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ABSTRACT

Model merging has become one of the key technologies for enhancing the capa-
bilities and efficiency of Large Language Models (LLMs). However, our under-
standing of the expected performance gains and principles when merging any two
models remains limited. In this work, we introduce model kinship, the degree of
similarity or relatedness between LLMs, analogous to biological evolution. With
comprehensive empirical analysis, we find that there is a certain relationship be-
tween model kinship and the performance gains after model merging, which can
help guide our selection of candidate models. Inspired by this, we propose a new
model merging strategy: Top-k Greedy Merging with Model Kinship, which can
yield better performance on benchmark datasets. Specifically, we discover that
using model kinship as a criterion can assist us in continuously performing model
merging, alleviating the degradation (local optima) in model evolution, whereas
model kinship can serve as a guide to escape these traps.

1 INTRODUCTION

Fine-tuning pre-trained models (PTMs) for downstream tasks has become a popular practice, partic-
ularly demonstrating significant effectiveness in Large Language Models (LLMs) (Kolesnikov et al.,
2020; Qiu et al., 2020; Askell et al., 2021; Ouyang et al., 2022; Zhao et al., 2023). However, deploy-
ing separate fine-tuned models for each task can be resource-intensive (Fifty et al., 2021), which
drives the increasing demand for multitask learning solutions (Zhang & Yang, 2022; Lu et al., 2024;
Liu et al., 2024). Recent studies suggest that model merging (Singh & Jaggi, 2020; Sung et al.,
2023; Goddard et al., 2024; Matena & Raffel, 2022; Yang et al., 2024a) offers a viable approach for
achieving multitask objectives by integrating multiple expert models. Furthermore, advancements in
model merging toolkits (Goddard et al., 2024; Tang et al., 2024) enable users with limited expertise
to easily conduct merging experiments, leading to an evolution of LLMs for the community.

To date, through model merging techniques, resercheres have developed many more powerful LLMs
through iterative model merging (Beeching et al., 2023), and to some extent, achieved model evo-
lution (Figure 1(c)). Despite these successes, progress has predominantly relied on trial and error,
along with extensive human expertise, but lacks formalized guidance and standardized procedures.
As the merging iterations progress, achieving further generalization gains becomes increasingly
challenging (More details in Section 3). For example, as shown in Figure 1, model merging often
resembles the process of hybrid evolution in biology, where the next generation may not show
significant improvements or may even regress, highlighting the imperative for a deeper exploration
of the underlying mechanisms driving these advancements.

To address this, we introduce model kinship, a metric inspired by the concept of kinship (Sahlins,
2013) from evolutionary biology (Figure 1(a)). This metric is designed to estimate the degree of
similarity or relatedness between LLMs during the iterative model merging process, offering in-
sights intended to enhance the effectiveness of the merging strategy. We utilize the model kinship to
conduct a comprehensive analysis of model merging experiments from two perspectives: the over-
all merging process, including various independent merge experiments and the evolution path of
specific models, demostrating the complete merging trajectory.

Model kinship correlates with average performance gain in model merging. Emperically, we
find that there is a strong correlation between variations in multitask capability, estimated by average
task performance, and model kinship, which can help guide our selection of candidate models.
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Figure 1: An intuitive comparison between wheat evolution and model evolution. An interesting
parallel can be drawn between biological reproduction (Part a) and the process of model evolution
(Part b). In biological systems, offspring inherit genetic material from both parents, forming a
new genotype through the combination of parental traits. Similarly, in model merging, the merged
model inherits parameters or weights from the contributing models. Part c demonstrates the iterative
execution of model evolution. Starting with a group of LLMs, the repository evolves through a
Selection-Merge-Recycle iteration. To be noted, model kinship can serve as an effective tool to guide
this iterative model merging process (e.g., infer whether there may be gains after model merging.).

We also observe that the model merging process consists of two stages: the learning stage, where
models experience significant performance improvements, and the saturation stage, where further
improvements diminish and eventually stagnate. We think that the stagnation of improvements may
be due to convergence in weight space, suggesting the presence of optimization challenges like local
optima traps.

Inspired by this, we propose a new model merging strategy: Top-k Greedy Merging with Model
Kinship. Specifically, we find that leveraging model kinship as a criterion enables more effective
model merging, helping to mitigate degradation and avoid local optima during model evolution.
Model kinship also proves useful as an early stopping criterion, improving the efficiency of the
merging process. Overall, this paper makes three key contributions:

1. Introduction of Model Kinship: We introduce model kinship, designed to assess the de-
gree of similarity or relatedness between LLMs during the merging process, which can
guide model merging strategies and holds promise for advancing auto-merging research.

2. Empirical Analysis of Model Evolution: We present a comprehensive empirical analysis
of model evolution through iterative merging. Our findings highlight the dynamics of mul-
titask performance improvement and stagnation. Additionally, we propose a preliminary
explanation of the underlying mechanisms using model kinship.

3. Practical Model Merging Strategies using Model Kinship: We demostrate how model
kinship guides the model merging process to tackle optimization challenges, and provide
practical strategies: Top-k Greedy Merging with Model Kinship, to enhance efficiency and
effectiveness of model evolution.
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2 BACKGROUND

2.1 MODEL MERGING: FUNDAMENTALS

Model merging aims to integrate two or more domain-specific models into a unified framework,
thereby harnessing their compositive capabilities across multiple tasks (Sung et al., 2023). While
this approach shares conceptual similarities with ensemble methods (Dietterich et al., 2002; Dong
et al., 2020; Jiang et al., 2023b), model merging generates a single, generalized model, avoiding the
increased inference time associated with ensembles. Let fi represent the i-th model for merging,
each with its unique parameters θi. If the merging process follows method F , the prediction ŷ of the
merged model fmerge for input x is:

ŷ = fmerge(x) = F (f1(x; θ1), f2(x; θ2), . . . , fn(x; θn)) (1)

2.2 ITERATIVE MERGING: EFFECTS AND CHALLENGES

Parameter averaging methods allow the merged model to retain the same architecture and parameter
size as the original models, allowing for reuse in future merging processes. By benefiting from this
feature, the community iteratively enhances models through repeated applications of model merg-
ing, a process we term “Model Evolution”. Empirical evidence from the open LLM leaderboard
(Beeching et al., 2023) demonstrates that model evolution can produce highly generalized models,
often surpassing those created through a single merging step (Maxime Labonne , 2024).

