
BackSlash: Rate Constrained Optimized Training of Large Language Models

Jun Wu 1 Jiangtao Wen 2 Yuxing Han 1

Abstract

The rapid advancement of large-language models
(LLMs) has driven extensive research into parame-
ter compression after training has been completed,
yet compression during the training phase remains
largely unexplored. In this work, we introduce
Rate-Constrained Training (BackSlash), a novel
training-time compression approach based on rate-
distortion optimization (RDO). BackSlash en-
ables a flexible trade-off between model accuracy
and complexity, significantly reducing parameter
redundancy while preserving performance. Exper-
iments in various architectures and tasks demon-
strate that BackSlash can reduce memory usage
by 60% - 90% without accuracy loss and pro-
vides significant compression gain compared to
compression after training. Moreover, BackSlash
proves to be highly versatile: it enhances general-
ization with small Lagrange multipliers, improves
model robustness to pruning (maintaining accu-
racy even at 80% pruning rates), and enables net-
work simplification for accelerated inference on
edge devices.

1. Introduction
As the foundation of modern artificial intelligence, genera-
tive large language models (LLMs) such as Llama (Touvron
et al., 2023), GPT (Brown et al., 2020), and Qwen (Bai
et al., 2023) exhibit remarkable self-learning and non-linear
modeling capabilities. With continuous advancements in
deep learning, the parameter scales of LLMs have grown at
an unprecedented rate, as shown in Table 1. Looking ahead,
it is expected that the parameter scale of neural networks
will continue to expand rapidly, driving further progress in
AI development.

1Shenzhen International Graduate School, Tsinghua Univer-
sity 2Computer Science, New York University. Correspondence
to: Yuxing Han <yuxinghan@sz.tsinghua.edu.cn>, Jiangtao Wen
(project lead) <jw9263@nyu.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Table 1. Parameter scale and growth rate of GPTs as an example
over recent years.

Model name Time Parameter size Growth rate

GPT-1 2018.06 117M -
GPT-2 2019.02 1.5B 12.8x
GPT-3 2020.06 175B 116.7x
GPT-4 2024.11 1.8T 1200.0x

The ever-increasing size of LLM parameters leads to in-
creased computational costs, inference latency, and network
distribution overhead during model deployment. To enable
efficient inference of LLMs on edge devices, extensive re-
search has focused on model compression using techniques
such as parameter quantization, model pruning, and low-
rank matrix decomposition. However, while there have been
extensive studies on LLM redundancy at the microscopic
level, such as precision and structural inefficiencies, the
overall parameter distribution has received little attention.
In addition, most existing compression techniques are ap-
plied after training, as opposed to being integrated into the
LLM parameter training process to proactively achieve opti-
mized trade-offs between parameter precision, model size,
and model performance. Finally, existing studies assume
that model parameters follow the Gaussian distribution and,
therefore employ Huffman coding designed using empirical
statistics for compression. Both the probabilistic model and
the entropy coding technique have room for improvement.

In this paper, we introduce a rate-constrained optimized ap-
proach to LLM training. By incorporating model parameter
size into the training process through a rate (R) and distor-
tion (D) joint optimization, the proposed rate-constrained
training (BackSlash) approach is capable of producing the
optimal performing model for a given parameter set size,
that is, producing the best-fit model given by its end appli-
cation (hardware constrained parameter set size).

The main contributions of this paper are as follows:

1. Instead of the widely used Gaussian model for LLM
parameter distribution, we found through extensive
experiments that the generalized Gaussian (GG) distri-
bution with the shape parameter less than 2 is a better

1

BackSlash: Rate-Constrained Optimized Training of Large Language Models

model.

2. We propose to use exp-Golomb (EG) codes for entropy
coding of LLM parameters, whose distribution can be
well-modeled by GG distributions. It has been shown
(Wen & Villasenor, 1999) that for GG sources, EG
codes can achieve coding efficiency very close to the
entropy limit, well over 90% in many cases. We also
find the optimal EG code with k=0 implementation can
accommodate many applications.

3. Based on the GG distribution observation and using
EG codes as entropy codes, we proposed a discretized
generalized Gaussian information rate (DGGR) to mea-
sure the model information rate and an BackSlash
algorithm that jointly optimizes the information rate
and performance during the training phase of LLMs.
Experiments with different LLMs and different deep-
learning tasks show significant savings in model size
as compared with both unconstrained training and un-
constrained training followed by entropy coding.

2. Related Work
2.1. LLMs Compression

To achieve low-cost distribution, deployment, and inference,
many compression strategies for LLMs have been proposed.

Pruning reduces computational and storage overheads by
removing unimportant weights or neurons from the model.
Unstructured pruning achieves compression by removing
redundant connections, e.g., Han et al. (2015b) and Han
et al. (2015a) proposed a pruning method based on weight
paradigms. Because unstructured pruning may lead to irreg-
ular network structures, structured pruning of filters or chan-
nels was proposed. Li et al. (2016) proposed pruning based
on filter, while Luo et al. (2017) proposed Thinet that min-
imized the reconstruction error. Hardware constraints (He
et al., 2018; Wang et al., 2018a) such as energy consumption
and delay were also introduced into the pruning process to
optimize the model performance in resource-constrained
environments. Prune continues to be an important direction
for model optimization, as evidenced by recent publica-
tions such as Dynamic Structure Pruning (Park et al., 2023),
LAPP (Zhai et al., 2023), and Turbo-VBI (Xia et al., 2023a).

Quantization can speed up training and inference by reduc-
ing the precision of weights and activation values. Binary
weights (Courbariaux et al., 2015; Rastegari et al., 2016),
triple weights (Li & Liu, 2016; Zhu et al., 2016), cluster
quantization (Gong et al., 2014; Choi et al., 2016), and
mixed bit-width quantization (Zhou et al., 2016; Wang et al.,
2018b) were examples of quantization techniques. Long
et al. (2020) used shift operation to replace the costly full-
precision operation by quantizing low-bit weights and ac-

tivations. Liu et al. (2021) simultaneously maintained the
representational power of non-uniform quantization and the
efficiency of uniform quantization.

Low-rank decomposition (Jaderberg et al., 2014; Masana
et al., 2017), parameter sharing (Wang et al., 2017; Kos-
saifi et al., 2019), and knowledge distillation (Xu et al.,
2018; Chen et al., 2017) have demonstrated significant ef-
fectiveness in applications. Additionally, with large-scale
distributed deep learning training systems, communication-
efficient gradient compression techniques were proposed
(Lin et al., 2017). These approaches collectively enhance the
efficiency of deep learning model training and deployment.

