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Abstract

Blind Image Quality Assessment (BIQA) mirrors
subjective made by human observers. Generally,
humans favor comparing relative qualities over
predicting absolute qualities directly. However,
current BIQA models focus on mining the “local”
context, i.e., the relationship between information
among individual images and the absolute quality
of the image, ignoring the “global” context of the
relative quality contrast among different images in
the training data. In this paper, we present the Per-
ceptual Context and Sensitivity BIQA (CSIQA),
a novel contrastive learning paradigm that seam-
lessly integrates “global” and “local” perspectives
into the BIQA. Specifically, the CSIQA comprises
two primary components: 1) A Quality Context
Contrastive Learning module, which is equipped
with different contrastive learning strategies to ef-
fectively capture potential quality correlations in
the global context of the dataset. 2) A Quality-
aware Mask Attention Module, which employs
the random mask to ensure the consistency with
visual local sensitivity, thereby improving the
model’s perception of local distortions. Exten-
sive experiments on eight standard BIQA datasets
demonstrate the superior performance to the state-
of-the-art BIQA methods.
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Figure 1. The illustration of the difference between previous BIQA
methods and ours. (a) Previous supervised BIQA methods predom-
inantly rely on semantic features to directly learn image quality,
neglecting the inherent Global context contrastive. (b) Previ-
ous BIQA with distortion-based contrastive learning focuses on
maximizing similarity between different views of the same image
but ignores similarity across different content images with similar
quality. (c) In CSIQA, we fully explore the above two properties
by using quality-based contrastive learning with a fine-grained
contrast sample selection mechanism and quality-aware masked
attention, which obtain comprehensive quality-aware features.

1. Introduction
Image Quality Assessment (IQA) (Madhusudana et al.,
2022; Ding et al., 2020; Gu et al., 2020; Hu et al., 2021)
is devoted to estimating the perceptive quality of a digi-
tal image consistent with the human visual system (HVS).
It has been applied in many computer vision pieces of re-
search (Hu et al., 2022), such as image restoration (Banham
& Katsaggelos, 1997) and super-resolution (Dong et al.,
2015). IQA methods are generally classified into three
types based on the availability of reference images, i.e. full-
reference (Sheikh et al., 2006), reduced-reference (Wang
et al., 2016), and no-reference or blind IQA (BIQA) (Wu
et al., 2020; Liu et al., 2024).
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In practical settings, reference images are often not avail-
able, making reference-free BIQA more relevant and useful.
Yet, two main challenges persist in current BIQA methods.
1)Global Context. Existing methods typically train deep
learning models by treating each sample as independent.
However, for a more accurate assessment of quality, it’s
crucial to consider the contrastive relationships between dif-
ferent quality samples (Fig. 1(c)), since humans are better
adept at learning image quality representations through the
process of comparing the quality of different images (Sheikh
& Bovik, 2006; Yin et al., 2022). 2)Local Sensitivity. Cur-
rent BIQA methods utilize domain knowledge from large
datasets like ImageNet (Deng et al., 2009) to learn about
quality representation (Fig. 1(a)). However, the semantic
features extracted from pre-trained models are sub-optimal
for BIQA (Zhao et al., 2023), since BIQA preferentially
depends on distortion-sensitive attributes to perceive the vi-
sual quality of pictures with different semantic contexts (Su
et al., 2020; Zhang et al., 2023).

Many state-of-the-art (SOTA) BIQA methods have been pro-
posed to address these two challenges. Some approaches (Su
et al., 2020; Qin et al., 2023; Ke et al., 2021) attempt to inter-
pret image quality by decoding the abstract semantic knowl-
edge in pre-trained models. However, they may overlook
the quality relevance of the dataset context (i.e., Challenge
1). Recent innovations have delved into global quality re-
lations using rank learning (Liu et al., 2017; Zhang et al.,
2021; 2023) and contrastive learning (Madhusudana et al.,
2022; Zhao et al., 2023; Saha et al., 2023), contributing
significantly to the domain. However, these methods are not
without their limitations. For example, approaches employ-
ing rank learning could theoretically be susceptible to noise
in IQA data (Theorem A.2 in the Appendix), potentially im-
pacting the optimal learning of models. Similarly, as shown
in Fig. 1(b), existing methods that utilize contrastive learn-
ing typically define positive and negative samples based
on distortion type and content. However, these definitions
are not strict quality labels, potentially leading to inaccu-
rate representation learning. Specifically, these methods
treat authentic images with different content as negative
samples in contrastive learning, without considering that
images with different content can possess similar quality.
This oversight can hinder the model’s ability to capture the
fine-grained relationships between different quality levels.
Addressing these gaps, we propose the Perceptual Context
and Sensitivity BIQA (CSIQA), a new methodology that
maximizes the use of quality ground truths to enhance the
model’s awareness of global context and local perception.