However, one of the main challenges limiting the effectiveness of iterative merging is the merging
strategy. The community primarily relies on two approaches: 1) Task-Capability-Based Merging:
This approach uses task capabilities, as evaluated by benchmarking tools (Gao et al., 2024; Li et al.,
2023c), to guide model evolution, compensating for one model’s deficiencies by leveraging another’s
strengths. While effective in principle, this strategy heavily relies on human judgment and becomes
impractical in complex merging scenarios involving more than two tasks. 2) Greedy Merging
of Top-Performing Models: This strategy involves merging the best-performing models with the
expectation of producing an even better model. While widely applicable, it is inherently greedy and
prone to getting stuck in local optima, as further discussed in Sections 3.4 and 4.2. Therefore, a
problem raised.

Problem: Is there another strategy or metric we can use to better achieve model evolution?

2.3 MODEL KINSHIP: CONCEPT AND FORMULATION

Considering the two strategies above, we are exploring a new approach that can identify task-related
differences between models to maximize the outcomes of merging, without the need for costly
evaluations. Drawing inspiration from the parallel between artificial selection and model evolution
(as detailed in Appendix C), we hypothesize that a concept analogous to kinship, which is central
to understanding breeding relationships in evolutionary biology (Thompson, 1985), can be applied.
Therefore, we propose the concept of model kinship

Model Kinship builds upon the cosine similarity analysis introduced in Task Arithmetic paper (Il-
harco et al., 2023). It is designed to evaluate the degree of similarity or relatedness between the
task capabilities of large language models (LLMs) solely based on their ”genetic” information (i.e.,
the changes in weights) during model evolution. Considering two models mi, mj involved in a
model evolution originated from the pre-trained model mbase, the weights of mi, mj are denoted
as θi, θj ∈ Rd. Similarly, θbase ∈ Rd represents the weights of the pre-trained model. Since the
differences between models emerge after fine-tuning and merging, the variation of weights during
model evolution is crucial. It is calculated as:

δi = θi − θbase, δj = θj − θbase (2)

3
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Model kinship r is designed to capture the similarity of task capabilities between models. In this
paper, we explore multiple potential metrics for evaluating similarity. For the calculation, sim(·, ·)
denotes the similarity metric function used. Considering two cases merging of 2 models and merging
of n models, we formally define model kinship r as:

r =

{
sim(δ1, δ2), for merging 2 models

2
n(n−1)

∑
1≤i<j≤n sim(δi, δj), for merging n models

(3)

3 PRELIMINARY ANALYSIS OF MODEL KINSHIP

In this section, we present a preliminary analysis of community merging experiments on LLMs to
explore how model kinship can inform and enhance model evolution.

3.1 EVALUATION METRICS

Let T be the set of tasks in the task group, where T = {T1, T2, . . . , Tn}. Each task Ti in the set T is
associated with a performance measure Pi for the LLM. For a multitask objective, the Average Task
Performance (Avg.) P̄ is calculated using the equation:

P̄ =
1

n

n∑
i=1

Pi (4)

To evaluate the effectiveness of a single merge, we propose the merge gain metric. Assume we
have two models mpre−1 and mpre−2 and their average task performance are P̄pre−1 and P̄pre−2,
intuitively, we believe the P̄merged lie around the mean of P̄pre−1 and P̄pre−2. The merge gain is
calculated as the difference of P̄merged from the mean value of P̄pre−1 and P̄pre−2. For a merging
recipe with k models, the merge gain is:

Gain = P̄merged −
1

k

k∑
i=1

P̄pre-i (5)

In the following analysis, we use the task group T = {ARC, HellaSwag, MMLU, TruthfulQA, Wino-
grande, GSM8K}. All models are either fine-tuned or merged from the Mistral-7B architecture.

3.2 CORRELATION ANALYSIS OF MODEL KINSHIP AND PERFORMANCE GAIN

Table 1: Correlation of Model Kinship based on
different correlation function sim(·, ·) with Merge
Gain, along with their corresponding p-values.

Metric Correlation Correlation
(Normal Value) (Absolute Value)

PCC -0.50 -0.59
P-value 0.063 0.023

CS -0.45 -0.66
P-value 0.098 0.008

ED 0.46 0.67
P-value 0.091 0.007

In this analysis, we examine the distribution
of merge gain and model kinship based on
Pearson Correlation Coefficient (PCC), Cosine
Similarity (CS) and Euclidean Distance (ED)
in open-sourced LLMs, originating from the
Mistral-7B (Jiang et al., 2023a). Those mod-
els are obtained from the HuggingFace, with as-
sistance from the Open LLM Leaderboard (De-
tails in Appendix B.).

3.2.1 RESULTS

Figure 2 illustrates the distribution of model
kinship based on three similarity metrics (PCC,
CS, ED) in relation to merge gain. The scat-
ter plots reveal a moderate correlation between

model kinship and merge gain, as indicated by the trend lines. To further quantify these relation-
ships, the correlation value (use Pearson Correlation Coefficient) between model kinship and merge

4
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Figure 2: Distribution of Sample Experiments: Relationship Between Model Kinship (X-axis)
and Merge Gain (Y-axis). Model Kinships are calculated using the Pearson Correlation Coefficient
(PCC), Cosine Similarity (CS) and Euclidean Distance (ED).

gain are calculated, as detailed in the second column of Table 1. While moderate correlations are
observed for all three metrics (negative correlation for PCC and CS, and positive correlation for ED),
the corresponding p-values indicate a weak level of statistical significance, ranging from 0.05 to 0.1.
In contrast, when examining absolute merge gain, we find stronger and statistically significant cor-
relations, as shown in the third column of Table 1. These results suggest that model kinship alone
is insufficient to predict whether a model can acquire enhanced generalized performance through
merging. However, it may serve as a factor in determining the upper limit of merge gains, high-
lighting the potential outcomes of merging. Since no significant differences are observed among
the three metrics, we will focus solely on model kinship based on PCC in the following sections to
simplify the demonstration.