2.2. Rate Distortion Optimization

Information theory (Shannon, 1948; Cover, 1999) mathemat-
ically quantified the efficiency with which information can
be transmitted, stored, and processed, where rate-distortion
function defines the minimal distortion that can be achieved
while entropy coding a system to a given bitrate (Davisson,
1972; Berger, 2003).

In practical applications, rate-distortion optimization (RDO)
has found extensive adoption in video coding (Luttrell et al.,
2000; Itu-T & Jtc, 2010; Wien, 2015; Brand et al., 2022;
Chen et al., 2023; Guo et al., 2023; Chiang et al., 2023; Xia
et al., 2023b; Zhang et al., 2024), etc. are also continuing to
deepen the application of RDO in video and images.

In recent years, RDO has also been introduced for the com-
pression of neural networks. For example, Gao et al. (2018)
investigated the fundamental limits of model compression
and proposed a compression framework for pruning, quanti-
zation, and other techniques. Isik et al. (2021) proposes a
new pruning strategy based on RDO to approach the com-
pression limits of neural networks. In both cases, RDO is
applied after models have been trained to further pruning
and quantization, as opposed to being integral to the training
process itself.

3. Generalized Gaussian Model of LLM
Parameters

Most research assumes that LLM parameters follow the
Gaussian distribution in the initialization and rarely dis-
cussed the distribution after training. For example, Gaussian
distribution was used by both Xavier and He for random
parameter initialization (Glorot & Bengio, 2010; He et al.,
2015). However, through extensive experiments, we found
that the more broad generalized Gaussian (GG) distribu-
tion family with shape parameter less than 2 might be a
better model for LLM models, especially considering that
different regulations during training may impact parameter
distribution. The distribution usually also changes during
training as the model converges. In practice, the parameter

2

BackSlash: Rate-Constrained Optimized Training of Large Language Models

distribution tends to develop heavier tails during the training
process(Fortuin et al., 2021).

Mathematically, the probability density function (pdf) of
generalized Gaussian distribution is defined as

f(x) = C1e
−C2|x|ν (1)

where

C1 =
νγ

2Γ(1/ν)
, C2 = γν , (2)

γ =
1

σ

√
Γ(3/ν)

Γ(1/ν)
,

Γ(α) =

∫ ∞

0

tα−1e−tdt,

and α > 0.

It is easy to see that when ν = 1, the GG distribution is the
Laplacian distribution, while when ν = 2, it is the Gaussian
distribution. Varying the shape parameter of GG distribution
allows for better match between the probabilistic model
to better match LLM while using the same mathematical
formulation.

The GG distribution in (1) is a continuous distribution, while
in reality, LLM parameters all have fixed-length and limited
precision. Therefore, we treat LLM parameters as a quan-
tized GG distribution. Assuming the quantization step size
of the parameters is δ, the probability of a parameter θi is

p(θi) =

∫ θi+δ

θi

f(x)dx. (3)

As δ is typically small, we approximate

p(θi) ≈ δf(θi) = δC1e
−C2|θi|ν . (4)

The validity of this assumption could be verified with exist-
ing LLMs. For instance, BERT-base (110M) can be well-
modeled by a GG with a shape parameter of 1.36, the shape
parameter for GPT2 (774M) is 1.54, or 1.26 for Llama3
(1B), or 0.85 for DeepSeek (7B), and their distributions are
shown in Fig. 1. These shape parameter values are, although
different, all smaller than 2. The corresponding pdfs show
higher peaks and longer tails than the Gaussian distribution.

Denote the size of LLM as Np, the mean of the infor-
mation content of the parameters can be calculated as
R(θ) = − 1

Np

∑Np

i=1 log2 p(θi). Neglecting constant fac-
tors and terms, we define discretized generalized Gaussian
rate (DGGR) as follows

R(θ) =
1

Np

Np∑
i=1

|θi|ν , (5)

and use R(θ) as a measure of the information complexity
of the model.

4. Rate-Constrained Training (BackSlash) of
LLMs

4.1. Overview and loss function definition

In contrast to traditional non-constrained training, the target
loss function for optimization in BackSlash considers both
model performance and model size is

J = D + λ ·R, (6)

where D denotes the distortion of the fitting data, i.e. the de-
viation between the model predictions and the ground truth.
R denotes the rate of the model parameters, indicating the
complexity of the model itself. λ is the Lagrange multiplier.
The selection of distortion D varies depending on the deep-
learning task. For example, we often use the categorical
cross-entropy loss function in classification problems and
the mean squared error loss in regression tasks. Methods
like KL divergence or logarithmic loss are also utilized in
some specific tasks. We can choose the most suitable empir-
ical loss function for specific tasks, which does not affect
the BackSlash results.

The rate R is expressed by the average information content
of the parameters, defined using DGGR. Combining (5) and
(6) we get

J = L(X,Y, f, θ) + λ · 1

Np

Np∑
i=1

|θi|ν , (7)

where X and Y denote the training ground truth, f and θ
denote the forward propagation function and parameter set
of the neural network.

The shape parameter ν of DGGR is not a constant during
training and needs to be dynamically estimated before each
batch of gradient descent. A well-known method (Sharifi &
Leon-Garcia, 1995) for estimating the shape parameter is
by introducing a comparison function:

ρ(ν) =
Γ(1/ν) · Γ(3/ν)

Γ2(2/ν)
=

E[θ2]
E2[|θ|] . (8)

Specifically, the estimation process of ν can be organized
as follows:

1. obtain the model parameters θ and compute E[θ2] and
E2[|θ|],

2. estimate ρ(ν) by (8) based on E[θ2] and E2[|θ|],

3. Find ν using ρ(ν).

Additionally, notice that when 0 < ν < 1 and θ → 0,
∇R(θ) → ∞. This causes severe oscillations in the pa-
rameters during gradient descent, which prevents the model

3

BackSlash: Rate-Constrained Optimized Training of Large Language Models

0.2 0.1 0.0 0.1 0.2
Model Parameter Value

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
R

el
at

iv
e

Fr
eq

ue
nc

y(
%

)

GGD
GD

(a) BERT

0.2 0.1 0.0 0.1 0.2
Model Parameter Value

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
el

at
iv

e
Fr

eq
ue

nc
y(

%
)

GGD
GD

(b) GPT2

0.2 0.1 0.0 0.1 0.2
Model Parameter Value

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
el

at
iv

e
Fr

eq
ue

nc
y(

%
)

GGD
GD

(c) Llama3

0.2 0.1 0.0 0.1 0.2
Model Parameter Value

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
el

at
iv

e
Fr

eq
ue

nc
y(

%
)

GGD
GD

(d) DeepSeek

Figure 1. Parameter distributions fitting by generalized Gaussian distribution (GGD) and Gaussian distribution (GD) under different
LLMs. GGD fits the boundaries of the parameter distributions better than GD does.

from converging. To address this, we introduce a trick to
optimize the gradient descent of R(θ) by adding a constant
ϵ (ϵ > 0) to control the gradient size and modify the infor-
mation rate formula as R(θ) = 1

Np

∑Np

i=1(|θi| + ϵ)ν . We
refer to this method of gradient suppression as soft gradient
clipping.

