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Abstract

Humans are often modeled as rational actors by
interactive agents when they are in fact frequently
observed to make biased decisions. This erro-
neous assumption may cause an agent’s model
of the human to fail, especially when interaction
occurs in bias-inducing settings that prompt risky
decisions. To address this, this paper formulates
a risk-sensitive multi-agent coordination problem
and presents the novel Risk-Sensitive Theory of
Mind (RS-ToM) framework that allows an au-
tonomous agent to reason about and adapt to a
partner of unknown risk-sensitivity. In simulated
studies, we show that an agent with an RS-ToM is
able to better coordinate with such a partner when
compared to an agent that assumes their partner
is rational. Thus, we observe significant improve-
ments to team performance, coordination fluency,
compliance with partner risk-preferences, and pre-
dictability. The presented results suggest that an
RS-ToM will be able to model and plan with part-
ners that exhibit these risk-sensitive biases in the
real world.

1. Introduction
Autonomous agents have traditionally modeled their hu-
man partners as noisy-rational actors (Baker & Tenenbaum,
2014) and think in approximately the same way that ma-
chines do. While convenient, this can be an erroneous as-
sumption as humans often display behavior that systemically
deviates from rational strategies. This is referred to as bi-
ased decision-making (Kahneman & Tversky, 1974). Most
relevant to the proposed work, humans tend to be either
irrationally optimistic (i.e., risk-seeking) or pessimistic (i.e.,
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Figure 1. Illustration of a (robot) agent reasoning about how its
(human) partner may hold irrationally optimistic or pessimistic
perceptions about entering a puddle, where they risk slipping and
losing their held item, and the best way to align its strategy to
improve team coordination in the Risky Overcooked task.

risk-averse) about their prospects when faced with a risky
decision (Kahneman & Tversky, 2013). For example, con-
sider the task in Fig. 1 which demonstrates two strategies.
An optimistic human would likely prefer the purple strategy
that risks traversing puddle states since optimism discounts
the negative consequence of slipping. Conversely, a pes-
simistic human would likely prefer the orange strategy and
take an unnecessarily long detour to avoid any risk at all. An
autonomous agent that can reason about these preferences
can then deploy strategies that is best aligned with (biased)
human values to improve coordination.

Humans are said to have risk-sensitive preferences that vio-
late axioms of rational decision-making (Briggs, 2023) that
noisy-rationality relies upon. When violated, this leads to
the inability for an agent to understand human preferences
and accurately predict their actions. Thus, team perfor-
mance can suffer when inadequate consideration of human
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Risk-Sensitive Theory of Mind

risk-sensitivity is given in settings that prompt such biases to
occur (Kwon et al., 2020). Consideration of risk-sensitivity
may also impact interpersonal dynamics like trust (Smith
& Zhang, 2025), a critical feature of human-autonomy in-
teraction (HAT). In fact, risk-sensitivity was chosen as the
target for improving an agent’s model of their partner due
to its unique connection to trust: trust requires both risk and
truster (human) vulnerability to be present (Lee & Moray,
1992). Therefore, every trusting situation can prompt risk-
sensitive biases to occur. Automation that is then able to
infer and reason about this relationship may then be af-
forded a more nuanced approach to closing the loop with
trust calibration in HAT.

Motivated by these opportunities from improving upon the
assumption of noisy-rationality, this paper formulates a risk-
sensitive multi-agent coordination problem where an au-
tonomous agent must coordinate with a partner of unknown
risk-sensitivity. We then attempt to solve this problem by
reasoning about the partner’s biased preferences as different
than our own, referred to as having a Theory of Mind (ToM)
(Devin & Alami, 2016), and having the agent align with its
partner’s preferences. An ToM classically reasons over a dis-
crete set of intentions or subtasks (Wu et al., 2021) as a com-
pact way to define preferences within the context of a single
task. We take a more abstract perspective that can ubiqui-
tously model preferences in any risky task on a continuous
spectrum by varying model parameters. Therefore, when
specifically reasoning about the partner’s risk-sensitive pref-
erences, we refer to this as an Risk-Sensitive Theory of
Mind (RS-ToM). Here, we seek to evaluate 1) how to
overcome learning challenges of risk-sensitive coordination
problems in complex, multi-agent settings, 2) what, if any,
improvements to team coordination are present in contrast
to the aforementioned assumption of noisy-rationality, and
3) what are the implications of the simulated results on HAT
in terms of team coordination and trust?

Related Works. An RS-ToM draws inspiration from risk-
aware control settings that bound an agent’s future exposure
to risk by applying pessimistic risk measures like condi-
tional value-at-risk (CVaR) (Hakobyan et al., 2019; Tan
et al., 2022). More closely related to the proposed work is
the subset of approaches that apply more generalized risk
measures like Cumulative Prospect Theory (CPT) that better
align with empirical observations of human risk-sensitivity
(Tversky & Kahneman, 1992). Works that apply CPT in
sequential decision tasks tend to impart prototypical risk-
sensitivity onto an agent such that it behaves more “human-
like” and its actions can be better understood by humans
(Ramasubramanian et al., 2021; Prashanth et al., 2016).
Closest in formulation to an RS-ToM, the authors of (Danis
et al., 2023) applied CPT in a multi-agent setting using Nash
Q-Learning to generate risk-sensitive joint strategies in a
simple grid-world navigation task.

While these approaches are a good step towards better
aligning autonomy and biased human values, they all train
policies under the median CPT parameter estimates from
(Tversky & Kahneman, 1992) which generally describe risk-
averse behaviors. Thus, in practice, they align with a single
type of risk-sensitivity prescribed to the human and emulate
a single, fixed mode of bias. This fails to capture a powerful
aspect of CPT that distinguishes it from other measures like
CVaR: CPT can model a variety of risk-sensitive modes
including risk-seeking tendencies. This may be important
to consider as human risk-sensitivity can vary between in-
dividuals and contexts (Kahneman & Tversky, 2013) and
learned coordination strategies can drastically change based
on how CPT is parameterized (Ferreira et al., 2021). Thus,
an agent afforded the ability to reason over several modes
of risk-sensitive behaviors (i.e. has an RS-ToM) can adapt
online to different contexts and personalize on an individual
level during interaction.

Works on personalized risk-sensitive models are limited. In
(Kwon et al., 2020), the authors collected a data-prior to
formulate a personalized model of human risk-sensitivity
with CPT in a collaborative cup stacking task. Notably, they
showed that a robot endowed with a personalized model can
improve team performance and perceived trustworthiness
of the robot by better aligning with risk-sensitive prefer-
ences. Similarly, (Sun et al., 2019) learned CPT-based
utility functions using inverse reinforcement learning (IRL)
in a roundabout driving task. Constraining IRL with learned
CPT parameters unlocks personalized explanations of irra-
tional behaviors not available under noisy-rationality that
lead to improved human-prediction accuracy and coordina-
tion. Alternatively, the authors in (Cheng et al., 2023) used
interactive querying to estimate CPT parameters. The main
limitation that these works share is thr reliance on a human
data-prior which may be expensive or infeasible to collect,
especially when it requires human risk to be present. Addi-
tionally, these approaches can only account for differences
between humans, not how each’s risk-sensitivity changes
between contexts or over time.

Lastly, works on value-based multi-agent reinforcement
learning (MARL) with CPT tend to implement tabular al-
gorithms (e.g., value iteration (Ferreira et al., 2021; Kwon
et al., 2020), Q-learning (Danis et al., 2023), or SARSA
(Ramasubramanian et al., 2021)) to solve low-dimensional
learning problems. This limits task complexity and the abil-
ity to learn in real-world settings. Thus, there is a gap in
existing value-based methods that are able to solve these
problems as deep learning approaches are not well studied
in this space.

Our Approach.

