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Abstract
We explore the boundary attention models for001
character-level Chinese NER. We test the stan-002
dard transformer model, as well as a novel vari-003
ant in which the encoder block combines in-004
formation from the nearby global attention of005
characters using convolutions. The convolu-006
tions are activated by gate to represent bound-007
aries. The boundaries are added into encode008
in forward to produce entity boundaries based009
on input sequence. We perform extensive ex-010
periments on four Chinese NER datasets. Our011
transformer variant consistently outperforms012
the standard transformer at the character-level013
and converges faster while learning more robust014
character-level alignments.015

1 Introduction016

Segments boundaries in a sentence are usually iden-017

tified in NER. For boundary embedding, span rep-018

resentation is calculated by the concatenation of019

the start and end tokens’ representations (Fu et al.,020

2021). To enumerate all possible text spans in a sen-021

tence, the concatenation of word representations of022

its startpoint and endpoint with a 20-dimensional023

embedding represent the span width (Li et al.,024

2021a) following previous work. While Li et al.025

(2021b) focus on named entity boundary detection,026

which is to detect the start and end boundaries of027

an entity mention in text, without predicting its028

type. With attention model, Yu et al. (2020) detect029

entity span with unified multimodal Transformer.030

Zhang et al. (2018) use adaptive co-attention net-031

work. Prior attention (Zhao et al., 2019; Zhuang032

et al., 2022) is able to improve the concentration of033

attention on the global context through an explicit034

selection of the most relevant segments. In addition,035

boundary smoothing applies the smoothing tech-036

nique to entity boundaries, rather than labels (Zhu037

and Li, 2022). There are also inspiring tasks (Xu038

et al., 2021; Ma et al., 2022; Cao and Wang, 2022;039

Hong et al., 2022) about boundary representation040

that performer language structure in model.041

In Chinese NER, a drawback of the purely 042

character-based (He and Wang, 2008; Liu et al., 043

2010; Li et al., 2014) NER method is that the word 044

information is not fully exploited. To attend Chi- 045

nese word, the NER task is separated in two steps: 046

Chinese Word segmentation(CWS) and processing 047

(Yang et al., 2016; He and Sun, 2017b). The first 048

step will output a large number of incorrect word 049

segmentation results, which leads to unsatisfactory 050

language processing. The new character-based par- 051

titioning methods (Liu et al., 2019; Sui et al., 2019; 052

Gui et al., 2019; Ding et al., 2019) come back to 053

stage and have been empirically proven to be ef- 054

fective. With consideration of word information, 055

Zhang and Yang (2018); Peng et al. (2019); Li et al. 056

(2020) incorporate word lexicons into the character- 057

based NER model. The wrong word lexicons from 058

vocab or segmentation still will be incorporated 059

without considering the whole sentences for seg- 060

mentation. 061

To address the issue, we perform Character Con- 062

volution Boundary Attention(CCBA) to comparing 063

with CWS system. CCBA adopts a sequence to 064

sequence model with Transformer. Specifically, 065

the model employs convolutional layers to model 066

boundary of each character. The states come from 067

nearby attention of character and are activated by 068

gate to represent boundaries. The boundaries are 069

added into encode in forward to produce entity 070

boundaries based on input sequence. Experimental 071

results show our model outperforms on the perfor- 072

mance. In summary, the main contributions of this 073

paper include: 074

• We propose a simple but effective method for 075

incorporating word boundaries into the char- 076

acter representations for Chinese NER. 077

• The proposed method is transferable to differ- 078

ent sequence-labeling architectures and can 079

be easily used in other nlp task. 080
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2 Background081

