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Abstract

Humans learn social skills through both imita-001
tion and social interaction. This social learning002
process is largely understudied by existing re-003
search on building language agents. Motivated004
by this gap, we propose an interactive learn-005
ing method, SOTOPIA-π, that improves the006
social intelligence of language agents. This007
method leverages behavior cloning and self-008
reinforcement based training on filtered social009
interaction data according to large language010
model (LLM) rating. We show that our train-011
ing method allows a 7B LLM to reach the so-012
cial goal completion ability of an expert model013
(GPT-4-based agent) without the loss of more014
generic abilities, such as the ability to answer015
knowledge-based questions. We also demon-016
strate that this training paradigm uncovers some017
weaknesses in standard evaluation and safety018
training paradigms that (1) LLM-based evalu-019
ation of social intelligence overestimates the020
abilities of the language agents trained specifi-021
cally for social interaction, and that (2) despite022
not training for better safety or question an-023
swering (QA) ability, our methods improve the024
safety of language agents and maintain general025
QA ability on the MMLU benchmark.1026

1 Introduction027

Machine social intelligence is crucial to productive028

human-machine interaction (Gweon et al., 2023).029

For instance, to achieve real-time social interac-030

tions with users, virtual agents should not only em-031

ulate human verbal and non-verbal social behaviors032

but also manage social skills such as cooperation033

and negotiation. However, the social intelligence034

of large language models (LLMs) still lags behind035

humans in various aspects, including Theory-of-036

Mind (Sap et al., 2023; Ullman, 2023; Shapira037

et al., 2023), following social norms (Weidinger038

et al., 2021), and navigating diverse goal-driven so-039

cial scenarios (Zhou et al., 2024). This underscores040

1All code, data, and trained models will be released.

Generated Scenario

Two friends on a road trip entering a 
remote area without food access.
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Figure 1: We propose SOTOPIA-π, which (1) automat-
ically generates new social tasks, (2) collects data from
both expert policy and agent policy for training, and
(3) updates agent policy based on positive data rated by
GPT-4. We implement (4) human and GPT-4 evaluation
on our trained agent performing tasks in SOTOPIAwith
the partner agent. Our training paradigms include behav-
ior cloning and self-reinforcement. For evaluation, we
use SOTOPIA-EVAL and a fixed partner policy (GPT-
3.5-based). Note that the character profiles are omitted
and the examples are shortened for demonstration.

the challenge to bridge the gap and empower LLM 041

agents to navigate social situations with human-like 042

social decision-making abilities and values. 043

Inspired by the way that humans acquire these 044

social abilities through exploration, interactions, 045

and self-reinforcement (Tomasello, 2021; Gweon, 046

2021), we propose an interactive learning method, 047

SOTOPIA-π (Figure 1), which improves the so- 048

cial intelligence of language agents through social 049

interactions (e.g., the conversation between a seller 050

and a buyer on Craigslist). 051

In SOTOPIA-π, we use GPT-4 (OpenAI, 2023) 052

to automatically synthesize new social tasks to 053

learn transferable social strategies, similar to open- 054
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ended learning (OEL Team et al., 2021) (Step055

1). To simulate the social interaction within a056

diverse set of agents, we collect the interaction057

data between the agents with expert policy (GPT-058

4-based) or between the ones with agent policy059

that role-play two sampled characters (Step 2). To060

reinforce the positive examples in social interac-061

tion, we use GPT-4 to provide ratings of the goal062

completion social dimension and filter the interac-063

tion data based on a threshold. Then we update064

the agent policy with either or both of 2 training065

paradigms: behavior cloning (learning from behav-066

iors of an expert model with strong social skills)067

and self-reinforcement (learning from behaviors068

of the model itself) (Step 3). We showcase the069

effectiveness of our method with human and GPT-070

4-based evaluation on the trained agent models in071

SOTOPIA (Zhou et al., 2024) (§2.1).072

The closest to our work is Stable Alignment (Liu073

et al., 2024), which studies social alignment in074

single-turn question-answering tasks. In contrast,075

SOTOPIA-π improves multi-turn interaction capa-076

bility under realistic social scenarios beyond verbal077

communication. §6 shows that our method, despite078

not explicitly designed for improving alignment,079

trains models to behave safer and less toxic. With-080

out requiring human involvement and an online081

reward model (Ziegler et al., 2020; Ouyang et al.,082

2022), our method demonstrates greater efficiency083

and scalability because it (1) grows and annotates084

offline social interaction data with LLMs and (2)085

enables language agents to explore and reinforce086

the social knowledge of itself and expert models.087

Using our method to train socially intelligent088

agents, we examine the effectiveness of the two089

training paradigms as well as possible side effects090

(e.g., loss of knowledge or safety). In addition,091

by evaluating the social intelligence of our trained092

models through human judgment, we aim to un-093

derstand the effectiveness of training LLMs from094

LLM ratings. Therefore, we propose to answer the095

following research questions:096

RQ1 Can SOTOPIA-π improve the social goal097

completion ability and the overall social intel-098

ligence of language agents?099

RQ2 Is LLM rating a proxy to human rating for100

training the social intelligence in language101

agents?102

RQ3 How does SOTOPIA-π influence other ca-103

pabilities of LLMs?104

Figure 2: L: social task with character profiles. R: An
example turn from the perspective of the role-played
character. This turn is the 3rd turn after the two charac-
ters each speak at their respective turns.

For RQ1, our findings reveal that self- 105

reinforcement notably improves the social goal 106

completion ability of a base 7B LLM as well 107

as one trained with behavior cloning. The best 108

model (trained with behavior cloning followed by 109

self-reinforcement) approaches the performance of 110

GPT-4. Regarding RQ2, we observe an increasing 111

gap between GPT-4-based and human evaluation, 112

highlighting the limitations of relying solely on 113

GPT-4-based evaluation for optimizing language 114

models. This signals the need for future work on 115

developing alternative evaluator models that can 116

robustly evaluate social interaction. In response 117

to RQ3, our evaluation of the safety dimension 118

shows that SOTOPIA-π improves safety and re- 119

duces the toxicity of language models in social 120

tasks. Furthermore, when assessed on the Mas- 121

sive Multitask Language Understanding (MMLU) 122

benchmark (Hendrycks et al., 2021), SOTOPIA-π 123

demonstrates that it preserves the original question- 124

answering ability of the models. 125

2 Background 126

2.1 SOTOPIA environment 127

In this paper, we use SOTOPIA (Zhou et al., 2024) 128

as a platform for social learning. A social task in 129

SOTOPIA consists of a scenario, two characters’ 130

profiles, and their respective private social goals 131

to achieve in an interaction. The combinations of 132

scenarios and social goals cover a wide range of 133

social interactions including negotiation, collabo- 134

ration, and competition. Given a social task, SO- 135

TOPIA prompts two LLMs to serve as role-play 136
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social agents and interact with each other through137

speaking, non-verbal communication, and actions.138

Consider the example shown in Figure 2, a so-139

cial agent (the role-played character) in SOTOPIA140

makes decisions at its turns (Turn #3 at this mo-141

ment) based on the interaction context including (1)142

the scenario (discuss trip plan), (2) the role-played143

character (Sam)’s profile and goal (to convince Mia144

to join the trip), (3) the visible information on other145

character (Mia)’s profile, and (4) the communica-146

tion history (Mia declined the initial invitation).147

The decision consists of two parts: (1) the action148

type, choosing from speaking an utterance, mak-149

ing a gesture or facial expression as non-verbal150

communication, performing a physical action, or151

leaving the conversation, and (2) the action content,152

e.g. ‘I totally understand! ’ as an utterance, ‘raise153

their eyebrows’ as non-verbal communication, and154

‘show Mia some scenery photos’ as an action.155

SOTOPIA-EVAL (Zhou et al., 2024) provides156

evaluations on the social intelligence of social157

agents based on seven social dimensions. The158

seven dimensions are: believability (BEL), relation-159

ship (REL), knowledge (KNO), secret (SEC), social160

rules (SOC), financial and material benefits (FIN),161

and goal completion (GOAL). The overall score is162

the average of the seven social dimensions reflect-163

ing the overall social intelligence. Each dimension164

is rated by GPT-4 (OpenAI, 2023) and humans165

on a Likert scale2. Zhou et al. (2024) show that166

when evaluating language models with SOTOPIA-167

EVAL, GPT-4 could serve as a proxy of human168

judgment on these dimensions, and it has a higher169

correlation and significance than human evalua-170

tions. Therefore, following (Zhou et al., 2024), we171

not only use GPT-4 to evaluate the social perfor-172

mance of models but also collect human judgment173

to verify the findings. In this paper, we study how174

to use GPT-4-based evaluation as a training signal175

to improve social agents.176

2.2 Interactive learning177

This paper focuses on interactive learning for im-178

proving social intelligence. We consider interactive179

learning as learning through interaction. The most180

common way toimplement interactive learning is181

reinforcement learning (work related to training182

LLMs with RL will be discussed in §7). In this183

paper, we consider two forms of interactive learn-184

ing: learning from an expert (behavior cloning) and185

2Different dimensions have three types of score ranges:
[-10, 0], [-5, 5], and [0, 10].

