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ABSTRACT

The self-supervised learning (SSL) paradigm is an essential exploration area, which
tries to eliminate the need for expensive data labeling. Despite the great success of
SSL methods in computer vision and natural language processing, most of them
employ contrastive learning objectives that require negative samples, which are
hard to define. This becomes even more challenging in the case of graphs and is
a bottleneck for achieving robust representations. To overcome such limitations,
we propose a framework for self-supervised graph representation learning — Graph
Barlow Twins, which utilizes a cross-correlation-based loss function instead of
negative samples. Moreover, it does not rely on non-symmetric neural network
architectures — in contrast to state-of-the-art self-supervised graph representation
learning method BGRL. We show that our method achieves as competitive results
as the best self-supervised methods and fully supervised ones while requiring fewer
hyperparameters and substantially shorter computation time (ca. 30 times faster
than BGRL).

1 INTRODUCTION

Graph representation learning has been intensively studied for the last few years, having proposed
various architectures and layers, like GCN ( . ), GAT ( s ),
GraphSAGE ( , ) etc. A substantial part of these methods was introduced in
the semi-supervised learning paradigm, which requires the existence of expensive labeled data
(e.g. node labels or whole graph labels). To overcome this, the research community has been
exploring unsupervised learning methods for graphs. This resulted in a variety of different approaches
including: shallow ones (DeepWalk ( , ), Node2vec ( ),
LINE ( , )) that ignore the feature attribute richness, focusing only on the structural
graph information; and graph neural network methods (DGI ( , ), GAE, VGAE
( , )) that build representations upon node or graph features, achieving state-of-
the-art performance in those days.

Recently self-supervised paradigm is the most emerging branch of unsupervised graph representation
learning and gathers current interest and strenuous research effort towards better results. The most
prominent methods were developed around the contrastive learning approach, such as GCA (

, ), GraphCL ( , ), GRACE ( , ) or DGI (

). Although contrastive methods are popular in many machine learning areas, including computer
vision and natural language processing, their fundamental limitation is the need for negative samples.
Consequently, the sampling procedure for negative examples highly affects the overall quality of
the embeddings. In terms of images or texts, the definition of negative samples might seem not that
problematic, but in the case of graphs there is no clear intuition. For instance, what is the negative
counterpart for a particular node in the graph, should it be a node that is not a direct neighbor, or a
node that is in a different graph component? There are multiple options available, but the right choice
strictly dependent on the downstream task.

Researchers have already tackled the problem of building so-called negative-sample-free methods.
In research being conducted in computer vision they obtained successful results with methods such
as BYOL ( R ), SimSiam ( R ) or Barlow Twins ( R ).
These models utilize siamese network architectures with various techniques, like gradient stopping,
asymmetry or batch and layer normalizations, to prevent collapsing to trivial solutions. Based on
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BYOL, ( ) proposed the Bootstrapped Representation Learning on Graphs (BGRL)
framework. It utilizes two graph encoders: an online and a target one. The former one passes the
embedding vectors to a predictor network, which tries to predict the embeddings from the target
encoder. The loss is measured as the cosine similarity and the gradient is backpropagated only
through the online network (gradient stopping mechanism). The target encoder is updated using an
exponential moving average of the online encoder weights. Such setup has been shown to produce
graph representation vectors that achieve state-of-the-art performance in node classification using
various benchmark datasets. Notwithstanding, assuming asymmetry between the network twins (such
as the predictor network, gradient stopping, and a moving average on the weight updates) the method
is conceptually complex.

Employing a symmetric network architecture would seem more intuitive and reasonable, hence
in this paper, we propose Graph Barlow Twins (G-BT), a self-supervised graph representation
learning framework, which computes the embeddings cross-correlation matrix of two distorted
views of a single graph. The approach was firstly introduced in image representation learning as
the Barlow Twins model ( , ) but was not able to handle graphs. The utilized
network architecture is fully symmetric and does not need any special techniques to build non trivial
embedding vectors. The distorted graph views are passed through the same encoder which is trained
using the backpropagated gradients (in a symmetrical manner).

Our main contributions can be summarized as follows: (I) We propose a self-supervised graph
representation learning framework Graph Barlow Twins. It is built upon the recently proposed
Barlow Twins loss, which utilizes the embedding cross-correlation matrix of two distorted views
of a graph to optimize the representation vectors. Our framework neither requires using negative
samples (opposed to most other self-supervised approaches) nor it introduces any kind of asymmetry
in the network architecture (like state-of-the-art BGRL). Moreover, our architecture is converges
substantially faster than all other state-of-the-art methods. (II) We evaluate our framework in node
classification tasks: (1) for 5 smaller benchmark datasets in a transductive setting, (2) using the
ogb-arxiv dataset from the Open Graph Benchmark (also in the transductive setting), (3) for multiple
graphs in the inductive setting using the PPI (Protein-Protein Interaction) dataset, and finally (4) for
the large-scale graph dataset ogb-products in the inductive setting. We use both GCN-based encoders
as well as a GAT-based one. We observe that our method achieves analogous results compared to
state-of-the-art methods. (III) We ensure reproducibility by making the code of both our models as
well as experimental pipeline available (currently attached in the supplementary materials).