4.2. BackSlash algorithm description

The overall BackSlash algorithmic can be summarized as
follows:

Algorithm 1 Rate-Constrained Training (BackSlash)

1: Require: Model f , learning rate η, loss function L,
Lagrange multiplier λ, and clipping coefficient ϵ.

2: for each epoch τ do
3: for each batch (xi, yi) do
4: Retrieve all model parameters θ.
5: Estimate comparison function ρ(ν): ρ(ν) ←

E[θ2]
E2[|θ|]

6: Find shape parameter ν using ρ(ν).
7: Forward propagation and calculate RD Cost J :

J ← L(xi, yi, f, θ) + λ · 1
Np

∑Np

i=1(|θi|+ ϵ)ν

8: Backward propagation and optimize parameters:
θ ← θ − η · (∂L∂θ + λ · νθ

Np|θ| (|θ|+ ϵ)ν−1).
9: end for

10: end for
11: Until convergence or max iterations.

It should be noted that if we set the shape parameter ν
in DGGR to be ν = 1 and ν = 2, we find that DGGR

degenerates into L1 (Fitriani et al., 2022) regularization
(1
Np

∑Np

i=1 |θi|) and L2 (Hoerl & Kennard, 1970) regular-

ization (1
Np

∑Np

i=1 |θi|2) respectively. This means, that L1

and L2 regularization are special cases of DGGR when the
model parameter distribution is the Laplace and the Gaus-
sian distributions respectively.

4.3. Entropy coding of LLM using EG codes

The complexity constraint in BackSlash is defined using
DGGR. In practice, the parameters will have to be entropy
coded using practical entropy codes, whose rate can not
exactly match the DGGR.

Due to its simplicity, Huffman codes have been used for en-
tropy coding of LLM parameters. For example, in Han et al.
(2015a) achieved 20%-30% size reduction using Huffman
coding. However, using Huffman coding in BackSlash or
compression of LLM in general has several drawbacks.

First of all, Huffman code tables are designed using ex-
plicit distributions calculated from LLM parameters. The
mismatch between the distribution of the parameters and
the distribution for which the Huffman code is designed
may lead to severe coding efficiency loss. On the other
hand, the large parameter size and non-parallelizable table
building process of Huffman code may bring prohibitively
high complexity to BackSlash. This is also why we used
the theoretical DGGR as opposed to coded bits in the loss
function.

Secondly, Huffman tables designed for different LLMs are
different, while a practical implementation may often need
to accommodate multiple models in the same system (e.g.

4

BackSlash: Rate-Constrained Optimized Training of Large Language Models

Table 2. The Structure of exp-Golomb code with different parameter k which is from 0 to 5 as an example. In general, EG codes with a
smaller parameter k encode better for GG sources with low shape parameters.

Parameter (k) 0 1 2 3 4 5 6 7 8 9 · · ·
k = 0 1 010 011 00100 00101 00110 00111 0001000 0001001 0001010 · · ·
k = 1 10 11 0100 0101 0110 0111 001000 001001 001010 001011 · · ·
k = 2 100 101 110 111 01000 01001 01010 01011 01100 01101 · · ·
k = 3 1000 1001 1010 1011 1100 1101 1110 1111 010000 010001 · · ·
k = 4 10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 · · ·
k = 5 100000 100001 100010 100011 100100 100101 100110 100111 101000 101001 · · ·

on the same chip).

Thirdly, the Huffman table designed based on empirical
distributions usually is not well-structured, leading to more
complicated encoder/decoder implementation.

Fourthly, we observe the Huffman code can only pro-
vide minimal efficiency gains over EG code on BackSlash-
trained models in all subsequent experiments.

As noted in Section 3, LLM parameters can be modeled well
by quantized GG distributions with shape parameters less
than 2. In Wen & Villasenor (1999), Wen and Villasenor
studied and proposed using exp-Golomb (EG) codes to en-
tropy coding quantized GG sources. The structure of EG
code is shown in Table 2. The advantages of EG codes can
be summarized as the following:

1. the efficiency of EG codes is consistently within a
few percentage points of the entropy limit and almost
identical to the Huffman code specifically designed for
each quantized GG source,

2. the performance of EG codes is robust with regard to
parameter mismatch, and as a result, adaptive coding
is not needed when parameters of the quantized GG
source change,

3. EG codes contain an infinite number of codewords, and
can therefore be used for LLM of any size,

4. EG codes are nicely structured, and allow for highly
optimized encoder/decoder.

Therefore, in our experiments, we used EG codes for the
actual entropy coding rate (as opposed to the theoretical rate
of DGGR in BackSlash) for both entropy coding of param-
eters after traditional, unconstrained LLM training, and in
comparison, BackSlash. In our experiment, we tested EG
with different parameters on several models with BackSlash
which is shown in Table 3, and the EG code that we found
was optimal was EG with parameter k = 0.

Table 3. Average code lengths for several models with different
EG parameters. With the EG parameter increasing, the average
code length of the model parameters also increases and the EG
code gradually converges to the fixed-length code.