2.1 Transformer Attention Modules082

Attention mechanism is first proposed in NMT083

(Bahdanau et al., 2015), fully used in Transformer084

(Vaswani et al., 2017) and reviewed in a survey085

of Transformer (Lin et al., 2021). It is hot spot086

and common methods (Dai et al., 2019; Radford087

et al., 2019; Devlin et al., 2019). It can be seen088

that the development of attention mechanism is089

very fast. This success is partly due to the self-090

attention component which enables the network091

to capture contextual information from the entire092

sequence (Su et al., 2018). In this paper, we imple-093

ment our method based on Transformer encoder-094

decoder framework, where the encoder first maps095

the input sequence into a sequence of continuous096

representations and the decoder generates an output097

sequence from the continuous representations. The098

encoder and decoder are trained jointly to maxi-099

mize the conditional probability of target sequence100

given a source sequence. Transformer adopts at-101

tention mechanism with Query-Key-Value (QKV)102

model. The scaled dot-product attention used by103

Transformer is given in Equation (1).104

Attention(Q,K,V ) =softmax

(
QK⊤
√
Dk

)
V, (1)105

where Q ∈ RN×Dk ,K ∈ RM×Dk ,V ∈ RN×Dk ;106

N and M denote the lengths of queries and keys107

(or values); Dk and Dv denote the dimensions of108

keys (or queries) and values; softmax is applied in109

a row-wise manner. The dot-products of queries110

and keys are divided by
√
Dk to alleviate gradient111

vanishing problem of the softmax function.112

2.2 Attention with Prior113

Attention mechanism generally outputs an expected114

attended value as a weighted sum of vectors, where115

the weights are an attention distribution over the116

values. However, it is observed that for the trained117

Transformers the learned attention matrix is often118

very sparse across most data points. Therefore, it119

is possible to reduce computation complexity by120

incorporating structural bias to limit the number of121

query-key pairs that each query attends to. Under122

this limitation, we just compute the similarity score123

of the query-key pairs according to pre-defined124

patterns in Equation (2). 125

Attention(Qf ,Kf , Vf ) = softmax

(
QpK

⊤
p√

Dkp

)
Vp

⊕ softmax

(
QgK

⊤
g√

Dkg

)
Vg.

(2) 126

Where Qg,Kg, Vg is calculated by the vector query 127

value, key value, extraction value for global atten- 128

tion; Qp,Kp, Vp is calculated by the vector query 129

value, key value, extraction value for prior atten- 130

tion; Qf ,Kf , Vf is calculated by the vector query 131

value, key value, extraction value for final attention; 132

Dkg is the dimension of Kg; Dkp is the dimension 133

of Kp. 134

2.3 Convolutional Transformer 135

To facilitate character-level interactions in the trans- 136

former, convtransformer (Gao et al., 2020) propose 137

a modification of the standard architecture. In this 138

architecture, they use the same decoder as the stan- 139

dard transformer, but they adapt each encoder block 140

to include an additional sub-block. Inspired from 141

Lee et al. (2017), it is applied to the input repre- 142

sentations M , before applying self-attention. The 143

sub-block consists of three 1D convolutional lay- 144

ers, Cw, with different context window sizes w. In 145

order to maintain the temporal resolution of convo- 146

lutions, the padding is set to ⌊w−1
2 ⌋. 147

For all convolutional layers, they set the number 148

of filters to be equal to the embedding dimension 149

size dmodel, which results in an output of equal di- 150

mension as the input M . Therefore, in contrast to 151

Lee et al. (2017), who use max-pooling to com- 152

press the input character sequence into segments 153

of characters, here they leave the resolution un- 154

changed, for both transformer and convtransformer 155

models. Finally, for additional flexibility, they add 156

a residual connection (He et al., 2016) from the 157

input to the output of the convolutional block. 158

3 Method 159

3.1 Convolution Boundary Attention 160

In convolutional attention structure(Figure 1),we 161

apply convolutional layers C2, using context win- 162

dow sizes of 2. The context window sizes aim to 163

resemble boundary Bt between adjacent charac- 164

ters. 165

C2(Bt) = W b
t (At ⊕At+1), (3) 166
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Figure 1: Convolutional attention structure.

where W b
t ∈ Rdmodel×k×n, k is kernel size, n is167

number of convolution. At is attention of character168

in time step t. ⊕ contacts nearby attention for169

convolution.170

To compute the boundaries, the convolutional171

layers are activated with sigmoid σ and added with172

attention layers in encode, which fuses the repre-173

sentations:174

Encode = A+ σ(W b(C2(Bt))). (4)175

where W b ∈ Rm×dmodel , m is channels of input. A176

is attention of characters.177

For all convolutional layers, we set the number178

of filters to be equal to the embedding dimension179

size dmodel, which results in an output of equal180

dimension as the feed forward in encode.181

3.2 Attention Model of Chinese NER182

We design the attention mechanism model for Chi-183

nese NER. The global attention calculation is per-184

formed on the character vector to obtain the global185

weights and the convolutional attention calculation186

to obtain the boundary. The attention weights are187

computed separately for each character to form188

convolutional attention mechanism and combined189

with the global attention mechanism to input the190

model to obtain the results. Figure 2 is an example191

for details.192

In Figure 2, the character sequences of193

[’南(South)’, ’京(Capital)’, ’市(City)’, ’长(Long)’,194

’江(River)’ , ’大(Big)’, ’桥(Bridge)’], which195

are pretrained with unigram and bigram em-196

beddings, result in character vector groups197

(x1, x2, x3, x4, x5, x6, x7) respectively. Global198

attention calculation of character vector groups re-199

sults in a weight of (A1, A2, A3, A4, A5, A6, A7).200

Convolutional attention calculation results201

Figure 2: Attention model of character convolution
boundary.