3.3 SEQUENCE ANALYSIS OF MODEL EVOLUTION PATHS

In this analysis, we examine changes in performance and model kinship across independent model
evolution paths to identify the phased pattern of the merging process. We focus on the yamshadow
experiment 28-7B (Labonne, 2024), a Mistral 7B architecture model ranked as the top 7B merged
model on the Open LLM Leaderboard. From its model family tree, we extract two primary merging
paths: Path 1 and Path 2.

3.3.1 RESULTS

We first focus on the average task performance and merge gains throughout the model evolution path
(Figure 3.) Detailed data and branch information are summarized in Appendix B). Our observations
indicate that the performance improvements of the iterative merging process are not linear and can
be divided into two stages:

• Learning Stage. In this stage, the average task performance generally experiences a rapid
increase. Noticeable merge gains suggest that the merged models are continually acquiring
multitask capabilities through the merging process.

• Saturation Stage. As the process continues, improvements begin to plateau. During this
stage, the merge gains approach zero, indicating that the model can no longer benefit from
the merging process and has ceased to improve.

Additionally, we compare the trend of model kinship with average task performance. Figure 4
illustrates the changes in model kinship alongside average task performance (normalized to the same
range as the corresponding metric) throughout the model evolution paths. We observe model kinship
exhibits a similar stage-specific pattern, particularly evident in the saturation stage, suggesting a
potential relationship with the underlying cause of saturation.
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Figure 3: Change in Average Task Performance and Merge Gain across the Model Evolution
process: The selected paths originate from two distinct initial models, with the saturation stage
observed after the vertical line. Note that the generation of Path 2 is aligned with Path 1 for demon-
stration purposes.
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Figure 4: Comparision between Model Kinship (measured by Pearson Correlation Coefficient) and
Average Task Performance (normalized to the same value scale).

3.4 ANALYSIS OF THE MODEL KINSHIP IN DIFFERENT MERGING STAGES

Findings in previous analysis reveals a initial observation in relationship between model kinship and
model evolution. To further investigate the causality between model kinship and the stagnation of
improvements, we examine the variation of model kinship across different merging stages from a
broader perspective.

Given the community’s predominant use of the performance-prior strategy, we calculate model kin-
ship among models with similar performance, simulating the selection of top-performing models at
each stage. For this analysis, we randomly select 5 models from each merging stage, as delineated
by boundaries identified in prior analysis - Saturation Stage (≥ 0.75), Learning Stage (<0.75 and
≥0.73), and Initial Merges (fine-tuned models) to form three foundation model groups, representing
potential merges at different stages of model evolution.

Figure 5 illustrates the model kinship between models within each group. We observe that model
kinship increases with the average task performance across models that follow different evolution
paths. Additionally, during the saturation stage, all potential merges display a strong affinity, with
model kinship values nearing 1. Since model kinship indicates the similarity of weights, we conclu-
ide the final findings as:
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Figure 5: The Model Kinship Matrices for the three model groups. Each element represents the
model kinship value between the corresponding models. In Group B and C, the merged models are
arranged by average task performance, ordered from high to low (left to right).

Findings: Model merging experiences a saturation stage, where the model kinship among top-
performing models increases throughout the iterative merging process. This implies that the mod-
els converge to similar forms, resulting in excessive relatedness that undermines the effectiveness
of the model merging strategy.

4 USING MODEL KINSHIP TO IMPROVE MODEL MERGING

Inspired by the above findings, we further leverage model kinship to enhance the model merging
process. We firstly conduct experiments employing a performance-prior greedy merging strategy.
Note that the greedy strategy may eventually lead to convergence. To address this, we further intro-
duce Top-k Greedy Merging with Model Kinship (Algorithm 1). Our results indicate that while the
greedy strategy focuses on short-term gains, it can lead to parameter convergence and suboptimal
outcomes. By integrating model kinship, we can help the strategy avoid local optima. Furthermore,
we find that model kinship holds potential for enhancing merging strategies as an early stopping
criterion.

4.1 EXPERIMENT SETUP

LLMs. We select three fine-tuned, open-source LLMs based on the Mistral-7B architecture from
HuggingFace: mistral-7b-instruct-v0.2, metamath-mistral-7b, and open-chat-3.5-1210.

Datasets. Evaluation is conducted using three task-specific benchmark datasets: Winogrande,
GSM8k, and TruthfulQA.1 These benchmarks demonstrate the distinct strengths of the three se-
lected fine-tuned models. Further details on the tasks are provided in Appendix B.4.

Merging Method. We conduct two iterative model merging experiments, both utilizing the
SLERP (Spherical Linear Interpolation) (Shoemake, 1985) for the single merging step. For imple-
mentation, we employ Mergekit (Goddard et al., 2024), a comprehensive toolkit that offers simple
access to state-of-the-art model merging techniques.

Top k Greedy Merging. This strategy utilizes the vanilla Top-k Greedy Merging approach on n
LLMs (as outlined in the black section of Algorithm 1). This approach has been widely adopted
in the community and has demonstrated notable success. In Figure 6 (b), models generated by the
greedy strategy are indicated in green, while the best-performing models are highlighted in red.