As prior works have shown that adaptation to human risk-
preferences can benefit interaction, this paper focuses on
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algorithmic contributions that address the aforementioned
challenges (i.e., data prior requirements to enable personal-
ization and the limited task complexity afforded with tabular
methods) where we seek to validate with real humans in
future studies. To the best of the authors’ knowledge, we are
the first to formulate an RS-ToM that affords adaptation to a
partner with unknown risk-sensitivity in a zero-shot fashion
and without the need for costly data-priors. We achieve
this by first drawing from existing work in risk-sensitive
reinforcement learning (Danis et al., 2023) to train several
candidate policies conditioned on a space of CPT param-
eters. This is a similar goal to using IRL to recover sub-
optimal value functions (Rothkopf & Dimitrakakis, 2011;
Bergerson, 2021) where we instead take the forward ap-
proach that avoids data requirements by prescribing agents
a CPT-based evaluation of task objectives. Then, when
interacting with a partner of unknown risk-sensitivity, an
agent will infer which candidate policy best describes the
current partner’s behavior and deploy the appropriate policy
in response. Doing so, we enable the autonomous agent to
align its preferences with different types of risk-sensitivity
so that it can better coordinate. To that end, the contributions
of this paper are as follows:

1. To our knowledge, we are the first to integrate CPT into
deep multi-agent risk-sensitive reinforcement learn-
ing (MARSRL) to induce biased behavior in complex
risky-decision tasks.

2. We formulate a novel memory buffer and apply a level-
k quantal response equilibrium to overcome tractability
issues in this deep multi-agent setting with CPT.

3. We then leverage our MARSRL algorithm to enable
an RS-ToM and demonstrate its ability to achieve su-
perior team performance, coordination fluency, risk
taking alignment, and partner predictability relative
to a noisy-rational baseline when interacting with a
partner of unknown risk-sensitivity in our novel Risky
Overcooked benchmark task.

The remainder of this paper is as follows. Section 2 pro-
vides a formulation of the RS-ToM. Section 3 details the
experimental procedure including description of the Risky
Overcooked task (Sec. 3.1), analysis methods (Sec. 3.2), and
results (Sec. 3.3). Results and implications are discussed in
Sec. 4 and concluding remarks are given in Sec. 5.

2. Risk-Sensitive Theory of Mind
An RS-ToM is derived of three components. First, we will
define CPT as the risk-measure that induces risk-sensitive
evaluation of prospects. Next, we will define the approach
to the MARL problem and how it is extended to MARSRL
using CPT where we leverage knowledge of the transition

model and a novel replay memory for improved tractabil-
ity. The last component is what affords an agent with an
RS-ToM and will describe inference over and response to a
space of pre-trained risk-sensitive policies. The remainder
section will formulate these three steps while a high-level
summary of this framework can be found in Fig. 2.

2.1. Cumulative Prospect Theory

Let X denote the support of a discrete random variable
with probability pi of having utility Xi s.t. {Xi, pi} ∈ X .
Following (Tversky & Kahneman, 1992), we then define
the transformations on utility and probability.

Definition 2.1. Let u+(·) and u-(·) denote the utility trans-
formations applied to what the agent perceives as gains and
losses, respectively, and be defined as:

u
+
(Xi) = (Xi − b)η

+

u-(Xi) = ℓ|Xi − b|η
- (1)

where η+, η- ∈ [0, 1] account for exponential discounting
of utility as it moves farther from the reference point b ∈
(−∞,∞) and ℓ ∈ [0,∞) asymmetrically weights losses.

Definition 2.2. Let w+(·) and w−(·) denote the probability
transformations applied to what the agent perceives as gains
and losses, respectively, and be defined as:

w
+
(pi) =

pδ
+

i

(pδ
+

i + (1− pi)δ
+
)1/δ

+

w-(pi) =
pδ

-
i

(pδ
-

i + (1− pi)δ
-)1/δ-

(2)

where δ+, δ- ∈ [0, 1] apply inverted S-shaped transforma-
tions on probabilities that overestimates small probabilities
and underestimates large probabilities. Examples of these
transformations and more intuitive descriptions of each pa-
rameter can be found in Appendix B.1.

In order to deal with more than two prospects, expectations
are carried out over the cumulative probability distributions.

Definition 2.3. Let X be arranged in increasing order ofXi

s.t. X1 ≤ X2 ≤ ... ≤ XK and l be the index where Xi ≤ b.
Also, define Fk :=

∑k
i=1 pi ∀ k ≤ l and

∑K
i=k pi ∀ k > l

as the cumulative probability distributions for gains and
losses, respectively. We then define CPT-expectation of X
as ρcpt(X ):

ρcpt(X ) =( K−1∑
i=l+1

u
+
(Xi)

(
w

+
(Fi)− w

+
(Fi+1)

)
+ u

+
(XK)w

+(
pK

))

−
(
u-(X1)w

-(p1) +
l∑

i=2

u-(Xi)(w
-(Fi)− w-(Fi−1)

)
(3)
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Figure 2. Illustration of the RS-ToM framework. The offline MARSRL algorithm trains a space of risk-sensitive candidate policies
conditioned on the CPT-value transformation ρcpt(τ ). The red lines show the novel replay memory that stores all possible next states s′i
and their probability pi. During the update of Qcpt, the value Vcpt(ŝ

′
i) of each prospective state ŝ′i is calculated from the expectation over

the level-k quantal response equilibrium (QRE) policy and the forward pass of the DDQN Qcpt(ŝ
′
i). An agent of arbitrary risk-sensitivity

can be generated by tuning the CPT parameters that defines the transformation in the red shaded region. Thus, any number of candidate
policies can be trained such that an agent can reason about its partner’s risk-sensitivity online, in a zero-shot fashion, and without the need
for prior interaction data by performing a belief update over the space of pretrained candidates.

where u+, u- : R → R+ are continuous, have a bounded
moments s.t. u+(Xi) = 0 ∀ Xi ≤ b and u-(Xi) =
0 ∀ Xi > b , and are monotonically non-decreasing oth-
erwise. Also, we assume the probability weighting func-
tions w+, w- : [0, 1] → [0, 1] are Lipschitz continuous
(Prashanth et al., 2016) and non-decreasing such that they
satisfy w+(0), w-(0) = 0 and w+(1), w-(1) = 1.

2.2. MARSRL Algorithm

Definition 2.4. An MDP is the tuple M := (S,A,P, r)
where S : Sk × S-k is a finite set of joint-states for agent k
and their partner -k, A : Ak ×A-k is the finite set of joint-
actions that are sampled from the joint-policy π : πk × π-k,
P(s′ | s, a) : S ×A× S is the probability of transitioning
to state s′ when action a is taken in state s, and r(s, a) is
the stochastic reward function.

The goal of standard reinforcement learning is then to find a
policy π that maximizes an objective

∑T
t=0 E[γtr(s, a) | π]

over some time horizon T where γ ∈ (0, 1) is a discounting
factor weighting more immediate rewards as more important
(Sutton et al., 1998). We specify a policy by the quality of
a state-action pair Q(s, a) where π(s, a) ∝ exp(λQ(s, a))
and λ defines the decision temperature of a policy. Given
that the value of a state can be written as V (s | π) =∑

a∈A π(a | s)Q(s, a), we can define Q(s, a) as:

Q(s, a) = r(s, a) + γV (s′ | π) (4)

Given that states stochastically evolve according to P(s′ |
s, a), we can generalize (4) to the following expected value

over all possible next states s′i ∈ S:

Q(s, a) = Es′ [r(s, a) + γV (s′ | π)]

= r(s, a) + γ
∑
s′i∈S

P(s′i | s, a)V (s′i | π) (5)

We can then apply dynamic programming methods to itera-
tively update Q(s, a) such that:

Q(s, a)←Q(s, a) + α
(
τ −Q(s, a)

)
(6)

where τ := r(s, a) + γ
∑

s′i∈S P(s′i | s, a)V (s′i | π) is
refereed to as the temporal difference target (TD-Target) and
α is the learning rate. In multi-agent settings, we recover
the joint-policy π(a | s) = (πk, π-k), where p(a | s) =
πk(ak | s)π-k(a-k | s), by solving each transition as a
single-stage, common-payoff game Q(s) using the Quantal
Response Equilibria (QRE) (see Appendix A.4 for details).
This reinforcement learning algorithm and its following risk-
sensitive version can be arbitrarily extended to n > 2 agents
with appropriate factorization of the state-action space and
equilibrium solution.

