cannot be used as a lower
bound for the minimum achievable fairness τ∗fair(ψ) in general. Con-
structing a lower CI will require assumptions on how close the fair-
ness violation Φfair(h) is to the minimum achievable fairness viola-
tion τ∗fair(ψ) (i.e., ∆(h) term in Figure 2). We make this concrete
below by constructing lower CIs on τ∗fair(ψ) which are unknown in
general unless we make assumptions on the optimality of fairness
violation Φfair(h) (i.e., if we assume ∆(h) ≤ c for some c).

Proposition 3.4. Suppose that, for a given classifier h ∈ H,

P(acc(h) ≤ Uα
acc) ≥ 1− α/2 and P(Φfair(h) ≥ Lα

fair) ≥ 1− α/2.

Then, P (τ∗fair(U
α
acc) ≥ Lα

fair −∆(h)) ≥ 1− α, where ∆(h) := Φfair(h)− τ∗fair(acc(h)) ≥ 0.

Proposition 3.4 provides the guarantee in Eq. (5) with Ψ = Uα
acc. Like Proposition 3.2, this result

shows that if the goal is to construct lower confidence intervals on τ∗fair(ψ) and we obtain that ψ ≥
Uα

acc, then using the monotonicity of τ∗fair we have that τ∗fair(ψ) ≥ τ∗fair(U
α
acc). Therefore since Lα

fair is
a lower confidence interval for τ∗fair(U

α
acc), it also serves as a lower CI for τ∗fair(ψ). Analogously to

Corollary 3.3, this result can be directly applied to YOTO (see Corollary C.1).

Recall that ∆(h) quantifies how ‘far’ the fairness loss of classifier h is from the minimum attainable
fairness loss τ∗fair(acc(h)) and is an unknown quantity in general (see Figure 2). One practical choice
which allows us to obtain the lower confidence intervals exactly is to assume that ∆(h) = 0, i.e. that
the model h achieves the lowest attainable fairness loss τ∗fair(acc(h)). In this case, the confidence
intervals quantify the uncertainty in the trade-off τ∗fair arising due to finite calibration data.

However, the assumption ∆(h) = 0 may be considered too restrictive as the model h will in prac-
tice not achieve the optimal accuracy-fairness trade-off τ∗fair. To remediate this, we employ sensi-
tivity analysis techniques to incorporate any belief on plausible values for ∆(h). This allows us to
construct CIs which not only incorporate finite sample uncertainty from calibration data, but also
account for the possible sub-optimality in the fairness trade-offs achieved by h. We provide more
details in Appendix C. In addition to this, in Appendix C.2, we show that under certain mild assump-
tions on the model h, we can obtain probabilistic bounds on ∆(h) which show that as the number
of training data increases, the ∆(h) term will tend to 0 with high probability.

3.3 HANDLING SCARCE SENSITIVE ATTRIBUTES

Next, we consider the case where sensitive attributes A are accessible for only a small subset of the
calibration dataset Dcal, and constructing reliable confidence intervals (CIs) for Φfair(h) becomes
challenging. Intuitively, taking a closer look at Lemma 3.1, we can see that the bigger the |Dcal|
dataset, the tighter the bounds are. Hence, when we only have a few data points for which we have
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the sensitive attributes, constructing CIs only using a small subset of Dcal with available sensitive
attributes can lead to highly conservative intervals. One way to fix this issues would be to predict
the missing A values using a surrogate model fA : X → A. However, in this case, the estimated
value of fairness violations can be significantly biased, particularly if fA has low accuracy.

Hence, inspired by prediction-powered inference (Angelopoulos et al., 2023), we introduce a method
that effectively combines data from both subsets ofDcal, i.e. data with actual and predicted sensitive
attributes to derive tighter and more accurate CIs, even when the majority of A values are absent.
Our methodology focuses on the discrepancy between fairness violations assessed with actual and
surrogate sensitive attributes. On a high level, the key idea is to adjust for the potential bias intro-
duced by surrogate predictions fA(X), using the small amount of data with true sensitive attributes.
We empirically confirm in Section 5 that our proposed intervals are (i) tighter than those obtained
using only the small subset with true A values, and (ii) more well-calibrated than the CIs obtained
by imputing missing sensitive attributes A with predicted sensitive attributes fA(X). Due to space
constraints, the exact details of our methodology are provided in Appendix D.

4 RELATED WORKS

In-processing methods for mitigating fairness violations commonly introduce constraints or reg-
ularization terms to the optimization objective. For instance, Agarwal et al. (2018) maximizes
model accuracy while constraining fairness violations. However, given the data-dependent nature of
accuracy-fairness trade-offs, setting a universal fairness threshold may not be suitable. Various other
regularization approaches (Wei & Niethammer, 2022; Olfat & Mintz, 2020; Bendekgey & Sudderth,
2021; Donini et al., 2018; Zafar et al., 2015; 2017; 2019) also exist, but they often necessitate train-
ing multiple models, making them computationally intensive.

Alternative fairness strategies include learning ‘fair’ data representations (Zemel et al., 2013;
Louizos et al., 2017; Lum & Johndrow, 2016), or pre-processing data through re-weighting based
on sensitive attributes (Grover et al., 2019; Kamiran & Calders, 2011). These, however, provide
limited control over accuracy-fairness trade-offs. Post-processing methods (Hardt et al., 2016; Wei
et al., 2020) enforce fairness after training but can lead to other forms of unfairness (EEOC, 1979).
Beyond fairness, Lin et al. (2020) applies YOTO to multi-task learning. Our work is unique, being
the first to adapt YOTO to fairness and the first in fairness to construct valid CIs on the optimal
trade-off curve, considering finite-sample estimation.

5 EXPERIMENTS

Having established the theoretical guarantees and bounds for the confidence intervals surrounding
the fairness trade-off curve, denoted as τ∗fair(ψ), we now proceed to empirically validate these in-
tervals across diverse datasets. These datasets span from tabular (e.g., Adult and COMPAS ), to
image-based (e.g., CelebA), and natural language processing datasets (e.g., Jigsaw). Recall that,
our approach involves a two-step methodology: initial estimation of the trade-off curve via the
YOTO model, followed by the construction of confidence intervals through a separate calibration
dataset, Dcal, which will contain the ground truth trade-off curve with high probability.

To evaluate our methodology, we implement a suite of baseline algorithms in the fair machine learn-
ing literature. This includes state-of-the-art in-processing techniques such as regularization-based
approaches (Bendekgey & Sudderth, 2021), as well as the popular reduction methods (Agarwal
et al., 2018). Additionally, we also conduct experiments using adversarial techniques aimed at fair
representation learning (Zhang et al., 2018). Finally, to further substantiate the universal applica-
bility of our proposed confidence intervals, we show that they are effective across the three most
prominent fairness metrics: Demographic Parity (DP), Equalized Odds (EO), and Equalized Oppor-
tunity (EOP). We provide additional experimental details and results in Appendix E.