2 RELATED WORKS

Self-supervised learning The idea of self-supervised learning (SSL) has a long history. Introduced
in the early work of Schmidhuber ( , ) has more than 30 years of exploration and
research now. Recently self-supervised learning was again rediscovered and found a broad interest,
especially in computer vision and natural language processing. One of the most prominent SSL
methods for image representation learning, Bootstrap Your Own Latent, BYOL ( , ),
performs on par or better than the current state of the art on both transfer and semi-supervised
benchmarks. It relies on two neural networks that interact and learn from each other. From an
augmented view of an image, it trains the first one to predict the target network representation of
the same image under a different view. At the same time, it updates the second network with a
slow-moving average of the first network. Another approach to image representation SSL implements
simple siamese networks, namely SimSiam ( R ). It achieves comparative results
while not demanding negative samples, large batches, nor momentum encoders. Authors emphasize
collapsing solutions for the loss and structure but show how a stop-gradient operation plays an
essential role in preventing it. Recent method, Barlow Twins ( , ), advances the SSL
field with a new objective function that naturally avoids collapses by measuring the cross-correlation
matrix between the outputs of two twin, identical networks fed with distorted versions of a sample,
and makes it as close to the identity matrix as possible. Representations of distorted versions of
samples are then expected to be similar, reducing the redundancy between them. What differentiates
the method is that it does not require large batches or asymmetry between the network twins. It
outperforms previous methods on ImageNet for semi-supervised classification.
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Graph representation learning Learning the representation also spreads to other domains. The
graph embedding problem has also attracted much attention from the research community worldwide
in recent years. Plenty of methods have been developed, each focused on a different aspect of network
embeddings, such as proximity, structure, attributes, learning paradigm or scalability. There exist
plenty of shallow methods, among others DeepWalk ( s ), Node2vec (

, ) or LINE ( , ), that use a simple notion of graph coding through random
walks or on encoder-decoder objectives that optimize first and second-order node similarity. More
complex graph neural networks, such as GCN( , ) or GraphSAGE ( ,

) implements the basic encoder algorithm with various neighborhood aggregation. Following the
extension, graph attention network GAT ( , ) leverages masked self-attentional
layers to address the shortcomings of graph convolutions and their troublesome approximations.

Self-supervised graph representation learning Inspired by the success of contrastive methods
in vision and NLP, the procedures were also adapted to graphs. Early DGI ( , )
employs GNN to learn node embeddings and obtains the graph embedding via a readout function
and maximizes the mutual information between node embeddings and the graph embedding by
discriminating nodes in the original graph from nodes in a corrupted graph. GCA ( ,

) studied various augmentation procedures. GRACE ( , ) creates two augmented
versions of a graph, pulls together the representation of the same node in both graphs, and pushes
apart representations of every other node. Recent GraphCL ( , ) method is another

example of representative approach using contrastive learning. All the previous methods use negative
sampling approaches for the embedding optimization, yet such setting has a high complexity. To
overcome this, BGRL ( , ) proposed to use an approach that does not rely on
negative samples. It uses two kinds of encoder networks (online and target), introducing a non-
intuitive asymmetric pipeline architecture, but provides state-of-the-art SSL results. Moreover, it
relies on several techniques to prevent trivial solutions (gradient stopping, momentum encoder). A
concurrent approach to BGRL is DGB ( , ).

3  PROPOSED FRAMEWORK

Motivated by the emerging self-supervised learning paradigm and its recent applications in graph
representation learning (BGRL ( , )), we propose Graph Barlow Twins — a
framework that builds node embeddings using a symmetric network architecture and an empirical
cross-correlation based loss function. The overall pipeline of our framework is shown in Figure 1.
The consecutive processing steps can be described as follows:

Original Augmented graph views GNN Embeddings  Empirical
graph (edge dropping, node feature masking) encoder Z c R\V\ xd Cross-
1 .
g( ) (X(l)’A(l)) correlation

matrix
z" C € R

A
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.
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Barlow Twins loss
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Figure 1: Overview of our proposed Graph Barlow Twins framework. We transform an input graph G
using an augmentation function and obtain two views: G(!) and G(2). We pass both of them through
the same GNN encoder fj to compute two embedding matrices Z("), Z(2). We build a loss function
such that the embeddings’ empirical cross-correlation matrix C is optimized into the identity matrix.
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Graph data We represent a graph G with nodes V and edges £ as the tuple: (X, A), where
X € RIVI** s the node feature matrix and k is the feature dimensionality; A € {0, 1}VI*IVI is the
adjacency matrix, such that A; ; = 1 iff (¢, j) € £. In the general case, a graph could also have
associated edge features or graph level features, but for simplicity we omit those here. Nevertheless,
these could also be used in our framework, as long as the encoder can make use of such features.

Generating graph views via augmentation Following other works ( ;

s ; s ; s ), we select two kinds of augmentatlons — edge
dropping and node feature masking — and generate two views of the input graph G and G(). In the
edge dropping case, we remove edges according to a generated mask of size |£| (number of edges
in the graph) with elements sampled from the Bernoulli distribution B(1 — p4). When it comes to
masking node features, we employ a similar scheme and generate a mask of size k also sampled from
the Bernoulli distribution B(1 — px ). Note that we mask node features at the scale of the whole
graph, i.e. the same features are masked for each node. Other works apply different augmentation
parameters px,p4 for each generated view, but as our framework is fully symmetrical, we postulate
that it is enough to use the same parameters to generate both augmentations (see Section 4.4).

