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ABSTRACT

Parameter-efficient transfer learning (PETL) is a promising task, aiming to adapt
the large-scale pretrained model to downstream tasks with a relatively modest cost.
However, current PETL methods struggle in compressing computational complex-
ity and bear heavy inference burden due to the complete forward process. This
paper presents an efficient visual recognition paradigm, called Dynamic Adapter
(Dyn-Adapter), that boosts PETL efficiency by subtly disentangling features in
multiple levels. Our approach is simple: first, we devise a dynamic architecture
with balanced early heads for multi-level feature extraction, along with adaptive
training strategy. Second, we introduce a bidirectional sparsity strategy driven by
the pursuit of powerful generalization ability. These qualities enable us to fine-
tune efficiently and effectively: we reduce FLOPs during inference by 50%, while
maintaining or even yielding higher recognition accuracy. Extensive experiments
on diverse datasets and pretrained backbones demonstrate the potential of Dyn-
Adapter serving as a general efficiency booster for PETL. We will make the code
publicly available.

1 INTRODUCTION
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Figure 1: Performance comparison of our
Dyn-Adapter and baselines. The through-
put is measured on a NVIDIA 3090 GPU
with a batch size of 1.

Very recently, large-scale deep neural networks have
acheived remarkable advances and attracted growing
interest in the vision community (Dosovitskiy et al.,
2021; He et al., 2022; Radford et al., 2021; Tong et al.,
2022; Zhai et al., 2022). These colossal models, of-
ten with billions of parameters, are pretrained on large
datasets (e.g., ImageNet (Deng et al., 2009)) and then
adapted to a multitude of downstream tasks (Lin et al.,
2014; Goyal et al., 2017; Kuehne et al., 2011; Zhai
et al., 2019; Zhou et al., 2019), demonstrating unprece-
dentedly strong capabilities. Such adaptation is usu-
ally done via fine-tuning in transfer learning, which
typically updates all the parameters of the pre-trained
model. However, with the rapidlly growing model size,
directly fine-tuning these large-scale models can lead to
prohibitively expensive storage overhead and computa-
tional cost(Luo et al., 2023; Chavan et al., 2023). To
rectify this issue, research endeavours towards reducing the tuning cost using parameter-efficient
transfer learning (PETL) methods (Hu et al., 2022; Chen et al., 2022; Jia et al., 2022; Zhang et al.,
2022; Luo et al., 2023). PETL methods achieve efficient fine-tune by updating only a small number
of parameters. By integrating light-weight modules or prepending additional learnable tokens to
the input sequence, PETL methods can achieve comparable or even superior performance than full
fine-tuning while keeping a significantly reduced parameter cost.

Despite the concerted efforts, existing PETL methods suffer from two drawbacks: i) inference ef-
ficency. Current literature cannot improve the inference efficiency of large-scale models, many
methods even introduce additional architecture, resulting in extra latency and FLOPs overhead (Luo
et al., 2023). Therefore, the parameter-efficient finetuning can not translate its theoretical advan-
tages into practical efficiency. Since the application of PETL is usually resource-limited scenarios,
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this drawback inevitably hinders its development; ii) entangled representation. According to Infor-
mation Bottleneck principle (IB) (Tishby et al., 2000; Tishby & Zaslavsky, 2015), layers close to
the input contain more low-level information, while features near the output are rich in semantic
meanings. Although such learning paradigm achieves great success, it might not be the optimal
choice in transfer learning: down-stream tasks may suffer from inferior performances if the learned
features are over compressed, or the learned semantic information is irrelevant to the target tasks,
especially if there exists a significant domain gap between the source and the target tasks (Cai et al.,
2023). For PETL, distinct downstream datasets often possess unique characteristics, such as natural,
specialized and structured data, which differ sharply in distribution and composition (Chavan et al.,
2023). Nevertheless, current PETL methods are only capable of tuning the high-level semantic rep-
resentations and can not directly utilize low-level information (e.g. locations of the edges) in case of
the demand of down-stream tasks, thereby undermining their capacity to adapt to diverse datasets.