5.1 RESULTS

Figure 3 shows the results for different datasets and fairness violations, obtained using a calibration
datasetDcal of size 2000. For each dataset, we construct 4 confidence intervals that serve as the upper
and lower bounds on the optimal accuracy-fairness trade-off curve. These intervals are computed
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at a 95% confidence level using various methodologies, including 1) Hoeffding’s, 2) Bernstein’s
inequalities which both offer finite sample guarantees as well as, 3) bootstrapping (Efron, 1979),
and 4) asymptotic intervals based on the Central Limit Theorem (Le Cam, 1986) which are valid
asymptotically in the number of calibration dataDcal. The findings of our experiments are as follows:

Trade-off curves are data dependent: Firstly, the results in Figure 3 confirm that the accuracy-
fairness trade-offs can vary significantly across the datasets. For example, achieving near-perfect
fairness (i.e. Φfair(h) ≈ 0) seems significantly easier for the Jigsaw dataset than the COMPAS
dataset, even as the accuracy increases. Likewise, we observe that for Adult and COMPAS datasets
the optimal DP increases gradually with increasing accuracy (smoothly), whereas for the CelebA
dataset, the increase is sharp once the accuracy increases above 90% (i.e., for CelebA the additional
accuracy beyond 90% level comes at a significant cost in terms of fairness violations). These trade-
off discrepancies across the datasets support our argument that using a universal fairness threshold
across datasets may be too restrictive as in Agarwal et al. (2018), and our methodology provides
more dataset-specific insights about the entire trade-off curve instead.

CIs contain the empirical trade-offs: The CIs presented in Figure 3, use ∆(h) = 0 when con-
structing the lower CIs. Despite this choice of ∆(h), all four of our proposed confidence intervals
successfully encapsulate the empirical accuracy-fairness trade-offs for the majority of the SOTA
baselines (separate, logsig, linear, reductions, adversary) examined. While the CIs obtained using
Hoeffding’s inequality, are comparatively conservative, the asymptotic, bootstrap and Bernstein CIs
are relatively tight and informative in most cases. Note that our intervals are designed to align with
the optimal trade-off curve and therefore, any methodology whose trade-off lies above our upper
bound is likely suboptimal, suggesting that alternative approaches may offer improved trade-offs.

YOTO trade-offs are consistent with SOTA: We observe that the empirical trade-offs obtained
using the YOTO models align well with most of the SOTA baselines considered, while avoiding
the computational cost of training multiple models. This shows that the YOTO model successfully
manages to approximate the optimal accuracy-fairness trade-off curves, in most cases as well as (and
in some cases, better than) the baselines considered. For example, for COMPAS dataset, the YOTO
trade-off curve is consistent with the baseline results, whereas for the Jigsaw dataset, the YOTO
model achieves better fairness-accuracy trade-offs than most baselines (especially for EOP results).

YOTO leads to a smoother trade-off curve than baselines: We observe that baselines utilizing the
reductions, regularization and adversarial approaches — which involve training multiple, indepen-
dently trained models — not only impose computational burden but also yield empirical trade-offs
with high variance as accuracy increases (see Jigsaw results in Figure 3, for example). This be-
haviour starkly contrasts with the smooth variations exhibited by our YOTO-generated trade-off
curves along the accuracy axis. This leads to CIs which vary smoothly with accuracy and allows us
to reliably obtain an acceptable range of fairness violations for specific accuracy thresholds.

5.1.1 SCARCE SENSITIVE ATTRIBUTES

As detailed in Section 3.3, we also analyze scenarios where access to the ground truth sensitive at-
tributesA is scarce withinDcal. Figure 4 displays the CIs using three methodologies, evaluating both
YOTO and separately trained models using all available A. In Figure 4a, using only data points with
true sensitive attributes yields conservative intervals due to reduced calibration data usage. Con-
versely, Figure 4b, which imputes missing attributes with predicted values fA(X), produces tighter,
yet miscalibrated intervals, due to a 75% accuracy of fA(X) causing bias in fairness estimation.
Figure 4c employs our combined datasets method, leading to tighter intervals compared to Figure 4a
and more well-calibrated compared to Figure 4b. This illustrates our approach’s ability to account
for the prediction error in fA. Comprehensive ablations are provided in Appendix D.

6 DISCUSSION AND LIMITATIONS

In this work, we propose a novel and computationally efficient approach to capture the fairness-
accuracy trade-offs inherent to individual datasets, backed by sound statistical guarantees. Our pro-
posed methodology enables a nuanced and dataset-specific understanding of the fairness-accuracy
trade-offs. It does so by obtaining confidence intervals on the accuracy-fairness trade-off, lever-
aging the computational benefits of the You-Only-Train-Once (YOTO) framework (Dosovitskiy &
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Figure 3: Results on four real-world datasets. Here, calibration data size |Dcal| = 2000.
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(b) Imputed sensitive attributes
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Figure 4: CIs constructed for Adult dataset in the setting where sensitive attributes A are only
available for 50 out of the 2,550 calibration data points and acc(fA) = 75%.

Djolonga, 2020). This empowers practitioners with the capability to, at inference time, specify de-
sired accuracy levels and promptly receive corresponding admissible fairness violation ranges. By
eliminating the need for repetitive model training, we significantly streamline the process of under-
standing and interpreting fairness-accuracy trade-offs tailored to individual datasets.

Limitations Despite the evident merits of our approach, it also has some potential limitations.
Firstly, our methodology requires distinct datasets for both training and calibration, posing diffi-
culties in situations with limited data resources. Under such constraints, the YOTO model might
not capture the optimal fairness-accuracy trade-off, and moreover, the resulting confidence intervals
could be overly conservative. Secondly, our lower confidence intervals incorporate an unknown term
∆(h). While we propose sensitivity analysis strategies for approximating this term and delve deeper
into its potential bounds under certain mild assumptions in Appendix C.2, a more exhaustive under-
standing remains an open research question. Exploring ways to derive rigorous and informative
upper bounds for the ∆(h) under weaker conditions is a promising avenue for future investigations.
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A PROOFS

Proof of Lemma 3.1. This lemma is a straightforward application of Heoffding’s inequality.

Proof of Proposition 3.2. Using a straightforward application union bounds, we get that
P(acc(h) ≥ Lα

acc,Φfair(h) ≤ Uα
fair) ≥ 1− P(acc(h) < Lα

acc)− P(Φfair(h) > Uα
fair)

≥ 1− α/2− α/2 = 1− α.
Using the definition of the optimal fairness-accuracy trade-off τ∗fair, we get that the event

{acc(h) ≥ Lα
acc,Φfair(h) ≤ Uα

fair} implies,

min{Φfair(h
′) |h′ ∈ H, acc(h′) ≥ Lα

acc}︸ ︷︷ ︸
τ∗

fair(L
α
acc)

≤ Uα
fair

 .

From this, it follows that
P(τ∗fair(L

α
acc) ≤ Uα

fair) ≥ P(acc(h) ≥ Lα
acc,Φfair(h) ≤ Uα

fair) ≥ 1− α.

Proof of Corollary 3.3. This corollary follows straightforwardly from Proposition 3.2.

Proof of Proposition 3.4. Using an application of union bounds, we get that
P(acc(h) ≤ Uα

acc,Φfair(h) ≥ Lα
fair) ≥ 1− P(acc(h) > Uα

acc)− P(Φfair(h) < Lα
fair)

≥ 1− α/2− α/2 = 1− α.
Then, using the fact that ∆(h) = Φfair(h)− τ∗fair(acc(h)), we get that

1− α ≤ P(acc(h) ≤ Uα
acc,Φfair(h) ≥ Lα

fair) = P(acc(h) ≤ Uα
acc, τ

∗
fair(acc(h)) + ∆(h) ≥ Lα

fair)

≤ P(acc(h) ≤ Uα
acc, τ

∗
fair(U

α
acc) + ∆(h) ≥ Lα

fair)

≤ P(τ∗fair(U
α
acc) ≥ Lα

fair −∆(h)),

where in the second last inequality above, we use the fact that τ∗fair : [0, 1]→ [0, 1] is a monotonically
increasing function.