from own positive behaviors (self-reinforcement). 186

Behavior cloning (BC) (Pomerleau, 1988; Torabi 187

et al., 2018) is a technique that learns from high- 188

quality observational data, specifically from the be- 189

havioral trajectories of an expert with strong skills. 190

In the context of social tasks, the trajectories are 191

defined as social interaction data of multi-turn con- 192

versations. Due to the challenge of collecting ex- 193

tensive, high-quality human conversation data, we 194

use state-of-the-art (SOTA) models to supply these 195

behavioral trajectories (Wang and Jansen, 2023), 196

thereby utilizing social intelligence of those mod- 197

els as a proxy for expert input (Gandhi et al., 2023). 198

Specifically, we use GPT-4-based agents as the ex- 199

perts, which show great performance in SOTOPIA 200

(Zhou et al., 2024). 201

Self-reinforcement (SR) (Bandura, 1976) is an 202

offline reinforcement learning method that gener- 203

ates and evaluates its own interactions for training. 204

The closest implementation of SR to ours is ReST 205

(Gulcehre et al., 2023), which employs iterative 206

threshold-based data filtering and trains on data 207

with higher quality over time. In our experiment, 208

we find that this strategy requires careful threshold 209

tuning, but only yields marginal improvement. An- 210

other problem is that threshold-based filtering does 211

not work for multiple tasks at various difficulty lev- 212

els. In this paper, we propose a ratio-based data 213

filtering method for SR without iterations. 214

3 SOTOPIA-π framework 215

SOTOPIA-π improves the social intelligence of 216

a language agent starting from its current policy 217

πagent through three steps (Figure 1): (1) social 218

task generation, (2) training data collection, and 219

(3) agent policy update. In this section, we provide 220

details of the three steps in our pipeline. 221

Step 1: Social task generation 222

Mirroring the way that humans navigate novel so- 223

cial situations by acquiring different social skills 224

in everyday social interaction, we encourage the 225

continuous learning of language agents in explor- 226

ing social skills within a dynamic and diverse 227

social environment. By adopting the principles 228

of dynamic task generation for open-ended learn- 229

ing (OEL Team et al., 2021), we provide a diverse 230

set of social tasks as the foundation of interactive 231

learning. As the first step, SOTOPIA-π automat- 232

ically generates synthesized social tasks through 233

two steps: (1) sampling keywords related to so- 234
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cial activities from Social Chemistry (Forbes et al.,235

2020), Social IQa (Sap et al., 2019), and Norm-236

bank (Ziems et al., 2023) and (2) prompting GPT-4237

to generate scenarios and social goals based on the238

sampled keywords (Figure 3). Details about social239

task generation can be found in Appendix §B.1.240

Prompt for generation new social tasks

Your task is to generate social tasks 
including a scenario and two social 
goals for two characters. 

<social scenario definition> 
<social goal definition> 

Here are a few examples: 
<social task examples> 

Please generate 1 social task related to 
<topic sampled from Social Chemistry, 
Social IQA or Normbank> according to 
<output format instruction>

Figure 3: Prompt template for generating social tasks.

We reuse the 40 character profiles in SOTOPIA,241

including their names, genders, occupations, per-242

sonalities, and other backgrounds. For each social243

task, a pair of characters are randomly sampled.244

The social tasks (a combination of scenarios, char-245

acters’ profiles, and social goals) used in training246

are guaranteed to not overlap with the social tasks247

used for evaluation. Different from the human-248

in-the-loop procedure used in SOTOPIA, which249

involves manual inspection and filtering for better250

task quality, we take an automated and scalable ap-251

proach to produce a large number of unfiltered so-252

cial tasks. The experimental findings reveal that our253

method can significantly improve the performance254

of language agents when using a vast quantity of255

social tasks of lower quality. Utilizing a more so-256

phisticated or manual selection process to filter257

high-quality social tasks could potentially lead to258

further improvement, which we leave for future259

works.260

Step 2: Training data collection261

Based on the generated social task, the second step262

of SOTOPIA-π is collecting training data for be-263

havior cloning and self-reinforcement. During so-264

cial interaction, as outlined in §2.1, two language265

agents alternate responses based on the visible com-266

ponent of a social task and the conversation history.267

For behavior cloning, we use the interactions be-268

tween the expert policy πexpert of two GPT-4-based269

agents role-playing two sampled characters, be-270

cause according to (Zhou et al., 2024), conversa- 271

tions between GPT-4-based agents could achieve 272

the highest social scores among other LLMs. Simi- 273

larly, for self-reinforcement, we collect the interac- 274

tions between the agent policy πagent role-playing 275

two sampled characters. 276

Obtaining expert data can be costly and may not 277

always be accessible. While employing multiple 278

expert models is an option, our findings indicate 279

that after a single round of behavior cloning using 280

the expert policy from a GPT-4-based agent, the 281

performance of the agent model surpasses that of a 282

GPT-3.5-based agent. Therefore, we opt for GPT-4 283

as our expert model. Self-reinforcement becomes 284

crucial in situations when expert data is unavailable 285

or the agent’s capability exceed that of the expert. 286

We leave the potential to use human conversation 287

data as the expert trajectories for behavior cloning 288

for future work. 289

Step 3: Agent policy update 290

The last step of SOTOPIA-π involves updating the 291

agent’s policy based on positive examples from the 292

training data. Leveraging AI feedback is useful for 293

automating the evaluation process and improving 294

the learning of language models without human 295

labels (Bai et al., 2022). For each agent in a so- 296

cial interaction, we collect GPT-4’s ratings of the 297

agent’s social performance and the corresponding 298

reasoning. Among the seven social dimensions of 299

social performance in SOTOPIA-EVAL, we specif- 300

ically focus on the goal completion dimension that 301

scored between 0 and 10 as the extent to which an 302

agent fulfills its social goal. Zhou et al. (2024) dis- 303

covers that among all seven dimensino, ratings by 304

GPT-4 on goal completion have the highest correla- 305

tion with human ratings. In §4 and §8, we discuss 306

the potential issues of using LLMs to provide rat- 307

ings. 308

We filter the training data by setting a thresh- 309

old for the goal completion scores rated by GPT-4 310

(refer to Appendix §B.2 for details of the filtering 311

strategy). Each turn of the interaction data is parsed 312

into training data following the format: with the 313

combination of the visible component of a social 314

task and the conversation history as input, and a 315

JSON string of action type and content as output 316

(refer to Appendix §B.3 for the data format). Based 317

on the filtered positive training data, we update our 318

agent’s policy with supervised auto-regressive fine- 319

tuning on the agent model. We further explore a 320

sequential training approach where an agent policy 321
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is initially updated by behavior cloning. Then the322