1The evaluation configurations are as follows: Winogrande (5-shot), GSM8K (5-shot), and TruthfulQA
MC2 (0-shot). We utilize the Language Model Evaluation Harness (Gao et al., 2024), a widely adopted frame-
work for testing LLMs.
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Algorithm 1 Top k Greedy Merging with Model Kinship.
Require: A set M of n foundation models {m1,m2, . . . ,mn}, Evaluation function f , Similarity

metric function sim(·, ·) for model kinship.
1: Generate the first generation of merged models G1 by merging each pair in set M , and set

gneration i = 1.
2: Combine the set G1 into set M .
3: Evaluate each model m in set M , and select the top k models. Denote this set as S =

{m1,m2, . . . ,mk}.
4: Initialize a variable Sprev = ∅ to store the top k models from the previous iteration.
5: while S ̸= Sprev do
6: i++
7: Set Sprev = S.
8: Select each model pair from S. Denote this set as P = {p1, p2, . . . , pj}.
9: Merge every selected pair in set P as merged model set Gi = {m1,m2, . . . ,mj} for genera-

tion i, and add each merged model into set M .
10: Identify the current best model mbest ∈ S.
11: Identify the model mf ∈ S with the lowest model kinship to mbest from the Gi−1 according

to the similarity metric sim(·, ·).
12: Merge mf with mbest to generate a new model mexp, and add mexp into set Gi and set M .
13: Evaluate each new model m ∈ Gi using f and update S.
14: Evaluate mexp using f and update S.
15: end while
Note: The blue-highlighted steps are only executed in modified experiments incorporating model
kinship-based exploration. To distinguish between different models in the subsequent experiments,
each model generated in a given generation is named as model-generation-id.
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Figure 6: Left (a): The comparison of task performance improvement across merging generations.
The red curve (greedy strategy) saturates by generation 2, while the blue curve (modified strategy)
escapes the local optima at generation 2 and continues improving multitask capabilities. Right (b):
The partial model family tree from the controled experiments. The red arrow shows the critical
change between experiment 1 and experiment 2 in the evolution path.

Top k Greedy Merging with Model Kinship. The propposed strategy simply introduces an addi-
tional exploration step, based on model kinship, to the original greedy strategy (highlighted by the
blue part in Algorithm 1). This approach aims to merge the best-performing model with the model
that has the most distinct task capabilities, in order to discover potentially better solutions. In Figure
6 (b), models generated by our strategy are marked in purple, while the best-performing models are
marked in yellow.
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4.2 RESULTS AND DISCUSSION

Table 2: Results of merging experiments comparing the vanilla greedy strategy and our proposed
approach. The first three models serve as the foundation models in both experiments.Note: The
model kinship experiment was terminated at generation 5, as it has already outperformed the greedy
strategy by that point.

Greedy Strategy + Model Kinship

Model Avg. Gain Kinship Model Avg. Gain Kinship

MetaMath 63.72 / / MetaMath 63.72 / /
Instruct 61.82 / / Instruct 61.82 / /
Open-chat 66.28 / / Open-chat 66.28 / /

model-1-1 62.17 -0.6 0.01 model-1-1 62.17 -0.6 0.01
model-1-2 64.02 -0.03 -0.02 model-1-2 64.02 -0.03 -0.02
model-1-3 66.84 +1.84 0.05 model-1-3 66.84 +1.84 0.05

model-2-1 68.72 +2.16 0.93 model-2-1 68.72 +2.16 0.93
model-2-2 61.47 -3.96 0.57 model-2-2 61.47 -3.96 0.57
model-2-3 61.32 -3.83 0.58 model-2-3 61.32 -3.83 0.58

model-3-1 68.59 +1.09 0.95 model-3-2 67.74 +1.09 0.93
model-3-2 67.74 -0.04 0.93 model-3-3 69.06 +0.74 0.24

- - - model-3-4 68.61 +1.13 0.32

model-4-1 68.51 -0.14 0.98 model-4-4 68.75 -0.14 0.54
model-4-2 68.04 -0.19 0.98 model-4-5 68.39 -0.27 0.66
model-4-3 68.53 +0.37 0.94 model-4-6 69.03 +0.15 0.52

- - - model-5-1 69.13 +0.04 0.65
- - - model-5-2 68.98 +0.07 0.65
- - - model-5-3 68.63 -0.37 0.98

−100
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Figure 7: Weight Change.

Figure 6 (a) illustrates the improvements in top average task perfor-
mance across merging generations. Table 2 provides the model aver-
age task performance, merge gain, and model kinship for each genera-
tion, comparing the original greedy merging strategy with our kinship-
based method. Both strategies achieve the multitask goals. However,
the vanilla greedy strategy stops improving after Generation 2, stabi-
lizing at an average task performance of 68.72. In contrast, Experiment
2, utilizing model kinship-based exploration, escapes the local optima
(Model-2-1) and continues to improve, reaching 69.13 by Generation
5.

Merging Models with Low Kinship can Boost Exploration. Fig-
ure 6 (b) highlights the key branch of the model family tree. To investi-
gate how merging models with low kinship helps escape local optima,
we focus on the bifurcation point and analyze the weight changes: v1
(from Model-2-1 to Model-3-1) and v2 (from Model-2-1 to Model-
3-3) in two separate experiments. The previous weight change, vpre
(from Model-1-3 to Model-2-1), serves as a baseline. Figure 7 reveals
that merging with the exploration model resulted in significant weight
changes in a distinct direction, introducing novel variations into the
weight space. In contrast, v1 shows minimal weight change, as the merging effect is reduced due to
the high similarity between the weights of openchat-3.5 and Model-2-1.

Early Stopping at High Kinship can Improve Efficiency. We observe that the saturation stage of
model evolution is particularly resource-intensive. In community experiments, 5 out of 14 merges
in evolution path 1 resulted in an average improvement of just 0.57, while 3 out of 12 merges in
evolution Path 2 yields an average improvement of 0.36. In our own experiments, applying a greedy
strategy to a simple task lead to saturation after 2 out of 4 merges, with no further gains. These
results indicate that human judgment and conventional stopping conditions cannot effectively halt
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the merging process at the optimal time. Therefore, we propose that model kinship can be used
as an effective early stopping signal. When merging converges, the model kinship between top-
performing models often exceeds 0.9. By halting the merging process at this point, time efficiency
improves by approximately 30%, with minimal or no reduction in performance.