In this paper, we propose a novel PETL framework termed Dynamic Adapter (Dyn-Adpater). Specif-
ically, we propose dynamic-balanced early heads to extract image features from a low level to a
high level. These early heads directly act on the intermediate features of different layers and build
connection with the task objective. For samples of different downstream tasks, our approach can
dynamically decide which level of features to use depending on the input samples, which can not
only improve the accuracy but also reduce unnecessary computation, hence boosting the inference
efficiency. Notably, a critical problem in previous early-exiting iterature is that early classifiers
force intermediate low-level features to encapsulate high-level semantics and be linearly separable,
which destroys the inherent low-level feature in shallow layers and invariably backfire the perfor-
mance (Huang et al., 2018; Han et al., 2023). In contrast, our approach overcomes this defect
fundamentally. By freezing the backbone and only updating the adapter to assume the task-related
semantic abstraction, we guarantee that the low-level feature in the backbone will not be interfered
by loss signal, realizing explicit decoupling of low level feature and high level semantics. Further-
more, we introduce a bidirectional generalization strategy during the model’s forward and backward
propogation, which enhances the model’s generalization ability and alleviates over-fitting.

Our framework boasts three essential advantages: i) fully explicit decoupling of feature extraction
and early classification. The experiment results in Section 4.2 demonstrate that Dyn-Adapter promi-
nently reduce inference latency with even superior performances; ii) the theoretical efficiency can
effectively translate into practical speedup. Remarkably, our framework can eliminate 50% infer-
ence latency and FLOPs of PETL methods without backfiring performance, significantly enhancing
their practical efficiency; iii) the simplicity and versatility of our framework. Our approach can be
seamlessly migrated into existing PETL methods, consistently outperforming original methods with
non-trivial margins.

To evaluate Dyn-Adapter, we apply it to multiple PETL methods including LoRA (Hu et al., 2022),
Adapter (Houlsby et al., 2019) and RepAdapter (Luo et al., 2023) as Fig 1 shows. Extensive ex-
periments across various vision tasks demonstrate our method’s effectiveness. For instance, Our
designs diminish RepAdapter’s 50% inference latency and FLOPs without any compromise in ac-
curacy on VTAB-1k (Zhai et al., 2019). Moreover, the visualization results exhibit that our method
can preserve the low-level features of shallow layers, which further backups our motivation.

2 RELATED WORK

Parameter-efficient Transfer Learning. Parameter-efficient Transfer Learning (PETL) aims at
fine-tuning a small number of trainable parameters to transfer large pre-trained models to down-
stream tasks. PETL was first introduced in the natural language processing (NLP) field (Houlsby
et al., 2019; Hu et al., 2022; Lester et al., 2021; Li & Liang, 2021; Liu et al., 2023; Shin et al.,
2020) and extended into large pre-trained vision models across a variety of vision tasks (Sung et al.,
2022; Zhang et al., 2022; Zhou et al., 2022a;b; Chen et al., 2022; Lian et al., 2022; Luo et al., 2023).
Generally, PETL methods integrate light-weight modules or prepend additional learnable tokens to
the input sequence to adapt down-stream tasks while keeping the original backbone frozen. For
instance, LoRA (Hu et al., 2022) proposes to freeze the pre-trained model weights and injects train-
able low-rank decomposition matrices into each layer. VPT (Jia et al., 2022) proposes to insert a
small number of learnable parameters as prompts and optimize them while freezing the backbone.
SSF (Lian et al., 2022) module scales and shifts features after every MLP, MHSA, Layernorm mod-
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Figure 2: Overview of our Dyn-Adapter paradigm. Multiple early supervisions are introduced to
facilitate dynamic inference (section 3.2). Adaptive learning and bidirectional sparsification strategy
effectively addresses Dyn-Adapter optimization (section 3.3).

ule during training, and performs re-parameterization during inference as it is a linear structure.
AdaptFormer (Chen et al., 2022) introduces a parallel learnable branch of two linear layers and
ReLU over the MLP block and learns only this path while freezing other parts. RepAdapter (Luo
et al., 2023) inserts sequential lightweight networks into both MHA and MLP, and the additional pa-
rameters will be re-parameterized to the nearby projection weights after training. In this paper, we
propose a general framework which is applicable to all existing PETL methods. Without bells and
whistles, our Dynamic Adapter can reduce PETL methods’ FLOPs up to 50% without backfiring
the fine-tuning accuracy, significantly improving the inference efficiency of PETL methods.

