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Abstract
In the era of large models, low-resource
question-answering tasks lag, emphasizing the
importance of data augmentation. The main
challenges include leveraging the large model’s
internal knowledge for data augmentation, de-
termining which QA data component - the ques-
tion, passage, or answer - benefits most from
augmentation and retaining consistency in the
augmented content without inducing excessive
noise. To tackle these, we introduce PQQ, an
innovative approach for question data augmen-
tation consisting of Prompt Answer, Question
Generation, and Question Filter. Our experi-
ments reveal that ChatGPT underperforms on
the experimental data, yet our PQQ method ex-
cels beyond existing augmentation strategies.
Further, its universal applicability is validated
through successful tests on high-resource QA
tasks like SQUAD1.1 and TriviaQA 1.

1 Introduction

Low-resource issues pose a significant challenge
within the field of Question-Answering (QA) tasks.
These problems largely arise from data scarcity
and lack of domain-specific training, which often
results in underfitting. Even though we are now
in the era of large models, which have consider-
ably advanced the field of natural language process-
ing, these low-resource problems in QA tasks per-
sist (Wanjawa et al., 2022; Sun et al., 2021b; Chen
et al., 2023a). Consequently, addressing these low-
resource issues has become an essential research
focus, with data augmentation strategies emerging
as a common and effective approach.

However, current research in data augmentation
presents several unanswered questions: How can
the internal knowledge of large models be har-
nessed to enhance the quality of augmented data?
Which component of QA data - the question, pas-
sage, or answer - benefits most from augmentation?

∗Corresponding author.
1https://github.com/andongBlue/PQQ_QA/

How can we strike a balance between maintaining
the consistency of the augmented content and not
introducing excessive noise? Despite significant
advancements in the field, many of these questions
remain unanswered. For instance, The multi-modal
QA benchmark, MAQA (Li et al., 2023), accentu-
ates the need for data augmentation using negation
examples in QA tasks but doesn’t focus on leverag-
ing the knowledge of large models. The fill-in-the-
blank QA framework, Gotta (Chen et al., 2023b),
leverages generative, prompt-based augmentation
methods to enhance learning. However, it does not
identify the most beneficial segments of the QA
data for improvement. Lastly, the label-guided data
augmentation framework PROMPTDA (Chen and
Shu, 2022) utilizes label semantics for data aug-
mentation in few-shot learning, however, it over-
looks the task of balancing content consistency
with noise introduction. Existing augmentation
techniques, such as template-based question gener-
ation (Ali et al., 2010; Heilman and Smith, 2009;
Chali and Hasan, 2015), and the broad application
of Seq2Seq models in natural language process-
ing (Bahdanau et al., 2014; Du et al., 2017), have
made certain progress but also show similar limita-
tions.

To address these challenges, we propose a novel
and straightforward question data augmentation
method, termed PQQ. Firstly, we construct prompt
templates to generate answers that are related to the
original ones but expressed differently (Prompt An-
swer). Then, a diverse set of questions is produced
by a question generation model (Question Gener-
ation). Lastly, using a question filter, we retain
only those questions that are logically related to the
original QA data as the augmented data (Question
Filter). Our experimental findings indicate a dis-
tinct underperformance of ChatGPT on our ex-
perimental dataset, while our proposed methodol-
ogy, PQQ, exhibits a superior performance, outper-
forming contemporary mainstream data augmen-
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Figure 1: An overview of our approach where the Bert-large output Top k prompted answers based on original QA
data, using QG model to obtain generated questions by prompted answers and corresponding passage, the Bert is
employed as a question filter to retain questions related to the original dataset.

tation techniques. We further validate the univer-
sality of our PQQ method, investigating its effi-
cacy on high-resource question-answering (QA)
tasks such as SQUAD1.1 and TriviaQA (Rajpurkar
et al., 2016; Joshi et al., 2017). Remarkably, by em-
ploying a Bert-base model for QA tasks, our PQQ-
augmented approach surpasses the performance of
a Bert-Large model without PQQ augmentation,
demonstrating the potent efficacy of our methodol-
ogy.