B CONSTRUCTING THE CONFIDENCE INTERVALS ON Φfair(h)

In this section, we outline methodologies of obtaining confidence intervals for a fairness violation
Φfair. Specifically, given a model h ∈ H, with h : X → Y and α ∈ (0, 1), we outline how to find
Cα

fair which satisfies,
P(Φfair(h) ∈ Cα

fair) ≥ 1− α. (6)
Similar to Agarwal et al. (2018) we express the fairness violation Φfair as:

Φfair(h) = |Φ±
fair(h)| where, Φ±

fair(h) :=

m∑
j=1

E[gj(X,A, Y, h(X)) | Ej ]︸ ︷︷ ︸
=:Φj

where m ≥ 1, gj are some known functions and Ej are events with positive probability defined with
respect to (X,A, Y ). For example, when considering the demographic parity (DP), i.e. Φfair = ΦDP,
we have m = 2, with g1(X,A, Y, h(X)) = h(X), E1 = {A = 1}, g2(X,A, Y, h(X)) = −h(X)
and E2 = {A = 0}. Moreover, as shown in Agarwal et al. (2018), the commonly used fairness
metrics like Equalized Odds (EO) and Equalized Opportunity (EOP) can also be expressed in similar
forms.

Our methodology of constructing CIs on Φfair(h) involves first constructing intervals Cα,±
fair on

Φ±
fair(h) satisfying:

P(Φ±
fair(h) ∈ C

α,±
fair ) ≥ 1− α. (7)

Once we have a Cα,±
fair , the confidence interval Cα

fair satisfying Eq. (6) can simply be constructed as:

Cα
fair = {|x| : x ∈ C

α,±
fair }.

In what follows, we outline two different ways of constructing the confidence intervals Cα,±
fair on

Φ±
fair(h) satisfying Eq. (7).
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B.1 SEPARATELY CONSTRUCTING CIS ON Φj

One way to obtain intervals on Φ±
fair(h) would be to separately construct confidence intervals on Φj ,

denoted by Cα
j , which satisfies the joint guarantee

P
(
∩mj=1{Φj ∈ Cα

j }
)
≥ 1− α. (8)

Given such set of confidence intervals {Cα
j }mj=1 which satisfy Eqn. Eq. (8), we can obtain the

confidence intervals on Φ±
fair(h) by using the fact that

P

(
Φ±

fair(h) ∈
m∑
i=1

Cα
j

)
≥ 1− α.

Where, the notation
∑m

i=1 C
α
j denotes the set {

∑m
i=1 xi : xi ∈ Cα

i }. One naı̈ve way to obtain such
{Cα

j }mj=1 which satisfy Eq. (8) is to use the union bounds, i.e., if Cα
j are chosen such that

P(Φj ∈ Cα
j ) ≤ 1− α/m,

then, we have that

P
(
∩mj=1{Φj ∈ Cα

j }
)
= 1− P(∪mj=1{Φj ∈ Cα

j }c)

≤ 1−
m∑
i=1

P({Φj ∈ Cα
j }c)

≤ 1−
m∑
i=1

(1− (1− α/m)) = 1− α.

Here, for an event E , we use Ec to denote the complement of the event. This methodology therefore
reduces the problem of finding confidence intervals on Φ±

fair(h) to finding confidence intervals on Φj

for j ∈ {1, . . . ,m}. Now note that Φj are all expectations and we can use standard methodologies
to construct confidence intervals on an expectation. We explicitly outline how to do this in Section
B.3.

Remark The methodology outlined above provides confidence intervals with valid finite sample
coverage guarantees. However, this may come at the cost of more conservative confidence intervals.
One way to obtain less conservative confidence intervals while retaining the coverage guarantees
would be to consider alternative ways of obtaining confidence intervals which do not require con-
structing the CIs separately on Φj . We outline one such methodology in the next section.

B.2 USING SUBSAMPLING TO CONSTRUCT THE CIS ON Φ±
fair DIRECTLY

Here, we outline how we can avoid having to use union bounds when constructing the confidence
intervals on Φ±

fair. Let Dj denote the subset of data Dcal, for which the event Ej is true. In the case
where the events Ej are all mutually exclusive and hence Dj are all disjoint subsets of data (which
is true for DP, EO and EOP), we can also construct these intervals by randomly sampling without
replacement datapoints (x(j)i , a

(j)
i , y

(j)
i ) from Dj for i ≤ l := mink≤m |Dk|. We use the fact that

Φ̂±
fair(h) =

1

l

l∑
i=1

m∑
j=1

gj(x
(j)
i , a

(j)
i , y

(j)
i , h(x

(j)
i ))

is an unbiased estimator of Φ±
fair(h). Moreover, since Dj are all disjoint datasets, the

datapoints (x
(j)
i , a

(j)
i , y

(j)
i ) are all independent across different values of j, and therefore,∑m

j=1 gj(x
(j)
i , a

(j)
i , y

(j)
i , h(x

(j)
i )) are i.i.d.. In other words,

Φ̂±
fair(h) =

1

l

l∑
i=1

ϕi where, ϕi :=

m∑
j=1

gj(x
(j)
i , a

(j)
i , y

(j)
i , h(x

(j)
i ))

and ϕi are all i.i.d. samples and unbiased estimators of Φ±
fair(h). Therefore, like in the previous

section, our problem reduces to constructing CIs on an expectation term (i.e. Φ±
fair(h)), using i.i.d.

unbiased samples (i.e. ϕi) and we can use standard methodologies to construct these intervals.

14
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Benefit of this methodology This methodology no longer requires us to separately construct con-
fidence intervals over Φj and combine them using union bounds (for example). Therefore, intervals
obtained using this methodology may be less conservative than those obtained by separately con-
structing confidence intervals over Φj .

Limitation of this methodology For each subset of dataDj , we can use at most l := mink≤m |Dk|
data points to construct the confidence intervals. Therefore, in cases where l is very small, we may
end up discarding a big proportion of the calibration data which could in turn lead to loose intervals.

B.3 CONSTRUCTING CIS ON EXPECTATIONS

Here, we outline some standard techniques used to construct CIs on the expectation of a random
variable. These techniques can then be used to construct CIs on Φfair(h) (using either of the two
methodologies outlined above) as well as on acc(h). In this section, we restrict ourselves to con-
structing lower CIs. Upper CIs can be constructed analogously.

Given dataset {Zi : 1 ≤ i ≤ n}, our goal in this section is to construct upper CIs on E[Z] which
satisfies

P(E[Z] ≤ Uα) ≥ 1− α.

Hoeffding’s inequality We can use Hoeffding’s inequality to construct these intervals Uα as for-
malised in the following result:
Lemma B.1 (Hoeffding’s inequality). Let Zi ∈ [0, 1], 1 ≤ i ≤ n be i.i.d. samples with mean E[Z].
Then,

P

(
E[Z] ≤ 1

n

n∑
i=1

Zi +

√
1

2n
log

1

α

)
≥ 1− α.

Bernstein’s inequality Bernstein’s inequality provides a powerful tool for bounding the tail prob-
abilities of the sum of independent, bounded random variables. Specifically, for a sum

∑n
i=1 Zi

comprised of n independent random variables Zi with Zi ∈ [0, B], each with a maximum variance
of σ2, and for any t > 0, the inequality states that

P

(
E

[
n∑

i=1

Zi

]
−

n∑
i=1

Zi > t

)
≤ exp

(
− t2

2σ2 + 2
3 tB

)
,

where B denotes an upper bound on the absolute value of each random variable. Re-arranging the
above, we get that

P

(
E[Z] <

1

n

(
n∑

i=1

Zi + t

))
≥ 1− exp

(
− t2

2σ2 + 2
3 tB

)
.