5 RELATED WORK

Weight averaging is one of the most widely used techniques in model merging, with its origins
traced back to Utans (1996), who first applied it in neural networks to achieve performance compa-
rable to ensemble methods. Since the 2010s, weight averaging has found numerous applications in
deep neural networks, including combining checkpoints to enhance the training process (Nagarajan
& Kolter, 2019; Tarvainen & Valpola, 2017; Izmailov et al., 2018; Li et al., 2023b; Stoica et al.,
2023; Padmanabhan et al., 2023; Jang et al., 2023), leveraging task-specific information (Li et al.,
2023a; Smith & Gashler, 2017; Ilharco et al., 2022; Izmailov et al., 2018), and parallel training of
large language models (LLMs) (Li et al., 2022). Discovery of Linear Mode Connectivity (LMC)
(Garipov et al., 2018; Frankle et al., 2020; Entezari et al., 2022) further expands the use of weight
averaging in fusing fine-tuned models through averaging methods (Neyshabur et al., 2020; Worts-
man et al., 2022). Further studies have explored optimizable weights for merging, such as Fisher-
Merging (Matena & Raffel, 2022), RegMean (Jin et al., 2023), AdaMerging (Yang et al., 2024b),
MaTS (Tam et al., 2024). Ilharco et al. (2023) introduce task vectors, representing the weight differ-
ence between a fine-tuned model and its base. They demonstrate that arithmetic operations on these
vectors enable model editing, such as achieving multitask learning. Further research on parameter
interference led to TIES (Yadav et al., 2023), which preserves important weights and reduces sign
conflicts, and DARE (Yu et al., 2024), which prevents interference by randomly dropping weights.
The Model Breadcrumbs (Davari & Belilovsky, 2023) show that the removal of outliers in param-
eters can reduce noise in model merging. Merging models with different initializations requires
additional considerations. Common methods exploit the permutation symmetry of neural networks
(Ainsworth et al., 2022; Tatro et al., 2020; Singh & Jaggi, 2020; Guerrero-Peña et al., 2023), us-
ing alignment techniques to mitigate the interpolation barrier (Xu et al., 2024; Navon et al., 2024).
While weight averaging cannot be directly applied to models with different architectures, it can still
be used to enhance feasible fusion methods. Recent work, such as FuseChat (Wan et al., 2024b),
combines weight averaging with Knowledge Fusion (Wan et al., 2024a) to develop innovative fusion
techniques.

Recently, there have been some works exploring “model evolution”. Tellamekala et al. (2024) pro-
pose the CoLD Fusion method, showing that iterative fusion can create effective multitask mod-
els. Labonne (2024) develop a tool to automatically merge models on Hugging Face, using an
“Automerge” experiment to explore metrics in the merging process. Akiba et al. (2024) introduce
Evolutionary Model Merge, employing evolutionary techniques to optimize model combinations,
arguing that human intuition alone cannot uncover hidden patterns in merging.

6 CONCLUSION AND LIMITATIONS

In this paper, we introduce model kinship, the degree of similarity or relatedness between LLMs,
for merging LLMs, which can help guide our selection of candidate models. We conduct compre-
hensive experiments to demonstrate its effectiveness in understanding the model evolution process.
We further propose a new model merging strategy: Top-k Greedy Merging with Model Kinship. We
show that model kinship plays a crucial role in model evolution by guiding the process to escape lo-
cal optima traps (in saturation stage), enabling further improvements. Additionally, we demonstrate
that model kinship can detect the onset of convergence, allowing for early stopping and reducing the
waste of computational resources in the merging process.

In a broad sense, our work explores how models can achieve autonomous evolution through model
merging. Model merging can, to some extent, be likened to biological hybridization. Biological
organisms have undergone billions of years of evolution to reach their current state. However, how
silicon-based intelligence, represented by LLMs, evolves remains an unresolved mystery. We aspire
that this work offer guidance and insights for the future merging and evolution of LLMs.
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REPRODUCIBILITY STATEMENT

The experimental setup can be found in Section 4.1. All model checkpoints are available on Hug-
gingFace, with detailed information provided in Appendices B.
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A LIMITATIONS

However, there are several limitations to consider: a) The experiments in this study are conducted
on models with the two architecture, leaving uncertainty about the transferability of our metric and
method to other architectures, such as Mamba (Gu & Dao, 2023). b) The analysis relies on open-
source data from the Open Leaderboard, which is community-generated and may contain noise due
to user bias. c) Correlation metrics for model kinship have not been fully explored. Other metrics
may perform better than those discussed in this paper. d) The effectiveness of model kinship is
demonstrated through empirical evidence. However, a theoretical framework (such as the assump-
tions in Appendix C) is needed to explain model evolution and model kinship more rigorously. e)
Model kinship currently guides merging and improves performance limits but does not support sus-
tained evolution. Future progress may require environmental feedback, reward models (Silver et al.,
2021), as well as new architectures.

B DETAILS OF EXPERIMENTS

All merged models from these experiments are accessible through the Hugging Face Hub2. The
following tables cover two primary aspects:

• (1) Information on the selected model family trees for two distinct evolution paths, along
with detailed analysis results for each merge.

• (2) A summary of the merge experiments conducted for distribution analysis.

B.1 SELECTING THE EVOLUTION PATH

The evolution paths are selected using a structured process, focusing on identifying key sequences
within the model family trees. The steps were as follows:

• Model Family Tree Construction: The complete model family tree is constructed by
referencing model card details for each model involved.

2https://huggingface.co/datasets
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• Branch Identification: We identified the two longest branches within each tree, represent-
ing significant sequences of model merging.

• Performance and Kinship Evaluation: These branches were analyzed for changes in
merging performance, particularly focusing on shifts in multitask capabilities and model
kinship metrics.

Table 3 and 4 present detailed information on the sequential merging process. The second and third
columns record the foundational models involved in each merge, while the final column lists the
resulting merged models.