Encoder network The main component of the proposed framework is the encoder network
fo : G — RIVIX4 1t takes an augmented graph as the input and computes (in our case) a d-
dimensional representation vector for each node in the graph. Note that we do not specify any
particular encoder network and one may use even encoders that construct embeddings for edges or
whole graphs. In our experiments, we will show the application of GCN ( , ) and
GAT ( , ) based encoder networks. Both augmented graph views G, G are
passed through the same encoder, resulting in two embedding matrices Z(1) and Z(2), respectively.
The original Barlow Twins method specified also a projector network (implemented as an MLP) to
reduce high embedding dimensionality (of the ResNet encoder). Our approach eliminates that step as
it uses GNNs with low dimensional embeddings.

Loss function In our work, we propose to use a negative-sample-free loss function to train the
encoder network. We first normalize the embedding matrices Z(*) and Z(2) along the batch dimension
(a mean of zero and a standard deviation equal to one), and then we compute the empirical cross-
correlation matrix C € R?*9;
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where b are the batch indexes and ¢, j are the indexes of embeddings. Such setting was originally
proposed under the name Barlow Twms Neuroscientist H. Barlow’s redundancy-reduction prmczple
has motivated many methods both in supervised and unsupervised learning (

, ). Recently, ( ) has employed th1s
principle to build a self superv1sed image representation learning algorithm (we bring this idea to the
domain of graph-structured data).

The cross-correlation matrix C is optimized by the Barlow Twins loss function Lpr (see Equation 2)
to be equal to the identity matrix. The loss is composed of two parts: (I) the invariance term and (IT)
the redundancy reduction term. The first one forces the on diagonal elements C;; to be equal to one,
hence making the embeddings invariant to the applied augmentations. The second term optimizes
the off-diagonal elements C;; to be equal to zero — this results in decorrelated components of the
embedding vectors.
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The A > 0 parameter defines the trade-off between the invariance and redundancy reduction terms
when optimizing the overall loss function. In ( ), the authors proposed to use A = d,
which we employ in our experimental setting. Otherwise, one can perform a simple grid search to
find the best A value in a particular experiment.
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Please note, that in such setting the gradient is symmetrically backpropagated through the encoder
network. We do not rely on any special techniques, like momentum encoders, gradient stopping, or
predictor networks. In preliminary experiments, we also investigated the Hilbert-Schmidt Indepen-
dence Criterion (due to its relation to the Barlow Twins objective ( , )), but we did not
observe any performance gain.

4 EXPERIMENTS

We evaluate the performance of our model using a variety of popular benchmark datasets, including
smaller ones, such as WikiCS, Amazon-Photo or Coauthor-CS, as well as larger ones, such as
ogb-arxiv, ogb-products, provided by the Open Graph Benchmark ( , ). We describe
all datasets along with their statistics in Appendix A. In this section, we will provide an overview
experimental scenario details, and the discussion of the results. Overall, we use a similar experimental
setup, as the state-of-the-art self-supervised graph representation learning method BGRL (

, ), so we can perform a fair comparison to this method. To track our experiments and
provide a simple way for reproduction, we employ the Data Version Control tool (DVC;

( )). We perform all experiments on a TITAN RTX GPU with 24GB RAM.

4.1 EVALUATION PROTOCOL

Self-supervised framework training We start the evaluation procedure by training the encoder
networks using our proposed Graph Barlow Twins framework. In all scenarios, we use the AdamW
optimizer ( , ) with weight decay equal to 10~°. The learning rate is updated
using a cosine annealing strategy with a linear warmup period. Our framework uses a single set of
augmentation parameters for both graph views. Therefore we do not use reported values of these
parameters from other publications that use two different sets. Instead we perform a grid search
over the range: pa,px : {0,0.1,...,0.5} for 500 epochs with a warmup time of 50 epochs. We
implement our experiment using the PyTorch Geometric ( , ) library. All datasets
are available in this library as well. The details about the used augmentation hyperparameters, node
embedding dimensions and the encoder architecture are given in Appendix B.

Node embedding evaluation We follow the linear evaluation protocol proposed by

( ). We use the trained encoder network, freeze the weights and extract the node embeddings
for the original graph data without any augmentations. Next, we train a Lo-regularized logistic
regression classifier from the Scikit learn ( , ) library. We also perform a grid
search over the regularization strength using following values: {270,279 .. 29 210} [n the case
of the larger ogb-arxiv, ogb-products and the PPI datasets, the Scikit implementation takes too long
to converge. Hence, we implement the logistic regression classifier in PyTorch and optimize it for
1000 steps using the AdamW optimizer. We check various weight decay values using a smaller grid
search: {2719, 278 .. 28 210} We use these classifiers to compute the classification accuracy and
report mean and standard deviations over 20 model initializations and splits, except for the ogb-arxiv,
ogb-products and PPI datasets, where we there is only one data split provided — we only re-initialize
the model weights 20 times (5 times for ogb-products due to long training time).