Model k = 0 k = 1 k = 2 k = 3 k = 4

BERT 2.64 3.16 3.74 4.42 5.17
GPT-2 2.46 3.05 3.70 4.40 5.19

Llama-3 1.72 2.47 3.26 4.12 5.03
Gemma-2 1.16 2.10 3.06 4.02 5.01

In addition, we note that after BackSlash, most model pa-
rameters are zero, while the non-zero values are extremely
sparse, usually accounting for few percent of all possible
values. For example, the number of code words occupied by
BERT with BackSlash after quantization with a step of 2−8

is 2695 but only 641 are actually used. And except for a
small number of quantized parameters near 0, the others are
highly disordered. For example, the quantized parameter
−177 of BERT is only ranked 609 by frequency but actually
it takes up 142nd. Therefore, prior to entropy coding of
model parameters, we first rank the number of occurrences
of all parameter values and map each value that model pa-
rameters might actually take to an index. The index, instead
of the parameter value, is then entropy coded. This process
can be formally summarized as follows:

Algorithm 2 Parameter Entropy Encoding

1: Require: Model parameter set Θ, quantization step size
2−n, encoding strategy Enc.

2: Quantize the parameters: Q← round(2n ·Θ)
3: Sort by frequency, build the code table by quantized pa-

rameter and sorted index: C ← {(qi, ci) | qi ∈ Qs, ci ∈
Cs}

4: Map quantized parameters to codewords and encode it
to bitstream: Bstream ← Enc(C[Q])

5: Output: Bitstream Bstream and code table C

5

BackSlash: Rate-Constrained Optimized Training of Large Language Models

0 250 500 750 1000 1250 1500 1750 2000

Training Step(n)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
D

C
os

t
R

at
e(
R
R
D

)
λ=1

λ=10

λ=100

λ=1000

Figure 2. RD cost rate changes in training with different La-
grange multiplier (λ).

0 250 500 750 1000 1250 1500 1750 2000

Training Step(n)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

S
h

ap
e

P
ar

am
et

er
(ν

)

λ=1

λ=10

λ=100

λ=1000

Figure 3. Shape parameter changes in training with different
Lagrange multiplier (λ).

0 1 10 100 1000

Lagrange Multiplier(λ)

0

2

4

6

8

10

A
ve

ra
ge

C
od

e
L

en
gt

h
(b
it

)

7.31

5.47

10.00

6.66

5.25

10.00

5.78

4.81

10.00

4.03

3.59

10.00

2.64

2.42

10.00

Fixed-Length Code

Exp-Golomb Code

Huffman Code

Figure 4. Impact of Lagrange multipliers on average code
length of various encoding algorithms.

0 1 10 100 1000

Lagrange Multiplier(λ)

90

92

94

96

98

100

A
cc

u
ra

cy
(%

)
93.63

99.54

93.85

99.69

93.93

99.56

93.68

99.47

92.59

99.52

Train Dataset

Test Dataset

Figure 5. Impact of Lagrange multipliers on accuracy of test
and train Dataset.

The distribution of indices still follows a generalized Gaus-
sian, though the value mapping induces slight deviations
compared to the original parameters. For example, the shape
of parameters and index of BERT under normal training is
1.36 and 1.47, while under BackSlash they become 0.26
and 0.30, respectively. Nevertheless, these minor shape
variations negligibly impact entropy coding efficiency, as
EG codes maintain robustness across the entire family of
generalized Gaussian sources.

The sparsity of the values model parameters is the reason
that in BackSlash, we use DGGR, as opposed to EG code
length directly in BackSlash - even though the same EG
code may be used throughout BackSlash, the parameter
value that the codeword is mapped to changes.

The mapping (termed “Value Mapping”) between the quan-
tized parameter set Qs and the codeword set Cs is defined
as C = {(qi, ci) | qi ∈ Qs, ci ∈ Cs}.

5. Experiments
We perform various classification tasks on popular LLMs
including BERT, GPT, Llama, and Gemma to evaluate the

performances of BackSlash by classification accuracy, and
generation tasks on DeepSeek evaluated by next token accu-
racy. We mainly use classification tasks on BERT to analyze
the effects of BackSlash when it is trained and deployed, as
classification accuracy is one of the most intuitive quanti-
tative metrics of model performance and BERT model has
a better performance on classification tasks. In addition,
we examined the entropy coding efficiency of EG codes as
compared with Huffman (HM) coding and fixed-length (FL)
coding with value mapping for all EG, HM and FL codes.

5.1. Performance

Taking the sentiment analysis task of the BERT model as
an example, we tested BackSlash using different Lagrange
multiplier λ settings. Fig. 2 shows how the loss changes in
training under different Lagrange multipliers. As RD Costs
may vary significantly with different Lagrange multipliers,
for visual clarity, we used (RRD = log10(J − βJmin),
β = 0.995) as the y-axis. As can be seen from the figure,
the larger the Lagrange multiplier, the steeper the curve,
reflecting the fact that the Lagrange multiplier controls the
training speed of the BackSlash.

6

BackSlash: Rate-Constrained Optimized Training of Large Language Models

−0.2 −0.1 0.0 0.1 0.2

Model Parameter Value (θ)

0

1

2

3

4

5

6

7

8

9

10
S

qu
ar

e
of

F
re

qu
en

cy
(1

03)

(a) Lagrange Multiplier 0

−0.2 −0.1 0.0 0.1 0.2

Model Parameter Value (θ)

0

1

2

3

4

5

6

7

8

9

10

S
qu

ar
e

of
F

re
qu

en
cy

(1
03)

(b) Lagrange Multiplier 10

−0.2 −0.1 0.0 0.1 0.2

Model Parameter Value (θ)

0

1

2

3

4

5

6

7

8

9

10

S
qu

ar
e

of
F

re
qu

en
cy

(1
03)

(c) Lagrange Multiplier 1000

Figure 6. Parameters distribution under different Lagrange multiplier training. With the Lagrange multipliers increasing, the parameter
distributions become more concentrated and have higher peaks and lower tails.

Table 4. Compression performance of BackSlash with different model architectures and parameter scales.

Model Param Size Method FL (bits) EG (bits) HM (bits) EG Compress HM Compress Accuracy

BERT 110M - 10.00 7.31 5.47 27% 45% 93.63%
BackSlash 10.00 2.64 2.42 74% 76% 92.59%

GPT 774M - 11.00 7.78 5.73 29% 48% 85.92%
BackSlash 11.00 2.46 2.25 78% 80% 88.73%

Llama 1B - 10.00 5.49 4.43 45% 56% 86.09%
BackSlash 10.00 1.72 1.66 83% 83% 86.93%

Gemma 2B - 11.00 4.45 3.95 60% 64% 86.95%
BackSlash 11.00 1.16 1.15 89% 90% 85.86%

Fig. 3 illustrates how the shape parameter of the parameter
distribution varies during training. For different λ values,
the shape parameter was set to an identical initial value
but converged to different values, reflecting how λ in the
BackSlash led to different model distributions.