CPT-Value. The previous formulation can now be modified
with CPT by treating the TD-target τ as the random variable
Xi in (3) by defining:

τi = r(s, a) + γV (s′i | π)
pi = P(s′i | s, a)

(7)

where pi is the chance of observing τi as the TD-target and
i is the index of each possible next state s′i given action a
was taken in state s. While other works employ a sample-
based approximation of CPT-value to maintain a model-free
approach (Ramasubramanian et al., 2021; Danis et al., 2023;
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Prashanth et al., 2016), we instead leverage knowledge of
the environment for improved tractability. Thus, we directly
compute the CPT-value ρcpt(τ ) over the finite set of possi-
ble TD-targets τ s.t. {τi, pi} ∈ τ using (3) and rewrite the
update from (6) in its risk-sensitive form:

Qcpt(s, a)← Qcpt(s, a) + α
(
ρcpt(τ )−Qcpt(s, a)

)
(8)

Deep Learning: While similar work has been conducted
in simple, multi-agent settings using tabular methods (Da-
nis et al., 2023; Ferreira et al., 2021) and more complex,
single-agent settings using deep learning methods (Rama-
subramanian et al., 2021; Rajabi et al., 2022), our work
focuses on complex multi-agent tasks which calls for deep
learning. We therefore solve (8), by applying Algorithm 1
which is based on a Double Deep Q-Network (DDQN) (van
Hasselt et al., 2016) that keeps track of separate policy Qθ

cpt

and target networks Qϕ
cpt defined with weights on θ and ϕ,

respectively. Selected hyperparamters for learning can be
found in Appendix A.3.

However, CPT induces additional computational challenges
in a deep setting. In contrast to a rational expectation, CPT
increases complexity by a factor of 3n+n2+nlog(n) where
n is the number of prospects included in the expectation1.
Also, CPT-value requires computation of all possible next
states for each minibatch sample2 which is only exacerbated
by computation of equilibrium solutions. To overcome this,
we first apply the QRE as an efficient approximation of a
mixed Nash equilibrium solution. We then formulate a novel
replay memory D that, instead of storing the traditional ob-
served transition (s, a, r, s′), stores all transition prospects
in the form of (s, a, r, s′) where {s′i, pi} ∈ s′ is all possi-
ble next-states. Thus, given we update every timestep, we
compute possible next states once instead of N times.

To further aid tractability in the later Risky Overcooked
task, we apply curriculum learning and reward shaping
strategies (see Appendix A.2 for details) to deal with sparse
rewards. Moreover, due to the symmetrical roles of the task,
we leverage self-play methods (i.e. single Q-function for
both agents) where a transition prospect is stored from each
agent’s perspective D ← (s, a, r, s′)k ∀ k at every timestep
to improve sample efficiency.

We establish the convergence of Algorithm 1 by showing
the update of Qcpt will be a contraction given appropriate
choice of learning parameters. Also, we rely on a conserva-
tive upper-bound assumption on ℓ that ensures convergence
of the Bellman operator (see Appendix A.5 for details).

1A rational expectation has linear complexity n whereas sorting
prospects has at best nlog(n) complexity (Alkharabsheh et al.,
2013), calculation of Fk is n2, and (1)-(3) all have n complexity.

2This leads to N − 1 more next state computations than tabular
methods per Q-value update where N is the minibatch size.

Algorithm 1 Deep MARSRL with CPT
Input: exploration rate ϵ < 1, soft update rate α << 1,
and parametrized CPT-value functional ρcpt(·)
Initialize: Policy network Qθ

cpt, target network Qϕ
cpt, and

replay memory D = ∅
for episode = 1, ...,M do

Observe initial state s
while t ≤ T do

Sample action a ∼ πcpt(s)
Observe next state s′ and reward r
Get next state prospects s′ := {{s′i, pi} : ∀s′i ∈ S}
Store transitions in memory D ← (s, a, r, s′)k ∀k
Sample a minibatch of N transitions from D
for all (ŝ, â, r̂, ŝ′)n ∈ minibatch do
τ = {{r̂ + γV ϕ

cpt(ŝ
′
i|πcpt), pi} : ∀{ŝ′i, pi} ∈ ŝ′}

Ln := (ρcpt(τ )−Qθ
cpt(ŝ, â))

2

end for
Perform gradient decent on θ with 1

N

∑N
n=1 Ln

Soft target update ϕ← σθ + (1− σ)ϕ
s← s′

end while
end for

2.3. Inference

The inference step is what imparts the agent with an
RS-ToM as it allows it to track its partner’s risk-sensitive
preferences independently from its own. Bayesian infer-
ence is performed over the past 10 observations O ={
{s, a-k}t−10, ..., {s, a-k}t

}
to form a belief b(·) about

which joint-policy π ∈ π the human -k is following:

b(π | O)← P(O | π)b(π)∑
π∈π

P(O | π)b(π)
(9)

where b(π | O) is the updated belief over all possible joint-
policies after observing O. Here, we add a decaying weight
to the likelihood P(O | π) of observations further in the
past3. The artificial agent k then discretely adopts joint-
strategy it believes is most likely s.t. πk ∈ argmaxπ b(π|O).
This is what frames the approach to coordination as a risk-
sensitive alignment problem4.

3. Experiments
The following experiments investigate RS-ToM’s ability to
adapt to a partner of unknown risk-sensitivity. Due to the
novelty of an RS-ToM, there is a lack of feasible baseline
algorithms that can adapt to partner risk-sensitivity in a zero-

3This mirrors future human studies where recent observations
are more representative of possibly dynamic risk-preferences.

4More sophisticated methods such as (Wang et al., 2025) are
required for value alignment with n > 2 agents.
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shot manner in complex settings. This stems from existing
works for adapting to risk-sensitive preferences relying on
data-priors collected from a partner (Kwon et al., 2020; Sun
et al., 2019) and state of the art MARSRL algorithms (Da-
nis et al., 2023; Ferreira et al., 2021) not being tractable in
complex tasks like Risky Overcooked. However, we can
evaluate performance in contrast with the standard assump-
tion of noisy-rationality (RAT) to glean insight on expected
outcomes when interacting with real humans.

3.1. Risky Overcooked

While there exists tasks such as traffic control (Prashanth
et al., 2016) and multi-agent navigation (Danis et al., 2023;
Tian et al., 2021), there appears to be no standardized risky
decision benchmark that simultaneously incorporate shared
awareness (mental models), a strong interdependence be-
tween teammates, optional reliance on one’s partner, and
explicit risk from the environment. This gap in standardized
platforms is a common theme in HAT (Smith et al., 2024)
that we seek to address by proposing Risky Overcooked.
Risky Overcooked is an open-source, risky coordination
benchmark that extends the popular Overcooked environ-
ment (Carroll et al., 2019) by incorporating risky decisions
into team coordination.

In the standard Overcooked game, two agents must coor-
dinate their behaviors to cook soup as fast as possible by
completing three subtasks: 1) bring three onions to a pot
at which time the soup will begin cooking, 2) bring a plate
to the pot with a cooked soup to obtain a plated soup, and
3) bring the plated soup to a delivery window to receive a
reward of rsoup = 20. Agents cannot pass through each
other, can only carry one object at a time, and can choose to
place objects on any free counter space.

Overcooked task does not explicitly elicit risky decisions
from the environment. Therefore, we propose the modi-
fication seen in Fig. 1 where we add risky puddle states.
When an agent enters a risky state, they have a pρ chance
of slipping where they will lose whatever resource they are
holding. The rationale of how values for pρ are selected can
be found in Appendix B.2. This frames the consequence
of slipping as a forgone gain where we add a small time-
cost rtc = −0.2 at every timestep to elicit perceptions of
loss if soups are not cooked fast enough. These risky states
are intended to induce diverging and unique strategies for
agents of different risk-sensitivities. Figure 3 shows how
risk-averse teams tend to pessimistically avoid puddle states
while risk-seeking teams optimistically traverse them (see
Appendix B.3 for more examples).

Due to risk-sensitivity presenting itself as a choice between
routes, we cannot rely on the mid-level action planners and
state featurizations (Carroll et al., 2019) commonly used
to simplify Overcooked. Instead, we are required to use

low-level actions and a lossless state (see Appendix A.1 for
details) that drastically increases complexity.