This allows us to construct upper CIs on E[Z].

Central Limit Theorem The Central Limit Theorem (CLT) (Le Cam, 1986) serves as a corner-
stone in statistics for constructing confidence intervals around sample means, particularly when the
sample size is substantial. The theorem posits that, for a sufficiently large sample size, the distribu-
tion of the sample mean will closely resemble a normal (Gaussian) distribution, irrespective of the
original population’s distribution. This Gaussian nature of the sample mean empowers us to form
confidence intervals for the population mean using the normal distribution’s characteristics.

Given Z1, Z2, . . . , Zn as n independent and identically distributed (i.i.d.) random variables with
mean µ and variance σ2, the sample mean Z̄ approximates a normal distribution with mean µ and
variance σ2/n for large n. An upper (1− α) confidence interval for µ is thus:

Uα = Z̄ + zα/2
σ√
n

where zα/2 represents the critical value from the standard normal distribution corresponding to a
cumulative probability of 1− α.

15



Under review as a conference paper at ICLR 2024

Bootstrap Confidence Intervals Bootstrapping, introduced by Efron (1979), offers a non-
parametric approach to estimate the sampling distribution of a statistic. The method involves re-
peatedly drawing samples (with replacement) from the observed data and recalculating the statistic
for each resample. The resulting empirical distribution of the statistic across bootstrap samples
forms the basis for confidence interval construction.

Given a dataset Z1, Z2, . . . , Zn, one can produce B bootstrap samples by selecting n observations
with replacement from the original data. For each of these samples, the statistic of interest (for
instance, the mean) is determined, yielding B bootstrap estimates. An upper (1 − α) bootstrap
confidence interval for E[Z] is given by:

Uα = Z̄ + (z∗α − Z̄)

with z∗α denoting the α-quantile of the bootstrap estimates. It’s worth noting that there exist mul-
tiple methods to compute bootstrap confidence intervals, including the basic, percentile, and bias-
corrected approaches, and the method described above serves as a general illustration.

C SENSITIVITY ANALYSIS FOR ∆(h)

Recall from Proposition 3.4 that the lower confidence intervals for τ∗fair include a ∆(h) term which
is defined as

∆(h) := Φfair(h)− τ∗fair(acc(h)) ≥ 0.

In other words, ∆(h) quantifies how ‘far’ the fairness loss of classifier h (i.e. Φfair(h)) is from
the minimum attainable fairness loss for classifiers with accuracy acc(h), (i.e. τ∗fair(acc(h))). This
quantity is unknown in general and therefore, a practical strategy of obtaining lower confidence
intervals on τ∗fair(ψ) may involve positing values for ∆(h) which encode our belief on how close the
fairness loss Φfair(h) is to τ∗fair(acc(h)). For example, when we assume that the classifier h achieves
the optimal accuracy-fairness tradeoff, i.e. Φfair(h) = τ∗fair(acc(h)) then ∆(h) = 0.

However, the assumption Φfair(h) = τ∗fair(acc(h)) may not hold in general because we only have
a finite training dataset and consequently the empirical loss minimisation may not yield the op-
tima to the true expected loss. Moreover, the regularised loss used in training h is a surrogate loss
which approximates the solution to the constrained minimisation problem in Eq. (1). This means
that optimising this regularised loss is not guaranteed to yield the optimal classifier which achieves
the optimal fairness τ∗fair(acc(h)) even in the case when we have access to an infinitely large train-
ing dataset. Therefore, to incorporate any belief on the sub-optimality of the classifier h, we may
consider conducting sensitivity analyses to plausibly quantify ∆(h).

Let hθ : X × Λ → R be the YOTO model. One strategy for sensitivity analysis involves training
multiple models M := {h(1), h(2), . . . , h(k)} ⊆ H by optimising the regularised losses for few
different choices of λ.

Lλ(θ) = E[LCE(hθ(X), Y )] + λLfair(hθ).

Importantly, we do not require covering the full range of λ values when training separate modelsM,
and our methodology remains valid even whenM is a single model. Next, let h∗λ ∈M∪{hθ(·, λ)}
be such that

h∗λ = argmin
h′∈M∪{hθ(·,λ)}

Φ̂fair(h
′) subject to âcc(h′) ≥ âcc(hθ(·, λ)). (9)

Here, Φ̂fair and âcc denote the finite sample estimates of the fairness loss and model accuracy re-
spectively. We treat the model h∗λ as a model which attains the optimum trade-off when estimat-
ing subject to the constraint acc(h) ≥ acc(hθ(·, λ)). Specifically, we use the empirical estimate
∆̂(hθ(·, λ)) := Φ̂fair(hθ(·, λ)) − Φ̂fair(h

∗
λ) ≥ 0 as a plausible surrogate value for ∆(hθ(·, λ)), i.e.,

we posit
∆(hθ(·, λ))← ∆̂(hθ(·, λ)) := Φ̂fair(hθ(·, λ))− Φ̂fair(h

∗
λ).

Next, we can use this posited value of ∆(hθ(·, λ)) to construct the lower confidence interval using
the following corollary of Proposition 3.4:
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Corollary C.1. Consider the YOTO model hθ : X × Λ → R. Given λ0 ∈ Λ, let Uα
acc, L

α
fair ∈ [0, 1]

be such that

P(acc(hθ(·, λ0)) ≤ Uα
acc) ≥ 1− α/2 and P(Φfair(hθ(·, λ0)) ≥ Lα

fair) ≥ 1− α/2.
Then, we have that P(τ∗fair(U

α
acc) ≥ Lα

fair −∆(hθ(·, λ0))) ≥ 1− α.

This result shows that if the goal is to construct lower confidence intervals on τ∗fair(ψ) and we obtain
that ψ ≥ Uα

acc, then using the monotonicity of τ∗fair we have that τ∗fair(ψ) ≥ τ∗fair(U
α
acc). Therefore the

interval [Lα
fair −∆(hθ(·, λ0))), 1] serves as a lower confidence interval for τ∗fair(ψ).

When YOTO satisfies Pareto optimality, ∆(hθ(·, λ)) → 0 as |Dcal| → ∞: Here, we show
that in the case when YOTO achieves the optimal trade-off, then our sensitivity analysis leads to
∆(hθ(·, λ)) = 0 as the calibration data size increases for all λ ∈ Λ. Our arguments in this section
are not formal, however, this idea can be formalised without any significant difficulty.

First, the concept of Pareto optimality (defined below) formalises the idea that YOTO achieves the
optimal trade-off:
Assumption C.2 (Pareto optimality).

If for some λ ∈ Λ and h′ ∈ H we have that, acc(h′) ≥ acc(hθ(·, λ)) then, Φfair(h
′) ≥ Φfair(hθ(·, λ)),

In the case when YOTO satisfies this optimality property, then it is straightforward to see that
∆(hθ(·, λ)) = 0 for all λ ∈ Λ. In this case, as Dcal →∞, we get that Eq. (9) roughly becomes

h∗λ = argmin
h′∈M∪{hθ(·,λ)}

Φfair(h
′) subject to acc(h′) ≥ acc(hθ(·, λ)).

Here, Assumption C.2 implies that h∗λ = hθ(·, λ), and therefore

∆(hθ(·, λ))← ∆̂(hθ(·, λ)) := Φ̂fair(hθ(·, λ))− Φ̂fair(h
∗
λ) = 0.