To address the Challenge 1), we introduce the Quality Con-
text Contrastive Learning approach to explore the global
context relationship. This approach constructs easy pos-
itive and negative sets based on quality-level similarities.
To mitigate overfitting, we incorporate a Hard Sampling

Strategy within a knowledge distillation framework. This
strategy involves sampling hard positive (negative) samples
that have similar (different) quality but different (similar)
pseudo-labels generated by pre-trained teacher reasoning.
By focusing on these challenging samples, our model be-
comes more adept at distinguishing subtle differences in
quality and effectively utilizing the sample information. We
then employ InfoNCE (Oord et al., 2018) to capture the
global properties in the embedding space, reflecting the
training data’s inherent structure, resulting in more precise
quality predictions. To address the Challenge 2), we propose
the Quality-Aware Mask Attention method that designs a
new quality-aware (QUA) token to help the model enforce
models focusing on patch-level localized distortions rather
than image-level semantic information. The interaction
mode of the QUA token is similar to that of the class (CLS)
token during the forwarding process, except that it only
targets visible patches that have not been masked. This ap-
proach, combined with quality context contrastive learning,
enhances quality perception and information exploration.
We summarize the contributions of this work as follows:

• We identify the limitations of existing BIQA methods.
In contrast to previous approaches that solely concen-
trate on single-image analysis, we delve into exploring
and analyzing the cross-image context quality corre-
lation as a prior, which offers valuable insights for
enhancing the accuracy of quality prediction.

• We propose a novel quality context contrastive learn-
ing that leverages abundant quality-aware contrastive
information. This paradigm offers a well-structured
quality embedding space to enhance the model’s dis-
crimination of quality features.

• A novel quality-aware mask attention mechanism is in-
troduced to combine contrastive learning for improving
quality perception. By randomly masking patches, the
designed quality-aware token can effectively empha-
size low-level quality features that complement high-
level semantic information.

Extensive experiments on eight IQA benchmarks demon-
strate the superior performance of CSIQA compared to the
existing method and confirm the effectiveness of our pro-
posed method. In addition, our quality context contrastive
learning method can be seamlessly incorporated into exist-
ing BIQA networks without any changes to the base model
and extra inference burden during testing (Table 2).

2. Related Work
2.1. IQA with Local Perspective

Early BIQA methods (Zeng et al., 2018; Liu et al., 2017),
leveraged convolutional neural networks (CNNs) for their
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strong feature representation capabilities. CNN-based BIQA
methods, like those by (Zhang et al., 2018) and HyperNet,
typically pre-train for object recognition and then fine-tune
for IQA. However, CNNs have an intrinsic locality bias, lim-
iting their ability to capture long-range dependencies essen-
tial for assessing image quality (Qin et al., 2023). Recently,
Vision Transformers (ViTs) have emerged in BIQA with
two main architectures: hybrid transformers (Golestaneh
et al., 2022) and pure transformers (Ke et al., 2021; You &
Korhonen, 2021). The hybrid approach combines CNNs
for local features with transformers for long-range features.
Pure ViT-based IQA methods often depend on the CLS to-
ken, initially designed for image content description, which
focuses on higher-level visual abstractions and can limit
their effectiveness in BIQA applications.