Table 3: Model Family tree of evolution Path 1.
Gen Model-1 Model-2 Model-Merged

1 Marcoroni-7B-v3 Mistral-7B-Merge-14-v0.1 distilabeled-Marcoro14-7B-slerp
2 distilabeled-Marcoro14-7B UNA-TheBeagle-7b-v1 Beagle14-7B
3 NeuralBeagle14-7B Turdus TurdusBeagle-7B
4 TurdusBeagle-7B FernandoGPT-v1 StrangeMerges 9-7B-dare ties
5 StrangeMerges 9-7B-dare ties MBX-7B-v3 StrangeMerges 10-7B-slerp
6 StrangeMerges 10-7B-slerp NeuralBeagle14-7B StrangeMerges 11-7B-slerp
7 StrangeMerges 11-7B-slerp MBX-7B-v3 StrangeMerges 20-7B-slerp
8 StrangeMerges 20-7B-slerp NeuTrixOmniBe-7B-model StrangeMerges 21-7B-slerp
9 StrangeMerges 21-7B-slerp Experiment26 StrangeMerges 30-7B-slerp
10 StrangeMerges 30-7B-slerp Experiment24 StrangeMerges 31-7B-slerp
11 StrangeMerges 31-7B-slerp Experiment28 StrangeMerges 32-7B-slerp
12 StrangeMerges 32-7B-slerp ... shadow-clown-7B-slerp
13 shadow-clown-7B-slerp yam-jom-7B YamShadow-7B
14 YamShadow-7B Experiment28 YamshadowExperiment28-7B

Table 4: Model Family tree of evolution Path 2.
Gen Model-1 Model-2 Model-Merged

1 neural-chat-7b-v3-3 openchat-3.5-1210 CatPPT-base
2 Marcoroni-7B-v3 CatPPT-base CatMacaroni-Slerp
3 LeoScorpius-7B CatMacaroni-Slerp SamirGPT-v1
4 SamirGPT-v1 ... Daredevil-7B
5 NeuralBeagle14-7B NeuralDaredevil-7B DareBeagle-7B
6 Turdus DareBeagle-7B TurdusDareBeagle-7B
7 MarcMistral-7B TurdusDareBeagle-7B MarcDareBeagle-7B
8 MarcBeagle-7B MarcDareBeagle-7B MBX-7B
9 MBX-7B ... pastiche-crown-clown-7b-dare

10 pastiche-crown-clown-7b-dare ... shadow-clown-7B-slerp
11 yam-jom-7B shadow-clown-7B-slerp YamShadow-7B
12 Experiment28-7B YamShadow-7B YamshadowExperiment28-7B
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B.2 ADDITIONAL RESULTS IN ANALYSIS

Table 5 and Table 6 present detailed analysis results that are not reported in the main paper. These
include Average Task Performance (ATP), merge gains, and model kinship values, which are com-
puted using Pearson Correlation coefficient, Cosine Similarity, and Euclidean Distance for each
merge.

Table 5: Summary of Path 1 Results.
Gen Model-Merged ATP Gain PCC CS ED

1 distilabeled-Marcoro14-7B-slerp 73.63 0.55 0.82 0.76 5.15
2 Beagle14-7B 74.74 1.01 0.81 0.79 6.43
3 StrangeMerges 9-7B-dare ties 75.15 0.45 0.93 0.89 4.66
4 StrangeMerges 9-7B-dare ties 73.32 -0.69 0.90 0.84 4.70
5 StrangeMerges 10-7B-slerp 74.77 0.59 0.59 0.59 9.43
6 StrangeMerges 11-7B-slerp 74.8 0.045 0.87 0.86 5.31
7 StrangeMerges 20-7B-slerp 75.52 0.6 0.84 0.85 4.82
8 StrangeMerges 21-7B-slerp 76.29 0.38 0.85 0.89 4.28
9 StrangeMerges 30-7B-slerp 76.58 0.065 0.96 0.94 2.83

10 StrangeMerges 31-7B-slerp 76.67 -0.02 0.97 0.97 2.21
11 StrangeMerges 32-7B-slerp 76.68 0.11 0.99 0.99 0.62
12 shadow-clown-7B-slerp 76.64 -0.02 0.93 0.94 2.49
13 YamShadow-7B 76.6 -0.02 0.97 0.97 2.19
14 YamshadowExperiment28-7B 76.86 0.25 0.98 0.98 1.61

Table 6: Summary of Path 2 Results.
Gen Model-Merged ATP Gain PCC CS ED

1 CatPPT-base 72.25 2.89 0.02 0.01 20.41
2 CatMacaroni-Slerp 72.74 0.35 0.88 0.83 6.16
3 SamirGPT-v1 73.11 0.64 0.79 0.70 6.47
4 Daredevil-7B 74.12 0.33 0.87 0.83 4.81
5 DareBeagle-7B 74.58 0.15 0.79 0.77 6.01
6 TurdusDareBeagle-7B 74.94 0.32 0.90 0.86 4.59
7 MarcDareBeagle-7B 74.75 0.67 0.87 0.87 4.17
8 MBX-7B 75.04 0.11 0.96 0.96 2.90
9 pastiche-crown-clown-7b-dare 76.50 0.29 0.83 0.84 5.38

10 shadow-clown-7B-slerp 76.64 -0.02 0.93 0.94 2.49
11 YamShadow-7B 76.60 -0.02 0.97 0.97 2.19
12 YamshadowExperiment28-7B 76.86 0.25 0.98 0.98 1.61

Table 7 presents all merge experiments contributing to the distribution analysis. The selection of
sample experiments adheres to two rules: (1) Samples are evenly chosen across average task per-
formance values ranging from 0.7 to 0.7686 (the average task performance of the best 7B merged
model) to accurately reflect the full scope of model evolution. (2) The experiments involve merges
of two foundation models, as including multiple models introduces excessive noise.