Design of Risky Overcooked layouts can be used to frame
coordination in two ways where we select one of each fram-
ing for later experiments. First, the risky/rely framing pro-
poses a choice between the level of acceptable risk and the
reliance between partners. This is achieved by designing
subtasks to require puddle state traversal or coordinate hand-
offs between agents. This framing couples risk-sensitivity
closely with trust, as reliance is a behavioral outcome of
trust (Lee & See, 2004), which makes it a promising setting
for future human experiments. In the selected Risky Coor-
dination Ring (RCR) layout, seen in the left half of Fig. 3,
agents can either pass items through the center counter space
to avoid all puddles (A and B in Fig. 3) or traverse puddles
to complete subtasks independently (C and D in Fig. 3).
Here, we see that a risk-averse strategy facilitates strong
reliance between partners by always passing objects due
to pessimistic perceptions of slipping while a risk-seeking
strategy favors avoiding costs of imperfect handoffs due to
optimistic perceptions.

Alternatively, the risk/detour framing proposes a choice
between the level of acceptable risk and the additional nav-
igation costs incurred by taking a detour around a puddle.
In the selected Risky Multi-Path (RMP) layout, seen in the
right half of Fig. 3, agents have three route choices: 1) a
direct and high-risk route that traverses two puddles, 2) a
slightly longer route that only requires traversal of one pud-
dle, or 3) a long detour that requires no risk to be taken as it
avoids all puddles. Here, we see that a risk-averse strategy
tends to avoid puddle traversal by incurring higher naviga-
tion costs (E5 and F in Fig. 3) while a risk-seeking strategy
prefers to incur additional risk in favor of more direct routes
(G and H in Fig. 3).

3.2. Analysis

A space of three joint-policy candidates π containing risk-
seeking πS , risk-neutral (i.e. rational) π0, and risk-averse
πA strategies are trained with the MARSRL algorithm us-
ing CPT parameters motivated by median estimates from
(Tversky & Kahneman, 1992) (see Appendix B.1 for further
description). We then evaluate the difference between an
agent with an RS-ToM and a RAT assumption when inter-
acting with a partner of unknown risk-sensitivity. We also
provide results contrasted against an Oracle baseline where
the ground truth risk-sensitivity of the partner is known
to show theoretically optimal results. The rest of this sec-
tion will describe the four measures used to evaluate these
experiments.

5Traversal of puddles is caused by the other agent blocking the
risk-averse route when picking up a dish.
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Figure 3. Illustration of successful generation of various joint strategies with the proposed MARSRL algorithm by showing the state
visitation frequencies of the onion and dish objects carried by either agent where higher frequencies are indicated by increasingly red
centroids in each tile. The top row shows the learned Averse πA strategy while the bottom row shows the Seeking πS strategy for both the
RCR and RMP layouts. Soup visitation frequencies (excluded) always follows a path that avoids puddles due to the high cost of slipping
being irrational, regardless of risk-sensitivity. The 2× 3 area in (G) shows the space where agents may freely pass by each other.

Team performance in the Risky Overcooked task will be
evaluated as the cumulative reward of the team Σr. The
time-cost penalty rtc is removed during calculation for sim-
pler analysis where Σr is always positive.

Coordination fluency is the “coordinated meshing of joint
activities of members of a well-synchronized team” and
will be evaluated with concurrent activity C-ACT (Hoffman,
2019) defined as the proportion of task time where both
agents are active simultaneously. A high C-ACT indicates
a fair work balance and good synchronization of strategies.
In Risky Overcooked, an agent is considered inactive while
remaining in the same state or during periods that result
in the return to a previous state without completion of a
subtask6.

The number of risks taken by the team Nrisk accounts for
how well an agent aligns to their partner’s risk-taking pref-
erences. When interacting with a human, they would likely
judge an agent’s strategy as inappropriate if the amount
of acceptable risk realized by the team is not properly cal-
ibrated to their perceptions. For example, a risk-averse
human may view an agent taking the optimal amount of risk
as “too risky” while a risk-seeking human may view it as
“too safe.”

6This accounts for an agent moving back and forth or having to
retrace their steps in order to get out of the way of their partner in
a tight corridor. In both cases, the behavior is not productive and
is equivalent to an agent waiting in the same state.

The predictability of the risk-sensitive partner PH is ob-
served to evaluate the afforded ability for the agent to pre-
dict future actions of the risk-sensitive partner and plan
coordinated strategies. This is defined as the probability
that the risk-sensitive partner takes the maximum likelihood
action under the agent’s (inferred) model of partner’s risk-
sensitivity. We are primarily interested in improving the
predictability of the risk-sensitive partner and therefore do
not evaluate their predictability of the other agent.

3.3. Results

The mean values of N = 1000 trials for the Oracle,
RS-ToM, and RAT algorithms interacting with a Seeking
or Averse partner across the RCR and RMP layouts can be
found in Table 1. Bold values indicate the superior perfor-
mance between RS-ToM and RAT.

A 2× 2 ANOVA, with factors of 1) partner risk-sensitivity
(Seeking and Averse) that is unknown to the ego agent and
2) the ego agent’s algorithm (RS-ToM or RAT), was used to
evaluate significance within each layout. Both main effects
and all interaction effects were significant for all measures.
A Tukey post-hoc test revealed all but five significant com-
parisons that will be mentioned when relevant. Unless stated
otherwise, all tests had a significance level of p < 0.02. As
ideal values of measures depends on the layout, results are
normalized with percent change from RAT to RS-ToM for
easier discussion.
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Table 1. Numerical Results from Risky-Overcooked Experiments
Σr C-ACT Nrisk PH

Layout Partner Oracle RS-ToM RAT Oracle RS-ToM RAT Oracle RS-ToM RAT Oracle RS-ToM RAT

RCR Seeking 151 150 98 0.64 0.64 0.44 25.60 25.93 26.96 0.76 0.76 0.41
Averse 146 146 70 0.48 0.47 0.26 0.00 0.02 8.42 0.75 0.75 0.26

RMP Seeking 125 122 33 0.40 0.40 0.15 73.08 72.59 29.84 0.65 0.65 0.26
Averse 100 101 44 0.51 0.51 0.22 14.79 15.07 35.24 0.65 0.65 0.33

Comparison to Oracle. In all experiments, the RS-ToM
algorithm performed nearly identically to the Oracle. This is
due to the RS-ToM’s inference correctly converging to the
ground truth quickly as seen by Fig 4. The RAT algorithm
saw significant losses in all cases except for Nrisk in the
RCR with a Seeking partner. Rationale for this is explained
in the later “Risk Taking Alignment” results.

Figure 4. Bayesian inference b(π | O) converging to correct belief
about a risk-seeking πS (top row) or risk-averse πA (bottom row)
partner in RCR and RMP layouts.

Team Performance. On average across both risk-sensitive
partners, an RS-ToM improved upon the reward Σr of RAT
by a factor +77% in RCR and +189% in RMP. In RCR,
gains were more apparent with an Averse partner (+109%)
than a Seeking one (+53%) while the inverse is true in RMP
with a percent gain of +127% and +273% for Averse and
Seeking partners, respectively. The discrepancy in RCR is
primarily caused by the risk/rely framing where failure to
pass objects through the center counter space (A and B in
Fig 3) comes at a high cost which affords greater opportunity
for performance gains with an RS-ToM. Discrepancy in
RMP can be attributed to added congestion of risk-seeking
paths due to little utilization of the open 2 × 3 space that
allows partners to pass each other (see G in Fig 3). Post-hoc
testing revealed a non-significant (p = 0.06) difference in
rewards between an Averse and Seeking partner with an
RS-ToM in RCR but a significant difference in RMP.

Coordination Fluency. On average across all experiments,
an RS-ToM improved upon RAT by a factor of 104%. Gains
for both partners were larger in RMP (+150%) than in RCR

(+59%) which is best attributed as a product of the layout de-
sign. Notably, there was larger gains in RCR with an Averse
partner (+81%) than with a Seeking one (+44%) due to the
Averse strategy attempting to avoid puddles through coor-
dinated handoffs to the partner (A and B in Fig 3) that are
never completed in RAT. Thus, the Averse partner is left
with high inactivity when waiting for this to occur.