2.2. IQA with a Global Contrastive Perspective

In the area of IQA, ranking-based learning is crucial for
modeling global quality relationships. Studies like (Zhang
et al., 2018; 2023; 2021) have utilized discrete ranking data
from images with varying distortion levels or sorted label
pairs for quality prediction. Continuous ranking data, based
on Mean Opinion Scores (MOS) and subjective rating dif-
ferences, was employed by (Zhang et al., 2021). Binary
ranking data, informed by Full-Reference IQA (FR-IQA)
methods, was integrated in the research of (Ma et al., 2017b;
2019). While effective, these methods can be constrained
in datasets with authentic distortions due to their reliance
on reference images. Moreover, rank-based IQA methods
like those in (Liu et al., 2017; Ma et al., 2017a; Golestaneh
et al., 2022) often necessitate manual hyperparameter tun-
ing, increasing their vulnerability to noisy data. The choice
of ranked image pairs is also a critical aspect, as random
selection can introduce further noise (Theorem A.2).

Several works, including (Madhusudana et al., 2022; Zhao
et al., 2023; Saha et al., 2023), have successfully explored
self-supervised contrastive learning in IQA. These studies
relied on class labels based on distortion and degradation
levels to define positive and negative samples—image pairs
with the same distortions were considered positive sam-
ples, while those with different distortions were considered
negative samples. Although these methods significantly ad-
vanced the field, their class definitions are, in fact, distortion
labels rather than true-quality labels, potentially failing to
capture the fine-grained relationships between different lev-
els of quality. For example, they uniformly considered pairs
of authentically distorted images with different content as
negative samples, which hindered their ability to model the
quality correlation between images with different content
but similar quality. Additionally, these methods often incur
high pre-training costs. In contrast, our method leverages
image quality labels to define positive and negative samples.
We classify samples with similar quality as positive samples

and those with dissimilar quality as negative samples, and
we further designed a more fine-grained sampling method
for positive and negative samples to improve the model’s
ability to distinguish sample pairs with challenging quality
relationships. Additionally, we integrated a quality-aware
mask self-attention to enhance the model’s perception of
local features. This combination effectively captures qual-
ity differences between real images, resulting in a more
comprehensive representation of real-world image features.

3. Methodology
3.1. Overview

In this paper, we introduce the Perceptual Context and Sensi-
tivity IQA (CSIQA) designed to predict image quality from
both global and local perspectives. As depicted in Fig. 2,
CSIQA seamlessly integrates two main components: Global
Quality Context Contrastive Learning and Local Quality-
Aware Mask Attention. Initially, CSIQA divides the in-
put image into patches, which are then fed into the mask
transformer encoder. After processing through L layers of
Quality-Aware Mask Attention (§ 3.2), we obtain the local
sensitive feature Fl at the l-th layer. Once Fl is acquired,
it is promptly passed to the Quality Context Contrastive
Learning module (§ 3.3). Here, the query embedding Fl

and its corresponding positive Fpo (Fpo = Fe
po ∪ Fh

po) and
negative Fne (Fne = Fe

ne ∪ Fh
ne) samples are used as inputs

for the InfoNCE to model the global contrastive relation.
The selection of easy (Fe

po, Fe
ne) and hard (Fh

po, Fh
ne) posi-

tive and negative samples is based on the similarity between
ground truths and the alignment between ground truths and
pseudo-labels, respectively (§ 3.4). Finally, the output FL

from the final encoder layer is refined further through a
transformer decoder to predict the quality score.

3.2. Quality-Aware Mask Transformer

The self-attention of the transformer (Dosovitskiy et al.,
2021) is effective in comprehensively representing percep-
tual features. The global semantic features extracted by a
pre-trained network may not be optimal for capturing qual-
ity awareness, as HVS is highly sensitive to local distortions
even when the overall image quality is good (Larson &
Chandler, 2010; Su et al., 2020). Therefore, we propose the
use of random mask (He et al., 2022) interactions with learn-
able tokens, which enable the learning of local quality-aware
features that are independent of global semantic features.