Dynamic Early-exiting For Efficient Visual Recognition. Dynamic networks (Bolukbasi et al.,
2017; Graves, 2016; Figurnov et al., 2017; Huang et al., 2018; Yang et al., 2020) are designed to
improve the inference efficiency of neural networks. Through adapting their computation commen-
surate with varying input complexities, dynamic networks have demonstrated promising results in
efficient visual recognition (Han et al., 2021). For instance, Bolukbasi et al. (2017) allows exam-
ples correctly classified using early layers of the system to exit, and avoid the computational time
associated with full evaluation of the network. RANet (Yang et al., 2020) proposes a resolution-
based dynamic early-exiting framework, which processes simple samples with low resolution paths
and hard samples with high resolution paths respectively. Despite these advances, a fatal problem
exits: feature extraction and early classification are intricately intertwined as introduced in Section
1. As the ramification of this contradiction, classifiers are observed to interfere with each other and
significantly degrade the performance of the final exit. To alleviate, Dynamic Perceiver (Han et al.,
2023) proposes to decouple early classification and feature extraction with a two-branch structure
and a latent code design. However, since the gradients can still be back-propagated to the shallow
layers of the network, these designs can not realize complete decoupling of representations, and the
low-level features of the shallow layers are still modified. Different from prior literatures, we start
from a new perspective, freezing the backbone to keep the feature representation retained. In our
Dynamic Adapter, only adapter is updated to abstract high-level semantic for classification, while
the main backbone is frozen thus its low-level feature can be preserved. In this way, we realize
fully-decoupling of feature extraction and classification, and the experimental results exhibit the
great potential of dynamic early-exiting in the field of transfer learning.

3 METHODOLOGY

In this section, we introduce a simple yet elegant paradigm - Dyn-Adapter. In section 3.1, we
first review the current PETL paradigm. In section 3.2, we introduce the overall framework of
Dyn-Adapter, including approach setting, early head balance and adaptive priortization. Following
this, in section 3.3 and 3.4, we present the bidirectional sparsification for more generalized gradient
updates and dynamic inference process. The overall framework is illustrated in Figure 2.
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3.1 PRELIMINARY

Below we briefly review two representative and top-performing PETL methods, i.e., LoRA (Hu
et al., 2022) and RepAdapter Luo et al. (2023).

LoRA freezes the pre-trained model weights and leverages trainable low-rank decomposition matri-
ces layer in a parallel way. ∆W signifies the learnable low-rank decomposition weights. Presuming
that W0, b0, and X are the pre-trained weights, bias, and input respectively, and g denotes a linear
layer, then g(X; θ) = W0X + b0. The finetuning can be represented as follows and ∆W can be
reparameterized during inference:

g(X, θ) = W0X +∆WX + b0 = WLoRAX + b0, (1)

RepAdapter introduces a sequential adapter to both MHA and MLP. This adapter performs dense-
to-sparse structure, where the upsampling projections is formulated as a group-wise transformation,
further facilitate its lightweight characteristic. During inference, the adapter module can be struc-
turally reparameterized and enjoys intact efficiency:

g(X; θ) = W0(X +Wu(WdX + bd) + bu) + b0

= (W0 +W0WuWd)X +W0Wubd +W0bu + b0,
(2)

where Wu, Wd, bu, and bd denote learnable weights and biases, respectively.

3.2 DYNAMIC ADAPTER

Framework. Motivated by the demand of high inference efficiency, Dyn-Adapter leverages early
classification into the PETL methods. The incorporation of early classification allows for dynamic
inference depth based on the complexity of the input. The overall framework is illustrated in Fig 2.
Given an input image I ∈ Rh×w×3, ViT preprocesses it into a visual sequence X0 ∈ Rn×d, where
n and d denote the token length and embedding dimension respectively. Then the visual sequence
is feeded into subsequent N ViT blocks and supervision is performed with a stable interval T by
classification targets Y . The total number of introduced supervision S can be easily calculated
by S = N/T . Specifically, the early head and final head lies after the l-th ViT block, where
l = iT, i ∈ {1, 2, · · · , S} and i represents the index of supervision stage. The pre-trained ViT
blocks are frozen and only the adapters are updated.

Taking the l-th block as example, given the output features of (l-1)-th block Xl−1, the i-th ViT block
employ computation and the l-th prediction Ŷl is obtained as described in the following equation:

X ′
l = MHA(Adapter(LN(Xl−1); θ) +Xl−1,

Xl = FFN(Adapter(LN(X ′
l); θ)) +X ′

l ,

Ŷl = HEAD(Xl).

(3)

The objective is to minimize the classification loss between Ŷl and the corresponding targets Y :

L =

ST∑
l=T

λl Lcls(Ŷl, Y ), (4)

where λl is the weight of the classification supervision at the l-th block.

The core goal of Dyn-Adapter is to jointly optimize the early-exit target in the PEFL settings. For
simplicity, we denote the feature extraction function (including frozen backbone and free adapter) of
stage i as fi, and the classification head of stage i as ci. The prediction of stage i can be represented
as Ŷi+1 = ci+1 ◦ fi+1(Xi). The following strategy addresses the Dyn-Adapter optimization by
comprehensively considering the design of λ, f and c.