B.3 DETAILS OF MODEL GROUP SELECTION

This appendix presents the exact models included in each model group, as shown in Table 8. The
selection process is conducted across three distinct groups: (1) the top 5 models on the leaderboard,
with a performance difference of 0.2, (2) 5 models with performance scores around 73 and a per-
formance difference of 0.2, and (3) 5 fine-tuned models. It is important to note that the fine-tuned
models were not selected based on performance, and may exhibit significant differences in results.
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Table 7: All Sample Experiments used in distribution analysis.
Model 1 Model 2 Merge Gain
Multi verse model-7B Experiment26-7B 0.06
M7-7b StrangeMerges 32-7B-slerp -0.03
Ognoexperiment27 Multi verse model-7B 0.03
YamShadow-7B Experiment28 0.25
shadow-clown-7B-slerp yam-jom-7B -0.02
StrangeMerges 21-7B-slerp Experiment26 0.06
StrangeMerges 31-7B-slerp Experiment28 0.11
NeuralBeagle14-7B Turdus 0.45
DareBeagle-7B Turdus 0.32
TurdusBeagle-7B FernandoGPT-v1 -0.69
StrangeMerges 10-7B-slerp NeuralBeagle14-7B 0.04
TurdusDareBeagle-7B MarcMistral-7B 0.67
StrangeMerges 20-7B-slerp NeuTrixOmniBe-7B-model-remix 0.38
StrangeMerges 11-7B-slerp MBX-7B-v3 0.6
Marcoroni-7B-v3 Mistral-7B-Merge-14-v0.1 0.55
distilabeled-Marcoro14-7B-slerp UNA-TheBeagle-7b-v1 1.01
UNA-TheBeagle-7b-v1 distilabeled-Marcoro14-7B-slerp 0.89
CatPPT-base Marcoroni-7B-v3 0.35
CatMacaroni-Slerp LeoScorpius-7B 0.64
NeuralDaredevil-7B NeuralBeagle14-7B 0.15
StrangeMerges 9-7B-dare ties MBX-7B-v3 0.59
mistral-ft-optimized-1218 NeuralHerems-Mistral-2.5-7B -0.85
neural-chat-7b-v3-2 OpenHermes-2.5-Mistral-7B 1.91
StrangeMerges 30-7B-slerp Experiment24 -0.02
openchat-3.5-1210 neural-chat-7b-v3-3 2.89
MultiverseEx26-7B-slerp CalmExperiment-7B-slerp -0.09
CapybaraMarcoroni-7B DistilHermes-2.5-Mistral-7B 0.47
Multi verse model-7B Calme-7B-Instruct-v0.9 0.04
StrangeMerges 16-7B-slerp coven 7b 128k orpo alpha -0.35
Kunoichi-DPO-v2-7B AlphaMonarch-7B -1.05
StrangeMerges 15-7B-slerp Kunoichi-7B 0.39
Mistral-T5-7B-v1 Marcoroni-neural-chat-7B-v2 -0.18
Marcoro14-7B-slerp mistral-ft-optimized-1218 -0.61
mistral-ft-optimized-1218 NeuralHermes-2.5-Mistral-7B -0.85
MarcDareBeagle-7B MarcBeagle-7B -0.07
MetaMath-Mistral-7B Tulpar-7b-v2 -0.29
YugoGPT AlphaMonarch-7B -5.96

B.4 DETAILS OF DATASETS SELECTION

In the main experiments, we utilize three task-specific benchmark datasets—Winogrande, GSM8k,
and TruthfulQA—to evaluate the distinct strengths of the models. These datasets assess the follow-
ing capabilities:

• Winogrande: Evaluates the model’s commonsense reasoning.

• GSM8k: Measures the model’s mathematical reasoning.

• TruthfulQA: Assesses the model’s ability to identify and address human falsehoods.

C ASSUMPTION OF CONTINUAL MODEL MERGING

Our findings in the main paper offer a new perspective on model evolution through multiple merging.
If the merging process can be improved using a common optimization strategy, it raises the question
of whether the underlying mechanism mirrors this optimization problem. Thus, we hypothesize the
following:
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Table 8: Model Group in Kinship Matrix Analysis.

Group Models

Top Model Group

YamshadowExperiment28-7B
Yamshadow-7B

Experiment25-7B
StrangeMerges 24-7B-slerp

MonaTrix-v6

Mid Stage Model Group

Daredevil-7B
CatMarcoro14-7B

Mayo
Calmesmol-7B-slerp

StrangeMerges 4-7B-slerp

Fine-tuned Model Group

Zephyr-beta
MetaMath-Mistral-7B

Mistral-7B-Instruct-v0.2
openchat-3.5-1210

WizardLM-2

Figure 8: An intuitive illustration of the optimization process assumption in model evolution,
where models progressively converge towards the optimal model.

Hypothesis: The evolution process may be simplified to a binary search process for most weight-
averaging-based model merging methods.

Figure 9: An intuitive illustration of
how model evolution can fall into lo-
cal optima due to a performance-prior
strategy. It shows that Merged Model 2
may be overlooked, despite its potential
for better multitask performance.

Figure 8 illustrates the ideal scenario in our assump-
tion where multiple merges produce a highly generalized
model. For the generalization task t, the y-axis repre-
sents the model performance for task t and the x-axis
represents the model’s weight space. In early merging
stages, models fine-tuned with different tasks exhibit sig-
nificant weight space dissimilarity. The merging process
averages these weight spaces, and the experiment con-
ductor selects the better-merged models while discarding
the inferior ones. In stage 2, the search area narrows and
the improvements become stable, eventually leading to an
optimized state in stage 3 when “saturation stage” occurs.

In this context, Model Kinship serves as a metric to quan-
tify the weight space distance between two models, with a
higher model kinship indicating a lower weight space dis-
tance. Following this assumption, our findings of the op-
timization problem in model evolution can be elucidated
in Figure 9.
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However, we currently lack sufficient evidence to validate
this hypothesis. Future work is needed to explore this
further.

D ADDITIONAL RESULTS: ANALYSIS OF MODEL KINSHIP AND AVERAGE
TASK PERFORMANCE

This section provides supplementary analysis on the relationship between model kinship and aver-
age task performance. Figure 10 illustrates a comparison between average task performance and
model kinship using two additional metrics not included in the main paper. From an intuitive ob-
servation, model kinship based on the three metrics exhibits a similar correlation with average task
performance.
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Figure 10: Illustration of comparison between the correlation of Pearson Correlation Coefficient
(PCC), Cosine Similarity (CS), and Euclidean Distance (ED) with average task performance (Nor-
malized to the same value scale).