updated agent policy engages in generating interac-323

tion data for self-reinforcement.324

4 Experimental setting325

In this section, we discuss the details of the agent326

models we compare in the experiments. Addition-327

ally, we show details of the training and evaluation328

configuration we use in SOTOPIA-π.329

Agent models We choose GPT-4 (OpenAI, 2023)330

as our expert agent model and Mistral-7B (Jiang331

et al., 2023) as our base agent model to improve332

upon. We experiment with improving the base333

agent model using three approaches: (1) behavior334

cloning based on expert policy provided by ex-335

pert agent model (GPT-4), (2) self-reinforcement336

based on agent policy, and (3) behavior cloning337

followed by self-reinforcement. Our baselines for338

experiments utilize the expert model (GPT-4) and339

the base model (Mistral-7B) to conduct prompting-340

based role-playing with a fixed agent model. We341

compare the baselines with the trained agent mod-342

els using the above three approaches. All agent343

models share the same prompt format and use few-344

shot prompting to generate the response for social345

tasks. Details related to our prompting format and346

specific model versions we used in our experiments347

can be found in Appendix §B.3 and §B.4.348

Training In our experiments, we use parameter-349

efficient fine-tuning (PEFT) (Dettmers et al., 2023)350

on the base agent model Mistral-7B with behavior351

cloning, self-reinforcement, and their combination.352

We use GPT-4 to generate 100 social tasks with so-353

cial topics including negotiation, collaboration, and354

competition per each round of training. For each355

social task, we run 10 social interactions with 10356

different character pairs role-played by agent mod-357

els. The multi-turn social conversations between358

two agent models are collected and filtered as our359

training data. More details related to social task360

generation, training data collection, and the train-361

ing setup can be found in Appendix §B.1, §B.4,362

and §B.5 separately.363

Evaluation We evaluate the agent models based364

on the seven social dimensions defined in365

SOTOPIA-EVAL. We also provide the overall366

score which is the average score of the seven social367

dimensions. For evaluation, we collect the interac-368

tions between the updated agent policy πagent and a369

Base
(Mistral-7B)

Self-reinforcement
(SR)

Bahavior cloning
(BC)

BC + SR

3.25

3.96

4.82

5.71

0.36

0.64

1.27

1.42

4.29

As evaluated by both GPT-4 and humans,
our methods improve goal completion score
on hard scenarios. However, the average
gap between GPT-4 scores and human
scores increases from 0.36 to 1.42.

GPT-4
ra

tin
g

sc
ore

s

Human rating scores

Figure 4: GPT-4-based automatic evaluation scores and
human evaluation scores for the goal completion. We
show the performance of the base model and our trained
agent models based on SOTOPIA-π framework on
hard social tasks in SOTOPIA.

fixed partner policy πpartner (GPT-3.5-based) (Ope- 370

nAI, 2023) and obtain human and GPT-4 ratings on 371

all seven social dimensions. We report the agent’s 372

performance on all 90 social tasks, as well as on 373

the 14 hard3 social tasks selected from the 90 social 374

tasks. To maintain a balanced speaking order, we 375

ensure that both agents have equal opportunities to 376

initiate conversation within a social task. We run 377

both automatic evaluation provided by prompting 378

GPT-4 for evaluation scores, and human evalua- 379

tion provided by qualified human annotators. We 380

use the same prompts for GPT-4-based automatic 381

evaluation in SOTOPIA-EVAL4. 382

5 Does SOTOPIA-π improve the social 383

intelligence of language agents? 384

As shown in Figure 4, according to both GPT-4- 385

based and human evaluation on hard social tasks 386

in SOTOPIA, self-reinforcement improves the so- 387

cial goal completion ability of both the base model 388

(Mistral-7B) and the behavior cloning policy. We 389

can also discover that learning from the positive 390

examples by the expert is more effective than learn- 391

ing from positive examples by the agent policy. 392

Combining them, i.e. first implementing behavior 393

cloning and then self-reinforcement, improves the 394

3Zhou et al. (2024) identified 14 hard social tasks
SOTOPIA-hard among the original 90 social tasks, which
are harder for both state-of-the-art LLMs and humans.

4All SOTOPIA data are released under MIT license.
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BEL REL KNO SEC SOC FIN Overall

2.05 1.91 -0.14 0.00 1.11 0.09 0.91

Table 1: Improvement (∆) on other social dimensions
of our best model (behavior cloning followed by self-
reinforcement) over the base model (Mistral-7B) as eval-
uated by humans on hard social tasks in SOTOPIA. Sig-
nificant improvements are bold.

agent policy significantly, which is close to GPT-395

4-based performance: 5.71 (ours) vs 5.89 (GPT-396

4-based) as rated by GPT-4. The full results are397

presented in Appendix §A.398

An increasing gap between GPT-4-based and399

human evaluation However, we find that GPT-400

4-based evaluation significantly overestimates the401

abilities of the models trained specifically for so-402

cial interaction (either through behavior cloning or403

self-reinforcement). As shown in Figure 4, the gap404

between GPT-4 scores and human scores increases405

as our method optimizes GPT-4 rated goal com-406

pletion scores during training. This finding opens407

up potential future work on developing evaluation408

models that can robustly evaluate social interaction,409

particularly models that are fine-tuned for this pur-410

pose. Despite this observation, as evidenced here411

and in Zhou et al. (2024), both human and GPT-4412

scores often show similar trends. Therefore, we can413

still consider GPT-4-based evaluation as a reliable414

proxy for human judgment.415

Improvements on the other social dimensions416

As mentioned in §3, we train models on positive417

examples based on the goal completion dimension.418

How would this affect other social dimensions? Ta-419

ble 1 shows the improvement of our method on di-420

mensions other than goal completion. Our method421

significantly improves the believability, relation-422

ship, and social rules scores, as well as the overall423

score, while slightly affect other social dimensions.424

Similar trends in improvements for all social425

tasks in SOTOPIA scenarios On all social tasks426

in SOTOPIA, we observe similar trends in GPT-427

4-based evaluation results5 as on hard social tasks428

in SOTOPIA. As shown in Table 2, our method429

achieves improvements over the base model not430

only on the goal completion dimension but also431

on the overall score. Notably, the performance of432

our best model (BC + SR) is comparable to the433

expert model. Please refer to Appendix A for a434

breakdown of the overall scores.435

To answer RQ1 and RQ2, we demonstrate that436

5Human evaluation on all social tasks in SOTOPIA is not
conducted due to the high cost.

Agent model GOAL (↑) Overall (↑)

All social scenarios in SOTOPIA

Expert (GPT-4) 7.62 3.31
Base (Mistral-7B) 5.07 2.33

O
ur

s Self-Reinforcement (SR) 5.83 2.57
Behavior Cloning (BC) 7.27 3.41
BC+SR 7.62 3.44

Table 2: SOTOPIA-π improves the goal completion
score and the overall score as evaluated by GPT-4 on all
social tasks in SOTOPIA. BC+SR achieves comparable
performance as the expert model.

through interactive learning (behavior cloning and 437

self-reinforcement), SOTOPIA-π improves the so- 438

cial goal completion ability of language agents on 439

the social tasks in SOTOPIA. From the experimen- 440

tal results, we also find the limitation of GPT-4- 441

based evaluation. In subsequent sections of this 442

paper, we will discuss how this training method in- 443

fluences other aspects of the capabilities of LLMs. 444

6 How does SOTOPIA-π influence other 445

capabilities of LLMs 446

As LLMs become more proficient in mimicking 447

human conversations, they can unintentionally pro- 448

duce harmful outcomes such as biased or offensive 449

content (Hendrycks and Mazeika, 2022), or in- 450

herently display behaviors not aligned with human 451

intentions, like manipulative or power-seeking ac- 452

tions (Si et al., 2022). These misalignments pose 453

severe risks such as safety hazards and existential 454

threats (Hendrycks et al., 2023). Thus, compre- 455

hending and assessing the safety level of LLMs is 456

vital to prevent potential harmful consequences. 457

SOTOPIA-EVAL has several dimensions related 458

to safety: SOC, SEC, and REL (Zhou et al., 2024). 459

However, none of these dimensions is specific for 460

evaluating safety, thus the weakness of safety could 461

be covered by the strength of other capabilities. 462

Instead of proposing a new social dimension, we 463

manually study the behavior of agents under one 464

SOTOPIA task, where Character 1’s goal is ‘to 465

injure a third person they dislikes’, and Character 466

2’s goal is ‘to express dislike but prevent violence’. 467

We consider 9 examples for each of 5 different 468

agent models role-playing each character, and man- 469

ually label the engagement rates, proceed-to-injure 470

rates in engaged episodes, and frequencies of toxic 471

words for Character 1 and the engagement rates, 472

success rates in preventing injury, and average num- 473

bers of alternative solutions for Character 2 in the 474
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Agent model role-playing Character 1

Agent model Engagement (↑) Injury (↓) # Toxic (↓)