Head Balance. Early classification heads c play a crucial role in dynamic inference, while causing
gradient interference as widely acknowledged in the supervised learning. When facilitated by the
naturally collaborative characteristic of PETL and early supervision, we further observe that there
exists inconsistency of optimization directions inducted by multiple supervisions. What causes the
collision?

We study the correlation between different optimization directions and the design of c. Since f and
c are sequentially arranged step by step, we choose the adjacent stages i and i+ 1 for analysis. The
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prediction of adjacent stages can be obtained by Ŷi = ci(Xi), Ŷi+1 = ci+1 ◦ fi+1(Xi) respectively.
The following lemma depicts the inconsistency of optimization direction.

Lemma 1. The output of early exit heads shares the same optimization target, i.e.,
Ŷi+1 → Y, Ŷi → Y.

However, in the past early exit scenarios, the heavy misalignment of path to obtain Ŷi and Ŷi+1

may cause optimization direction interference intrinsically.

Inspired by the Lemma 1, we propose the ideal requirement for f and c in Theorem!1.

Theorem 1. Consider the bond of feature representations among different blocks. Assuming
that each part under the classification supervision has been optimized ideally, the relationship
between the adjacent feature extraction block and the classification head can be expressed as:
ci+1 ◦ fi+1 ◦ fi(Xi−1) = ci ◦ fi(Xi−1), which means

ci+1 ◦ fi+1(·) = ci(·), i ∈ {0, 1, 2, ..., S − 1}.

The ideal state of f and c can be represented as Eq 5, which performs chain structure.

c1(·) ∼ c2 ◦ f2(·) ∼ · · · ∼ cS ◦ fS ◦ fS−1 ◦ · · · ◦ f2(·). (5)

Note that fi is the ViT block function with considerable complexity, we alleviate the intrinsic inter-
ference by leveraging dynamic head in a hierarchical manner. Specifically, we employ classification
in the early stages with heavier heads (i.e., MLP layers), while late stages possess light-weighted
heads for decision. Such design allocates more burden for heads hanging after shallow layers, en-
dowing the network with stronger potential for joint optimization, which is enlightened by the theo-
retical perspective.

Adaptive Prioritization. We introduce adaptive weight prioritization for multi-stage learning. Su-
pervision of different stages play various roles in the joint learning process: i) due to the sufficient
semantic features borrowed from pre-trained model in the deep layers, the late classification heads
do better in hard sample classification, while shallow layers prefer easier ones. ii) The insertion of
early supervision primarily aims to improve inference efficiency,and the upper bound of recognition
is still determined by the deep layers. iii) The optimization guided by the late supervision may in-
fluence both shallow and deep gradient update, which implies it plays a more critical function for
general optimization direction.

Therefore, it is necessary to adaptively adjust the prioritization of λ according to the analysis. The
design of λ follows the guidelines respectively: i) for harder objectives, i.e., late classification, their
prioritization need to be preposed for better learning potential and possible interference avoidance.
ii) No matter in what learning period, the weight of layers handling the recognition upper bound
should be guaranteed and preserved. iii) More generalized layers can lay the foundation for the
subsequent specific task, such as early classification.

Guided by the policy, we subtly design the prioritization of λ. At the beginning period, the weight of
the deep supervision λdeep should be initialized as a relative large value to ensure the classification
ability of the deep layers, and the weight of shallow layers λshallow is set to a relatively small
value to protect the learning process of deeper layers. Subsequently, λshallow can be progressively
increased, and λdeep gradually declines. The upper bound of λshallow equals to the lower bound
of λdeep to the extent that the hard sample classification ability is preserved, achieving dynamic
inference based on data difficulty while ensuring a strong classification ability.

3.3 BIDIRECTIONAL SPARSIFICATION STRATEGY

Through the design of the overall framework and training strategy, we inspire Dyn-Adapter to ar-
range λ and c according to its intrinsic nature, facilitating optimization of dynamic paradigm. For the
sake of comprehensive design, we further investigate the feature extraction module in Dyn-Adapter
- f . When large pre-trained models are used for downstream fine-tuning, overfitting easily occurs,
hence enhancing the generalization ability is crucial. In Dyn-Adapter, the deep blocks are used for
deep feature extraction only, while the shallow features are used for late classification and early
decision both, then Theorem 2 comes.
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Theorem 2. The features extracted from shallow layers are reused by multiple supervisions,
thus assuming more functions, while features from deep layers are more free to be supervised by
deep classification only. Considering this characteristic, the generalization ability of shallow
layers should be enhanced.