E REFERENCED CONCEPTS IN EVOLUTIONARY BIOLOGY

In this section, we detail the conceptual parallels between biological processes and model merging,
highlighting our motivation for employing model kinship.

E.1 ITERATIVE MERGING VS. ARTIFICIAL SELECTION

We draw inspiration for model evolution from biological evolution, specifically focusing on the
correlation between biological evolution through artificial selection and model evolution via model
merging. Artificial selection involves retaining desirable traits by manually selecting breeding pairs
in each generation, typically those exhibiting the most significant features. Similarly, model evo-
lution, as explored in this paper through Iterative Model Merging, adopts a comparable approach:
users preserve desired task capabilities by strategically selecting merging pairs. Through iterative
merging, they can develop a model proficient across all tasks in a given task set. To illustrate this
comparison more effectively, Figure 11 depicts example of combining two features/task capabilities
in evolution.
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Figure 11: An intuitive comparison between selective breeding and continual model merging.
The left process demonstrates breeding a tall and frutful plant by selecting parents with the desired
traits in an biological scenario. The right process shows developing a model with capabilities of
coding and math through model evolution.

E.2 INBREEDING DEPRESSION VS. SACUATION STAGE

As highlighted in the main paper, one of our key findings is that the late stage of model evolution
often enters a saturation stage, during which models exhibit minimal differences from one another.
This phenomenon parallels ”inbreeding depression” in artificial selection, where breeding closely
related individuals reduces genetic diversity and fitness. Although genetic inheritance and model
weights operate differently, merging closely related models leads to new models with minimal vari-
ation, thereby reducing the effectiveness of merging, particularly in weight averaging. To address
this issue, we propose quantifying the differences between models, a concept we term model kin-
ship, to guide the merging process and mitigate the challenges associated with the saturation stage
in model evolution.

F FULL EVALUATION RESULTS OF MAIN EXPERIMENTS

Table 9 presents detailed evaluation results from the main experiments, while Table 10 provides in-
formation on additional experiments conducted using Llama-2. Consistent with the results observed
for Mistral-7B, model evolution guided by model kinship produces better generalized models com-
pared to the vanilla greedy strategy in Llama-2.
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Table 9: Evaluation Results of Main Experiments of Mistral-7B.
Model TruthfulQA Winogrande GSM8K Avg. Model Kinship
MetaMath 44.89 75.77 70.51 63.72 /
Instruct 68.26 77.19 40.03 61.82 /
Open-chat 52.15 80.74 65.96 66.28 /

model-1-1-greedy 52.51 76.16 57.85 62.17 0.01
model-1-2-greedy 58.04 76.32 57.72 64.02 -0.02
model-1-3-greedy 48.96 78.69 72.86 66.84 0.05

model-2-1-greedy 50.94 80.11 75.13 68.72 0.93
model-2-2-greedy 49.78 78.93 55.72 61.47 0.57
model-2-3-greedy 52.36 78.61 52.99 61.32 0.58
model-2-exp 61.01 79.56 63.76 68.11 -0.02

model-3-1-greedy 51.95 80.51 73.31 68.59 0.95
model-3-2-greedy 49.96 79.72 73.54 67.74 0.93
model-3-3 56.95 80.25 70.00 69.06 0.24
model-3-4 54.38 78.45 73.01 68.61 0.32
model-3-exp 54.13 78.69 71.65 68.15 0.03

model-4-1-greedy 50.82 80.11 74.60 68.51 0.98
model-4-2-greedy 50.36 79.47 74.31 68.04 0.98
model-4-3-greedy 51.04 79.72 74.83 68.53 0.94
model-4-4 53.31 79.40 73.54 68.75 0.54
model-4-5 52.48 79.01 73.68 68.39 0.66
model-4-6 53.69 79.72 73.69 69.03 0.52
model-4-exp 55.16 78.53 71.80 68.49 0.48

model-5-1 54.85 79.37 73.31 69.13 0.65
model-5-2 54.78 79.40 72.86 68.98 0.65
model-5-3 53.49 79.24 73.16 68.63 0.98
model-5-exp 52.98 79.32 72.78 68.36 0.59
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Table 10: Evaluation Results of addtional experiments of Llama-2.
Model TruthfulQA Winogrande GSM8K Avg. Model Kinship
winogrande 42.0 77.9 6.4 42.1 /
GSM8K 39.0 73.4 38.0 50.1 /
TruthfulQA 56.7 68.9 9.5 45.0 /

child1-1-greedy 40.2 79.3 34.2 51.2 0.03
child1-2-greedy 46.7 74.4 34.2 51.7 0.01
child1-3-greedy 46.1 77.1 1.9 41.7 0.01

child-2-1-greedy 44.6 78.6 36.8 53.3 0.19
child-2-2-greedy 43.7 74.0 40.4 52.7 0.45
child-2-3-greedy 38.9 77.5 37.1 51.1 0.39
child-2-exp 43.3 81.2 28.5 51.0 0.01

child-3-1-greedy 44.2 77.1 37.3 52.8 0.88
child-3-2-greedy 45.4 77.5 34.5 52.4 0.79
child-3-3-greedy 45.0 73.8 36.6 51.8 0.89
child-3-exp 45.1 78.6 30.3 51.3 0.58

child-4-1-greedy 44.4 78.5 36.8 53.2 0.95
child-4-2-greedy 44.1 75.5 40.0 53.1 0.97
child-4-exp 43.3 80.9 32.6 52.2 0.81

child-5-1-greedy 44.2 77.1 37.2 52.8 0.97
child-5-2-greedy 44.3 77.4 36.7 52.8 0.91
child-5-3-greedy 44.3 78.3 36.8 53.1 0.98
child-5-exp 44.5 78.1 32.0 51.5 0.64

child-6-1-greedy 44.5 78.5 36.8 53.2 0.99
child-6-2-greedy 44.4 78.3 36.8 53.2 0.99
child-6-3-greedy 44.3 78.3 36.8 53.1 0.99
child-6-exp 44.3 80.4 35.3 53.4 0.80
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