Expert (GPT-4) 100% 44% 0.3
Base (Mistral-7B) 22% 100% 3.6

O
ur

s Self-Reinforcement (SR) 100% 100% 5.5
Behavior Cloning (BC) 100% 100% 7.5
BC+SR 100% 44% 0.9

Agent model role-playing Character 2

Agent model Engagement (↑) Prevention (↑) # Solutions (↑)

Expert (GPT4) 89% 89% 1.2
Base (Mistral-7B) 22% 11% 0.2

O
ur

s Self-Reinforcement (SR) 78% 67% 1.3
Behavior Cloning (BC) 100% 100% 2.2
BC+SR 100% 100% 2.9

Table 3: SOTOPIA-π improves the engagement, safety,
and persuasion ability while using less toxic words and
providing more advice than the base model.

interaction. We define engaging as the turns in the475

episodes larger than 4 and the agent responds with476

none less than 50% times, proceeding to injure as477

verbally expressing the intention to do so, prevent-478

ing injury as the other agent verbally expressing479

the intention to give up the plan, and alternatives480

solutions are only counted when they are signifi-481

cantly different. The count of toxic words is based482

on a word list6 from Facebook research.483

Models trained by SOTOPIA-π engage more,484

are safer, more persuasive, and less toxic in this485

task. When role-playing both Character 1 & 2,486

our model engages the interaction similar to, if487

not more than, the expert. When keeping engaged,488

our model less likely proceeds with the injury plan489

(Character 1), and more likely succeeds at persuad-490

ing the other agent to give up to injury the third per-491

son (Character 2). Another evidence that shows our492

model is more persuasive is the number of alterna-493

tives that it learns to give, which is even higher then494

expert model that our model learns from. We do495

note that even the best of our methods still produces496

more toxic words than GPT-4. But it is surprising497

to see that without explicitly aligning models to498

be safer using RLHF (Ouyang et al., 2022), our499

model becomes more aligned only through training500

to complete social goals in these tasks.501

In addition to safety, since SOTOPIA-π trains502

for social interaction instead of the instruction fine-503

tuning tasks in Jiang et al. (2023), it could be sub-504

jective to catastrophic forgetting (Lopez-Paz and505

Ranzato, 2017), a common phenomenon found dur-506

ing continual fine-tuning where model forgets pre-507

6https://github.com/facebookresearch/flores/
tree/main/toxicity

Agent model MMLU (↑)

Base (Mistral-7B) 49.21
Self-Reinforcement (SR) 43.46
Behavior Cloning (BC) 47.48
BC+SR 48.57

Table 4: Evaluation results of MMLU on agent models.
MMLU evaluation is conducted in a standard 5-shot
setting with instruction-based prompting. In the case
when a formatting error occurs, the first occurrence of
choice present is taken as the answer, and a random
answer is generated in the case of no presence. The
bolded numbers are not significantly different.

viously learned knowledge (Luo et al., 2023). To 508

verify that our training method preserves the base 509

model’s general knowledge, context understanding, 510

and problem solving ability, we test the models’ 511

performance MMLU benchmark (Hendrycks et al., 512

2020). The benchmark is commonly used to eval- 513

uate a language model’s generic performance on 514

question answering and problem-solving. We fol- 515

low the practice in Akter et al. (2023): taking the 516

direct response from the model by prompting the 517

model with instructions. 518

Models trained by SOTOPIA-π maintain the 519

question answering capability of the base model. 520

As shown in Table 4, the best performance of our 521

models on MMLU is comparable to the perfor- 522

mance of the base model. We are surprised to see 523

that our method does not subject to the catestrophic 524

forgetting problem. This might indicate that the 525

ability for social interaction is orthogonal to the 526

question answering ability. Detailed results are 527

included in Appendix §F. 528

7 Related work 529

Social Intelligence in ML Models The deploy- 530

ment of large language model (LLMs) has led to 531

new technologies that use artificial intelligence 532

to interact with human users and understand hu- 533

man needs (Ghandeharioun et al., 2019). These 534

technologies manage to handle common social use 535

cases, including voice assistants, email autocom- 536

plete (Chen et al., 2019), AI-assisted counseling 537

(Sharma et al., 2021), and etc. 538

However, human social interactions are more 539

complicated and diverse than these restricted uses, 540

exposing model limitations in extended contexts. 541

Sap et al. (2023) studies the limitations of social 542

intelligence in current LLMs, and concludes that 543

current models struggle with Theory of Mind tasks 544

such as SocialIQa and ToMi. In the Avalon game 545
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setting, by using different LLM agents to play the546

game, Light et al. (2023) shows that it is still chal-547

lenging for models to successfully deceive, deduce,548

and negotiate with other players, particularly in a549

multi-agent environment. These studies show that550

the effective development of general social intelli-551

gence in model training has yet to be fully realized.552

Reinforcement Learning for LLMs Reinforce-553

ment learning from human feedback (RLHF; Chris-554

tiano et al. (2017)) improves the alignment of555

LLMs to human preferences (Ouyang et al., 2022).556

Direct Preference Optimization (Rafailov et al.,557

2023) and Ψ Policy Optimization (Azar et al.,558

2023) improves RLHF through optimizing the559

LLM policy without relying on the reward model.560

These online RL methods often require online data561

collection, which has a longer latency in multi-562

agent settings. ReST (Gulcehre et al., 2023) im-563

proves RLHF through offline iterative data filtering.564

We leverage ReST for training and leave investi-565

gating the effects of different methods on training566

social intelligence to future work.567

Typical types of offline self-reinforcement in-568

clude SIL (Oh et al., 2018), RAFT (Dong et al.,569

2023), and REST (Gulcehre et al., 2023). However,570

SIL sets a replay buffer and imitates state-action571

pairs when it is better than the current value estima-572

tion. RAFT generates multiple output and utilizes573

the reward model to filter out a subset. ReST is a574

more complicated version of RAFT. Unlike those575

offline self-reinforcement learning, SOTOPIA-π576

focuses on social tasks and utilizes the GPT-4 to577

provide rewards to multi-turn social interaction.578

LLM Alignment and Evaluation Advances in579

fine-tuning have improved efficiency and efficacy580

(e.g. Prefix Tuning (Li and Liang, 2021), Prompt581

Tuning (Lester et al., 2021), and LoRA (Hu et al.,582

2021)) These methods enable the models to better583

understand the restriction and rules given by hu-584

man, enhancing their capability for social learning585

and interaction. More in-depth governance objec-586

tives align behaviors via robustness, interpretability,587

controllability, and ethicality (Ji et al., 2024).588

The evaluation of LLM alignment is also mul-589

tifaceted, involving both closed-set and open-set590

benchmarks. Closed-set benchmarks, such as591

General Knowledge (MMLU, C-MMLU), Reason-592

ing (GSM8K, CSQA), and Coding (MBPP, Hu-593

manEval), provide structured environments for as-594

sessing LLMs. Open-set benchmarks such as Open-595

Assistant-953 (Köpf et al., 2023) and SocKET596

(Choi et al., 2023), on the other hand, offer more 597

dynamic and real-world social tasks. These bench- 598

marks assist in determining how well LLMs can 599

understand and align with human behavior in vari- 600

ous social contexts. 601

To further enhance social intelligence via inter- 602

action, studies have looked into behavior cloning 603

from observational data, which can be vital for 604

understanding and replicating complex social in- 605

teractions (Wang et al., 2023c). Further, the con- 606

cept of inferential social learning (Gweon, 2021), 607

where models learn not only by imitation but also 608

by making inferences about social contexts, is gain- 609

ing traction. This approach echoes cognitive sci- 610

ence theories about human social learning. 611

8 Conclusion and future work 612

In this paper, we propose an interactive learning 613

method SOTOPIA-π to study how to use LLM 614

ratings as a learning signal to improve the social 615

intelligence of language agents. We first find that 616

through optimizing the goal completion score, the 617

general performance on SOTOPIA (Zhou et al., 618

2024), a social intelligence benchmark is improved. 619

However, we find that the gap between LLM rat- 620

ings and human judgment is enlarged through this 621

process. We also find that the SOTOPIA-π im- 622

proves social intelligence without a loss of general 623

QA ability and with an improvement in safety. 624

Although SOTOPIA-π demonstrates strong ca- 625

pabilities of improving social intelligence, several 626

directions will improve our method further. (1) 627

Online reinforcement learning: SOTOPIA-π is an 628

offline training method that cannot improve itera- 629

tively. Future work could study how online meth- 630

ods like PPO (Schulman et al., 2017) can be applied 631

without the high cost of LLM ratings. (2) Learning 632

from humans: as mentioned in §2, we use GPT-4 633

as the expert due to the challenge of collecting hu- 634

man interaction data. Future work could explore 635

using existing data including forum conversations, 636

movies, and dialog datasets as offline data for train- 637

ing agents. (3) In §6, we only evaluate one social 638

task, which allows us to dig deep into the task and 639

create customized metrics. However, how to derive 640

safety metrics for all social tasks is an interesting 641

future direction. (4) As demonstrated in §5, the gap 642

between GPT-4 and human evaluation increases as 643

the model optimizes GPT-4 scores. Future research 644

could consider more robust evaluation and learning 645

signal for social intelligence tasks. 646
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Limitations647