in a weight of (B1, B2, B3, B4, B5, B6, B7) 202

and is activated by sigmoid σ and added 203

global attention weights to form encode block 204

(E1, E2, E3, E4, E5, E6, E7). The results are 205

obtained with labels (B,M,E,O,O,O,O). 206

4 Experiment 207

4.1 Setup 208

Datasets. The model is evaluated on four Chi- 209

nese NER datasets, including MSRA (Levow, 210

2006), OntoNotes (Weischedel et al., 2011), Re- 211

sume NER (Zhang and Yang, 2018) and Weibo 212

NER (Peng and Dredze, 2015; He and Sun, 2017a). 213

Weibo NER is a social media domain dataset, 214

which is drawn from Sina Weibo, while OntoNotes 215

and MSRA datasets are in the news domain. Re- 216

sume NER dataset consists of resumes of senior 217

executives, which is annotated by (Zhang and Yang, 218

2018). 219

Evaluation. We use P, R and F1 in average to 220

evaluate our performance on MSRA, OntoNotes 221

and Resume datasets comparing with other meth- 222

ods. We used F1 in average to evaluate our perfor- 223

mance on the NE, NM and Overall of Weibo dataset 224

comparing with other methods. Transformer is 225

baseline model to evaluate the function depend- 226

ing on our method. TENER and Flat evaluate the 227

function from method in cooperation. 228

Model settings. For model, we adopted 229

similar settings as TENER(https: 230

//github.com/fastnlp/TENER) and 231

Flat(https://github.com/LeeSureman/ 232

Flat-Lattice-Transformer). We down- 233

load the specified pretrained unigram and bigram 234

embeddings for Chinese task. Most implementa- 235

tion details include character and word embedding 236
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Models P R F1
Chen et al. (2006) 91.22 81.71 86.20
Zhang et al. (2006)∗ 92.20 90.18 91.18
Zhou et al. (2013) 91.86 88.75 90.28
Lu et al. (2016) - - 87.94
Dong et al. (2016) 91.28 90.62 90.95
Ma et al. (2020)* † 94.63 92.70 93.66
Transformer(Baseline) 90.23 90.52 90.32
CCBA(ours) 92.26 90.68 91.46
TENER(Yan et al., 2019) 92.97 91.96 92.46
CCBA+TENER 93.00 92.61 92.80
Flat(Li et al., 2020)* † 92.46 93.77 93.11
CCBA+Flat 93.06 94.13 93.59

Table 1: Performance on MSRA.

Models P R F1
Yang et al. (2016) 65.59 71.84 68.57
Yang et al. (2016)∗† 72.98 80.15 76.40
Che et al. (2013)∗ 77.71 72.51 75.02
Wang et al. (2013)∗ 76.43 72.32 74.32
Ma et al. (2020)* † 77.13 75.22 76.16
Transformer(Baseline) 73.60 73.81 73.69
CCBA(Ours) 75.51 75.90 75.70
TENER(Yan et al., 2019) 75.97 77.29 76.63
CCBA+TENER 76.41 77.31 76.85
Flat(Li et al., 2020)* † 74.73 76.70 75.70
CCBA+Flat 75.06 77.21 76.12

Table 2: Performance on OntoNotes.

sizes, dropout, embedding initialization, and237

transformer layer number. The convolutions is set238

as ((dmodel, 2),) * 20, dmodel is set as 512.239

4.2 Effectiveness Study240

We conduct experiments on the four datasets to241

further verify the effectiveness of model in com-242

bination with pre-trained model. The results are243

shown in Tables 1−4. In these experiments, we244

use embedding encoders to obtain the character245

representations. Tables 1−41 show results on the246

MSRA, OntoNotes, Resume and Weibo datasets247

respectively against the compared baselines.248

In Tables 1−4, compared methods include the249

best statistical models on these data set, which250

leveraged rich handcrafted features (Chen et al.,251

2006; Zhang et al., 2006; Zhou et al., 2013), char-252

acter embedding features (Lu et al., 2016; Peng253

and Dredze, 2016), radical features (Dong et al.,254

1In Table 1−4, ∗ indicates that the model uses external
labeled data for semi-supervised learning. † means that the
model also uses discrete features.