Inspired by Theorem 2, we think about both forward and backward propagation processes deeply and
employ bidirectional sparsification strategy to strengthen the generalization power and robustness.

Forward Process. During the forward process,task collaboration of shallow blocks may cause
suboptimal performance. pshallow and pdeep denote the dropout probability of shallow layers and
deep layers respectively. We set pshallow > pdeep, implementing dynamic dropout. A more dras-
tic dropout pshallow naturally alleviates the issues caused by collaborative effects. By noticeably
dropping some nodes, the nodes in the network acquire relatively task-agnostic capability. pdeep
is set to a normal value, allowing more nodes to focus on learning high-level classifications. This
setting allows for a more flexible and adaptive network and enjoys several charms: i) multi-path for-
ward combination brought by sparsification implies a voting mechanism, which contributes to more
robust features. ii) Sparsification encourages the nodes to learn towards objectives independently,
eliminating joint adaptability between neuron nodes and enhancing the generalization capability.

Backward Process. During the conventional back-propagation process, the weights w of all param-
eters are updated, which results in a relatively fixed paradigm. To endow the gradient updates with a
larger combinatorial capacity and relieve overfitting, we employ a masked gradient update strategy.

Specifically, we randomly generate a gradient mask M with a certain mask probability pm. In the
backward process, the gradients corresponding to a mask value of 0 are not updated, while those
with a mask value of 1 are updated. Given that the mask is randomly generated each time, there
will be a diverse combinations for gradient updates, allowing for more flexible backward path and
stronger generalization capabilities, which can be mathematically expressed with:

∆w = α
∂L(w)

∂w
⊙M, (6)

where α represents the coefficient of gradient update, and ⊙ is the dot product operation.

3.4 DYNAMIC INFERENCE
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Figure 3: Dynamic inference process.

During inference, we dynamically adjust the
network depth based on the complexity level
of input samples. As shown in Fig 3, when
the early stage struggles in handling the in-
put sample and the confidence (the max
value of the softmax probability) fails to
reach the threshold, the network will step
into the subsequent stage. Once the confi-
dence exceeds the threshold, the inference
process exits. The final classification results
are obtained depending on the input charac-
teristic, which is consistent with our design in training process.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Datasets and Metrics. We leverage VTAB-1k (Zhai et al., 2019) benchmark to evaluate the transfer
learning performance of our approach. VTAB-1k contains 19 dataset subsets, which can be grouped
into Natural, Specified and Structured categories. Each subset contains 1000 labeled images, in
which 800 images are split into train and 200 images are for val. When inducting few-shot learn-
ing experiment, five fine-grained datasets (i.e., Food-101, StanfordCars, Flowers102, FGVCAircraft
and OxfordPets) are leveraged. For the domain generalization, we train the model on ImageNet
and test on four other variants of ImageNet (i.e., ImageNetV2, ImageNet-Sketch, ImageNet-A and
ImageNet-R) that perform various types of domain shift. We employ Top-1 classification accuracy
as metric.
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Table 1: Results on VTAB-1k benchmark. ViT-B/16 pretrained on ImageNet-21k is used as the
vision model of all methods. Our framework can reduce PETL methods’ FLOPs by 50% without
backfiring performance, or achieve a noticeable improvement with a 30% reduction in FLOPs.
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Conventional FT
Full tuning 85.8 16.8 91.3 68.9 68.9 87.7 64.3 97.2 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1
Linear probe 0.04 16.8 90.6 57.6 64.4 85.0 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.5 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2
PETL methods
VPT 0.53 22.4 87.7 72.0 78.8 90.8 65.8 98.0 88.3 78.1 49.6 81.8 96.1 83.4 68.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8
AdaptFormer 0.16 16.9 70.4 74.7 70.8 91.2 70.5 99.1 90.9 86.6 54.8 83.0 95.8 84.4 76.3 81.9 64.3 49.3 80.3 76.3 45.7 31.7 41.1
NOAH 0.36 16.9 72.3 75.5 69.6 92.7 70.2 99.1 90.4 86.1 53.7 84.4 95.4 83.9 75.8 82.8 68.9 49.9 81.7 81.8 48.3 32.8 44.2
SSF 0.24 16.8 90.3 75.7 69.0 92.6 75.1 99.4 91.8 90.2 52.9 87.4 95.9 87.4 75.5 75.9 62.3 53.3 80.6 77.3 54.9 29.5 37.9
Adapter 0.16 16.9 69.9 73.9 69.2 90.1 68.0 98.8 89.9 82.8 54.3 84.0 94.9 81.9 75.5 80.9 65.3 48.6 78.3 74.8 48.5 29.9 41.6