Risk Taking Alignment. The number of risks taken by the
team Nrisk shows that an RS-ToM allows the risk-sensitive
partner to follow their preferred risk-taking tendencies. This
can be seen by the near identical Nrisk between RS-ToM
and Oracle (i.e. the ideal risk-taking tendency to the part-
ner). In contrast to Oracle, RAT decreased Nrisk when
interacting with a Seeking partner and increased Nrisk with
an Averse partner. The only exception is for RCR with a
Seeking partner which is attributed to discoordination in a
confined space requiring backtracking into puddles in a way
not present in RMP.

Predictability. The predictability of the risk-sensitive part-
ner PH over doubled (+121%) with an RS-ToM on average
across all experiments. In RCR, RAT showed more diffi-
culty predicting an Averse partner’s action while the Seeking
partner is more difficult to predict in RMP. Here, PH saw
+81% and +188% increase for Seeking and Averse partners,
respectively, in RCR and a +147% and +97% increase in
RMP. There were non-significant post-hoc test comparisons
between Seeking and Averse partners when using RS-ToM
in both the RCR (p = 0.42) and RMP (p = 0.82) layouts.
This is attributed to equal decision temperatures λ for Seek-
ing and Averse policies once the correct policy was inferred.

4. Discussion
The experiments with an RS-ToM show the ability to learn
diverse, risk-sensitive behaviors in high-dimensional tasks
and the ability to correctly adapt to an agent of unknown
risk-sensitivity online. This enables us to build upon prior
works that support risk-sensitive human interaction by af-
fording interaction more realistic scenarios (i.e., complex
tasks and personalization without a data prior). As CPT
parameters describe different biases, this also provides us
with an interpretable method for generating arbitrary risk-
sensitive behavior in multi-agent, risky decision settings.
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We then validate the RS-ToM by comparing it to the con-
ventional assumption of noisy-rationality. We evaluated
these algorithms in two different cases (i.e., interacting with
risk-seeking or risk-averse partner) where the partner’s risk-
sensitivity was unknown to the agent. Results ubiquitously
show that interaction can be improved with RS-ToM and
that the standard assumption of rationality in RAT is insuffi-
cient for effective coordination to occur. The near identical
performance of an RS-ToM and Oracle indicates that the
inference step was able to quickly converge to the correct
belief about partner risk-sensitivity. Thus, the RS-ToM was
able to recover the optimal policy effectively allowing com-
parable performance to the ideal strategy.

While these results are performed with an artificial partner,
insights on the consequences of an RS-ToM when interact-
ing with real humans may be extrapolated. Similar transfer
between simulation and human studies is seen in (Smith &
Zhang, 2025), albeit with a less dramatic effect due to the
human’s ability to adapt to misaligned risk-sensitive models.
The results showed that RAT tended to cause risk taking
strategies that were contrary to the partner’s risk preferences
(i.e., Averse saw an increase in Nrisk while Seeking saw a
decrease) whereas RS-ToM was able to quickly infer and
align to its partner’s preferences to avoid this. Consequently,
an RS-ToM would likely avoid deploying strategies that
could be perceived as inappropriate (i.e., “too risky” or “too
safe”) in a way that could damage interpersonal features
like trust (Lee & Moray, 1992). The improvements to coor-
dination fluency with an RS-ToM is also likely to promote
appreciation and confidence by the human (Hoffman, 2019).
Thus, we suspect that an agent with an RS-ToM would be
perceived as a better teammate.

Limitations and Future Work. The RCR and RMP layouts
were selected to maximize diversity across framings. How-
ever, the observed context-dependent effects may suggest
that there are unobserved risk-sensitive behaviors that may
emerge with novel layout designs. Moreover, although RCR
and RMP were sufficient for demonstrating the RS-ToM
algorithm in simulation, future studies with real human
partners may want to deploy a wider variety of layouts to
ensure that their unique risk-sensitivity has the opportunity
to present itself in a significant way.

While we believe that modeling human risk-sensitivity is an
essential factor in risky settings, such behaviors could feasi-
bly be described by alternative human models like limited
planning horizon due to the discrete set of strategies in Risky
Overcooked (i.e., traverse puddle, take a detour, or handoff
object). This overlap will likely fade as biases become more
differentiable either through performance of multiple Risky
Overcooked layouts or with increased decision complexity.
However, a multi-modal approach (Kryven et al., 2024) to
modeling human bias may be an valuable future direction.

However, the discrete set of Risky Overcooked strategies
is helpful in clearly showing RS-ToM’s ability to adapt
to risk-sensitive partners, as three candidate policies are
sufficient for describing these high-level behaviors. Never-
theless, increasing the resolution of the candidate policies
may be helpful for scaling to tasks with more a diverse set of
risky-decisions (e.g., continuous control problems affording
continuous variation in risk-sensitive strategies). Although
an RS-ToM can be arbitrarily scaled with additional can-
didate policies as the task demands, meta-model methods
that can continuously interpolate between candidates (Hong
et al., 2023) or transfer learning (Weiss et al., 2016) may be
a promising direction for increasing RS-ToM resolution.

5. Conclusion
Standard approaches to HAT model the human as being
noisy-rational which can lead to poor coordination when
they are subject to risk-sensitive biases. To address this,
our work presents a novel RS-ToM framework that gener-
ates personalized adaption to a partner of unknown risk-
sensitivity without the need for a data prior. In a simulated
study, we show that an RS-ToM is able to better align itself
with its partner’s risk preferences and coordinate its behav-
ior in a way that significantly outperforms noisy-rationality.
Thus, these results imply that an agent endowed with an
RS-ToM would be able to facilitate more effective teaming
when paired with real humans.

Software and Data
Training of policies used in the RS-ToM was conducted
in Python 3.11 using PyTorch 2.3.1’s GPU acceleration.
Implementation of the Risky Overcooked environment,
the RS-ToM algorithm, and pre-trained models can be
found at https://github.com/ASU-RISE-Lab/
risky_overcooked/.
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A. Implementation
A.1. State and Action Space

The learning problem in Overcooked is commonly simplified in two ways (Carroll et al., 2019). First is by using mid-level
action planners that allow agents to make decisions over high-level actions such as get an onion and serve the dish, and rely
on algorithms such as A∗ search to solve the low-level routing problem. The problem is further simplified by creating a
custom state featurization that specifies a state with distance (dx, dy) to the closest onion, dish, soup, and their dispensers.
Therefore, we lose information on all other objects in the environment. Both of these approaches are incompatible with
Risky Overcooked as the low-level routing problem that A∗ solves is where the risky decision is present (e.g., traverse
puddle or take a detour). Also, we need full observability of all objects in the environment as an risk-sensitive agent may
want to navigate to an object that is not the closest if a puddle is in the way.

We define the action space for each agent as Ak := {up, down, left, right, interact, wait} where the size of the joint-
action space is |A| = 36. Also, we formulate a lossless state encoding vector to enable full observability of the en-
vironment. This first consists of features describing each agent: location (x, y), a one-hot encoding of orientation
{up, down, left, right}, and a one-hot encoding of held object {onion, dish, soup}. As a result, the total length of the
feature vector describing both agents is 18.

Next, we have to encode objects that may be placed on any reachable counter space. Thus, every counter is given a one-hot
encoding of {onion, dish, soup} resulting in a total feature vector length of 3c where c is the number of reachable counters.

Lastly, we encode the status of each pot with a single value where we assign sequential pot status as {0 : empty pot, 1 :
contains one onion, 2 : contains two onions, 3 : contains three onions, 4 : soup is ready}. Thus, the total length of
the feature vector is z where z is the number of pots.

This lossless state encoding varies with the layout where the total length can be expressed as |s| = 18+3c+ z. This implies
that there may be scalability issues in extremely large environments, especially as more open counter spaces are added. For
the RCR and RMP layouts, we have |s| = 41 and |s| = 68, respectively.