2 PQQ Apporach

This section succinctly outlines the PQQ data aug-
mentation approach. This process, illustrated in
Figure 1, consists of three main steps.

2.1 Prompt Answer
Implementing prompt-based learning in our re-
search, we transform the QA dataset into a fill-
in-the-blank task by substituting answer slots
with [MASK] special tokens. Then, we uti-
lize the Bert-Large model, which aligns with
our task, to deliver complete phrase outputs.
A prompt template, Input = [CLS]Question
is:question[SEP]Passage is:passage, directs
question and passage information to the model.
Answer replacements, input starts, and question-
passage separators are denoted by [MASK], [CLS],
and [SEP], respectively. When inputs exceed the
512-character limit, they’re truncated from either
end based on [MASK] length.

The Bert-Large model generates various Prompt
Answers, with the volume and diversity of these
outputs determining the subsequent quantity, diver-
sity, and relevance of questions. For instance, the
input [CLS] Question is: What areas did Beyonce
compete in when she was growing up?[SEP] Pas-
sage is: ... Beyonce performed in various [MASK]
competitions as a child ... generates four diverse re-
sponses(Talent, Artistic, Vocal, and International),

enabling the creation of contextually varied ques-
tions.

2.2 Questions Generation

Once the Prompt Answer is obtained, the next
step involves constructing a question generation
model to generate a diverse range of question data.
Since different QA tasks encompass varying do-
main knowledge (e.g., TechQA includes education
domain knowledge while PolicyQA focuses on le-
gal domain knowledge), it is necessary to fine-tune
a specific question generation model for each QA
dataset. In our study, we selected the T5-base
model (Raffel et al., 2019) as the question gen-
eration model.

To fine-tune the question generation model, we
utilize passages and answers from the QA dataset
as inputs to the T5 model. The format of the input
is as follows: Input = <answer></s><passage>.
During the fine-tuning process of the T5 model, the
loss function employed is a negative log-likelihood
estimate.

2.3 Question Filter

Figure 1 suggests a possible disconnect between
new questions, generated from the Prompt Answer
and passage, and the original QA dataset. To tackle
this, we repurpose the natural language inference
task into a question-filtering task to evaluate the
relevance of generated questions to the original
data. Using the concept of Bert’s pre-trained Next
Sentence Prediction task (Devlin et al., 2018; Sun
et al., 2021a), we design the Sentence Correlation
Prediction (SCP) task to fine-tune the relevance
evaluation, which encompasses filter input and out-
put construction.

The SCP fine-tuning task proceeds in two
steps. The filter input, Step 1, involves
the combination of passages and generated
questions, following the format xinput =



[CLS]Sentence1[SEP ]Sentence2. Here, Sen-
tence1 is the generated question, Sentence2 is
the sentence containing the answer from the pas-
sage, with [CLS] and [SEP] marking the sen-
tence’s final hidden state and sentence separation.
Step 2, filter output, vectorizes the [CLS] output.
The SCP header then processes this to calculate
the relevance probability as PM (ni | Inputi) =

exp s(ni|pi,qi)∑
n
exp s(n|pi,qi)

. Here, s = Wscph[CLS] is the SCP

head, built via an MLP network using h[CLS] vec-
tor as input. This results in the class probability
distribution, with p and q denoting passages and
questions, and n the relevance label. The associ-
ated loss function is LNSP = − logPM (n | x).

PolicyQA TechQA
Method EM F1 EM F1

Deep learning methods + Bert-base
Bert-base 57.3 26.9 24.6 51.7

Bert-Large 61.1 28.7 28.8 53.9
RoBERTa-base 58.1 27.1 24.4 48.3

SummAug (2021) 57.7 27.0 28.6 53.2
LambadaAug(2020) 57.9 26.8 24.9 49.8
QusAnsAug(2019) 58.3 27.1 29.4 54.9

AnsAug (2021) 58.0 27.9 30.1 55.1
MulStaAug (2022) 58.6 28.2 31.9 58.3
PromptAug(2023b) 58.2 28.8 30.8 57.9

Large Language Model & Our Approach
ChatGPT(one-shot) 20.8 11.5 20.4 31.2

Our Approach 58.9 29.7 32.6 59.8

Table 1: The validity experiment results in low-resource
datasets. The highest scores of unsupervised methods
are in bold.