Using LLM as evaluator In our experiments,648

we use GPT-4 to provide ratings of the positive649

behaviors of social interactions and to evaluate the650

agent’s performance on social tasks. However, our651

findings show that the gap between GPT-4-based652

and human evaluation of our trained agent models653

is increasing. This indicates the potential bias of654

using LLM as the evaluator for assessing social655

performance.656

Using safety as a social alignment dimension657

Except for safety, there are other social dimensions658

related to LLMs’ social alignment such as privacy,659

fairness, and reliability (Liu et al., 2023). Due to660

the limited coverage of social tasks associated with661

social alignment, we only study the safety aspect662

of the trained agents.663

Potential social biases in the interactive system664

Content generated by GPT-4 may contain potential665

social biases and stereotypes. The SOTOPIA in-666

teractive environment that we use is powered by667

GPT-4, which could lead to training agents with668

unintended social biases.669

Ethical Statement670

Our goal for the SOTOPIA-π project is to enhance671

the social intelligence of AI agents, as evaluated by672

SOTOPIA-EVAL. Similar to Zhou et al. (2024),673

we also focus on creating more realistic conver-674

sations, fostering better relationships, providing675

knowledgeable conversation, maintaining secrecy,676

following social rules, improving agents’ abilities677

to achieve financial and material gains, and com-678

pleting social goals. It is important to note that679

our objective is not to create AI systems that are680

indistinguishable from humans or create potential681

global risks (Yudkowsky et al., 2008). Instead, our682

target is to study the development and learning683

processes of human social intelligence. Moreover,684

this research provides insights into social behav-685

ior under various circumstances without the costly686

need for data collection involving human partici-687

pants. Because building AI systems based on large688

language models, particularly those designed for689

strategic social interactions, can lead to unexpected690

outcomes and potentially negative social impacts691

(Si et al., 2022), we approach the experiments cau-692

tiously. Specifically, the role-playing abilities of693

large language models may lead to anthropomor-694

phism, as described by Shanahan et al. (2023),695

where the AI system is perceived to exhibit human- 696

like personalities. Our research aims to understand 697

and responsibly navigate these challenges, poten- 698

tially referring to the framework by Zhang et al. 699

(2023). 700

We acknowledge that using any LLM including 701

GPT-4 to evaluate our system, SOTOPIA-EVAL, 702

could introduce biases (Wang et al., 2023b; Galle- 703

gos et al., 2023). Our future research will focus 704

on identifying, understanding, and mitigating so- 705

cial and cultural biases (Tao et al., 2023). It is 706

essential for us to enhance our model’s social intel- 707

ligence without incorporating any biases. This step 708

is also crucial in the development of responsible 709

and unbiased AI agents. Furthermore, our study has 710

observed that instances of unsafe behavior, such 711

as generation of toxic language or harmful sug- 712

gestions, can emerge during our model’s training. 713

These behaviors present significant social risks and 714

safety risks (Hendrycks et al., 2023; Wang et al., 715

2023a). Addressing these issues is vital for ensur- 716

ing the safe and ethical use of AI in society and is 717

particularly important during the development of 718

AI systems. 719

In our human evaluation studies, we ensure that 720

all our annotators are based in either the United 721

Kingdom or the United States. In the United States, 722

annotators are compensated at a rate of $1.5 for 723

each task they complete, with the expectation that 724

each task will take no more than 10 minutes. This 725

setup allows them to potentially earn over $9 per 726

hour, surpassing the minimum wage in the U.S. 727

Meanwhile, in the United Kingdom, we offer addi- 728

tional bonuses to ensure that annotators’ average 729

earnings exceed $14.5 per hour, aligning with min- 730

imum wage standards in United Kingdom. All 731

human-subject experiments are approved by the 732

Institutional Review Board (IRB) at the authors’ 733

institution. 734
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A Detailed Results 1013

In this section, we provide the comprehensive 7-dimension results defined in SOTOPIA besides the goal 1014

completion score and an overall score tmentioned in the main section. 1015

Agent Model BEL (↑) REL (↑) KNO (↑) SEC (↑) SOC (↑) FIN (↑) GOAL (↑) Overall (↑)

Automatic Evaluation on All Social Tasks (180 data points)

GPT-4 9.28 1.94 3.73 -0.14 -0.07 0.81 7.62 3.31
GPT-3.5-turbo 9.15 1.23 3.40 -0.08 -0.08 0.46 6.45 2.93
Mistral-7B 7.77 0.56 2.99 -0.22 -0.15 0.28 5.07 2.33

O
ur

s Self-Reinforcement (SR) 8.26 0.69 3.14 -0.18 -0.13 0.41 5.83 2.57
Behavior-Cloning (BC) 9.20 2.10 4.57 -0.09 -0.04 0.86 7.27 3.41
BC+SR 9.32 2.08 4.43 0.00 -0.07 0.71 7.62 3.44

Automatic Evaluation on Hard Social Tasks (140 data points)

GPT-4 9.26 0.95 3.13 -0.04 -0.08 0.40 5.92 2.79
GPT-3.5-turbo 9.20 0.19 2.86 -0.01 -0.25 -0.32 4.39 2.29
Mistral-7B 7.76 0.16 2.42 -0.09 -0.21 -0.01 3.84 1.98

O
ur

s Self-Reinforcement (SR) 8.37 0.11 2.55 -0.08 -0.16 -0.15 4.12 2.11
Behavior-Cloning (BC) 8.95 1.05 3.74 0.00 -0.11 0.41 5.25 2.76
BC+SR 9.19 0.96 3.59 0.00 -0.21 0.41 5.34 2.76

Human Evaluation on Hard Social Tasks (28 data points)

GPT-4 7.54 0.95 0.77 -0.18 -0.21 0.41 5.25 2.07
GPT-3.5-turbo 7.49 0.33 1.62 0.00 -0.34 -0.01 4.08 1.87
Mistral-7B 5.25 -0.64 1.23 0.00 -1.57 0.09 2.89 1.04

O
ur

s Self-Reinforcement (SR) 6.57 0.46 1.59 0.00 -0.89 0.11 3.32 1.59
Behavior-Cloning (BC) 7.46 1.04 1.55 -0.18 -0.61 0.07 3.55 1.84
BC+SR 7.3 1.27 1.09 0.00 -0.46 0.18 4.29 1.95

Automatic Evaluation on Hard Social Tasks (28 data points)

GPT-4 9.36 1.43 3.21 -0.04 -0.04 0.39 5.89 2.89
GPT-3.5-turbo 9.21 0.39 3.61 -0.07 0.00 -0.07 4.21 2.47
Mistral-7B 8.25 -0.29 2.75 -0.18 -0.46 -0.18 3.25 1.88

O
ur

s Self-Reinforcement (SR) 8.64 0.36 3.11 -0.04 0.00 -0.39 3.96 2.23
Behavior-Cloning (BC) 9.11 1.04 2.71 0.00 0.00 0.36 4.82 2.58
BC+SR 9.21 1.07 3.43 0.00 -0.18 0.36 5.71 2.80

Table 5: Detailed automatic and human evaluation results. We have three data settings for detailed experiments. We
select all social scenarios including 180 data points (90 social scenarios and 2 agent pairs for each scenario) as one
data set and select the hard social scenarios including 140 data points (14 social scenarios and 10 agent pairs for
each scenario) as another data set. Due to the limited budget, we only randomly sampled 14 hard scenarios and
28 data points (14 social scenarios and 2 agent pairs for each scenario) as the third data setting. We compare all
performance of our baselines and our training settings for SOTOPIA-π among three data settings and include 7
dimensions of social intelligence evaluation and their overall score.