Intuition behind our sensitivity analysis procedure Intuitively, the high-level idea behind our
sensitivity analysis is that it checks if we train models separately for fixed values of λ (i.e. models in
M), how much better do these separately trained models perform in terms of the accuracy-fairness
trade-offs as compared to our YOTO model. If we find that the separately trained models achieve a
better trade-off than the YOTO model for specific values of λ, then the sensitivity analysis adjusts
the empirical trade-off obtained using YOTO models (using the ∆̂(hθ(·, λ)) term defined above).
If, on the other hand, we find that the YOTO model achieves a better trade-off than the separately
trained models inM, then the sensitivity analysis has no effect on the lower confidence intervals as
in this case ∆̂(hθ(·, λ)) = 0.

C.1 EXPERIMENTAL RESULTS

Here, we include empirical results showing how the CIs constructed change as a result of our sen-
sitivity analysis procedure. In Figures 5 and 6, we include examples of CIs where the empirical
trade-off obtained using YOTO is sub-optimal. In these cases, the lower CIs obtained without sen-
sitivity analysis (i.e. when we assume ∆(h) = 0) do not cover the empirical trade-offs for the
separately trained models. However, the figures show that the sensitivity analysis procedure adjusts
the lower CIs in both cases so that they encapsulate the empirical trade-offs that were not captured
without sensitivity analysis.

Recall that M represents the set of additional separately trained models used for the sensitivity
analysis. It can be seen from Figures 5 and 6 that in both cases our sensitivity analysis performs
well with as little as two models (i.e. |M| = 2), which shows that our sensitivity analysis does not
come at a significant computational cost.

Additionally, in Figure 7 we also consider an example where YOTO achieves a better empirical
trade-off than most other baselines considered, and therefore there is no need for sensitivity analysis.
In this case, Figure 7 shows that sensitivity analysis has no effect on the CIs constructed since in
this case sensitivity analysis gives us ∆̂(hθ(·, λ)) = 0 for λ ∈ Λ. This shows that in cases where
sensitivity analysis is not needed (for example, if YOTO achieves optimal empirical trade-off), our
sensitivity analysis procedure does not make the CIs more conservative.
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(c) |M| = 5

Figure 5: CIs with and without sensitivity analysis for Adult dataset.

0.88 0.89 0.90 0.91 0.92
Accuracy

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Eq
ua

liz
ed

 O
pp

or
tu

ni
ty

(a) No sensitivity analysis

0.88 0.89 0.90 0.91 0.92
Accuracy

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Eq
ua

liz
ed

 O
pp

or
tu

ni
ty

(b) |M| = 2
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(c) |M| = 5

Figure 6: CIs with and without sensitivity analysis for CelebA dataset.
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Figure 7: CIs with and without sensitivity analysis for COMPAS dataset. Here, sensitivity analysis
has no effect on the constructed CIs as the YOTO model achieves a better empirical trade-off than
the separately trained models.

C.2 LOWER BOUND FOR AN ARBITRARY ∆(h)

Suppose the model that corresponds to τ∗fair(acc(h)) is h∗. Then τ∗fair(acc(h)) = Φfair(h
∗). Sup-

pose that h is the empirically optimal model we could have obtained using the training data:
h = argminh′∈H Φ̂fair(h′).

∆(h) =Φfair(h)− Φfair(h
∗)

=Φ̂fair(h)− Φ̂fair(h∗)

+ Φfair(h)− Φ̂fair(h) + Φ̂fair(h∗)− Φfair(h
∗)

≤0 + 2 max
h′∈H

|Φfair(h
′)− Φ̂fair(h′)|

In the above, the first inequality uses the fact that h is the empirically optimal model and therefore
Φ̂fair(h)− Φ̂fair(h∗) ≤ 0.

Assuming Φ̂fair(h′) is additive that
∑

(x,y)∈Dtrain
ϵx · Φfair(h

′, x, y) Wang et al. (2022), we can then
invoke the Rademacher bound on the maximal deviation between risks and empirical risks over a
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hypothesis spaceH (Vapnik, 1999) we have

max
h′∈H

|Φfair(h
′)− Φ̂fair(h′)| ≤ R(Φfair ◦ H) +

√
log 1/δ

|Dtrain|
with probability at least 1− δ, where

R(Φfair ◦ H) := EX,Y,ϵ

 sup
h′∈H

1

|Dtrain|
∑

(x,y)∈Dtrain

ϵx · Φfair(h
′, x, y)


ϵs are independent random variables with P(ϵ = +1) = P(ϵ = −1) = 1

2 .

If Φfair is L-Lipschitz continuous, by the Lipschitz composition property of Rademacher averages
we have

R(Φfair ◦ H) ≤ L · R(H)
where R(H) is the Rademacher complexity defined for H and can be further bounded using the
VC-dimension ofH.

The above bound is valid when the model classH has a relatively small VC dimension VC(H). For
example, one of the Radermacher bound further bounds as

R(H) ≤

√
2VC(H) · log e·n

VC(H)

n

For linear models, VC(H) = d, where d is the dimension of X .

D SCARCE SENSITIVE ATTRIBUTES

Our methodology of obtaining confidence intervals on Φfair assumes access to the sensitive attributes
A for all data points in the held-out dataset D. However, in practice, we may only have access to
A for a small proportion of the data in D. In this case, a naı̈ve strategy would involve constructing
confidence intervals using only the data for whichA is available. However, since such data is scarce,
the confidence intervals constructed are very loose.

Suppose that we additionally have access to a predictive model fA which predicts the sensitive
attributes A using the features X . In this case, another simple strategy would be to simply impute
the missing values of A, with the values Â predicted using fA. However, this will usually lead to a
biased estimate of the fairness violation Φfair(h), and hence is not very reliable unless the model fA
is highly accurate. In this section, we show how to utilise the data with missing sensitive attributes
to obtain tighter and more accurate confidence intervals on τ∗fair(ψ).

Formally, we consider Dcal = D∪ D̃ where D denotes a data subset of size n that contains sensitive
attributes (i.e. we observe A) and D̃ denotes the data subset of size N for which we do not observe
the sensitive attributes A, and N ≫ n. Additionally, for both datasets, we have predictions of
the sensitive attributes made by a machine-learning algorithm fA : X → A, where fA(X) ≈ A.
Concretely we have that D = {(Xi, Ai, Yi, fA(Xi))}ni=1 and D̃ = {(X̃i, Ỹi, fA(X̃i))}Ni=1

High-level methodology Our methodology is inspired by prediction-powered inference (An-
gelopoulos et al., 2023) which builds confidence intervals on the expected outcome E[Y ] using
data for which the true outcome Y is only available for a small proportion of the dataset. In our
setting, however, it is the sensitive attribute A that is missing for the majority of the data (and not
the outcome Y ).

For h ∈ H, let Φfair(h) be a fairness violation (such as DP or EO), and let Φ̃fair(h) be the corre-
sponding fairness violation computed on the data distribution where A is replaced by the surrogate
sensitive attribute fA(X). For example, in the case of DP violation, Φfair(h) and Φ̃fair(h) denote:

Φfair(h) = |P(h(X) = 1 | A = 1)− P(h(X) = 1 | A = 0)|,

Φ̃fair(h) = |P(h(X) = 1 | fA(X) = 1)− P(h(X) = 1 | fA(X) = 0)|.
We next construct the confidence intervals on Φfair(h) using the following steps:
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1. Using D, we construct intervals Cϵ(α;h) on ϵ(h) := Φfair(h)− Φ̃fair(h) satisfying

P(ϵ(h) ∈ Cϵ(α;h)) ≥ 1− α. (10)

Even though the size of D is small, we choose a methodology which yields tight intervals for
ϵ(h) when fA(Xi) = Ai with a high probability.