+0.12 8.5 154.7 73.9 68.3 90.8 68.4 98.9 88.7 85.7 54.3 83.5 95.8 84.7 75.8 78.9 64.6 47.4 78.3 74.2 47.1 29.6 39.6Dyn-Adapter
+0.12 11.7 116.6 74.2 68.3 91.1 67.6 98.9 89.5 85.7 54.3 83.0 95.8 84.6 75.8 80.4 64.8 48.5 78.5 76.0 49.4 30.0 40.0

LoRA 0.29 16.8 90.5 74.5 67.1 91.4 69.4 98.8 90.4 85.3 54.0 84.9 95.3 84.4 73.6 82.9 69.2 49.8 78.5 75.7 47.1 31.0 44.0
+0.17 8.5 204.2 74.5 67.7 90.5 70.0 99.0 89.4 86.3 53.6 86.2 95.7 84.3 75.0 79.9 67.3 48.5 81.9 77.8 45.4 31.2 38.4Dyn-LoRA
+0.17 11.7 159.1 75.0 67.9 90.5 70.4 99.1 89.8 86.4 53.6 86.3 95.7 84.3 75.1 81.6 67.8 50.2 82.1 79.1 47.0 31.6 39.6

Repadapter 0.22 16.8 90.9 76.1 72.4 91.6 71.0 99.2 91.4 90.7 55.1 85.3 95.9 84.6 75.9 82.3 68.0 50.4 79.9 80.4 49.2 38.6 41.0
+0.16 8.5 207.5 76.1 71.9 92.2 71.2 99.2 89.9 90.4 54.3 85.7 96.1 86.3 76.1 78.7 68.2 49.8 81.0 82.4 48.5 36.4 41.9Dyn-Repadapter
+0.16 11.7 156.7 76.4 71.8 92.6 71.7 99.1 90.6 90.8 54.3 85.8 95.9 86.4 76.1 80.3 68.9 49.9 81.9 82.3 50.3 36.8 41.1

Table 2: Efficiency comparison of our method and existing PETL methods during inference. Our
theoretical efficiency can effectively translate into practical speedup.

Method ∆F (G)
GPU latency (imgs/sec)

bs=1 bs=4 bs=16 bs=64 bs=128

Full tuning 0 91.5 375.7 539.5 568.8 578.3
VPT +5.60 86.1 (-5.9%) 283.5 (-24.5%) 381.5 (-29.2%) 406.7(-28.5%) 421.6 (-27.1%)
Adapter +0.03 70.9 (-22.5%) 306.6 (-18.3%) 504.7 (-6.4%) 533.5 (-6.2%) 552.4 (-5.8%)
AdapterFormer +0.03 71.4 (-21.9%) 309.9 (-17.5%) 508.1 (-4.2%) 546.0 (-4.0%) 555.2 (-3.9%)
NOAH (500ep) +0.02 72.1 (-21.2%) 312.7 (-16.7%) 492.9 (-8.6%) 523.9 (-7.9%) 534.7 (-7.5%)
Repadapter 0 91.5 (-0.0%) 375.7 (-0.0%) 539.5 (-0.0%) 568.8(-0.0%) 578.3 (-0.0%)
Dyn-Repadapter -8.30 202.7 (+121.5%) 843.3 (+124.4%) 1228.7 (+127.7%) 1338.9 (+135.4%) 1369.8 (+136.9%)

Implementation Details. We employ ViT-Base (ViT/16) (Dosovitskiy et al., 2021) pre-trained
on ImageNet-21k (Deng et al., 2009) with supervision as default backbone. We empirically set
the supervision stages S = 4 and insert supervisions uniformly. The upper bound of λshallow

sup(λshallow) equals to λdeep inf(λdeep) which is 0.5. The hyper-parameter pshallow and pdeep are
0.5 and 0.1 respectively, and gradient mask probability pm = 0.1. For all models, we trained for
100 epochs. The throughput and GPU latency in this paper are all tested on NVIDIA 3090 GPU.
Other details including data augmentation and initialization are consistent with previous work (Hu
et al., 2022; Luo et al., 2023).

Table 3: Image classification accuracy for SSL pretrained objectives. Our method is also well suited
to contrastive learning (e.g., MoCo-v3) and masked image modeling (e.g., MAE) methods.