4.2 TRANSDUCTIVE EXPERIMENTS

We evaluate and compare our framework to other graph representation learning approaches on 6
real-world datasets using the transductive setting. The whole graph including all the node features
is observed during the encoder training. The node labels (classes) are hidden at that moment
(unsupervised learning). Next, we use the frozen embeddings and labels of training nodes to train the
logistic regression classifier.

4.2.1 SMALL AND MEDIUM SIZES BENCHMARK DATASETS

Our first experiment uses 5 small and medium sized popular benchmark datasets, namely: WikiCS,
Amazon Computers, Amazon Photos, Coauthor CS and Coauthor Physics.
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Encoder model Similarly to ( s ), we build our encoder fy as a 2-layer GCN
( ) network. After the first GCN layer we apply a batch normalization layer
(with momentum equal to 0.01) and the PReL.U activation function. Accordingly to the original
Barlow Twins method, we do not apply any normalization or activation to the final layer. A graph
convolution layer (GCN) uses the diagonal degree matrix D to apply a symmetrical normalization to
the adjacency matrix with added self-loops A = A + I. Hence the propagation rule of such layer is
defined as follows: e

GCN(X,A) =D 2AD = XW 3)

Note that we do not include the activation o (-) in this definition, as we first apply the batch normal-
ization and then the activation function.

Results and discussion We train our framework for a total of 1000 epochs, but we observe that our
model converges earlier at about 500-900 epochs (depending on the dataset; see Appendix B). This
is significantly faster than the state-of-the-art method BGRL, which converges and reports results
for 10 000 epochs. Additionally, we reproduce the results of BGRL and provide values for BGRL
at 1000 epochs. In Table 1 we report the mean node classification accuracy along with the standard
deviations. As our experimental scenario was aligned with BGRL one, we re-use their reported scores
and compare them to our results. We observe that our proposed method outperforms other baselines
and achieves comparable results to state-of-the-art methods. Moreover, our G-BT model outperforms
BGRL at 1000 epochs.

Table 1: Mean and std accuracy of transductive node classification over 20 data splits and initial-
izations obtained in BGRL paper ( , ) and our experiment (x) within the same
experimental setup. OOM denotes running out of memory on a 16GB V100 GPU.

WikiCS Am-CS Am-Photo Co-CS Co-Physics
Raw features 7198 £0.00 73.81 +£0.00 78.53 +£0.00 90.37+0.00 93.58 4+ 0.00
DeepWalk 7435 +£0.06 85.68+0.06 89.44+0.11 84.61+0.22 91.77+0.15
DeepWalk + fts ~ 77.21 £ 0.03 86.28 £ 0.07 90.05+0.08 87.70 £ 0.04 94.90 + 0.09
DGI 75.354+0.14 83.95+047 91.61 £022 92.15+0.63 94.51+0.52
MVGRL 7752 +£0.08 87.52+0.11 91.744+0.07 92.11 £0.12 95.33 + 0.03
GRACE (0kepochsy  80.14 £ 0.48  89.53 +£0.35 92.78 £ 045 91.12£0.20 OOM
BGRL (10k epochs) 79.36 £0.53 89.68 +£0.31 92.87 +0.27 93.21 £0.18 95.56 £+ 0.12
G-BTx* (<ikepochsy  76.65 £0.62 88.14 +£0.33 92.63 £ 044 9295+0.17 95.07+£0.17
BGRL* (ikepochsy ~ 73.24 +£0.62 87.37+040 91.77 £0.57 92.07 £+ 0.06 OOMx
GCA 78.354+0.05 88.94+0.15 92.53+£0.16 93.10£0.01 95.73 +£0.03
Supervised GCN  77.19 +£0.12 86.51 £0.54 9242 +0.22 93.03+0.31 95.65+0.16

4.2.2 OGB-ARXIV DATASET

In the next experiment, we use ogb-arxiv — a larger graph from the Open Graph Benchmark ( ,
) with about 170 thousand nodes and about 1.1 million edges.

Encoder model Due to the larger size of the graph, we extend the encoder fy to a 3-layer GCN
model. We employ batch normalization and PReLU activations after the first and second layer, leaving
the final layer as is (i.e. without any activation of normalization). In the BGRL paper, the authors
suggested to use layer normalization together with weight standardization ( , ), yet
we did not observe any performance gain, but more importantly the training procedure was unstable,
with many peaks in the loss function.

Results and discussion In Table 2 we report the mean classification accuracy along with the
standard deviations. Note that we provide values for both validation and test splits, as the provided
data splits are build according to chronological order. Hence, any model will be more affected
with the out-of-distribution error on further (in time) away data samples. We evaluate our model
for 500 epochs but it converges as fast as about 300-400 epochs (further training did not give any
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improvements). The model achieves results which are only 1.5 pp off to the state-of-the-art method
BGRL, which in turn takes 10 000 epochs to converge to such solution.

4.3 INDUCTIVE EXPERIMENTS

We evaluate our proposed G-BT framework
in inductive tasks over a single and multiple
graphs.