3 Dataset and Experimental Design

In assessing our method’s effectiveness on low-
resource QA datasets, we chose PolicyQA and
TechQA, with 25,107 and 600 training instances
respectively, focusing on privacy policies and tech-
nology (see Appendix A.1). We conducted two
comparative experiments, one applying traditional
and SOTA data augmentation techniques in the
QA domain, and another employing inference via
a large-scale pre-training language model, Chat-
GPT (details in Appendix A.2). To ascertain the
impact of these different approaches, we adopted
two evaluation metrics: Exact Match (EM) and
F1 scores (Appendix A.3). We trained with Bert-
Large and T5 as the prompt answer/question fil-
ter and question-generation models respectively.
For the ultimate QA tasks, we opted for a fine-
tuning approach using a Bert-base model on QA
data (training specifics in Appendix A.4). We stan-
dardized the augmented data for both datasets to
an additional 45,000 <Passage, Answer, Question>

instances and evaluated them using the test set. Ap-
pendix ?? provides more examples of the data after
augmentation."

4 Experiment Result

In this section, we provide a comprehensive analy-
sis of the results to thoroughly evaluate the perfor-
mance of the proposed approach.

4.1 Validity Experiments in Low-resource
Datasets

As depicted in Table 1, our data augmentation strat-
egy, referred to as PQQ, has been evaluated on two
distinct low-resource Question Answering (QA)
datasets: PolicyQA and TechQA. The results high-
light the significant advantage of PQQ over com-
parative methods. Specifically, PQQ achieved an
EM score of 58.9 and an F1 score of 29.7 on the
PolicyQA dataset, and an EM score of 32.6 and an
F1 score of 59.8 on the TechQA dataset, outper-
forming all comparison methods. The remarkable
performance of PQQ can be primarily attributed to
its ability to generate high-quality question data.

In terms of data augmentation comparison meth-
ods, we have chosen approaches that augment
either <Question, Answer> pairs(Schmidt et al.,
2022; Alberti et al., 2019) or independent <An-
swer> data(Van et al., 2021; Chen et al., 2023b).
However, even when augmenting the same data,
these strategies remain weaker than the PQQ
method, thus indicating that augmenting question
data exclusively is a better choice.

It is noteworthy that a significant performance
gap was observed when testing with ChatGPT2, a
large language model trained on a substantial cor-
pus. Specifically, on the PolicyQA dataset, Chat-
GPT achieved an EM score of 20.8 and an F1 score
of 11.5, while on the TechQA dataset, it scored an
EM of 20.4 and an F1 of 31.2. These results empha-
size the necessity of fine-tuning low-resource QA
data, regardless of the use of broad and diversified
training corpora.

PolicyQA TechQA
EM F1 EM F1

Bert+PQQ 58.9 29.7 32.6 59.8
Bert+PQQ-P 58.1 29.3 31.9 59.2
Bert+PQQ-Q 57.8 28.4 30.9 58.1

Bert+PQQ-P-Q 57.1 27.6 29.4 57.7

Table 2: Results of ablation experiments. P indicates the
-Prompt strategy and Q indicate the -Question Filter.

2The ChatGPT used in this work is gpt-3.5-turbo API.



4.2 Ablation Experiments

The experimental results, as shown in Table 2,
demonstrate the significance of Prompt answers
and the Question Filter in the PQQ approach, which
was determined through ablation studies conducted
by us. Eliminating the Prompt answers template
and the Question Filter step resulted in -Prompt
and -Question Filter scenarios, respectively.

Results highlighted that every component of the
PQQ framework adds positively to the augmenta-
tion results, most notably when employing the full
PQQ approach with the Bert-base-based QA model.
The Question Filter was particularly influential, as
its removal led to a 1 to 2 point reduction in F1
and EM scores. Moreover, the worst results were
observed when both -Prompt and -Question Fil-
ter were removed, confirming their crucial roles
within the PQQ framework. The experiment re-
sults showed a more significant decrease in perfor-
mance when the -Question Filter was removed,
demonstrating the effectiveness of using the Ques-
tion Filter to reduce noise in the augmented data.