In Fig. 4, after quantizing the model parameters with the
quantization step 2−8, we use EG code, HM code and FL
code to encode the model parameters and compute the av-
erage code length respectively. When applying EG coding
and HM coding after unconstrained training, the model size
was compressed to 73% and 55% of the size of FL coding,
corresponding to 27% and 45% saving. Whereas BackSlash
with EG coding and λ of 1000, reduced the model size to
26% and 24%. Even though Huffman coding leads to a
very small gain in coding efficiency, a different Huffman
table and the corresponding encoder/decoder will have to be
designed and implemented for each LLM. In contrast, the
same EG table could be used across models and sizes (e.g.
DeepSeek 7B and 170B).

Fig. 5 demonstrates the effect of BackSlash on model accu-
racy. We can find that BackSlash with reasonable λ did not
have a significant effect on accuracy. For the model with
λ = 1000, model performance decreased by only 0.02% on

the training set and 1.90% on the test set as compared with
normal training (i.e. λ = 0). It was observed that model
accuracy was not monotonic with regard to λ, i.e. there is
an optimal λ value, the setting of which is a topic under
investigation.

Fig. 6 shows the impact of λ on model parameter distribu-
tion. As can be seen clearly, as λ increases, i.e. if we give
more weights to the rate in the accuracy-rate trade-off, the
model trained by BackSlash would become more sparse.

In the current study, the setting of λ was still through trials-
and-errors. For example, when we set up a set of values for
Λ and train BERT model using BackSlash until convergence,
we found that the model trained with λ = 2000 achieved the
best overall trade-off with 2.52% loss in accuracy and only
13% of the size. Moreover, in our extensive experiments, it
consistently achieves similar and remarkable effectiveness
across various models and tasks.

5.2. Generalization Analysis

Model architectures and training tasks are of great signifi-
cance to both the process and the performance of the model
and tend to affect the final model obtained from training

7

BackSlash: Rate-Constrained Optimized Training of Large Language Models

Table 5. Compression performance of BackSlash under different deep learning tasks.

Task Dataset Method FL (bits) EG (bits) HM (bits) EG Compress HM Compress Accuracy

Sentiment IMDB - 10.00 7.31 5.47 27% 45% 93.63%
BackSlash 10.00 2.64 2.42 74% 76% 92.59%

Spam Enron-Spam - 10.00 7.31 5.47 27% 45% 99.65%
BackSlash 10.00 2.42 2.19 76% 78% 98.96%

Topic 20 Newsgroups - 10.00 7.31 5.47 27% 45% 70.78%
BackSlash 10.00 3.61 3.18 64% 68% 69.36%

Q-A SQuAD - 11.00 5.95 4.70 46% 57% 99.97%
BackSlash 11.00 2.90 2.81 74% 74% 99.97%

Translation WMT-19 - 11.00 6.10 4.70 45% 57% 99.96%
BackSlash 11.00 3.10 3.00 72% 73% 99.95%

2−4 2−8 2−12 2−16 2−20 2−24 2−28 2−32 2−36

Quantization Step

50

60

70

80

90

100

A
cc

u
ra

cy
(%

)

Normal Training Model

BackSlash Model

Figure 7. Quantization using different quantization steps for
BackSlash model and normal training model.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pruning Rate

50

60

70

80

90

100

A
cc

u
ra

cy
(%

)

Normal Training Model

BackSlash Model

Figure 8. Pruning using different pruning rates for BackSlash
model and normal training model.

heavily. It is worth discussing whether BackSlash has the
same effects in other models and tasks besides the sentiment
analysis of BERT.

In Table 4, we perform the sentiment analysis task on BERT,
GPT, Llama, and Gemma under normal training and Back-
Slash, respectively. These models are chosen because the
differences in structure and parameter size among them are
large enough to reflect the wide utility of BackSlash. Al-
though different model structures introduce some variability
in the results, BackSlash performs similarly for parameter
compression. For all the models, BackSlash compresses
them by more than 75%, with the highest being 90% for
Gemma. Such similar performance comes from the insen-
sitivity of BackSlash to network structure and parameter
size. In addition, it can be seen that in GPT and Llama, the
accuracy of using BackSlash is instead slightly higher than
that of normal training, which we analyze as originating
from the regularization effect attached to BackSlash.

In Table 5, we perform more classification tasks on the
BERT model and generation tasks on DeepSeek model un-

der normal training and BackSlash. The “Sentiment” and
“Spam” are both binary-classification tasks and the “Topic”
is a 20-class-classification tasks, which are evaluated by
classification accuracy. The ”Q-A” and ”Translation” are
both text generation tasks, which are evaluated by next
token accuracy. These tasks can achieve satisfactory com-
pression performance without compromising model accu-
racy. BackSlash achieves approximately 70% compression
rate compared to the original size in both classification and
generation tasks, demonstrating its strong generalization
capability across different task types.

5.3. Deployment

Deployment and inference for edge devices are always the
central problem and primary purpose of model compres-
sion, and quantization and pruning are the main means to
deploy the fine-tuned LLMs in edge devices. Therefore, it
is necessary to discuss whether the generalization ability of
BackSlash models can be maintained in quantization and
pruning.

8

BackSlash: Rate-Constrained Optimized Training of Large Language Models

Table 6. Compression performance of BackSlash under different regularization terms.

DGGG Convergence Shape Accuracy FL (bits) EG (bits) HM (bits) EG Compression HM Compression

DGGR 0.13 91.18% 10.00 1.37 1.32 86% 87%

L0.5 0.22 91.88% 10.00 2.90 2.01 71% 80%

L1 0.15 90.65% 10.00 1.52 1.46 85% 85%

L2 0.10 88.29% 10.00 1.16 1.14 88% 89%

Fig. 7 illustrates how the accuracy of the BERT model varies
with the quantization steps under normal training and Back-
Slash. When the quantization step is taken 2−4, the gen-
eralization ability of both normal training and BackSlash
models is completely destroyed. When the quantization step
is not less than 2−8, the accuracy of both models changes
very smoothly. Both models show the same trend in quan-
tization. This is because quantization uniformly destroys
the accuracy of the parameters, so whether or not to use
BackSlash does not have an additional negative impact on
the quantization results. Furthermore, We performed the
same experiments in GPT, Llama, and Gemma, and they all
showed identical results to BERT.