2. Next, using the dataset D̃, we construct intervals C̃f(α;h) on Φ̃fair(h) satisfying

P(Φ̃fair(h) ∈ C̃f(α;h)) ≥ 1− α. (11)

This interval will also be tight as the size of D̃, N ≫ n.

Finally, using the union bound idea we combine the two confidence intervals to obtain the confidence
interval for Φfair(h)− Φ̃fair(h) + Φ̃fair(h) = Φfair(h). We make this precise in the following result:

Lemma D.1. Let Cϵ(α;h), C̃f(α;h) be as defined in equations 10 and 11. Then, if we define
Cα

fair(h) = {x+ y |x ∈ Cϵ(α;h), y ∈ C̃f(α;h)}, we have that

P(Φfair(h) ∈ Cα
fair(h)) ≥ 1− 2α.

When constructing the CIs over Φ̃fair(h) using imputed sensitive attributes fA(X) in step 2 above,
the prediction error of fA introduces an error in the obtained CIs (denoted by ϵ(h)). Step 1 rectifies
this by constructing a CI over the incurred error ϵ(h), and therefore combining the two allows us
to obtain intervals which utilise all of the available data while ensuring that the constructed CIs are
well-calibrated.

Example: Demographic parity Having defined our high-level methodology above, we concretely
demonstrate how this can be applied to the case where the fairness loss under consideration is DP.
As described above, the first step involves constructing intervals on ϵ(h) := Φfair(h)− Φ̃fair(h) using
a methodology which yields tight intervals when fA(Xi) = Ai with a high probability. To this end,
we use bootstrapping as described in Algorithm 1.

Even though bootstrapping does not provide us with finite sample coverage guarantees, it is asymp-
totically exact and satisfies the property that the confidence intervals are tight when Â = A with a
high probability. On the other hand, concentration inequalities (such as Hoeffding’s inequality) seek
to construct confidence intervals individually on Φfair(h) and Φ̃fair(h) and subsequently combine
them through union bounds argument, for example. In doing so, these methods do not account for
how close the values of Φfair(h) and Φ̃fair(h) might be in the data.

To make this concrete, consider the example where fA(X)
a.s.
= A and hence Φfair(h) = Φ̃fair(h).

When using concentration inequalities to construct the 1 − α confidence intervals on Φfair(h) and
Φ̃fair(h), we obtain identical intervals for the two quantities, say [l, u]. Then, using union bounds
we obtain that Φfair(h) − Φ̃fair(h) ∈ [l − u, u − l] with probability at least 1 − 2α. In this case
even though Φfair(h) − Φ̃fair(h) = 0, the width of the interval [l − u, u − l] does not depend on the
closeness of Φfair(h) and Φ̃fair(h) and therefore is not tight. Bootstrapping helps us circumvent this
problem, since in this case for each resample of the data D, the finite sample estimates Φ̂fair(h) and
̂̃
Φfair(h) will be equal. We outline the bootstrapping algorithm below.

Using Algorithm 1 we construct a confidence interval Cϵ(α;h) on ϵ(h) of size 1 − α, which ap-
proximately satisfies Eq. (10). Next, using standard techniques we can obtain an interval C̃f(α;h)

on Φ̃fair(h) using D̃ which satisfies Eq. (11). Like before, the interval C̃f(α;h) is likely to be tight as
we use D̃ to construct it, which is significantly larger than D. Finally, combining the two as shown
in Lemma D.1, we obtain the confidence interval on Φfair(h).

D.1 EXPERIMENTAL RESULTS

Here, we present experimental results in the setting where the sensitive attributes are missing for
majority of the calibration data. Figures 8-13 show the results for different datasets and predictive

20



Under review as a conference paper at ICLR 2024

Algorithm 1: Bootstrapping for estimating ϵ(h) := Φfair(h)− Φ̃fair(h)

Input: Dataset D, number of bootstrap samples B, significance level α
Output: 1− α confidence interval for ϵ(h)
Initialize empty array vb
for i← 1 to B do

Draw a bootstrap sample D∗ of size |D| with replacement from D

Compute Φ̂fair(h) and ̂̃
Φfair(h) on D∗

Compute the difference ϵ̂(h) := Φ̂fair(h)−
̂̃
Φfair(h)

Append ϵ̂(h) to vb
Compute the α/2 and 1− α/2 quantiles of vb, denoted as τ∗fair and u
return Confidence interval Cϵ(α;h) = [l, u].

models fA with varying accuracies. Here, the empirical fairness violation values for both YOTO and
separately trained models are evaluated using the true sensitive attributes over the entire calibration
data.

CIs with imputed sensitive attributes are mis-calibrated Figures 8, 10 and 12 show results
for Adult, COMPAS and CelebA datasets, where the CIs are computed by imputing the missing
sensitive attributes with the predicted sensitive attributes fA(X) ≈ A. The figures show that when
the accuracy of fA is below 90%, the CIs are highly miscalibrated as they do not entirely contain
the empirical trade-offs for both YOTO and separately trained models.

Our methodology corrects for the mis-calibration In contrast, Figures 9, 11 and 13 which in-
clude the corresponding results using our methodology, show that our methodology is able to correct
for the mis-calibration in CIs arising from the prediction error in fA. Even though the CIs obtained
using our methodology are more conservative than those obtained by imputing the missing sensitive
attributes with fA(X), they are more well-calibrated and contain the empirical trade-offs for both
YOTO and separately trained model.

Imputing missing sensitive attributes may work when fA has high accuracy Finally, Figures
8c, 10c and 12c show that the CIs with imputed sensitive attributes are relatively better calibrated as
the accuracy of fA increases to 90%. In this case, the CIs with imputed sensitive attributes mostly
contain empirical trade-offs. This shows that in cases where the predictive model fA has high
accuracy, it may be sufficient to impute missing sensitive attributes with fA(X) when constructing
the CIs.

E EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

In this section, we provide greater details regarding our experimental setup and models used. We
first begin by defining the Equalized Odds metric which has been used in our experiments, along
with DP and EOP.

Equalized Odds (EO): EO condition states that, both the true positive rates and false positive
rates for all sensitive groups are equal, i.e. P(h(X) = 1 | A = a, Y = y) = P(h(X) = 1 | Y = y)
for any a ∈ A and y ∈ {0, 1}. The absolute EO violation is defined as:

ΦEO(h) :=1/2 |P(h(X) = 1 | A = 1, Y = 1)− P(h(X) = 1 | A = 0, Y = 1)|
+ 1/2 |P(h(X) = 1 | A = 1, Y = 0)− P(h(X) = 1 | A = 0, Y = 0)|.

Next, we provide additional details regarding the YOTO model.
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Figure 8: CIs obtained by imputing missing senstive attributes using fA for Adult dataset. Here
n = 50 and N = 2500.
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Figure 9: CIs were obtained using our methodology for the Adult dataset. Here n = 50 and N =
2500.
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Figure 10: CIs obtained by imputing missing senstive attributes using fA for COMPAS dataset.
Here n = 50 and N = 2000.