A.2. Handling Sparse Rewards

Risky Overcooked is an even more sparsely rewarded environment than the original Overcooked task due to the possibility
of losing held objects. To address this during learning, we first apply a naive curriculum that consisted of learning the
following subtasks in order: 1) deliver the soup, 2) pick up the cooked soup from the pot, 3) grab the dish before picking up
the soup, 4) pot the third onion, 5) pot the second onion, 6) pot the first onion, and 7) full task. This curriculum is equivalent
to having the agents learn the task backwards such that the steps for obtaining the primary payoff r = 20 for delivering
the soup only requires one subtask to be learned where later subtasks are already solved. During sampling, a decaying
probability of sampling previous curricula was added so subtask strategies were not forgotten.

Also, a series of small, intermediate rewards are provided to agents upon completion of subtasks. This helps reduce the
sparsity of rewards in the environment and speeds up convergence of the MARSRL algorithm. A linearly decaying weight
is added to these shaping rewards that converges to 0 as training progresses. When an agent places an onion in a pot or picks
up a dish when a pot contains a finished soup, the agent will receive a r̃ = 3 reward. When an agent successfully picks up a
soup by bringing a plate to a pot with a finished soup, they receive a r̃ = 5 reward. As we attempt to explore behaviors
involving reliance and coordinated handoffs (i.e., risk/rely framing), we do not want to only reward the agent that completes
the subtasks and encourage greedy and independent behaviors. Conversely, if agents shared all shaped rewards, an agent
that did not participate in a subtask would receive frivolous reward signals that do not support effective learning. Thus, an
agent receives a shaped reward only if they participated in that subtask. For example, both agents will receive the shaped
reward if k picks up an onion and places it on an open counter so -k can pick it up and place it in the pot. However, k is
required to have interacted with the object relevant to the completed subtask at some point in order to be rewarded.

A.3. Hyperparameter Selection

An exhaustive grid search over the values in Table 2 was used to optimize model hyperparamters. The search was ran with a
rational agent in the RCR layout and final values were selected based on the model with the maximum mean reward over the
past 10 iterations to select for both optimality and stability of the policy. Selected hyperparamters used during training of
models are indicated by the bold values in Table 2.
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Table 2. Hyperparamters Tuning and Selection

Hyperparameter Value(s)

Discount factor (γ) {0.95, 0.97, 0.99}
Learning rate (α) {5e-3, 1e-3, 5e-4}
Target soft update rate (σ) {5e-3, 1e-3, 5e-4}
Minibatch size (N ) {128, 256}
Num. hidden layers {3, 5, 7}
Hidden layer size {128, 256}
Memory size {2e4, 5e4, 1e5}

A.4. Quantal Response Equilibrium

A QRE (McKelvey & Palfrey, 1995) is a game theoretic solution to multi-agent choice problems. Here, players choose
strategies using the expected utility of that strategy and assume that other players do the same. In other words, both players’
payoffs are computed conditionally on their beliefs about the probability distribution of the other player’s actions. This
creates a recursive set of beliefs where the QRE is obtained when utility functions converge as the level of recursion goes
to∞. Similarly, the QRE converges to a Nash equilibrium solution as the decision temperature λ → ∞ (Goeree et al.,
2020). However, humans do not have the resources to compute this infinite sequence due to bounded rationality. Therefore,
we apply a φ-level reasoning paradigm where we terminate the recursive sequence after φ iterations. While traditionally
refereed to as “level-k” reasoning, we use φ instead to avoid confusion with agent indexes k or -k. When φ = 0, we assume
that a player has a uniform probability distribution U over their controllable actions. Consequently, if φ = 3, we get the
following sequence of calculations:

pφ=3
k (Ak) ∝ E[Q(s, ak)|pφ=2

-k (A-k)],

pφ=2
-k (A-k) ∝ E[Q(s, a-k)|pφ=1

k (Ak)],

pφ=1
k (Ak) ∝ E[Q(s, ak)|pφ=0

-k (A-k)],

pφ=0
-k (A-k) = U,

Thus, an equilibrium strategy (πk(s), π-k(s)) to a single stage game Q(s) can be computed where we assume that φk = φ-k.

A.5. Convergence Proof

In order to establish convergence of Algorithm 1, we will first prove that rational (non-CPT) updates performed on the
Q-values in (6) under a QRE solution constitute a contraction mapping and that Q∗

cpt is a fixed-point. This proof follows
closely with (Hu & Wellman, 2003) with minor modifications to the equilibrium solution and formulation as a two-player
game. Once this proof is concluded, an extension to the convergence of the risk-sensitive version in (8) will be demonstrated
using the results in (Lin et al., 2018).

We first rely on two assumptions about infinite sampling and decaying of learning rate. Also, we assume that each stage of
the game is structured such that an optimal solution can be consistently found.
Assumption A.1. Each joint state-action pair is observed infinitely often
Assumption A.2. The learning rate α satisfies α ∈ [0, 1),

∑∞
t=0 αt =∞, and

∑∞
t=0 α

2
t <∞.

Assumption A.3. Every stage t game Qt(s) ∀ t, s has a globally optimal point7.

Assumption A.3 may seem strong at first glance when using QRE as it can converge to an arbitrary Nash equilibrium
solution, and not necessarily the global optima, as the decision temperature λ → ∞ (Goeree et al., 2020). However,
we support Assumption A.3 with the fact that Risky Overcooked is a common-payoff game and that the QRE will most
frequently converge to the globally optimal point in this case. To simplify notation, we denote the πk(s

′)π-k(s′)Q(s′) as
shorthand for

∑
a′
k,a

′-k πk(a
′
k | s′)π-k(a′-k | s′)Q(s′, a′k, a

′
-k) that describes the value for agent k as a result of the QRE

solution (πk(s
′), π-k(s′)) to the stage game Q(s′).

7In (Hu & Wellman, 2003), the authors assume that every stage game may also be a saddle point which relaxes this assumption.
However, the common-payoff structure of Risky Overcooked prevents saddle points from existing.
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Definition A.4. A joint strategy (π∗
k(s), π

∗
-k(s)) of stage game Qt(s) is a global optimal point if every agent receives their

highest payoff at this point. That is,

π∗
k(s)π

∗
-k(s)Qt(s) ≥ πk(s)π-k(s)Qt(s) ∀ πk, π-k ∈ Π

Definition A.5. A common-payoff game is a game in which for all joint strategies (πk(s), π-k(s)), it is the case that agents
receive the same payoff such that πk(s)π-k(s)Qk(s) = πk(s)π-k(s)Q-k(s)

By Definition A.5, we have π∗
k(s)π

∗
-k(s)Qk(s) = π∗

k(s)π
∗
-k(s)Q-k(s) which satisfies Definition A.4 and guarantees the

existence of a globally optimal point in common-payoff games.
Proposition A.6. Given the existence of a globally optimal point and a QRE that terminates at a level-0 agent with a
uniform strategy πU , the globally optimal point is the most likely equalibrium solution as λ→∞.

Proof. Consider a uniform stage game Q(s, ak, a-k) = q ∀ ak, a-k except at the global optima a∗k, a
∗
-k such that

Q(s, a∗k, a
∗
-k) > q. Then, given that -k is a level-0 agent in a QRE and assumed to have a uniform strategy πU by k,

we have
∑

a-k πU (a-k | s)Q(s, a∗k, a-k) ≥
∑

a-k πU (a-k | s)Q(s, ak, a-k) ∀ ak making the QRE guaranteed to select the
globally optimal action a∗k as λ → ∞ since πk(ak | s) ∝ exp(λ

∑
a-k πU (a-k | s)Q(s, ak, a-k)). Subsequent level-k

iterations will continue to select the pure strategy (a∗k, a
∗
-k) as this is a strictly dominant strategy given this initial condition.

If we instead let all all other values of Q(s, ak, a-k) be randomly sampled from a distribution with a mean of q, we expect
the same to hold for most cases, especially when Q(s, a∗k, a

∗
-k) ≫ q. A similar argument holds for mixed equilibrium

strategies where the global optima (π∗
k, π

∗
-k) is the most probable solution. In the case that (π∗

k, π
∗
-k) is a strictly dominated

strategy, the globally optimal solution is guaranteed to be selected.

Thus, we support the Assumption A.3 with the fact that QRE is more likely to converge to a global optima rather than other
Nash equilibrium solutions with a sufficiently high λ in an ambiguous case.