(a) Experimental result on SQuAD1.1

(b) Experimental result on PolicyQA

Figure 2: Experimental results on PolicyQA and
SQuAD1.1 using different amounts of prompted an-
swers with a comparison of K-EM and K-F1 scores

4.3 Validity Experiments in High-resource
Datasets

As shown in Table 3, we applied the PQQ ap-
proach to evaluate its effectiveness on both low-
resource and high-resource QA datasets, specifi-
cally SQuAD1.1(Rajpurkar et al., 2016) and Trivi-
aQA(see Appendix A.1). The our approach tech-
nique surpassed baseline measures and demon-
strated significant improvement in evaluation met-
rics. Specifically, when compared to the traditional
BiDAF model (Seo et al., 2016), the PQQ approach
resulted in an increase of 1.4 points in EM and 1.1
points in F1 for SQuAD1.1. Moreover, training
Bert-base with PQQ yielded superior results com-
pared to training Bert-large on the original dataset.
Similar enhancements were seen with TriviaQA,
where the Bert-base model trained using PQQ out-
performed Bert-large trained on the original dataset
and surpassed the AugMulStages method (Schmidt
et al., 2022) by 2 points in EM and 3.5 points in F1.

SQUAD1.1 TriviaQA
Models EM F1 EM F1
No Augmentation
BiDAF 66.7 77.3 - -
Bert-base 81.2 88.5 65.1 71.2
Bert-large 84.2 91.1 67.9 74.8
LLaMA2(one shot) 19.3 28.9 18.8 31.2
LLaMA2(1.2 epochs) 27.9 38.1 27.2 55.1
Augmentation
AugMulStages+♠ 66.9 77.6 - -
our approach+♠ 68.1 78.4 - -
AugMulStages+♣ 81.9 89.0 67.2 73.4
our approach+♣ 86.4 92.6 69.2 76.9

Table 3: SQUAD1.1 and TriviaQA experimental results.
The Bert-base model and the BiADF(Seo et al., 2016)
model are represented by ♣ and ♠ respectively. The
version of LLaMA2 is LLaMA2-Chat-7B.The model
representation of the subsequent experiments is similar.
The highest scores of unsupervised methods are in bold.
4.4 Prompt Answer Quantity Analysis
The impact of Prompt Answers quantity on PQQ
approach performance, using the F1 metric within
SQuAD1.1 and PolicyQA datasets, was investi-
gated. Figure 2 shows that the F1 metric for the
high-resource SQuAD1.1 dataset plateaus at 92
with 9 Prompt Answers, suggesting diminishing re-
turns beyond this point. In contrast, the F1 score for
the low-sresource PolicyQA dataset escalates past
12 Prompt Answers, implying that more prompts
further bolster QA performance in low-resource
scenarios. This highlights the crucial influence of
Prompt Answers on data augmentation efficiency,
with the ideal count differing due to dataset nature



and resource provision. The consistent improve-
ment with more Prompt Answers in low-resource
datasets underscores the potential of prompt-based
learning in enhancing QA data quality in large pre-
trained models.

5 Conclusion

Our work presents a new data augmentation
method for low-resource question-answering tasks.
We first use prompt-based learning to gather vari-
ous answers. Then, a model generates diverse ques-
tions, and a filter retains only those relevant to the
original QA data as augmented data. Our approach
excels in low-resource contexts and shows broad
applicability in the general QA field. Future work
will employ large pre-trained models to enhance
data quality.

6 Limitations

The proposed method is effective for extractive
question-answering tasks, but has several limita-
tions. First, its potential in situations where the
answers aren’t in the provided text remains unex-
plored. Second, as answer length increases, the
employed masking mechanism struggles to cover
all words, impacting data quality. This issue awaits
further investigation and solution development. Fi-
nally, the method’s performance hasn’t been fully
tested on specialized or resource-limited question-
answering datasets, necessitating further research
to understand its potential in these areas.
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A Experiment Setup

A.1 Datasets
To evaluate the effectiveness of our proposed ap-
proach on low-resource QA datasets, we selected
two representative datasets:

PolicyQA (Ahmad et al., 2020): This low-
resource question-and-answer dataset focuses on
privacy policies. It consists of 25,107 passages
derived from the privacy policies of 115 websites,
covering various aspects of privacy.