4.3.1 PPI

For the inductive learning case with multiple
graphs, we employ the Protein-Protein Inter-

Table 2: Mean and std accuracy of transductive
node classification the ogb-arxiv dataset over 20
data splits and initializations obtained in BGRL
s ) and our experiment
() within the same experimental setup.

paper (

Validati Test

action (PPI) dataset ( , ). andation b
Aligned with other methods, we provide results ~ MLP 57.65+0.12 55.50 4+ 0.23
for multilabel node classification in terms of the =~ node2vec 7129 +£0.13 70.07 £ 0.13
Micro-F1 score. DGI 7126 £0.11 70.34 £+ 0.16

GRACE aokepochsy  72.61 =0.15 71.51 +£0.11
Encoder model We employ a Graph Atten-  BGRL qokepochsy ~ 72.53 +0.09  71.64 + 0.12
tion (GAT) ( ) based en-
coder model, as previous works have shown bet- G-BT 300 epochs) 71.16+0.14  70.12 +£0.18
ter results of such network compared to standard ~ Supervised GCN  73.00 £ 0.17 71.74 & 0.29

GCN layers on PPI. Specifically, we build our
encoder fy as a 3-layer GAT network with skip
connections. The first and second layer uses 4
attention heads of size 256 which are concate-
nated, and the final layer uses 6 attention heads
of size 512, whose outputs are averaged instead of applying concatenation. In the GAT model, an
attention mechanism learns the weights that are used to aggregate information from neighboring
nodes. The attention weights o;; are computed according to the following equation:

_ exp (LeakyReLU (a” [Wh;|[Wh;]))
= 5o o (LeakyReLU (a7 [Wi [ W)

Q5 4
where N are the neighbors of node 7, W is a trainable matrix to transform node attributes, a is the
trainable attention matrix, and || denotes the concatenation operation.

We use the ELU activation for the first and second layer, leaving the last layer without any activation
function. We do not apply any normalization techniques in the model as preliminary experiments
showed no performance improvement.

Results and discussion We train our framework using a batch size of 1 graph for a total of 500
epochs, which turned out to be enough for the model to converge (we conducted some preliminary
experiments). In Table 3, we report the mean Micro-F1 score along with the standard deviations
over 20 model initialization, as this dataset provided only one data split. Training for only 500
epochs provided results on par with SOTA method — BGRL — our model achieves 70.49 using a GAT
encoder.

4.3.2 OGB-PRODUCTS

We study the applicability of our proposed model in the case of large-scale graphs. We select the
ogb-products dataset, which has about 2.5 million nodes and 61 million edges.

Encoder model and setup We utilize the same GAT-based encoder as for PPI. Due to the size of
this dataset and the resulting training time, we decide to perform inductive node classification, i.e.,
during training we use only the nodes from the training set and edges among them. Moreover, as
this graph does not fit into GPU memory, we selected a batched setting with neighbor sampling (as
proposed in ( )) instead of the full-batch scenario. We train our model with a
batch size of 512 for 100 epochs.
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Results and discussion BGRL does not report results for this dataset, so we modify the implemen-
tation of the BGRL method to accept batches instead of whole graphs and evaluate it on this dataset.
We also include results from the OGB leaderboard, but note that virtually all methods reported
there are trained in a semi-supervised setting, contrary to our approach in the self-supervised setting.
Therefore, we may expect worse results. We summarize the mean and std node classification accuracy
values in Table 4. We observe that G-BT highly outperforms BGRL on both validation and test sets.

Table 3: Mean and std Micro-F1 of multilabel
node classification the PPI dataset over 20 model
initializations obtained in BGRL paper (

) and our experiment (x) within the

)

Table 4: Mean and std accuracy of inductive node
classification on the ogb-products dataset over 5

model initializations obtained in the OGB leader-

board and our experiment (x) within the same ex-

same experimental setup. perimental setup.

PPI (test set) Validation Test

Raw features 42.20 Features* 63.18 £ 0.01 50.93 £ 0.01

DeepWalkx 87.42 +0.09 73.11 +0.44
DGI 63.80 & 0.20
GMI 65.00 & 0.02 DeepWalk + ftsx  87.84 £0.09 73.38 £0.11
GRACE 66.20 £+ 0.10 BGRL* 100epochsy  78.06 £2.12  63.97 + 1.62
GRACE GAT enCOder (1k epochs) 6971 + 017 G'BT* (100 epochs) 8504 j: 023 7046 Zt 038
BGRL GAT encoder tkepoety 7049 £ 005 “g 0 i e GON 92.00 + 0.03  75.64 + 0.21
G'BT* (500 epochs) 7049 + 019
Supervised GAT 97.30 + 0.20

4.4 AUGMENTATION HYPERPARAMETER SETS

In our model, we postulate to use the same augmentation function hyperparameters to generate both
graph views. This is motivated by the symmetrical architecture of our model, and hyperparameter
search complexity. Performing a simple grid search over the value space yields in our case a
total number of 62 = 36 evaluated combinations (values: {0,0.1,...,0.5}). In contrary, usage
of different parameter sets for both graph views, would generate (62)2 = 1296 combinations,
which can be further reduced by exploiting the symmetrical architecture, yielding a final value of
630 = (326) combinations to evaluate. To demonstrate the impact of using both the same and different
augmentation hyperparameter value sets we provide the results in Figure 2. There is no substantial
difference in terms of test accuracy.