Pretrained objectives MoCo v3 MAE

Method P (M) F (G) Acc. VTAB-1k P (M) F (G) Acc. VTAB-1k
Natural Specialized Structured Natural Specialized Structured

Full tuning 85.8 16.8 69.55 71.95 84.72 51.98 85.8 16.8 64.27 59.31 79.68 53.82
Linear probe 0.04 16.8 59.62 67.46 81.08 30.33 0.04 16.8 32.10 18.87 53.72 23.70
VPT 0.53 22.4 65.23 70.27 83.04 42.38 0.53 22.4 41.07 36.02 60.61 26.57
Adapter 0.16 16.9 68.18 74.19 82.66 47.69 0.16 16.9 56.36 54.90 75.19 38.98
Lora 0.29 16.8 70.84 69.84 83.71 58.98 0.29 16.8 70.28 65.99 82.61 62.23

+0.17 8.5 72.33 73.51 85.32 58.16 +0.17 8.5 68.30 66.11 82.94 55.84Dyn-LoRA +0.17 11.7 73.07 73.81 85.48 59.92 +0.17 11.7 70.36 66.53 84.13 60.42
Repadapter 0.22 16.8 72.03 71.82 84.27 60.01 0.22 16.8 69.46 66.15 81.89 60.35

+0.16 8.5 72.11 73.53 85.57 57.22 +0.16 8.5 68.37 65.54 82.90 56.67Dyn-Repadapter +0.16 11.7 73.49 74.69 85.83 59.96 +0.16 11.7 70.45 67.05 83.71 60.60
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Table 4: Results of 16-shot image classification on few-shot learning datasets.

Method Param (M) FLOPs (G) Avg. Acc. Food-101 StanfordCars Flowers102 FGVCAircraft OxfordPets

VPT 0.13 22.4 72.0 72.6 56.0 99.4 42.5 89.6
Adapter 0.24 16.9 73.2 71.7 60.4 99.5 45.2 89.1
LoRA 0.38 16.8 75.3 72.5 68.2 99.6 47.6 88.7
NOAH (500ep) 6.69 16.9 76.5 76.3 68.6 99.5 49.1 89.0
Repadapter 0.43 16.8 74.9 74.6 65.7 99.4 44.8 89.8
Dyn-Repadapter +0.05 11.6 74.9 73.3 66.6 99.6 45.6 89.3

4.2 EXPERIMENTAL RESULTS

4.2.1 COMPARISON TO STATE-OF-THE-ARTS

We employ proposed Dyn-Adapter paradigm on three classic baseline methods including
Adapter (Houlsby et al., 2019), LoRA (Hu et al., 2022) and RepAdapter (Luo et al., 2023). As
shown in Table 1, our paradigm stably boost inference efficiency and preserve base accuracy with-
out any compromise. Dyn-Adapter maintain or slightly outperform baseline methods in the dramatic
50% FLOPs decline case. When the inference FLOPs approximately equal to 70% of correspond-
ing baseline, the accuracy are further yielded to a higher level (i.e., +0.3% to +0.5%). Notably,
Dyn-RepAdapter set new state-of-the-art, surpassing the baseline with 0.3% accuracy and save 30%
computational complexity simultaneously, demonstrating strong adapting ability of Dyn-Adapter.

4.2.2 EFFICIENCY ANALYSIS

Inference speed lies in a crucial position in PETL performance analysis. Table 2 lists FLOPs vari-
ation (∆F ) and GPU latency tested on NVIDIA 3090 GPU of several PETL methods. Traditional
PETL methods bring increase in computational complexity due to the inserted module, which causes
latency of varying degrees. LoRA and RepApater smartly design the adapter module and its inserted
position to implementing re-parameter strategy during inference, leading to zero FLOPs change and
latency. They have gained a significant advantage for this attribute. When it comes to Dyn-Adapter,
benefiting from dynamic inference based on input, it has achieved a sharp reduction in computational
load and latency for the first time, making a new breakthrough in improving reasoning efficiency.

4.2.3 GENERALIZATION EXPERIMENTS

Table 5: Results in domain generalization.

Method P (M) F (G) Source Target
ImageNet -V2 -Sketch -A -R

VPT 0.82 22.4 70.5 58.0 16.4 4.6 23.2
Adapter 0.93 16.9 70.5 59.1 16.4 5.5 22.1
NOAH (500ep) 7.38 16.9 71.7 66.1 24.8 11.9 28.5
LoRA 1.06 16.8 70.8 59.3 20.0 6.9 23.3
Dyn-LoRA +2.21 12.4 71.0 59.3 20.7 7.3 22.5

More Pre-trained Objectives. We
explore the performance of Dyn-
Adapter with SSL pretrained objec-
tives, i.e., Moco v3 (Chen et al.,
2021) and MAE (He et al., 2022),
which are representative works for
contrastive learning and masked im-
age modeling respectively. The per-
formance on MAE is consistently
stable, and the results on Moco v3
are even more outstanding. Under the condition of 50% FLOPS, our method can boost accuracy by
1.5% based on LoRA, which signifies a perfect combination of extreme inference speed and notable
performance enhancement.