Fig. 8 illustrates how the accuracy of the BERT model varies
with the pruning rates under normal training and BackSlash.
We can see that the predictive ability of the conventionally
trained model has begun to degrade when the pruning ratio
reaches 50% and has completely lost its predictive ability
when it reaches 60%. Instead, the BackSlash model continu-
ally maintains its generalization accuracy when the pruning
ratio reaches 80%. This is because BackSlash makes the
model’s parameter distribution more sparse, which increases
the space for pruning. So BackSlash’s model is also easier to
deploy on edge-end devices through pruning and performs
more efficient inference. Furthermore, we also performed
pruning on GPT, Llama, and Gemma under BackSlash, and
the maximum pruning rates for them to maintain accuracy
are all 90% while the normal training models start to lose
their effectiveness at pruning rates less than 60%, which is
similar to the BERT model.

5.4. Ablation

As discussed in Section 4.2, L1 and L2 regularizations are
special cases of DGGR assuming model parameters follow a
Laplace and Gaussian Distribution, respectively. So whether
such shape-specific Lp regularization terms can effectively
substitute DGGR in the BackSlash framework warrants
further investigation.

We perform the sentiment analysis task on BERT with Back-
Slash using DGGR, L0.5, L1, L2 respectively, to evaluate

their impacts on model performance and code rate. As
shown in Table 6. Shape-specific Lp regularization terms
present notable theoretical and practical limitations.

From a theoretical perspective, the L0.5, L1, and L2 terms
implicitly assume that model parameters follow generalized
Gaussian distributions with fixed shape parameters of 0.5, 1,
and 2, respectively. However, the actual shape parameters of
the model converge to 0.22, 0.15, and 0.10, contradicting the
fixed-shape hypothesis. In contrast, DGGR’s dynamic shape
parameter adaptation naturally accommodates the evolving
weight distribution throughout the optimization process.

From an effectiveness perspective, L2 achieves marginally
better compression than DGGR but incurs significant ac-
curacy degradation, which indicates its detrimental impact
on model performance. L1 is inferior to DGGR in both
code length and accuracy. L0.5 demonstrates slightly bet-
ter accuracy but its code length is more than twice that of
DGGR, which shows its weakness in parameters compres-
sion. These findings suggest that DGGR’s adaptive shape
parameter adjustment puts performance and code rate in a
better balance.

6. Conclusion and Future Work
We propose BackSlash, a training framework for LLMs that
jointly optimizes model size and performance. We found
that LLM parameters can be well modeled with quantized
GG sources of shape parameters less than 2, and can be
entropy coded with extremely high efficiency and robustness
using EG codes. Experiments with popular LLMs show that
BackSlash was capable of reducing model size by up to 80%
with virtually no loss in performance.

Currently, we are conducting more experiments with more
LLMs and tasks. The optimal setting of λ is also under
investigation, as well as efficient hardware architecture that
can take advantage of the increased sparseness of the model
in more efficient training and inference.

9

BackSlash: Rate-Constrained Optimized Training of Large Language Models

Impact Statement
This paper introduces a fundamentally new approach to
training large models. Instead of using standard backpropa-
gation to train a large model and compressing it afterward,
our BackSlash framework integrates efficiency directly into
the training process to produce small and easy-to-deploy
models. This framework can significantly influence how the
next-generation foundation models are trained and deployed,
both in software and hardware.

References
Bai, J., Bai, S., Yang, S., Wang, S., Tan, S., Wang,

P., Lin, J., Zhou, C., and Zhou, J. Qwen-
vl: A versatile vision-language model for under-
standing, localization, text reading, and beyond.
2023. URL https://api.semanticscholar.
org/CorpusID:261101015.

Berger, T. Rate-distortion theory. Wiley Encyclopedia of
Telecommunications, 2003.

Brand, F., Fischer, K., Kopte, A., Windsheimer, M., and
Kaup, A. Rdonet: Rate-distortion optimized learned
image compression with variable depth. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 1759–1763, 2022.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Ka-
plan, J., Dhariwal, P., Neelakantan, A., Shyam, P.,
Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A.,
Krueger, G., Henighan, T., Child, R., Ramesh, A.,
Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen,
M., Sigler, E., teusz Litwin, M., Gray, S., Chess,
B., Clark, J., Berner, C., McCandlish, S., Radford,
A., Sutskever, I., and Amodei, D. Language mod-
els are few-shot learners. ArXiv, abs/2005.14165,
2020. URL https://api.semanticscholar.
org/CorpusID:218971783.

Chen, Y., Wang, N., and Zhang, Z. Darkrank: Accelerating
deep metric learning via cross sample similarities transfer.
ArXiv, abs/1707.01220, 2017. URL https://api.
semanticscholar.org/CorpusID:19207026.

Chen, Y., Wang, S., Ip, H., and Kwong, S. Rate distortion
optimization with adaptive content modeling for random-
access versatile video coding. Information Sciences, 645:
119325, 2023.

Chiang, J.-C., Shang, H.-Y., and Qiu, J.-J. Multi-exposure
image compression considering rate-distortion optimiza-
tion in rendered high dynamic range image. IEEE Open
Journal of Signal Processing, 4:132–147, 2023.

Choi, Y., El-Khamy, M., and Lee, J. Towards the
limit of network quantization. ArXiv, abs/1612.01543,
2016. URL https://api.semanticscholar.
org/CorpusID:17299045.

Courbariaux, M., Bengio, Y., and David, J.-P. Bina-
ryconnect: Training deep neural networks with bi-
nary weights during propagations. In Neural Informa-
tion Processing Systems, 2015. URL https://api.
semanticscholar.org/CorpusID:1518846.

Cover, T. M. Elements of information theory. John Wiley &
Sons, 1999.

Davisson, L. Rate distortion theory: A mathematical basis
for data compression. IEEE Transactions on Communi-
cations, 20(6):1202–1202, 1972.

Fitriani, S. A., Astuti, Y., and Wulandari, I. R. Least abso-
lute shrinkage and selection operator (lasso) and k-nearest
neighbors (k-nn) algorithm analysis based on feature
selection for diamond price prediction. In 2021 Inter-
national Seminar on Machine Learning, Optimization,
and Data Science (ISMODE), pp. 135–139, 2022. doi:
10.1109/ISMODE53584.2022.9742936.

Fortuin, V., Garriga-Alonso, A., Wenzel, F., Rätsch,
G., Turner, R. E., van der Wilk, M., and Aitchi-
son, L. Bayesian neural network priors revisited.
ArXiv, abs/2102.06571, 2021. URL https:
//api.semanticscholar.org/CorpusID:
231918454.