WikiCs Amazon-CS Amazon-Photo Coauthor-CS Coauthor-Physics
78,48 | 89.0 *7To3 36
— 78{72,90 8857 | 93{92.97 92.94 S6 9323 95.22
= 88.51gg 24 93—& 95 194.94
o761 88.0 1 92 1 921 +
e . 94 | E
§ 74 4 * 87.5 o1{ o] ¢ N *
© R E 87.0 931
£ 721 ’ . % 90 4 . .
86.5 - *

# ol ¢ 89 1 2] ,

* 86.0 + 89 4 [] + +

Sal‘ne Différent Sall'ne Différent Sall'ne Différent Sallﬂe Diffelrent Sallne Diffelrent

Figure 2: Comparison of using the "Same" and "Different" augmentation hyperparameter sets.

4.5 TRAINING TIME COMPARISON

We compare the training time of all considered models by the duration of single epoch (the evaluation
phase is the same in all models). We run each model for 10 training epochs and report the mean and
standard deviation of the time measurements (Table 5). In virtually all cases our model takes the least
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time for a single training iteration due to the simple symmetrical architecture. Compared to BGRL
our method speeds up computations about 17-42 times.

Table 5: Single epoch running time (in seconds) averaged over 10 training epochs.

WikiCS Am-CS Am-Photo Co-CS Co-Phy
DeepWalk 0.83+0.02 096+0.02 062+0.02 1224+0.03 2.25+4+0.03
DGI 0.06 £0.03 0.09£0.00 0.05£0.00 0.194+0.00 0.5040.21
MVGRL OOM OOM OOM OOM OOM
GRACE 033+£0.10 043+0.03 0.15+0.01 OOM OOM
BGRL 0.12+0.01 0.184+0.01 0.08£0.00 0.35+0.01 OOM
Epochs | training time [s]: 1000011200 1000011800 100001800 1000013 500 10000 | -
G-BT 0.05+0.00 0.07+0.00 0.04+0.00 0224005 0.44+0.01
Epochs | training time [s]: 900 | 45 600142 500120 900 | 198 900 1396
Speedup (vs BGRL): 26x 42x 40x 17x -

4.6 BATCHED PROCESSING

Our proposed method allows working in both full-batch and mini-batch settings. For most considered
datasets, splitting them up into batches is not required as these fit completely into the GPU’s memory.
Nevertheless, we run additional experiments where we train our G-BT model on these datasets in a
batched manner. Batches are created using neighbor sampling, i.e. for a k-layer encoder model, we
sample the k-hop neighborhood of a node. More specifically, we first subsample the direct neighbors,
then we sample neighbors of those, etc (as proposed in ( )). We re-use the
augmentation hyperparamter values and number of epochs found in the full-batch case and retrain the
G-BT model for each batch size 5 times (Table 6). We observe an expected decrease in performance
when using the batched scenario (subject to further finetuning).

Table 6: Evaluation of G-BT model in batched setting.

Batch size WikiCS Am-CS Am-Photo Co-CS Co-Phy

Full-batch  76.65 £0.62 88.14 £0.33 92.63 +£0.44 92.95+0.17 95.07 £0.17
256 75.69 £1.02 87.93+£0.39 91.24+046 91.82+0.22 9498 +0.14
512 75.83 £0.64 88.21 £0.44 91.21+044 91.62+022 9495+0.12
1024 75.79 £0.77 8794 +£0.50 91.24+£047 91.54+0.31 9491 +0.12
2048 75.58 £0.52 87.92+0.29 9121 £0.40 9143 £0.28 94.84+0.11

5 CONCLUSIONS

In this work we presented Graph Barlow Twins, a self-supervised graph representation learning
framework, which utilizes the embeddings’ cross-correlation matrix computed from two distorted
views of a particular graph. The framework is fully symmetric and does not need any special
techniques to build non trivial embedding vectors. It builds representations that are invariant to the
applied augmentations and reduces the redundancy in the representation vectors by enforcing the
cross-correlation matrix to be equal to the identity matrix (Barlow Twins loss). Using 8 real-world
datasets we evaluate our model in node classification tasks, both transductive and inductive, and
achieve results that are on par or better than SOTA methods in SSL graph representation learning.
We also show that our model converges an order of magnitude faster than other approaches.

Our method allows to reduce the computation cost (faster convergence) keeping a decent performance
in downstream tasks. Consequently, it can be used to process larger graph datasets and efficiently
perform tasks such as node classification, link prediction or graph classification. These tasks have
crucial impact on various machine learning areas where graph structured data is used, e.g. detection
of bots or hate speech in social networks, or building graph based recommendation engines.
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A DATASET DESCRIPTIONS

We provide brief descriptions for each dataset, including the basic statistics (see Table 7) and the
employed dataset split type for the node classification downstream task:

* WikiCS ( , ) is a network of Computer Science related Wikipedia
articles with edges denoting references between those articles. Each article belongs to one
of 10 subfields (classes) and has features computed as averaged GloVe embeddings of the
article content. We use the provided 20 train/val/test data splits without any modifications.

* Amazon Computers, Amazon Photos ( s ) are two networks extracted
from Amazon’s co-purchase data. Nodes are products and edges denote that these products
were often bought together. Each product is described using a Bag-of-Words representation
(node features) based on the reviews. There are 10 and 8 product categories (node classes),
respectively. For these datasets there are no data splits available, so similar to BGRL, we
generate 20 random train/val/test splits (10%/10%/80%).