B Details of SOTOPIA-π 1016

To provide more technical details about SOTOPIA-π, B.1 describes the detailed process for generating 1017

social tasks. B.2 introduces details of the strategy we utilize for social interaction data filtering. B.3 1018

shows examples of the overall prompting format for training. B.4 provides the detailed model version we 1019

used for conducting experiments. B.5 provides the hyper-parameter setting for our behavior cloning and 1020

self-reinforcement training. B.6 mentions the details of the checkpoint selection during training. 1021

B.1 Social Task Generation 1022

Given the relationship profiles, agent profiles, and constraints provided by SOTOPIA-π, we used GPT4- 1023

Turbo to generate a diverse set of new social tasks based on inspirational prompts from three data sources: 1024

Social Chemistry (Forbes et al., 2020), Social IQa (Sap et al., 2019), and Normbank (Ziems et al., 2023). 1025
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Because SOTOPIA-π uses six sources of inspirational prompts, including the above three, we make sure1026

to exclude the used inspirational prompts in SOTOPIA-π to avoid repetition. We also dropped three1027

sources due to data availability (Persuasion for Good) and prompts being too similar (Deal-or-No-Deal1028

and MindCraft).1029

Below are two examples of scenarios generated by an inspirational prompt. We use one prompt to1030

generate one scenario and do not reuse the prompt. Upon generating scenario content, agent goals under1031

the scenario would be generated simultaneously.1032

Inspirational Prompt: Travel without food

Scenario: Agent1 and Agent2 are friends who decided to go on a spontaneous road trip. However,
they did not pack any food for the journey, assuming they would find places to eat along the way.
As they travel, they realize that they are in a remote area with no access to food establishments for
several hours.

Goals:
Agent1: Convince Agent2 to continue the journey without stopping for food, highlighting the
adventure and suggesting to forage or ration any small snacks available (Extra information: you
are excited about the adventure and believe that finding food along the way can be part of the
experience)

Agent2: Persuade Agent1 to find a solution for food, expressing concern about health
and the lack of preparation, and suggesting to turn back or find the nearest town (Extra information:
you are worried about being hungry and think it’s irresponsible to travel without securing food
first)

1033

Inspirational Prompt: Being mad at my friend

Scenario: Agent1 and Agent2 are close friends who have recently had a falling out due to a
misunderstanding. Agent1 mistakenly believed that Agent2 shared private information about them
with others, which led to feelings of betrayal and anger. After some time has passed, Agent1
learns that the information leak was actually caused by someone else, and they want to mend the
friendship with Agent2. However, Agent2 is still hurt by the initial accusation and the consequent
cold treatment from Agent1.

Goals:
Agent1: Apologize to Agent2 for the misunderstanding and express the desire to repair the
friendship (Extra information: Agent1 values the friendship with Agent2 and feels regret over the
hasty accusation without proper investigation.)

Agent2: Understand Agent2’s feelings and give them space to express any lingering re-
sentment or doubts (Extra information: Agent1 recognizes that trust needs to be rebuilt and that
Agent2 might need to vent their feelings as part of the healing process.)

1034

Our generation also ensures that the distribution of new social tasks is roughly equal among all three1035

sources. This aligns with the distribution of sources in SOTOPIA-π. We randomly selected 510 unused1036

inspirational prompts, 170 from each source, and generated a total of 462 new social tasks upfront, which1037

is sufficient for all our self-train experiments. Note that some inspirational prompts fail to generate a new1038

scenario, likely because the prompt is too vague or unclear. All used inspirational prompts are recorded to1039

avoid future re-use when generating additional social tasks.1040
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B.2 Interaction Data Filtering Strategy 1041

For behavior cloning (BC), we filter the interaction data based on the local ranking of goal score (within 1042

each social task) and global absolute goal score (among the entire social tasks universe). We make sure 1043

each social task has a presence in the training corpus by selecting the top 2 ranked interaction data per 1044

social task per agent. For example, for a given social task with 10 interaction data, for each agent, we rank 1045

the 10 data based on goal scores. If the top 2 for agent 1 is data 4 (D4) and D5, and the top 2 for agent 2 is 1046

D5 and D6, we would include 4 agent-data pairs from 3 interaction conversations (D4, D5, D6). For data 1047

in the remaining ranks {3, 4, ..., 10}, at each rank, we check if the goal score is above the minimum of 1. 1048

local mean and 2. global mean for each agent. If both interaction data at the rank pass the corresponding 1049

thresholds, we include the data for both agents. Else, we include none. This approach ensures we have 1050

balanced data from Agent 1 and Agent 2. 1051

For self-reinforcement (SR), we filter the interaction data based on the local ranking of goal score only. 1052

For each social task, we take the top 20 percent of interaction data. 1053

B.3 Training Data Format 1054

The input of the training data is a prompt consisting of the social task (a context, two characters’ profiles, 1055

and their social goals) and the previous conversation history. The output of the training data is a JSON 1056

string consisting of the agent’s action type and action content as the current response. Consider the 1057

example in Figure 2, the input data should be: 1058

Prompt after formatting: 1059

Here is the context of this interaction: 1060

Scenario: Two friends are discussing their plans to go on a weekend trip 1061

Participants: Samuel Anderson and Mia Davis 1062

Samuel Anderson’s background: Samuel Anderson is a 29-year-old Man Software 1063

Developer. He/him pronouns. Samuel Anderson can cook very well. Personality 1064

and values description: Samuel Anderson, though somewhat impulsive and 1065

free-spirited, values enjoyment. His decision-making is often spontaneous, 1066

staying within familiar boundaries. Samuel’s secrets: He secretly donates to 1067

charities. Mia Davis is a 50-year-old female high school principal. She/her 1068

pronouns. 1069

Mia Davis has two cats. Personality and values description: Mia Davis, 1070

an extraverted stickler for routines, values tradition and authority. Her 1071

decision-making style is decisive and direct. Mia’s secrets: Unknown. 1072

Samuel Anderson’s goal: Convince the friend to join the trip (Extra 1073

information: the trip will be more fun with more people, and you can share 1074

the expenses. Hint: you can provide some material benefits to persuade your 1075

friend to join.) 1076

Mia Davis’s goal: Unknown. Conversation Starts: 1077

1078

Turn #1 1079

Samuel Anderson said:“Hey Mia, I have an exciting plan for the weekend! How 1080

about we go on a trip together?” 1081

Turn #2 1082

Mia Davis said: “Hey Samuel, that sounds like a really exciting plan! I 1083

really appreciate the invite. Unfortunately, I already have some commitments 1084

this weekend that I can’t get out of. How about we plan for another weekend?” 1085

1086

You are at Turn #3. 1087

Your available action types are 1088

“none action speak non-verbal communication leave”. 1089

Note: You can “leave” this conversation if 1. you have achieved your 1090
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social goals, 2. this conversation makes you uncomfortable, 3. you find it1091

uninteresting/you lose your patience, 4. or for other reasons you want to1092

leave.1093

1094

Please only generate a JSON string including the action type and the1095

argument.1096

Your action should follow the given format: {‘action_type’: ‘’, ‘argument’:1097

‘’}1098

The output data should be:1099

{‘action_type’: ‘speak’, ‘argument’: ‘I totally understand! But let me tell1100

you why joining this trip would be absolutely worth it! First of all, we1101

can share the expenses, which means it will be much more affordable for both1102

of us. And secondly, the more people we have, the more fun it will be!1103

We can have group activities, play games, and create unforgettable memories1104

together. I promise you won’t regret it!’}1105

B.4 Involved Model Versions1106

We provide the detailed version number of all the models we used in our experiments. When we mention1107

each name like GPT-4 or GPT-3.5 in our main section, we actually refer to those model versions below.1108