0.56 0.58 0.60 0.62 0.64 0.66 0.68
Accuracy

0.00

0.05

0.10

0.15

De
m

og
ra

ph
ic 

Pa
rit

y

(a) acc(fA) = 50%

0.56 0.58 0.60 0.62 0.64 0.66 0.68
Accuracy

0.000

0.025

0.050

0.075

0.100

0.125

0.150

De
m

og
ra

ph
ic 

Pa
rit

y

(b) acc(fA) = 70%

0.56 0.58 0.60 0.62 0.64 0.66 0.68
Accuracy

0.00

0.05

0.10

0.15

De
m

og
ra

ph
ic 

Pa
rit

y

(c) acc(fA) = 90%

Figure 11: CIs obtained using our methodology for COMPAS dataset. Here n = 50 and N = 2000.

E.1 PRACTICAL DETAILS REGARDING YOTO MODEL

As described in Section 3, we consider optimising regularized losses of the form

Lλ(θ) = E[LCE(hθ(X), Y )] + λLfair(hθ).

When training YOTO models, instead of fixing λ, we sample the parameter λ from a distribution Pλ.
As a result, during training the model observes many different values of λ and learns to optimise the
loss Lλ for all of them simultaneously. At inference time, the model can be conditioned on a chosen
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Figure 12: CIs obtained by imputing missing senstive attributes using fA for CelebA dataset. Here
n = 50 and N = 2500.
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Figure 13: CIs obtained using our methodology for CelebA dataset. Here n = 50 and N = 2500.

parameter value λ′ and recovers the model trained to optimise Lλ′ . The loss being minimised can
thus be expressed as follows:

argmin
hθ:X×Λ→R

Eλ∼Pλ
[E[LCE(hθ(X,λ), Y )] + λLfair(hθ(·, λ))] .

The fairness losses Lfair considered for the YOTO model are:
DP: Lfair(hθ(·, λ)) = |E[σ(hθ(X,λ)) | A = 1]− E[σ(hθ(X,λ)) | A = 0]|
EOP: Lfair(hθ(·, λ)) = |E[σ(hθ(X,λ)) | A = 1, Y = 1]− E[σ(hθ(X,λ)) | A = 0, Y = 1]|
EO: Lfair(hθ(·, λ)) = |E[σ(hθ(X,λ)) | A = 1, Y = 1]− E[σ(hθ(X,λ)) | A = 0, Y = 1]|

+ |E[σ(hθ(X,λ)) | A = 1, Y = 0]− E[σ(hθ(X,λ)) | A = 0, Y = 0]|.
Here, σ(x) := 1/(1 + e−x) denotes the sigmoid function.

In our experiments, we sample a new λ for every batch. Moreover, we use the log-uniform distri-
bution as per Dosovitskiy & Djolonga (2020) as the sampling distribution Pλ, where the uniform
distribution is U [10−6, 10]. To condition the network on λ parameters, we follow in the footsteps of
Dosovitskiy & Djolonga (2020) to use Feature-wise Linear Modulation (FiLM) (Perez et al., 2017).
For completeness, we include the description of the architecture next.

Initially, we determine which network layers should be conditioned, which can encompass all layers
or just a subset. For each chosen layer, we condition it based on the weight parameters λ. Given a
layer that yields a feature map f with dimensions W ×H × C, where W and H denote the spatial
dimensions and C stands for the channels, we introduce the parameter vector λ to two distinct multi-
layer perceptrons (MLPs), denoted asMσ andMµ. These MLPs produce two vectors, σ and µ, each
having a dimensionality of C. The feature map is then transformed by multiplying it channel-wise
with σ and subsequently adding µ. The resultant transformed feature map f ′ is given by:

f ′ijk = σkfijk + µk where σ =Mσ(λ) and µ =Mµ(λ).

Next, we provide exact architectures we used for each dataset in our experiments.

E.1.1 YOTO ARCHITECTURES

Adult and COMPAS dataset Here, we use a simple logistic regression as the main model, with
only the scalar logit outputs of the logistic regression being conditioned using FiLM. The MLPs
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Mµ,Mσ both have two hidden layers, each of size 4, and ReLU activations. We train the model for
a maximum of 1000 epochs, with early stopping based on validation losses. Training these simple
models takes roughly 5 minutes on a Tesla-V100-SXM2-32GB GPU.

CelebA dataset For the CelebA dataset, our architecture is a convolutional neural network (Con-
vNet) integrated with the FiLM (Feature-wise Linear Modulation) mechanism. The network starts
with two convolutional layers: the first layer has 32 filters with a kernel size of 3×3, and the second
layer has 64 filters, also with a 3× 3 kernel. Both convolutional layers employ a stride of 1 and are
followed by a max-pooling layer that reduces each dimension by half.

The feature maps from the convolutional layers are flattened and passed through a series of fully
connected (MLP) layers. Specifically, the first layer maps the features to 64 dimensions, and the
subsequent layers maintain this size until the final layer, which outputs a scalar value. The activation
function used in these layers is ReLU.

To condition the network on the λ parameter using FiLM, we design two multi-layer perceptrons
(MLPs), Mµ and Mσ . Both MLPs take the λ parameter as input and have 4 hidden layers. Each
of these hidden layers is of size 256. These MLPs produce the modulation parameters µ and σ,
which are used to perform feature-wise linear modulation on the outputs of the main MLP layers.
The final output of the network is passed through a sigmoid activation function to produce the
model’s prediction. We train the model for a maximum of 1000 epochs, with early stopping based
on validation losses. Training this model takes roughly 1.5 hours on a Tesla-V100-SXM2-32GB
GPU.

Jigsaw dataset For the Jigsaw dataset, we employ a neural network model built upon the BERT
architecture (Devlin et al., 2018) integrated with the Feature-wise Linear Modulation (FiLM) mech-
anism. We utilize the representation corresponding to the [CLS] token, which carries aggregate
information about the entire sequence. To condition the BERT’s output on the λ parameter using
FiLM, we design two linear layers, which map the λ parameter to modulation parameters γ and β,
both of dimension equal to BERT’s hidden size of 768. These modulation parameters are then used
to perform feature-wise linear modulation on the [CLS] representation. The modulated representa-
tion is passed through a classification head, which consists of a linear layer mapping from BERT’s
hidden size (768) to a scalar output. In terms of training details, our model is trained for a maximum
of 10 epochs, with early stopping based on validation losses. Training this model takes roughly 6
hours on a Tesla-V100-SXM2-32GB GPU.

E.2 DATASETS

We used four real-world datasets for our experiments.

Adult dataset The Adult income dataset (Becker & Kohavi, 1996) includes employment data for
48,842 individuals where the task is to predict whether an individual earns more than $50k per year
and includes demographic attributes such as age, race and gender. In our experiments, we consider
gender as the sensitive attribute.

COMPAS dataset The COMPAS recidivism data comprises collected by ProPublica (Angwin
et al., 2016), includes information for 6172 defendants from Broward County, Florida. This infor-
mation comprises 52 features including defendants’ criminal history and demographic attributes,
and the task is to predict recidivism for defendants. The sensitive attribute in this dataset is the
defendants’ race where A = 1 represents ‘African American’ and A = 0 corresponds to all other
races.

CelebA dataset The CelebA dataset (Liu et al., 2015) consists of 202,599 celebrity images an-
notated with 40 attribute labels. In our task, the objective is to predict whether an individual in the
image is smiling. The dataset comprises features in the form of image pixels and additional attributes
such as hairstyle, eyeglasses, and more. The sensitive attribute for our experiments is gender.