¢ Coauthor CS, Coauthor Physics are two networks extracted from the Microsoft Academic
Graph ( , ). Node are authors and edges denote a collaboration of two
authors. Each author is described by the keywords used in their articles (Bag-of-Words
representation; node features). There are 15 and 5 author research fields (node classes),
respectively. Similarly to the Amazon datasets there are no data splits provided, so we
generate 20 random train/val/test splits (10%/10%/80%).

* ogb-arxiv is a larger graph from the Open Graph Benchmark ( , ) with about
170 thousand nodes and about 1.1 million edges. The graph was extracted from the Microsoft
Academic Graph ( , ), where nodes represents a Computer Science article on
the arXiv platform and edges denote citations across papers. The node features are build as
word2vec embeddings of the whole article content. There are 40 subject areas a node can be
classified into (node label/class). The ogb-arxiv dataset provides a single train/val/test split,
so we use it without any modifications, but we retrain the whole framework 20 times.

¢ Protein-Protein Interaction (PPI) ( , ) consists of 24 separate
graphs. Each node in a single graph represents a protein, described by 50 biological features,
and edges denote interactions among those proteins. There are 121 node labels, but note
that contrary to other cases, PPI uses multilabel classification, i.e. a single protein can be
assigned with multiple labels. Aligned with other methods, we provide results in terms of
the Micro-F1 score. For PPI, there exists a predefined data split, where 20 graphs are used
for training, 2 graphs for validation and 2 graphs for testing. Note that the validation and test
graphs are completely unobserved during training time, hence the model is more challenged
during inference time.

* ogn-products is a large-scale graph from the Open Graph Benchmark ( , ) with
about 2.4 million nodes and 62 million edges. The graph was extracted from the Amazon
product co-purchasing network. Nodes represent products from the Amazon store and edges
denote whether two products were bought together. There are 100 node features, which
are obtained from bag-of-words products descriptions reduced using PCA. Each product
(node) can be classified into one of 47 categories (node labels). This dataset comes with a
predefined data split, so we use as is.

B EXPERIMENTAL DETAILS

Augmentation hyperparameters Our proposed framework uses a single pair of augmentation
hyperparameters p4 € R, px € R compared to other methods that use different values to generate
both graph views. We show that a single set is enough to achieve a decent performance in a
symmetrical network architecture like ours. Therefore, we cannot use the reported values of other
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Table 7: Dataset statistics. We use small to medium sized standard datasets together with the
larger ogb-arxiv dataset in the transductive setting. We also evaluate the inductive setting using the
ogb-products and PPI (multiple graphs) dataset.

Name Nodes Edges Features Classes
WikiCS 11,701 216,123 300 10
Amazon Computers 13,752 245,861 767 10
Amazon Photos 7,650 119,081 745 8
Coauthor CS 18,333 81,894 6,805 15
Coauthor Physics 34,493 247,962 8,415 5
ogb-arxiv 169,343 1,166,243 128 40
PPI (24 graphs) 56,944 818,716 50 121 (multilabel)
ogb-products 2,449,029 61,859,140 100 47

works. We instead perform a grid search over these hyperparameters and use those where the model
performs the best (in terms of classification accuracy or Micro-F1 score, for PPI). We do not evaluate
the model during training and just use the final version after training. We use the following setting:

* the framework is trained to 500 epochs,
* we set the learning rate warmup time to 50 epochs,

» for both hyperparameters p 4 and px we check following values: {0,0.1,...,0.5}.

For values greater than 0.5 the augmentation removes too much information from the graph. In the
case of the ogb-products dataset, due to its large size, we trained our model only for 10 epochs with a
warmup period of 2 epochs, but we evaluated the same augmentation hyperparameter values. We
summarize the augmentation hyperparameters of the best performing models in Table 8.

Table 8: Augmentation hyperparameters. Ogb-products was trained in the batched setting with a
batch size of 512.

G-BT

pa  DPx
WikiCS 02 0.1
Amazon-CS 04 0.1
Amazon-Photo 00 05
Coauthor-CS 05 0.1
Coauthor-Physics 0.1 0.4
ogb-arxiv 0.2 0.0
PPI 0.1 0.1

ogb-productsx 0.2 0.1

Training setup For all datasets, we train our framework usmg the AdamW (

) optimizer with a weight decay of 10~°. The learning rate is adjusted using a cosine anneahng
strategy with a linear warmup period up to the base learning rate. During training we set a total
number of epochs and an evaluation interval, after which the frozen embeddings are evaluated in
downstream tasks (using either the [, regularized logistic regression from Scikit learn (

, ) with liblinear solver, or the custom PyTorch version with AdamW for ogb-arxiv and
PPI). For instance, if we set the total number of epochs to 1000 and the evaluation interval to 500, the
model will be evaluated at epochs: 0, 500 and 1000 (three times in total). We report the values for
the best performing model found during those evaluations. We summarize these training statistics in
Table 9.
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Table 9: Training hyperparameters.