Gao, W., Wang, C., and Oh, S. Rate distortion
for model compression: From theory to practice.
In International Conference on Machine Learning,
2018. URL https://api.semanticscholar.
org/CorpusID:53111003.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 249–256. JMLR
Workshop and Conference Proceedings, 2010.

Gong, Y., Liu, L., Yang, M., and Bourdev, L. D. Compress-
ing deep convolutional networks using vector quantiza-
tion. ArXiv, abs/1412.6115, 2014. URL https://api.
semanticscholar.org/CorpusID:6251653.

Guo, H., Zhu, C., Ye, M., Luo, L., and Yang, X. Pre-
encoding based temporal dependent rate–distortion opti-
mization for hevc. Signal Processing: Image Communi-
cation, 115:116957, 2023.

Han, S., Mao, H., and Dally, W. J. Deep compression: Com-
pressing deep neural network with pruning, trained quan-
tization and huffman coding. arXiv: Computer Vision

10

https://api.semanticscholar.org/CorpusID:261101015
https://api.semanticscholar.org/CorpusID:261101015
https://api.semanticscholar.org/CorpusID:218971783
https://api.semanticscholar.org/CorpusID:218971783
https://api.semanticscholar.org/CorpusID:19207026
https://api.semanticscholar.org/CorpusID:19207026
https://api.semanticscholar.org/CorpusID:17299045
https://api.semanticscholar.org/CorpusID:17299045
https://api.semanticscholar.org/CorpusID:1518846
https://api.semanticscholar.org/CorpusID:1518846
https://api.semanticscholar.org/CorpusID:231918454
https://api.semanticscholar.org/CorpusID:231918454
https://api.semanticscholar.org/CorpusID:231918454
https://api.semanticscholar.org/CorpusID:53111003
https://api.semanticscholar.org/CorpusID:53111003
https://api.semanticscholar.org/CorpusID:6251653
https://api.semanticscholar.org/CorpusID:6251653

BackSlash: Rate-Constrained Optimized Training of Large Language Models

and Pattern Recognition, 2015a. URL https://api.
semanticscholar.org/CorpusID:2134321.

Han, S., Pool, J., Tran, J., and Dally, W. J. Learn-
ing both weights and connections for efficient neural
network. In Neural Information Processing Systems,
2015b. URL https://api.semanticscholar.
org/CorpusID:2238772.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. 2015 IEEE International Con-
ference on Computer Vision (ICCV), pp. 1026–1034,
2015. URL https://api.semanticscholar.
org/CorpusID:13740328.

He, Y., Lin, J., Liu, Z., Wang, H., Li, L.-J., and Han,
S. Amc: Automl for model compression and accel-
eration on mobile devices. In European Conference
on Computer Vision, 2018. URL https://api.
semanticscholar.org/CorpusID:52048008.

Hoerl, A. E. and Kennard, R. W. Ridge regression: Biased
estimation for nonorthogonal problems. Technometrics,
12(1):55–67, 1970.

Isik, B., No, A., and Weissman, T. Successive prun-
ing for model compression via rate distortion the-
ory. ArXiv, abs/2102.08329, 2021. URL https:
//api.semanticscholar.org/CorpusID:
231933836.

Itu-T and Jtc, I. I. Advanced video coding for generic
audiovisual services. 2010. URL https://api.
semanticscholar.org/CorpusID:60356047.

Jaderberg, M., Vedaldi, A., and Zisserman, A. Speeding up
convolutional neural networks with low rank expansions.
arXiv preprint arXiv:1405.3866, 2014.

Kossaifi, J., Bulat, A., Tzimiropoulos, G., and
Pantic, M. T-net: Parametrizing fully con-
volutional nets with a single high-order tensor.
2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 7814–7823,
2019. URL https://api.semanticscholar.
org/CorpusID:102353394.

Li, F. and Liu, B. Ternary weight networks. ICASSP
2023 - 2023 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 1–
5, 2016. URL https://api.semanticscholar.
org/CorpusID:13556195.

Li, H., Kadav, A., Durdanovic, I., Samet, H., and
Graf, H. P. Pruning filters for efficient convnets.
ArXiv, abs/1608.08710, 2016. URL https://api.
semanticscholar.org/CorpusID:14089312.

Lin, Y., Han, S., Mao, H., Wang, Y., and Dally,
W. J. Deep gradient compression: Reducing the
communication bandwidth for distributed training.
ArXiv, abs/1712.01887, 2017. URL https://api.
semanticscholar.org/CorpusID:38796293.

Liu, Z., Cheng, K.-T., Huang, D., Xing, E. P., and Shen,
Z. Nonuniform-to-uniform quantization: Towards ac-
curate quantization via generalized straight-through es-
timation. 2022 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pp. 4932–4942,
2021. URL https://api.semanticscholar.
org/CorpusID:244715141.

Long, X., Zeng, X., Ben, Z., Zhou, D., and Zhang, M.
A novel low-bit quantization strategy for compressing
deep neural networks. Computational Intelligence and
Neuroscience, 2020(1):7839064, 2020.

Luo, J.-H., Wu, J., and Lin, W. Thinet: A filter level
pruning method for deep neural network compression.
2017 IEEE International Conference on Computer Vision
(ICCV), pp. 5068–5076, 2017. URL https://api.
semanticscholar.org/CorpusID:11169209.

Luttrell, M., Wen, J., and Villasenor, J. D. Trellis-based rd
optimal quantization in h. 263+. In Proceedings 2000
International Conference on Image Processing (Cat. No.
00CH37101), volume 2, pp. 852–854. IEEE, 2000.

Masana, M., van de Weijer, J., Herranz, L., Bagdanov,
A. D., and Álvarez, J. M. Domain-adaptive deep
network compression. 2017 IEEE International Con-
ference on Computer Vision (ICCV), pp. 4299–4307,
2017. URL https://api.semanticscholar.
org/CorpusID:11067299.

Park, J.-H., Kim, Y., Kim, J., Choi, J.-Y., and Lee,
S. Dynamic structure pruning for compressing
cnns. ArXiv, abs/2303.09736, 2023. URL https:
//api.semanticscholar.org/CorpusID:
257622926.

Rastegari, M., Ordonez, V., Redmon, J., and Farhadi,
A. Xnor-net: Imagenet classification using binary con-
volutional neural networks. ArXiv, abs/1603.05279,
2016. URL https://api.semanticscholar.
org/CorpusID:14925907.