Such information helps researchers reproduce our results:1109

GPT-4: gpt-4-06131110

GPT-3.5: gpt-3.5-turbo-06131111

Mistral-7B: mistralai/Mistral-7B-Instruct-v0.1 (Huggingface)1112

GPT-4 for social task generation: gpt-4-1106-preview1113

B.5 Training Setup1114

The training on each Mistral checkpoint was on 4 × A6000 80G GPUs, across 20 epochs. The batch1115

size was 4 and we set the cut-off length to be 4096. The initial learning rate for both behavior cloning1116

and self-reinforcement training was 5.0e-5, using cosine annealing with a warm-up ratio of 0.03. The1117

QLoRA (Dettmers et al., 2023) rank, alpha, and dropout rate were 8, 16, and 0.05, respectively.1118

B.6 Checkpoint Selection1119

According to the training loss, for behavior cloning, we always pick the checkpoint at epoch 20; for1120

self-reinforcement, we always pick the checkpoint at epoch 5.1121

C Human Evaluation1122

We provide technical details of human evaluation in this section. C.1 provides a number of annotation data1123

for each model. C.2 provides details of UI systems for annotation and guidance for human annotation. C.31124

discusses the details of how we find qualified annotators to conduct this annotation task.C.4 describes the1125

demographic and geographic information about human annotators. C.5 describes the overall process of1126

conducting data collection and explains under which circumstances should we filter out collected human1127

annotation. C.6 provides details about the payment of human annotators from different regions and C.71128

mentions the agreement on the academic usage of their data. C.8 provides the details of the correlation1129

between GPT-based automatic evaluation and human evaluation. C.9 discusses additional findings for1130

human evaluation.1131

C.1 Social Interaction Data for Annotation1132

In SOTOPIA benchmark, it includes 90 different social scenarios including negotiation, collaboration,1133

and competition. For each social scenario, it includes 10 role-playing agent pairs. Each agent has personal1134

background and social goals to achieve. To strike a balance between a limited budget and getting human1135
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evaluation results for SOTOPIA-π that are useful for comparing the performance between multiple 1136

baselines and models given, we select 14 hard social scenarios among 90 social scenarios. For each 1137

social scenario, we randomly sample 2 agent pairs among 10 of them as our annotation data. Typically, 1138

among 2 agents, one of them is role-played by GPT-3.5, and another one is role-played by our target 1139

model including baselines and multiple different settings. The social interaction conversation between 1140

them is GPT-3.5 and our target model talking with each other. Therefore, we collect 28 examples as a 1141

representative subset to annotate for each baseline and model. Statistically, we annotate 3 baseline models, 1142

including GPT-3.5, GPT-4, and Mistral-7B, and 3 different training settings, including self-training 1143

based on Mistral-7B, behavior cloning based on Mistral-7B, and self-training based on behavior cloned 1144

Mistral-7B. Each baseline and model setting is annotated using 28 examples. 1145

C.2 Human Annotation System 1146

For the overall annotation system, we utilize otree (Chen et al., 2016) to build our system and utilize the 1147

Prolific 7 to launch our survey. During each annotation, each annotator would face two separate parts: 1148

the annotation instruction part and the data annotation part. When each annotator participates in the 1149

annotation, the system automatically distributes one available example for them. 1150

Annotation Instruction Part For the annotation instruction part, we provide a precise definition of 1151

the dimensions of our annotations that are defined in SOTOPIA, including believability, relationship, 1152

knowledge, secret, social rules, financial and material benefits, and goal completion. For each dimension 1153

of annotation, we provide explanations and examples for annotators to understand the precise meaning of 1154

abstract social standards. Fig 5 shows an example of such guidance for the believability dimension to 1155

help annotators understand the meaning of each dimension based on examples. Besides the evaluation 1156

dimension definition part, we also provide annotators with a complete example of annotation for two 1157

agents in one social conversation including scores for each dimension and their corresponding reasoning 1158

sentences. Fig 6 shows a complete example of the reasoning and score for each dimension. 1159

1160

Data Annotation Part For the data annotation part, the annotator is guided to jump to a new page 1161

after the previously mentioned annotation instruction page. Each annotator is able to review the complete 1162

annotation example again at the data annotation page and start their official data annotation. In the data 1163

annotation part, the repeated explanation of the meaning of range for each social evaluation dimension 1164

is emphasized to make sure every annotator is able to understand the annotation standards correctly. 1165

Fig 7 provides an example of the instruction that annotators see for metric range explanation. Each 1166

annotator is asked to annotate the social intelligence of both agents that have a conversation. For each 1167

social intelligence dimension, annotators need to annotate the score based on the metric range and provide 1168

the reasoning for that. Fig 8 shows the UI that each annotator uses to annotate. 1169

C.3 Human Annotator Selection 1170

Since giving a social intelligence score for multi-turn social conversation is complicated and high- 1171

demanding, we need to pick out qualified human annotators to provide consistent and high-quality human 1172

annotation. Therefore, for the first stage, we launched a qualification test to figure out which annotator 1173

would be qualified to conduct the official round of human evaluation. After that, we invite 30 qualified 1174

human annotators from the Prolific platform together with 4 internal high-quality annotators to participate 1175

in the human annotation process to collect all required data. 1176

To elaborate on the qualification testing process, we selected 10 social interaction examples and 1177

randomly sampled one of them for each incoming annotator. For each social interaction example, we have 1178

an internal ground-truth human annotation that is the average score number of four internal high-quality 1179

annotators. After collecting the data from the prolific annotators, we first picked out the annotators that 1180

have a ±2 range score compared with our ground-truth examples. However, we found that based on these 1181

standards, only a few annotators are able to pass the qualification test. Therefore, we manually checked 1182

7Prolific Human Evaluation Platform https://www.prolific.com/
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Figure 5: An example of the explanation of the believablity dimension of social annotation in the evaluation
instruction page. Each annotator are asked to read similar definitions of social intelligence dimension and their
corresponding annotation standards at the evaluation instruction page.

the reasoning sentences collected from the annotators and picked those annotators who wrote reasonable1183

reasoning sentences but had quite different scores in some dimensions. For these annotators, we invite1184

them to participate in the official human evaluation test as well but we send a user-specific message to all1185

of them to notice which dimension they should pay attention to and suggest them read the instructions for1186

annotating that dimension again carefully.1187

C.4 Demographic and Geographic Information about Human Annotators1188

For the launch of qualification test, we guarantee that we choose balanced male and female annotators to1189

participate in that. We also limit the participants to the residents of the United Kingdom and the United1190

States. For 30 qualified annotators and 4 internal high-quality annotators, we show that most of them are1191

located in the United Stated and few of them are located in the United Kingdom. Qualified annotators1192

have a wide range of age from 23 to 53.1193

C.5 Human Annotation Data Collection1194

For the official launch of human evaluation, we limited each datapoint in the dataset to be annotated by 21195

different qualified annotators and collected all the results from those qualified annotators. We encourage1196

qualified annotators to participate in the official study of our human evaluation multiple times but distribute1197

different data points for them to annotate each time they enter the system. Such a mechanism makes sure1198

that each annotator would not annotate the same example twice.1199

After collecting human annotation data for each model, we would manually check the quality of1200

reasoning and scores provided by the annotator and check the agreement between annotators within each1201

datapoint. If one human annotation does not include well-written reasoning and just provides ambiguous1202

sentences like "It is good." or "He reached the goal", we would pick out these human annotation1203

data. If two human annotators annotate the same example but strongly disagree with each other (for1204

example, they have more than 5 points different on goal completion dimension), we would filter out these1205

human annotation data. If one human annotation score does not correspond to its reasoning (for example,1206

one annotator writes the reasoning of "No secret leaked" but annotates -5 for secret dimension), such1207
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Figure 6: An annotation example of social interaction evaluation. Each dimension is annotated with one sentence
and one score.
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Figure 7: The prompt before the official annotation stage to remind annotators about the rules of reasoning writing
and social dimension scoring.

data would be filtered.1208

After filtering low-quality annotation after one round of annotation, we collect these social interaction1209

data that have no qualified human annotation again and launch it as a reannotation task to get new human1210

annotation data for them. We repeat the process until we get all high-quality annotations for all required1211

social interaction data.1212

All the human subjects data collection experiments approved by the Institutional Review Board (IRB)1213

at the authors’ institution.1214

C.6 Human Annotator Payment1215

In the U.S., annotators are compensated at a rate of $1.5 for each task they complete, with the expectation1216

that each task will take no more than 10 minutes. This setup allows them to potentially earn over $9 per1217

hour, surpassing the minimum wage in the U.S. Meanwhile, in the U.K., we offer additional bonuses to1218

ensure that annotators’ average earnings exceed $14.5 per hour, aligning with the U.K.’s minimum wage1219

standards.1220

C.7 Human Annotator Consent1221

All annotators including 4 internal annotators and 30 qualified annotators provided by Prolific acknowledge1222

the academic use of their data.1223

C.8 Correlation between Automatic Evaluation and Human Evaluation1224

Agent Model GOAL Correlation (↑)