The majority of the remaining proof will be working towards showing that (6) meets the conditions of the following theorem
to provide a means for showing convergence.
Theorem A.7. Let the mapping Tt : Q → Q satisfy the following condition: there exists a 0 ≤ γ < 1, such that
||TtQ ≤ TtQ̂|| < γ||Q − Q̂|| ∀ Q, Q̂ ∈ Q and Tt admits a unique fixed point Q∗ ∈ Q such that Q∗ = E[TtQ∗]. Then,
the Q-iteration operator (TtQ)(s, ak, a-k) = r(s, ak, a-k) + γπk(s

′)π-k(s′)Q(s′) performed during the Q-value update
converges to Q∗ with probability 1.

where Q is the space of all possible Q-functions. Here, we can equivalently define (TtQ)(s, ak, a-k) = r(s, ak, a-k) +
γV (s′ | πk, π-k). The simplest condition of Theorem A.7 to show is that Q∗ is a fixed point.
Lemma A.8. For a two-player stochastic game, E[TtQ∗] = Q∗

Proof. Following from (5), with an equilibrium (πk(s), π-k(s)) on a shared optimal Q-function Q∗, we have

Q∗(s, ak, a-k) = r(s, ak, a-k) + γ
∑
s′∈S

P(s′ | s, ak, a-k)V ∗(s′ | πk, π-k)

= r(s, ak, a-k) + γ
∑
s′∈S

P(s′ | s, ak, a-k)πk(s
′)π-k(s′)Q∗(s′)

=
∑
s′∈S

P(s′ | s, ak, a-k)
(
r(s, ak, a-k) + γπk(s

′)π-k(s′)Q∗(s′)
)

= E[TtQ∗(s, ak, a-k)]

for all s, ak, a-k. Thus, E[TtQ∗] = Q∗.

We must now prove that Tt is a contraction which requires that every stage game encountered during learning has a unique
solution and that the learner consistently chooses this solution when updating its Q-values (i.e., Assumption A.3).

We then define the distance between two Q-functions.
Definition A.9. For Q, Q̂ ∈ Q, define

||Q− Q̂|| ≡ max
s
||Q(s)− Q̂(s)||

≡ max
s

max
ak,a-k

|Q(s, ak, a-k)− Q̂(s, ak, a-k)|

14
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Given Assumption A.3, we establish that Tt is a contraction mapping.
Lemma A.10. ||TtQ− TtQ̂|| ≤ γ||Q− Q̂|| ∀ Q, Q̂ ∈ Q

Proof. For any Q-functions Q, Q̂ ∈ Q

||TtQ− TtQ̂|| = max
s
|γπk(s)π-k(s)Q(s)− γπ̂k(s)π̂-k(s)Q̂(s)|

= max
s

γ|πk(s)π-k(s)Q(s)− π̂k(s)π̂-k(s)Q̂(s)|

We then seek to prove that

|πk(s)π-k(s)Q(s)− π̂k(s)π̂-k(s)Q̂(s)| ≤ ||Q(s)− Q̂(s)||

Consider that both (πk(s), π-k(s)) and (π̂k(s), π̂-k(s)) satisfy Assumption A.3 by being the global optimal solutions over
Q and Q̂, respectively. If πk(s)π-k(s)Q(s) ≥ π̂k(s)π̂-k(s)Q̂(s), we have

πk(s)π-k(s)Q(s)− π̂k(s)π̂-k(s)Q̂(s)

≤ πk(s)π-k(s)Q(s)− πk(s)π-k(s)Q̂(s)

=
∑

ak,a-k
πk(s, ak)π-k(s, a-k)(Q(s, ak, a-k)− Q̂(s, ak, a-k))

≤
∑

ak,a-k
πk(s, ak)π-k(s, a-k) max

ak,a-k
|Q(s, ak, a-k)− Q̂(s, ak, a-k)|

=
∑

ak,a-k
πk(s, ak)π-k(s, a-k)||Q(s)− Q̂(s)||

= ||Q(s)− Q̂(s)||

If πk(s)π-k(s)Q(s) ≤ π̂k(s)π̂-k(s)Q̂(s), then πk(s)π-k(s)Q(s) − π̂k(s)π̂-k(s)Q̂(s) ≤ π̂k(s)π̂-k(s)Q(s) −
π̂k(s)π̂-k(s)Q̂(s) which affords a similar proof to the above. Thus, Tt is a contraction mapping under the given assumptions.
Theorem A.11. Under Assumptions A.1-A.3, the sequence Qt updated by:

Qt+1(s, ak, a-k) = (1− α)Qt(s, ak, a-k) + α
(
rt + γπk(s

′)π-k(s′)Qt(s
′)
)

where (πk(s
′), π-k(s′)) is the level-k quantal response equilibrium solution for a stage game Qt(s), converges to the

Q-value Q∗.

Proof. Proof of convergence to Q∗ follows directly from Theorem A.7 which requires that Tt is a contraction operator,
established in Lemma A.10, and that the fixed-point condition E[TtQt] = Q∗ is satisfied according to Lemma A.8. Therefore,
the process (1− αt)Qt+1 + αt[TtQt] converges to Q∗.

We will now extend the previous proof of convergence of the rational (non-CPT) algorithm to its risk-sensitive variant.
Theorem A.12. Let the utility weighting functions u+ and u- be according to Definition 2.1 and assume they are invertible,
differentiable, and have monotonically non-increasing derivatives. Also, let probability weighting functions w+ and
w- be according to Definition 2.2 and monotone. Then, the following is satisfied ||TtQcpt − TtQ̂cpt|| < γ||Qcpt −
Q̂cpt|| ∀ Qcpt, Q̂cpt ∈ Qcpt.

Proof. This proof follows similarly to (Ramasubramanian et al., 2021) where we leverage the fact that utility weighting func-
tions are monotonically non-decreasing (Definition 2.1). Thus, given a policy is improved such that π′

k(s)π
′
-k(s

′)Qcpt(s) ≥
πk(s)π-k(s)Qcpt(s), then we have

u
+
(r(s, ak, a-k) + γπ′

k(s
′)π′

-k(s
′)Qcpt(s

′) ≥ u
+
(r(s, ak, a-k) + γπk(s

′)π-k(s′)Qcpt(s
′)) (10)

where we denote the above inequality as u+
π′ ≥ u+

π. Since the probability weighting functions in Definition 2.2 are also
monotonically non-decreasing, we can then write the continuous form of the calculation of the CPT-value in (3) as

∞∫
0

w
+
(P(u+

π′ > z))dz ≥
∞∫
0

w
+
(P(u-

π > z))dz (11)
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where a similar argument holds for u- and w-. Thus, the operator TtQcpt is monotone. We can then show that

(TtQcpt)(s, ak, a-k)

= ρcpt

(
r(s, ak, a-k) + γπk(s

′)π-k(s′)Qcpt(s)
)

= ρcpt

(
r(s, ak, a-k) + γ

∑
ak,a-k

πk(s
′, ak)π-k(s′, a-k)(Q̂cpt(s

′) +Qcpt(s
′)− Q̂cpt(s

′))
)

≤ ρcpt

(
γϵ+ r(s, ak, a-k) + γ

∑
ak,a-k

πk(s
′, ak)π-k(s′, a-k)Q̂cpt(s

′)
)

where ϵ = ||Q(s′) − Q̂(s′)||. We then rely on Theorem 6 in (Lin et al., 2018) and its proof that provides an analysis
of integrals composing ρcpt(·) to obtain (TtQ̂)(s, ak, a-k) ≤ (TtQ̂)(s, ak, a-k) + γϵ which results in ||TtQ − TtQ̂|| ≤
γ||Q− Q̂|| ∀ Q, Q̂ ∈ Q as a consequence. Thus, we have shown that both the QRE and CPT-value modifications constitute
a contraction mapping. This concludes the proof.

A.5.1. UPPER-BOUND ON ℓ

It is helpful here to mention a potential challenge when choosing CPT parameters in a way that ensures convergence.
Specifically, the loss aversion parameter ℓ introduces a gain on the TD-target which may introduce a means for the Q-
function to diverge under certain conditions. This section will provide a heuristic upper-bound on ℓ such that we can
maintain the critical assumption that γ < 1 in Theorem A.7.