TechQA (Castelli et al., 2019): This low-
resource QA dataset revolves around the field of
technology. The data is collected from real tech-
nical forums and comprises 600 training samples,
310 validation samples, and 490 test samples.

SQuAD1.1: This is a well-known large QA
dataset that contains over 100,000 question-answer
pairs from more than 500 Wikipedia articles.

TriviaQA: This is a massive and challenging QA
dataset with a total of 650,000 QA pairs, surpassing
the size of SQuAD 1.1.

A.2 Comparison Methods
In the realm of natural language processing, we set
out to evaluate the effectiveness of our proposed
data augmentation approach by comparing it to
several existing benchmark strategies. These en-
compass both deep learning-based techniques such
as the augmentation of question data and answer-
question pairs.

Methods like SummAug(Lyu et al., 2021) and
LambadaAug(Anaby-Tavor et al., 2020) generate
fresh questions derived from the original answers.
These methods employ language models to en-
sure the quality of the newly generated data. Al-
ternatively, QusAnsAug(Alberti et al., 2019) and
AnsAug(Van et al., 2021) opt to extract and gen-
erate novel answers from the original question-
answer datasets, providing a different angle of data
augmentation.

Another noteworthy approach is Mul-
StaAug(Schmidt et al., 2022), which synergizes
active learning and data augmentation through the
generation of question-answer pairs. The aim of
this method is to improve question-answering in
low-resource environments. Furthermore, Promp-
tAug(Chen et al., 2023b) utilizes a generative
prompt-based method for foundational cloze
data augmentation to bolster the learning process.
This approach employs a cloze task that involves
understanding the context, filling in the blanks,
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and subsequently generating answers, simulating
the human reasoning process.

In order to ensure a fair evaluation, all of these
methods were assessed under identical conditions.
We used 45k augmented question-answer instances
to level the playing field and negate any bias asso-
ciated with data volume differences.

A.3 Evaluation Measures
In the evaluation of the two low-resource QA
datasets, quantitative evaluation metrics were em-
ployed, namely EM (Exact Match) and F1 scores
(Lewis et al., 2019). These metrics were utilized to
assess the effectiveness of the data augmentation.

EM (Exact Match): EM calculates whether the
predicted outcome exactly matches the standard
answer. The EM score is computed using the fol-
lowing formula:

EM =
Nreal

Nall

Nreal represents the number of predicted answers
that exactly match the true answer, while Nall rep-
resents the total number of true answers.

F1 Score: F1 score measures the word-level
match between the predicted outcome and the stan-
dard answer. The calculation of the F1 score in-
volves the following steps:

P =
Noverlap

Nallanswer

R =
Noverlap

Ntruthanswer

F1 =
2× P ×R

P +R

Noverlap represents the number of words/characters
predicted correctly, indicating the lexical overlap
between the predicted answer and the true answer.
Nallanswer denotes the number of words/characters
in the predicted answer, while Ntruthanswer de-
notes the number of words/characters in the true
answer.

A.4 Training Details
To obtain the Prompt Answer, the first step in-
volves constructing the prompt input template as de-
scribed in detail in Section 2.1. On the model side,
the Bert-large-whole-word-masking (Bert-Large)
model provided by Hugging Face3 is used for in-
ference to obtain the Prompt Answer.

3https://huggingface.co/bert-large-uncased-whole-word-
masking

As for the question generation model, the T5
model4 is initially fine-tuned on the QA dataset for
augmentation. During the fine-tuning process, the
model is trained using 2 V100 GPUs for 5 epochs,
with a learning rate of 7e-4 and a batch size of 8.