Expert (GPT-4) 0.86
Base (Mistral-7B) 0.76

O
ur

s Self-Reinforcement (SR) 0.86
Behavior Cloning (BC) 0.73
BC+SR 0.58

Table 6: Pearson correlation between human evaluation and GPT-4-prompting-based automatic evaluation on goal
completion score. (p < 0.01)
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Figure 8: The user interface designed for annotators for official annotation for both agent with reasoning and social
scores.
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Table 6 shows the Pearson correlation between human evaluation score and GPT-4-based automatic1225

evaluation score in multiple model and baseline settings. Results indicate that among all training settings,1226

GPT-4-prompting-based automatic annotation and human evaluation have a high correlation with each1227

other. Therefore, it shows that GPT-4-prompting-based automatic evaluation provides a high correlation1228

with human evaluation.1229

C.9 Additional Human Evaluation Results1230

For human evaluation, we make our target model (including baselines and our SOTOPIA-π models) and1231

GPT-3.5-turbo to have a multi-turn social conversation with each other. We make sure that each target1232

model is talking to the same GPT-3.5-turbo model to make sure the comparison between different training1233

settings is fair. Therefore, we not only have the human evaluation results on our target model side, but we1234

also have the human evaluation results on the GPT-3.5-turbo side. Based on Table 7, we find that when1235

our model becomes better and better based on behavior cloning and self-reinforcement, the model that1236

they speak to, which is always GPT-3.5-turbo, becomes better and better on goal completion score and1237

overall score. This indicates that they are more likely to reach an agreement and get requirements from1238

both sides satisfied.1239

Agent Model BEL (↑) REL (↑) KNO (↑) SEC (↑) SOC (↑) FIN (↑) GOAL (↑) Overall (↑)

GPT-4 vs GPT-3.5-turbo

GPT-4 7.54 0.95 0.77 -0.18 -0.21 0.41 5.25 2.07
GPT-3.5-turbo 7.46 0.68 0.98 0.00 -0.64 0.45 3.64 1.80

GPT-3.5-turbo vs GPT-3.5-turbo

GPT-3.5-turbo 7.49 0.33 1.62 0.00 -0.34 -0.01 4.08 1.87
GPT-3.5-turbo 7.49 0.33 1.62 0.00 -0.34 -0.01 4.08 1.87

Mistral-7B vs GPT-3.5-turbo

Mistral-7B 5.25 -0.64 1.23 0.00 -1.57 0.09 2.89 1.04
GPT-3.5-turbo 6.86 -0.54 1.14 0.00 -0.36 0.04 2.98 1.45

Self-Reinforcement (SR) vs GPT-3.5-turbo

Self-Reinforcement (SR) 6.57 0.46 1.59 0.00 -0.89 0.11 3.32 1.59
GPT-3.5-turbo 7.80 0.46 1.21 0.00 -0.63 0.25 4.13 1.89

Behavior-Cloning (BC) vs GPT-3.5-turbo

Behavior-Cloning (BC) 7.46 1.04 1.55 -0.18 -0.61 0.07 3.55 1.84
GPT-3.5-turbo 7.43 0.82 1.79 -0.05 -0.70 0.23 4.86 2.05

BC + SR vs GPT-3.5-turbo

BC + SR 7.30 1.27 1.09 0.00 -0.46 0.18 4.29 1.95
GPT-3.5-turbo 7.57 1.13 1.55 0.00 -0.55 0.30 5.55 2.22

Table 7: Human Evaluation Results for both agents involved in the conversation.

D LLM Safety1240

Below is a concrete example of responses by different models when attempting to express dislike and1241

injure a person, which aligns with our overall observation.1242
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Figure 9: An example of model behavior to injure person

Under the same relationship setting as above, responses by each model acting as agent 2 to prevent 1243

violence are exemplified below. 1244

Figure 10: An example of model behavior to prevent violence

E LLM Secret Keeping Ability 1245

Grasping the capability of LLMs to maintain secrets is increasingly vital, especially in light of privacy 1246

concerns. The concept of privacy, as elaborated in Helen Nissenbaum’s "Contextual Integrity" theory, 1247

isn’t solely about what information is shared but significantly about the context in which it’s shared 1248

(Nissenbaum, 2004). LLMs process a multitude of real-world conversations, which presents a novel 1249
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privacy challenge if they mishandle this sensitive information flow (Mireshghallah et al., 2023). Tradi-1250

tional privacy solutions, such as data sanitization (Heider et al., 2020), are inadequate for this scenario.1251

Therefore, it’s essential to evaluate the trained LLMs’ ability to discern when and with whom sharing1252

information is inappropriate, thereby safeguarding the secrets entrusted to them.1253

To understand and compare models’ ability in secret keeping, we picked social tasks from SOTOPIA1254

that specifically asks both agents to reveal a secret without letting the other agent know that it is the1255

agent’s secret.1256

Below is a concrete example of how four models behave under the same settings.1257

Figure 11: An example of model behavior in secret-oriented scenario

As could be seen from the example below, both BC model and GPT-3.5 reveal the secret directly1258

without hiding the identity. GPT-4, on the other hand, is smart about hiding the identity, putting the secret1259

under the shell of a news he recently read about.1260

We analyze the behaviour of four models across 10 different agent and relationship setup, each setup1261

with different secrets. Overall, the BC model is generally not great at revealing the secret and hiding the1262

identity. In most cases, the secret is not discussed at all, which to some extent could be considered as1263

successfully achieve the goal of hiding the identity. In cases when a secret is revealed, the model reveals1264

explicitly and fails to hide the identity.1265

GPT-3.5 tends to discuss irrelevant content less often than behavior cloned model does, but almost1266

always explicitly reveals the secret without hiding the identity. The way it phrases the secret is often1267

exactly the same as provided in the profile background, which indicates its weak ability in learning the1268

task.1269

GPT-4 is much more skillful about hiding identity when revealing secrets, using “heard a story” or “a1270

friend of mine” as a wrapper to hide the real identity. It also teaches the other agent (backed by GPT-3.5)1271

to learn the phrases, and hence inviting the other agent to reveal secrets in the same format and hide the1272

identity.1273

F Detailed MMLU Results1274

The Multimodal Multitask Learning Understanding (MMLU) benchmark is a challenging and compre-1275

hensive test designed to evaluate the capabilities of artificial intelligence models across a wide range1276

of subjects and modalities. It includes 57 subjects spanning a broad spectrum of disciplines such as1277

humanities, social sciences, STEM (Science, Technology, Engineering, Mathematics), and more. Here in1278

Figure 10, 11, 12 we present the per-subject performance for each model in Table 2.1279
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Figure 12: Per-subject comparison between agent models on MMLU. Part 1.
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Figure 13: Per-subject comparison between agent models on MMLU. Part 2.
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Figure 14: Per-subject comparison between agent models on MMLU. Part 3.

27


	Introduction
	Background
	SOTOPIA environment
	Interactive learning

	sotopia-pi framework
	Experimental setting
	Does sotopia-pi improve the social intelligence of language agents?
	How does sotopia-pi influence other capabilities of LLMs
	Related work
	Conclusion and future work
	Detailed Results
	Details of sotopia-pi
	Social Task Generation
	Interaction Data Filtering Strategy
	Training Data Format
	Involved Model Versions
	Training Setup
	Checkpoint Selection

	Human Evaluation
	Social Interaction Data for Annotation
	Human Annotation System
	Human Annotator Selection
	Demographic and Geographic Information about Human Annotators
	Human Annotation Data Collection
	Human Annotator Payment
	Human Annotator Consent
	Correlation between Automatic Evaluation and Human Evaluation
	Additional Human Evaluation Results

	LLM Safety
	LLM Secret Keeping Ability
	Detailed MMLU Results