Consider the worst-case scenario where every TD-Target prospect τi = r(s, a) + γ
∑

s′ V (s′) with probability pi = P(s′ |
s, a) is perceived as a loss (i.e. τi ≤ b ∀ i). Thus, the loss’s utility function u-(τi) = ℓ|τi − b|η-

, where we assume b = 0
for simplicity, can be expressed as:

u-(τi) = ℓ|τi|η
-

= ℓ|r(s, a) + γV (s′ | πk, π-k)|η
-

= |ℓ
1
η- r(s, a) + ℓ

1
η- γV (s′ | πk, π-k)|η

-

Letting γ̂0 = ℓ
1
η- γ, we can satisfy the same condition for convergence in the worst-case scenario given that γ̂0 < 1. For

example, we would have γ̂0 = 2.23 with ℓ = 2.25, η- = 1, and γ = 0.99. This would provide no means for future values to
decay where the Q-function would quickly grow towards −∞ or∞. However, given that τi can be perceived as a gain or a
loss, this constraint on parameters ℓ and η- may be relaxed but there is no theoretical grantees since the expected γ̂ would
need to be calculated from the cumulative CPT expectation in (3). A naive estimate can be made with

γ̂1 ≈
l

K
γ̂0 +

K − l

K
γ

where l is the number of TD-targets perceived as a loss and K is the number perceived as gains. There is no feasible method
for determining l

K theoretically before algorithm runtime. However, this motivates the use of the pragmatic CPT-value
that only applies CPT expectation during choices that involve a risky outcomes where |τ | > 1. This further relaxes the
constraints on ℓ and η- since the

γ̂2 ≈
nρ

T
γ̂1 +

T − nρ

T
γ

where nρ

T is the proportion of risky decisions under some time horizon T . Then, if γ̂2 < 1 as T →∞, the condition for the
Bellman equation should be met. Given the sparsity of risky-decisions in Risky Overcooked and reasonable choices of ℓ and
η-, this condition is almost surely satisfied.

B. Experiment Details
B.1. Risk-Sensitive Parameter Selection

The goal of parameter selection is to create sufficient divergence in risk-sensitive strategies (e.g., traverse risky states versus
passing objects through the center counter in RCR) while still being cognitively motivated. Therefore, we take the median
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CPT parameter estimates in (Tversky & Kahneman, 1992) and fine tune them to obtain clear definitions for risk-averse and
risk-seeking candidate policies. A summary of the selected parameters can be found in Table 3 while the prospect curves
illustrating these parameters can be found in Fig. 5. The remainder of this section will describe the rationale behind these
selections.

Table 3. CPT Parameter Selection
Utility Function Weighting Function

Policy ℓ η+ η- δ+ δ-

Risk-Seeking 0.44 1 0.88 0.61 0.69
Risk-Neutral 1 1 1 1 1
Risk-Averse 2.25 0.88 1 0.61 0.69

For the loss-aversion parameter, the median estimate is ℓ = 2.25 where ℓ > 1 creates risk-averse tendencies while
ℓ < 1 creates risk-seeking tendencies. Therefore, we select ℓ = 2.25 for the risk-averse candidate policy and its inverse
ℓ = 0.44 for the risk-seeking candidate policy. For the exponential utility discounting parameters, a η+ < 1 will generate
risk-averse tendencies while η- < 1 generates risk-seeking tendencies. Given that the median estimates were found to
be η+ = η- = 0.88, we can select η+ = 0.88 and η- = 1 such that there is exponential discounting of gains and none on
losses to emulate an agent perceiving gains as less important than losses. This results in a consistently risk-averse utility
transformation in Fig. 5 across all possibly utility values. Similarly, we select η+ = 1 and η- = 0.88 to emulate perceptions
that weights losses as less important than gains. This generate the risk-seeking utility transformation in Fig. 5. By selecting
the nominal value of 1 for the η that would generate the opposite of the intended risk-sensitive behaviors, in conjunction
with proper selection of ℓ, we can ensure that there is no conflicting utility weightings that would otherwise interfere with a
clear definition of risk-averse or risk-seeking behaviors.

The interpretation of the probability weighting parameters δ+ and δ- is context dependent and leads to a infeasible analysis
across tasks (i.e. pρ changes between layouts). Therefore, the median estimates of δ+ = 0.61 and δ- = 0.69 were used
identically for both risk-averse and risk-seeking agents in the decision weighting transformation in Fig. 5. To obtain a
noisy-rational candidate policy, we simply set all CPT parameters to their nominal value of 1 that creates an identity
transformation for all functions.

Figure 5. Prospect curves for the selected CPT parameters used to generate the risk-seeking πS and risk-averse πA candidate policies.
The prospect curves in all plots for the risk-neutral π0 candidate policy is show by the black dashed line in all figures and is equivalent to
the identity transformation.

B.2. Tuning Risk Levels

The probability of slipping pρ (i.e. risk level) was tuned to maximize mutual dissimalarity between the risk-seeking πS ,
risk-averse πA, and risk-neutral (i.e. rational) π0 policies. We specify “mutual” here to express the desire to weight cases
where a pρ generates one extremely dissimilar policy and two similar ones less than a pρ that generates three equally
dissimilar policies with a possibly lower cumulative dissimilarity measure. Doing so allows us to optimize each layout to

17



Risk-Sensitive Theory of Mind

amplify the divergence of the tested candidate policies, perform better inference, and generate more insightful experiments.

We implement the Jensen–Shannon divergence (JSD) (Nielsen, 2019) as our similarity measure which is a symmetrized
version of the Kullback–Leibler divergence measure where the JSD between policies π1 and π2 can be expressed as:

DJS(π1∥π2) =
1

2
DKL(π1∥M) +

1

2
DKL(π1∥M) (12)

where M = 1
2 (π1 + π2) is the mixture distribution and DKL is the Kullback–Leibler divergence between π and M . For

each of the three combinations of policies {(πS , πA), (πS , π0), (πA, π0)}, DJS(π1∥π2) ∈ D is computed. To maximize
mutual dissimilarity, additional JSD beyond the minimum is discounted:

σ =
∑
d∈D

log(d−min(D) + 1) + min(D) (13)

where σ ∈ [0, 1] is a measure of mutual dissimilarity and σ = 0 indicates three identical policies. Over a discrete space of
risk levels we then find the pρ that maximizes σ. A total of 5, 000 random states were sampled where the average σ was
used to select the final pρ. This procedure was conducted for each layout.

As seen in Fig. 6, pρ = 0.4 was selected for RCR and pρ = 0.15 was selected for RMP. Several pρ’s achieved comparable
score leading the possibility of alternative risk levels being viable for simulation. However, for conciseness, we strictly
selected the maximum value.

Figure 6. Mutual dissimilarity scores σ for different risk-levels pρ in the RCR (left) and RMP (right) layouts. Orange bars indicate the
selected risk-level that maximizes σ.

B.3. Timeseries Snapshots

To supplement the cumulative expression of joint-policies in Fig 3, this section will more directly examine how strategies
differ with risk-sensitivity using illustrative examples. In Fig. 7, we see four brief timeseries snapshots of these strategies.
In all snapshots, agents are attempting to either bring onions or dishes to the pot in order to complete subtasks 1) or 2),
respectively, as mentioned in Sec. 3.1.

Figure 7. Illustration of timeseries snapshots of the risk-seeking πS and risk-averse πA strategies in the RCR and RMP layouts. More
transparent chefs and objects indicate timesteps further in the past.
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In (A), we see that both agents are optimistically traversing puddle states with onions in order to avoid possible coordination
costs involved with handing off onions through the center counter tile. In contrast, (B) has the opposite preferences where
pessimistic tendencies cause agents to view the consequences of slipping in a puddle to outweigh these coordination costs.
Therefore, agents will form joint strategy that passes onions through the center counter tile.

In (C), an optimistic team will prefer to incur more risk by traversing puddle states in order to take a more direct route and
avoid the added navigation costs of the long, risk-free detour. Conversely, in (D), agents prefer to incur these navigation
costs and take the long detour as they pessimistically perceive the cost of slipping to be to great.
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