Shannon, C. E. A mathematical theory of communication.
The Bell system technical journal, 27(3):379–423, 1948.

Sharifi, K. and Leon-Garcia, A. Estimation of shape param-
eter for generalized gaussian distributions in subband
decompositions of video. IEEE Trans. Circuits Syst.
Video Technol., 5:52–56, 1995. URL https://api.
semanticscholar.org/CorpusID:41130607.

11

https://api.semanticscholar.org/CorpusID:2134321
https://api.semanticscholar.org/CorpusID:2134321
https://api.semanticscholar.org/CorpusID:2238772
https://api.semanticscholar.org/CorpusID:2238772
https://api.semanticscholar.org/CorpusID:13740328
https://api.semanticscholar.org/CorpusID:13740328
https://api.semanticscholar.org/CorpusID:52048008
https://api.semanticscholar.org/CorpusID:52048008
https://api.semanticscholar.org/CorpusID:231933836
https://api.semanticscholar.org/CorpusID:231933836
https://api.semanticscholar.org/CorpusID:231933836
https://api.semanticscholar.org/CorpusID:60356047
https://api.semanticscholar.org/CorpusID:60356047
https://api.semanticscholar.org/CorpusID:102353394
https://api.semanticscholar.org/CorpusID:102353394
https://api.semanticscholar.org/CorpusID:13556195
https://api.semanticscholar.org/CorpusID:13556195
https://api.semanticscholar.org/CorpusID:14089312
https://api.semanticscholar.org/CorpusID:14089312
https://api.semanticscholar.org/CorpusID:38796293
https://api.semanticscholar.org/CorpusID:38796293
https://api.semanticscholar.org/CorpusID:244715141
https://api.semanticscholar.org/CorpusID:244715141
https://api.semanticscholar.org/CorpusID:11169209
https://api.semanticscholar.org/CorpusID:11169209
https://api.semanticscholar.org/CorpusID:11067299
https://api.semanticscholar.org/CorpusID:11067299
https://api.semanticscholar.org/CorpusID:257622926
https://api.semanticscholar.org/CorpusID:257622926
https://api.semanticscholar.org/CorpusID:257622926
https://api.semanticscholar.org/CorpusID:14925907
https://api.semanticscholar.org/CorpusID:14925907
https://api.semanticscholar.org/CorpusID:41130607
https://api.semanticscholar.org/CorpusID:41130607

BackSlash: Rate-Constrained Optimized Training of Large Language Models

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Ham-
bro, E., Azhar, F., Rodriguez, A., Joulin, A., Grave,
E., and Lample, G. Llama: Open and efficient
foundation language models. ArXiv, abs/2302.13971,
2023. URL https://api.semanticscholar.
org/CorpusID:257219404.

Wang, K., Liu, Z., Lin, Y., Lin, J., and Han, S. Haq:
Hardware-aware automated quantization with mixed pre-
cision. 2019 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pp. 8604–8612,
2018a. URL https://api.semanticscholar.
org/CorpusID:102350477.

Wang, P., Hu, Q., Zhang, Y., Zhang, C., Liu, Y., and Cheng,
J. Two-step quantization for low-bit neural networks.
In 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 4376–4384, 2018b. doi: 10.
1109/CVPR.2018.00460.

Wang, Y., Xu, C., Xu, C., and Tao, D. Beyond fil-
ters: Compact feature map for portable deep model.
In International Conference on Machine Learning,
2017. URL https://api.semanticscholar.
org/CorpusID:29145201.

Wen, J. and Villasenor, J. Structured prefix codes for quan-
tized low-shape-parameter generalized gaussian sources.
IEEE Transactions on Information Theory, 45(4):1307–
1314, 1999. doi: 10.1109/18.761289.

Wien, M. High efficiency video coding. Coding Tools and
specification, 24:1, 2015.

Xia, C.-G., Tsang, D. H.-K., and Lau, V. K. N. Struc-
tured bayesian compression for deep neural networks
based on the turbo-vbi approach. IEEE Transac-
tions on Signal Processing, 71:670–685, 2023a.
URL https://api.semanticscholar.org/
CorpusID:257050720.

Xia, F., Jin, J., Meng, L., Ding, F., and Zhang, H. Gan-
based image compression with improved rdo process. In
International Conference on Image and Graphics, pp.
361–372. Springer, 2023b.

Xu, D., Ouyang, W., Wang, X., and Sebe, N. Pad-net:
Multi-tasks guided prediction-and-distillation network for
simultaneous depth estimation and scene parsing. 2018
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 675–684, 2018. URL https://api.
semanticscholar.org/CorpusID:21670200.

Zhai, P., Guo, K., Liu, F., Xing, X., and Xu, X.
Lapp: Layer adaptive progressive pruning for com-
pressing cnns from scratch. ArXiv, abs/2309.14157,

2023. URL https://api.semanticscholar.
org/CorpusID:262459258.

Zhang, Z., Lu, G., Liang, H., Tang, A., Hu, Q., and Song,
L. Efficient dynamic-nerf based volumetric video cod-
ing with rate distortion optimization. arXiv preprint
arXiv:2402.01380, 2024.

Zhou, S., Ni, Z., Zhou, X., Wen, H., Wu, Y., and
Zou, Y. Dorefa-net: Training low bitwidth convo-
lutional neural networks with low bitwidth gradients.
ArXiv, abs/1606.06160, 2016. URL https://api.
semanticscholar.org/CorpusID:14395129.

Zhu, C., Han, S., Mao, H., and Dally, W. J.
Trained ternary quantization. ArXiv, abs/1612.01064,
2016. URL https://api.semanticscholar.
org/CorpusID:224893.

12

https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:102350477
https://api.semanticscholar.org/CorpusID:102350477
https://api.semanticscholar.org/CorpusID:29145201
https://api.semanticscholar.org/CorpusID:29145201
https://api.semanticscholar.org/CorpusID:257050720
https://api.semanticscholar.org/CorpusID:257050720
https://api.semanticscholar.org/CorpusID:21670200
https://api.semanticscholar.org/CorpusID:21670200
https://api.semanticscholar.org/CorpusID:262459258
https://api.semanticscholar.org/CorpusID:262459258
https://api.semanticscholar.org/CorpusID:14395129
https://api.semanticscholar.org/CorpusID:14395129
https://api.semanticscholar.org/CorpusID:224893
https://api.semanticscholar.org/CorpusID:224893