For the question filter model, we have opted for
the Bert-large-whole-word-masking (Bert-Large)
model. Step 2 of fine-tuning the question filter
model involves the construction of a three-layered
Multilayer Perceptron (MLP) network, functioning
as the SCP head, with an intermediate layer dimen-
sion of 1024. The Bert-large model is fine-tuned on
the QA dataset. As for dataset partitioning, we have
allocated 50% of the passage-question pairs from
the training set as positive data. The remaining 50%
is designated as negative data, accomplished by ran-
domly replacing the question data in the <passage,
question> pairs across the entire dataset. The fine-
tuning process involves training the model on 1
V100 GPU for 5 epochs, with a learning rate of
5e-4 and a batch size of 4.

The fine-tuning process for the Bert-base model5

applied to the QA data was conducted using spe-
cific parameters. This training regimen entailed
a ten-epoch training cycle implemented on a sin-
gle V100 GPU, with a reduced learning rate set at
1e-5. The batch size was established at eight, and
the training was configured to handle a maximum
sentence length of 328.

B supplementary experiments

B.1 PQQ with LLM

To verify the impact of the current large model
on our method, this experiment analyzes the PQQ
approach by replacing various components with
ChatGPT.For each experimental group, the exper-
iments augmented the training data by 1k on the
TechQA dataset. The experimental results are as
follows:

The results still prove the effectiveness of our
methods. Although ChatGPT has the capability to
substitute all PQQ components, its use in a one-
shot setting results in heightened data noise and re-
duced performance. However, employing ChatGPT
solely to replace the question filtering component
yields a notable boost in performance, indicating
its effectiveness for logic consistency classification
tasks.

4https://huggingface.co/t5-base
5https://huggingface.co/bert-base-uncased



TechQA
Technique EM F1
BERT-base 24.6 51.7
PQQ 26.1 53.6
PQQ-replace P 24.5 51.8
PQQ-replace QG 24.9 51.7
PQQ-replace QF 25.3 52.8
PQQ-replace ALL 24.1 51.2

Table 4: P represents Prompt Answer, QG represents
Question Generation, and QF represents Question Fil-
tering.

B.2 Augmented Data Volume and
Performance Correlation

To further validate the effect of increasing the num-
ber of context-question-answer triples, we initi-
ated an additional experiment. Maintaining the
same experimental framework as in the Appendix
A, the expanded 45,000 samples were divided into
batches of 15k, 25k, 35k, 45k, and further extended
to 55k, 60k, and 65k. A distinct bert-base model
was trained using each subset and subsequently as-
sessed on the SQUAD validation set. The outcomes
are presented below:

SQUAD PolicyQA
Augmented Datas EM F1 EM F1
15k 81.5 89.0 26.1 55.6
25k 84.8 90.5 27.7 56.8
35k 85.2 91.5 28.5 57.4
45k 86.4 92.6 29.7 58.9
55k 86.9 93.1 29.9 59.1
60k 87.0 93.2 30.6 59.5
65k 87.0 93.2 31.1 60.1

Table 5: A Comparative Analysis of Augmented Data
Volume and its Correlation with Performance.

These results are consistent with the conclusions
presented in Figure 2 of our paper. Moreover, this
experiment also further validates the effectiveness
of our work.

B.3 Answer Generation Sensitivity to
Masking Length

To further investigate this matter, we carried out
experiments for validation. Initially, we analyzed
the distribution of answer lengths (which equate to
mask lengths) in the SQUAD dataset, segmenting
them into three groups: [1-3], (3-7], and (7-43],
with sample counts of 52,578, 26,086, and 8,935

respectively.
For every length group, we selected 8,935 ran-

dom QA pairs and employed a consistent PQQ
method to produce 10k augmented data points. Dis-
tinct bert-base models were trained using each aug-
mented dataset and then assessed on the SQUAD
validation set. The outcomes revealed:

SQUAD
Range EM F1
[1-3] 64.31 69.96
(3-7] 63.98 69.31
(7-43] 63.04 68.47

Table 6: Evaluation of Answer Generation Method with
Varying Masking Lengths

These findings indeed validate the method’s sen-
sitivity. We plan to explore this aspect in greater
detail in upcoming research.