Few-shot Learning. Following NOAH (Zhang et al., 2022), we conduct 16-shot few-shot learning
on five FGVC datasets as Table 4. Reducing about 30% FLOPs, our approach exhibits comparable
performance to the baseline under few-shot condition, demonstrating the robust ability of our method
to transfer based on a few samples.

Domain Generalization. The capacity of out-of-domain generalization becomes crucial criterion
for measuring PETL methods. Fine-tuning on ImageNet with custom 16-shot setting, we evaluate
domain generalization ability by directly adapt to four variants of ImageNet with severe domain
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shift. As implied by Table 5, our approach maintains a comparable performance in the hard domain
shift case, stably occupying 75% computation.

4.2.4 ABLATION STUDIES

Table 6: Componenent.

Setting Acc.

Baseline 73.6
+ Priorty 75.5
+ Head Bal. 74.5
+ Sparsity. 74.7

Table 7: Heavier head position.

Shallow Deep Acc.

- - 75.8
✓ - 76.4
- ✓ 76.0
✓ ✓ 76.1

Table 8: Priorty setting.

Shallow Deep Acc.

- - 75.0
✓ - 74.3
- ✓ 76.4
✓ ✓ 75.4

Table 9: Dropout rate.

Rate Acc.

0.1 75.7
0.3 76.1
0.5 76.4
0.7 75.2

We conduct ablation studies based on RepAdapter, with FLOPS controlled about 70% of baseline.

Component Analysis. We validate different components of Dyn-Repadapter in Table 6. As shown,
adaptive prioritization strategy boosts performance with a large margin, which grasps the core of
Dyn-Adapter optimiazation. The paradigm also benefits from bidirectional sparsification and head
balance apparently.

Head Capacity. We explore the impact of the weights of shallow and deep classification heads. In
Table 7 ✓indicates heavier heads. When the heads hanging on the shallow layers are heavier, the
best performance is achieved, which further strengthens our reasoning.

Learning Priority. Even with detailed theoretical reasoning, we also experimentally prove the
necessity of priority setting in Table 8. In the setting that shallow layers and deep layers are both
marked ✓, they perform cross-optimization art. When the shallow and deep layers are optimized
equally, the gradients interfere with each other. When the shallow layers are optimized first, the
resulting bias makes it difficult for the deep features to learn, limiting the performance ceiling,
causing sub-optimal accuracy. In contrast, our adaptive priority is the best choice.

Dynamic Dropout. For the drop rate of shallow layers, we employ various dropout rate in Table 9
and finally find that a large dropout rate – 0.5 provides shallow layer more generalization potential.

4.2.5 FEATURE VISUALIZATION AND ANALYSIS

10

1

Perc.

Ours

2 3 4 5 6 7 8 9 10 11 12Block 

Figure 4: CKA of corresponding features and la-
bels. Perc. is the abbreviation of Dyn-Perceiver.

Disentangled Characteristic. We visualize
the CKA similarity (Kornblith et al., 2019) of
output of ViT block/intermediate features of
Dyn-Perceiver (Han et al., 2023) from shallow
to deep level and label (normalized to [0, 1]).
As shown in Fig 4, the previous early exit
method (i.e., Dyn-Perceriver) inevitably intro-
duces supervisory information into the shallow
layers, disrupting the learning paradigm of low-level features in shallow layers and semantic features
in higher layers. However, in Dyn-Adapter, the adapter module bears the burden of aggregating high-
level semantics, while freezing backbone maintains the information from large-scale pre-training,
revealing the disentangled characteristic and further facilitating the optimization of Dyn-Adapter.

5 CONCLUSION

This paper proposes a novel and effective PETL paradigm, Dyn-Adapter. Inspired by the natural
conflict-free characteristic of PETL and early supervision, we take the leading in exploring PETL
with dynamic inference function, which explicitly decouple feature extraction and early classifica-
tion and greatly boosts the inference efficiency without accuracy compromise. Based on the fresh
framework, we subtly design the core component of Dyn-Adapter – early head balance, multi-stage
weight prioritization and more generalized feature extraction, comprehensively addressing the adap-
tive optimization of Dyn-Adapter. Our efforts provides a deep insight about promoting inference
computation without accuracy decline, which shed light on efficient and effective PETL paradigm.
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