Models P R F1
Zhang and Yang (2018)* 93.72 93.44 93.58
Zhu and Wang (2019) 94.07 94.42 94.24
Liu et al. (2019)* 93.66 93.31 93.48
Ding et al. (2019) 94.53 94.29 94.41
Ma et al. (2020)* † 96.14 94.72 95.43
Transformer(Baseline) 92.49 92.49 92.49
CCBA(Ours) 94.64 94.78 94.71
TENER(Yan et al., 2019) 94.79 94.97 94.88
CCBA+TENER 95.09 95.03 95.06
Flat(Li et al., 2020)* † 95.71 95.77 95.74
CCBA+Flat 96.50 95.33 95.91

Table 3: Performance on Resume.

Models NE NM Overall
Peng and Dredze (2015) 51.96 61.05 56.05
Peng and Dredze (2016)∗ 55.28 62.97 58.99
He and Sun (2017a) 50.60 59.32 54.82
He and Sun (2017b)∗ 54.50 62.17 58.23
Ma et al. (2020)* † 58.12 64.20 59.81
Transformer(Baseline) 52.98 60.59 56.59
CCBA(Ours) 53.08 61.48 57.85
TENER(Yan et al., 2019) 55.06 63.72 58.82
CCBA+TENER 56.20 64.31 59.28
Flat(Li et al., 2020)* † 61.67 65.27 63.42
CCBA+Flat 65.77 62.05 63.80

Table 4: Performance on Weibo. NE, NM and Overall
denote F1 scores for named entities, nominal entities
(excluding named entities) and both, respectively.

2016), cross-domain data, semi-supervised data 255

(He and Sun, 2017b) and incorporating word lexi- 256

cons methods (Zhang and Yang, 2018; Peng et al., 257

2019; Li et al., 2020). The Transformer is base 258

model to make clear whether the main improve- 259

ment over the existing work is brought by CCBA. 260

From the tables, we can see that the performance of 261

the CCBA method is better than baseline methods 262

on four datasets. The average performance of the 263

CCBA method is near to SOTA on four datasets. 264

The reason of cannot over SOTA may be the embed- 265

ding in static state and depending on labels which 266

may fail to recognize unnamed words like ’江大 267

桥(Daqiao Jiang)’. Comparing with TENER , we 268

find that, CCBA+TENER have an improvement 269

over TENER. Comparing with Flat, we find that, 270

CCBA+Flat have an improvement over Flat. Those 271

results show our method is transferable to different 272

sequence-labeling architecture and improve the F1 273

in Chinese NER. 274

The proposed method (Li et al., 2020) employs 275

a lattice-transformer and considers the multiple 276
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Models MSRA OntoNotes Resume Weibo
CCBA 91.46 75.70 94.71 57.85
convtransformer 90.69 74.06 93.75 57.44
Prior attention 90.61 73.95 92.72 57.17

Table 5: An ablation study of the proposed model.