G-BT

total warmup evaluation base best model

epochs interval learning rate found at

WikiCS 1 000 100 100 5% 107% 900
Amazon-CS 1 000 100 100 5%1074 600
Amazon-Photo 1 000 100 100 1x1074 500
Coauthor-CS 1 000 100 100 1%107° 900
Coauthor-Physics 1000 100 100 1%1075 900
ogb-arxiv 500 100 100 1%1073 300
PPI 500 50 100 5%1073 500
ogb-products 100 10 10 1%1073 100

Encoder architecture We compare our framework against the state-of-the-art self-supervised
graph representation learning method BGRL ( , ). To provide a fair comparison,
we use similar encoder architectures to the ones presented in their paper. We do not use any predictor
networks in our framework, so we need to slightly modify the encoders to be better suited for the
loss function (as given in the Barlow Twins paper ( , )), i.e. we do not apply any
normalization (like batch or layer normalization) or activation function in the final layers of the
encoder. Note that the lack of predictor network and batch normalization in the final layer, reduces
the overall number of trainable network parameters. In all cases, we use a batch normalization with
the momentum equal to 0.01 (as in BGRL ( , ), where they use the equivalent
weight decay equal to 0.99).

For the small up to medium sized datasets, i.e. WikiCS, Amazon-CS, Amazon-Photo, Coauthor-CS,
Coauthor-Physics, we use a 2-layer GCN ( , ) based encoder with the following
architecture:

* GCN(k, 2d),

¢ BatchNorm(2d),
* PReLU(),

* GCN(2d, d),

where k is the number of node features and d is the embedding vector size.

For the ogb-arxiv dataset, we use a slightly larger model — a 3-layer GCN ( , )
based encoder. We tried to utilize weight standarization ( , ) and layer normalization,
but our model did not benefit from those techniques (as it helped in BGRL ( , ).

The training procedure under this setting was unstable with various fluctuations and peaking of the
loss function. The final architecture is summarized as follows:

¢ GCN(k, d),
BatchNorm(d),
PReLU(),
GCN(d, d),
BatchNorm(d),
PReLU(),
GCN(d, d).

In the inductive experiment with the PPI dataset, we use a 3-layer GAT ( )
based encoder. Graph Attention network are known to perform better on this dataset compared to
GCNs. This was also showed in BGRL ( , ), where their approach with GAT layers
provided state-of-the-art performance in self-supervised graph representation learning for PPI. Our
architecture can be summarized as follows:
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GAT(k, 256, heads=4) + Linear(k, 4 * 256)

* ELUQ,

* GAT(4 % 256, 256, heads=4) + Linear(4 * 256, 4 x 256)
* ELU(),

e GAT(4 x 256, d, heads=6) + Linear(4 * 256, d)

The outputs of the attention heads in the first and second layer are concatenated and for the last GAT
layer, the attention heads outputs are averaged. In every layer, we utilize skip connections using
linear layers to project the outputs of the previous layer (features in the case of the first layer) to the
desired dimensionality.

The exact values for the input feature dimension & and the embedding dimension d are given in Table
10.

Table 10: Encoder layer size parameters.

G-BT
number of embedding
node features  dimensionality
k d
WikiCS 300 256
Amazon-CS 767 128
Amazon-Photo 745 256
Coauthor-CS 6 805 256
Coauthor-Physics 8415 128
ogb-arxiv 128 256
PPI 50 512
ogb-products 100 128

Code and reproducibility We implement all our models using the PyTorch-Geometric library (

, ). The experimental pipeline is built using the Data Version Control tool (DVC
( , )). It enables to run all experiments in a single command and ensure better
reproducibility. We attach the code in the supplementary material. To reproduce the whole pipeline
run: dvc repro and to execute a single stage use: dvc repro <stage name>. There are
following stages:

e preprocess_dataset@<dataset_name> — downloads the <dataset_name>
dataset; if applicable, generates the node splits for train/val/test,

e full_batch_hps@<dataset_name> —runs the augmentation hyperparameter search
for a given dataset in the full-batch case,

e full _batch_train@<dataset_name>, batched_train@<dataset_name>
— trains and evaluates the G-BT model for a given dataset in the full-batch case and the
batched scenario, respectively,

* batched_hps_ogbn_products — runs the augmentation hyperparameter search for
the ogb-products dataset in the batched scenario,

¢ batched_train_ogbn_products — trains and evaluated the G-BT model for the
ogb-products dataset in the batched scenario,

* compare_augmentation_hyperparameter_sets — loads all full-batch augmen-
tation hyperparameter results, compares the case when using the same or different sets of
hyperparameters to generate both graph views (outputs Figure 2),

* compare_running_times — computes the average running time of a training epoch
for the following methods: DeepWalk, DGI, MVGRL, GRACE, BGRL and G-BT,

e train_bgrl_full_batch@<dataset_name> — trains and evaluates the BGRL
model in the full-batch case for WikiCS, Amazon-CS, Amazon-Photo, and Coauthor-CS,
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* bgrl_hps_batched@Rogbn-products — runs the augmentation hyperparameter
search for BGRL using the ogb-products dataset,

* bgrl_batched_trainRogbn-products — trains and evaluates the BGRL model for
the ogb-products dataset,

* evaluate_features_products — evaluates the performance of ogb-products’ raw
node features,

* evaluate_deepwalk_products — evaluates the performance of DeepWalk on the
ogb-products dataset; additionally the case of DeepWalk features concatenated with raw
node features is also evaluated.

All hyperparameters described in this Appendix are stored in configuration files in the

experiments/configs/ directory, whereas the experimental Python scripts are placed in the
experiments/scripts/ directory.
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