Jigsaw Toxicity Classification dataset The Jigsaw Toxicity Classification dataset (Jigsaw &
Google, 2019) contains online comments from various platforms, aimed at identifying and miti-
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gating toxic behavior online. The task is to predict whether a given comment is toxic or not. The
dataset includes features such as the text of the comment and certain metadata such as the gender
or race to which each comment relates. In our experiments, the sensitive attribute is the gender to
which the comment refers, and we only filter the comments which refer to exactly one of ‘male’ or
‘female’ gender. This leaves us with 107,106 distinct comments.

E.3 BASELINES

The baselines considered in our experiments include:

• Regularization based approaches (Bendekgey & Sudderth, 2021): These methods seek
to minimise fairness loss using regularized losses as shown in Section 3. We consider
different regularization terms Lfair(hθ) as smooth relaxations of the fairness violation Φfair
as proposed in the literature (Bendekgey & Sudderth, 2021). To make this concrete, when
the fairness violation under consideration is DP, we consider

Lfair(hθ) = E[g(hθ(X)) | A = 1]− E[g(hθ(X)) | A = 0],

with g(x) = x denoted as ‘linear’ in our results and g(x) = log σ(x) where σ(x) :=
1/(1 + e−x), denoted as ‘logsig’ in our results. In addition to these methods, we also
consider separately trained models with the same regularization term as the YOTO models,
i.e.,

DP: Lfair(hθ) = |E[σ(hθ(X)) | A = 1]− E[σ(hθ(X)) | A = 0]|
EOP: Lfair(hθ) = |E[σ(hθ(X)) | A = 1, Y = 1]− E[σ(hθ(X)) | A = 0, Y = 1]|
EO: Lfair(hθ) = |E[σ(hθ(X)) | A = 1, Y = 1]− E[σ(hθ(X)) | A = 0, Y = 1]|

+ |E[σ(hθ(X)) | A = 1, Y = 0]− E[σ(hθ(X)) | A = 0, Y = 0]|.

Here, σ(x) := 1/(1 + e−x) denotes the sigmoid function. We denote these models as
‘separate’ in our experimental results as they are the separately trained counterparts to the
YOTO model. For each relaxation, we train models for a range of λ values uniformly
chosen in [0, 10] interval.

• Reductions Approach (Agarwal et al., 2018): This method transforms the fairness prob-
lem into a sequence of cost-sensitive classification problems. Like the regularization ap-
proaches this requires multiple models to be trained. Here, to try and reproduce the trade-
off curves, we train the reductions approach with a range of different fairness constraints
uniformly in [0, 1].

• Adversarial Approaches (Zhang et al., 2018): These methods utilize an adversarial train-
ing paradigm where an additional model, termed the adversary, is introduced during train-
ing. The primary objective of this adversary is to predict the sensitive attribute A using
the predictions hθ(X) generated by the main classifier hθ. The training process involves
an adversarial game between the primary classifier and the adversary, striving to achieve
equilibrium. This adversarial dynamic ensures that the primary classifier’s predictions are
difficult to use for determining the sensitive attribute A, thereby minimizing unfair biases
associated with A. Specifically, for DP constraints, the adversary takes the logit outputs
of the classifier as the input and predicts A. In contrast for EO and EOP constraints, the
adversary also takes the true label Y as the input. For EOP constraint, the adversary is only
trained on data with Y = 1.

E.4 ADDITIONAL RESULTS

In Figures 14-25 we include additional results for all datasets and fairness violations with an increas-
ing number of calibration data Dcal. It can be seen that as the number of calibration data increases,
the CIs constructed become increasingly tighter. However, the asymptotic, Bernstein and bootstrap
CIs are informative even when the calibration data is as little as 500 for COMPAS data (Figures
17-19) and 1000 for all other datasets. These results show that the larger the calibration data Dcal,
the tighter the constructed CIs are likely to be. However, even in cases where the calibration dataset
is relatively small, we obtain informative CIs in most cases.
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Figure 14: Demographic Parity results for Adult dataset
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Figure 15: Equalized Opportunity results for Adult dataset
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Figure 16: Equalized Odds results for Adult dataset
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Figure 17: Demographic Parity results for COMPAS dataset
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Figure 18: Equalized Opportunity results for COMPAS dataset
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Figure 19: Equalized Odds results for COMPAS dataset
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Figure 20: Demographic Parity results for CelebA dataset
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(c) |Dcal| = 10, 000

Figure 21: Equalized Opportunity results for CelebA dataset
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(a) |Dcal| = 1000
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(b) |Dcal| = 5000
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Figure 22: Equalized Odds results for CelebA dataset
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(c) |Dcal| = 10, 000

Figure 23: Demographic Parity results for Jigsaw dataset
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Figure 24: Equalized Opportunity results for Jigsaw dataset
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Figure 25: Equalized Odds results for Jigsaw dataset
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Figure 26: Results for the synthetic dataset with ground truth trade-off curves τ∗fair.

E.5 SYNTHETIC DATA EXPERIMENTS

In real-world settings, the ground truth trade-off curve τ∗fair remains intractable because we only have
access to a finite dataset. In this section, we consider a synthetic data setting, where the ground truth
trade-off curve can be obtained, to verify that the YOTO trade-off curves are consistent with the
ground truth and that the confidence intervals obtained using our methodology contain τ∗fair.

Dataset Here, we consider a setup with X = R, A = {0, 1} and Y = {0, 1}. Specifically,
A ∼ Bern(0.5) and we define the conditional distributions X | A = a as:

X | A = a ∼ N (a, 0.22)

Moreover, we define the labels Y as follows:

Y = Z 1(X > 0.5) + (1− Z)1(X ≤ 0.5),

where Z ∼ Bern(0.9) and Z ⊥⊥ X . Here, Z introduces some ‘noise’ to the labels Y and means
that perfect accuracy is not achievable by linear classifiers. If perfect accuracy was achievable, the
optimal values for Equalized Odds and Equalized Opportunity would be 0 (and would be achieved
by the perfect classifier), therefore our use of ‘noisy’ labels Y ensures that the ground truth trade-off
curves will be non-trivial.

YOTO model training Using the data generating We generate 5000 training datapoints, which we
use to train the YOTO model. The YOTO model for this dataset comprises of a simple logistic
regression as the main model, with only the scalar logit outputs of the logistic regression being
conditioned using FiLM. The MLPs Mµ,Mσ both have two hidden layers, each of size 4, and
ReLU activations. We train the model for a maximum of 1000 epochs, with early stopping based on
validation losses. Training these simple model only requires one CPU and takes roughly 2 minutes.

Ground truth trade-off curve To obtain the ground truth trade-off curve τ∗fair, we consider the
family of classifiers

hc(X) = 1(X > c)

for c ∈ R. Next, we calculate the trade-offs achieved by this model family for a fine grid of c values
between -3 and 3, using a dataset of size 500,000 obtained using the data-generating mechanism
described above. The large dataset size ensures that the finite sample errors in accuracy and fairness
violation values are negligible. This allows us to reliably plot the trade-off curve τ∗fair.

E.5.1 RESULTS

Figure 26 shows the results for the synthetic data setup for three different fairness violations, ob-
tained using a calibration dataset Dcal of size 2000. It can be seen that for each fairness violation
considered, the YOTO trade-off curve aligns very well with the ground-truth trade-off curve τ∗fair.
Additionally, we also consider four different confidence intervals obtained using our methodology,
and Figure 26 shows that each of the four confidence intervals considered contain the ground-truth
trade-off curve. This empirically verifies the validity of our confidence intervals in this synthetic
setting.
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