tokenizations. The real difference between our277

method and the proposed method should be dis-278

cussed. However, they incorporate many wrong279

word lexicons without considering the whole sen-280

tences for segmentation. For example, in the sen-281

tence "南京市长江大桥(Nanjing Yangtze River282

Bridge)", they will incorporate wrong word ’京283

市(Jing City)’ without considering the whole sen-284

tence for segmentation. In our method, we con-285

sider the whole sentence for boundary attention.286

The smoothing technique to entity boundaries is287

better than hard word incorporation to show sen-288

tence structure and relationship between nearby289

characters.290

For Chinese NER, the self-attention in Trans-291

former is sparse and unbalanced of each character.292

We convolute nearby attention of character with293

context for boundary. It can be trained fast and294

reduce the parameters in model. During the bound-295

ary attention of sentence, we provide a soft way to296

locate the word boundary. It simplifies the model to297

learn structure from large data. With the additional298

attention of boundary, the model can fast and better299

learn the structure of sentence.300

4.3 Ablation Study301

To investigate the contribution of each component302

of our method, we conduct ablation experiments303

on all four datasets, as shown in table 5.304

In the "convtransformer" experiment, we remove305

the boundary attention in CCBA and add convolu-306

tional layers like Gao et al. (2020). We consider the307

different convolution layers which is expediently308

encoded in the input. The input enhances with309

relative character and balances the length or infor-310

mation of each segmentation in sentence. We ap-311

ply convolutional layers C2, using context window312

sizes of 2. It is applied to the input representations313

M , which fuses the representations:314

Conv(M) = M + C2, (5)315

The degradation in performance on all four316

datasets indicates the importance of convolution of317

nearby attention rather than character, and confirms318

the advantage of our method. The convolutional319

layers after attention layers can catch the context in- 320

formation in whole sentences to get soft boundary. 321

The convolutional layers before attention layers are 322

short of important wegthts of sentence. 323

In the "Prior attention" experiment, we remove 324

the boundary attention in CCBA and add prior at- 325

tention. In the model, we compute attention Ŷ with 326

prior attention A2, using context window sizes of 327

2. The incorporation ⊕ in Equation (2) is shown in 328

details in Equation (6) and Equation (7). 329

Ŷ = A⊕A2 = (1− pl) ∗A+ pl ∗A2, (6) 330

Where pl ∈ [0, 1] is a calculated probability, which 331

balances the probability of global attention and 332

local attention. 333

pl = σ(W2(W1Hdec + b1) + b2). (7) 334

Where Hdec represent the decoder hidden state at 335

timestep t and dmodel to denote the dimension of 336

the hidden states; W1 ∈ Rdmodel×dmodel and W2 ∈ 337

R1×dmodel are learnable matrices, b1 ∈ Rdmodel and 338

b2 ∈ R1 are bias vectors, σ is the sigmoid function. 339

The degradation in performance on all four 340

datasets indicates the importance of the convolu- 341

tional attention, and confirms the advantage of our 342

method. The convolutional attention comes from 343

nearby attention while prior attention comes from 344

nearby character vectors. The former can better 345

catch the context information in whole sentences 346

to get soft boundary. 347

4.4 Compatibility with BERT 348

We compare CCBA with BERT on four datasets. 349

We download the specified pretrained BERT 350

model provided by huggingface. We use bert-base- 351

chinese (https://storage.googleapis. 352

com/bert_models/2018_11_03/ 353

chinese_L-12_H-768_A-12.zip) for 354

Chinese task. Most implementation details fol- 355

lowed those of BERT-NER (https://github. 356

com/lemonhu/NER-BERT-pytorch), in- 357

cluding character and word embedding sizes, 358

dropout, embedding initialization, and transformer 359

layer number. In these experiments, we first use a 360

BERT encoder to obtain the contextual represen- 361

tations of each sequence, and then concatenated 362

them into the character representations. Results 363

are shown in Table 6. 364

From the table, we can see that the CCBA 365

method with BERT outperforms the BERT tag- 366

ger on all four datasets. These results show that 367
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Models MSRA OntoNotes Resume Weibo
Baseline+BERT 93.63 77.93 95.68 62.07
+CCBA 93.76 78.19 95.91 63.80
TENER+BERT 94.69 82.06 94.75 67.44
+CCBA 95.88 82.86 95.72 68.02
Flat+BERT 96.09 81.82 95.86 68.55
+CCBA 96.61 81.95 96.02 69.17

Table 6: Compatibility with BERT.

the CCBA method can be effectively combined368

with pre-trained model. Moreover, the results also369

verify the effectiveness of our method in utilizing370

lexicon information, which means it can comple-371

ment the information obtained from the pre-trained372

model. We also find that, CCBA+TENER+BERT373

have an improvement over TENER+BERT and374

CCBA+Flat+BERT have an improvement over375

Flat+BERT. Those results show our method is376

transferable to different sequence-labeling archi-377

tecture and improve the F1 in Chinese NER with378

pre-trained model.379

5 Conclusion380

In this work, we address the convolutional atten-381

tion of character boundary in Chinese NER. We382

propose a novel method to model sentence struc-383

ture with considering the sequence of characters in384

whole sentence, which reduces many wrong words385

incorporated into the character representations. We386

use boundary attention with convolution instead of387

CWS system to embed the word-lever information.388

Experimental studies show that our performances389

have an improvement of existing methods.390
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