Let F = {Fqua; [Fcls;F1:N−1]} ∈ R(N+1)×D be the em-
bedding sequence, where N is the number of patches plus
one CLS token, D is the embedding dimension, Fqua is the
learnable quality-aware (QUA) token. Three linear projec-
tion layers transform F into matrices Q,K,V for query,
key, and value. To regulate the interaction between Fqua
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Figure 2. The overview of CSIQA, in which similar colors represent similar quality. For a given query image, CSIQA first obtains each
layer’s image features Fl through Local Quality-Aware Mask Attention (§ 3.2). Subsequently, we sample easy positive Fe

po (easy negative
Fe
ne) samples, which are very similar (dissimilar) in quality to the query image (§ 3.4). We also sample hard positive Fh

po (hard negative
Fh
ne) samples, which are similar in ground truth but dissimilar in pseudo-labels (or vice versa) to the query image (§ 3.4). These samples

form positive Fpo and negative Fne sets for computing contrastive loss in Global Quality Context Contrastive Learning (§ 3.3).

and the other tokens, we construct a mask m ∈ R(N+1).

mi =

{
1− 1{i-th masked}, i < N

1, i = N
, (1)

where 1{·} is the indicator function, the probability of the
random mask α is 0.3. To maintain the original attention,
our attention mask M is constructed as follows:

M =

[
1N×N 0N×1

m1×N 1

]
∈ {0, 1}(N+1)×(N+1). (2)

Intuitively, Eq. 2 means that Fqua only attends to the patch
tokens that are not randomly masked. Suppose the En-
coder has L attention layers, the Multi-Head Self-Attention
(MHSA) is utilized, as follows:

Fl =

{
σ
(
logM+Ql(Kl)⊤

)
Vl + Fl−1, 0 < l ≤ L

F, l = 0
,

(3)
where Ql, Kl, and V l are linear transformations of Fl−1,
σ represents the Softmax function. The encoder produces
output features FL after L layers. To provide meaningful
interpretations for the CLS and QUA tokens, a transformer
decoder is employed (Qin et al., 2023). Finally, the output
features Fqua and Fcls from the decoder are concatenated to
predict the final quality score. During training, the smooth
L1 loss is minimized. The introduction of quality-aware
mask attention enhances the learning capability of quality-
aware features in the transformer-based BIQA model, re-
sulting in improved prediction accuracy and generalization
ability. Please refer to § B in the appendix for more details.

3.3. Global-Local Quality-Aware Learning

Logits-Based Supervised Loss. In our quality-aware mask
attention mechanism, mask positions are generated ran-
domly with a certain probability, inevitably introducing
some noise. To mitigate this noise, we employ a knowledge
distillation (KD) method, which enhances performance by
regularizing the student’s logits knowledge using the teacher
model (Wang et al., 2019). To leverage this technique to
IQA, we supervise our student model using both ground
truth and pre-trained teacher-generated pseudo-labels. In
order to indicate the effectiveness of this technique, we
give detailed proof in Theorem A.1 in the Appendix. This
analysis confirms that the expected loss with our method
is notably reduced when contrasted with training that re-
lies solely on ground truth. As a result, the reliability of
the pseudo-labels is affirmed which facilitates rapid conver-
gence and acts as a safeguard against overfitting. Given the
teacher network and our student network produce mappings
YT and YS for the image I to quality scores, respectively.
Given Ŷ as the ground truth label for image I , λ1 are the
hyperparameters, ∥ · ∥1 represents the ℓ1 regression loss, the
logits-based supervised loss defined as follows:

LLog = ∥ Ŷ − YS ∥1 + λ1∥YT − YS ∥1, (4)

Global Quality Context Contrastive Learning. Inspired
by the human visual system, humans are better at mak-
ing accurate quality predictions when presented with con-
trast (Sheikh & Bovik, 2006). The logits-based supervised
loss functions focus solely on local intra-image analysis,
neglecting the essential quality contrast global information
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between different images within the training dataset. In IQA,
rank learning can be employed to model the global quality
relationships across the dataset. However, rank learning
heavily relies on the accuracy of rankings, which becomes
challenging to achieve when comparing similar images (Gao
et al., 2015). As per Theorem A.2 in the Appendix, the
model is significantly influenced by the noise in ranking or-
der. Our analysis suggests that this issue may be exacerbated
by the use of randomly sampled samples for comparison
without any selective filtering. Consequently, we introduce
a quality context contrastive learning that optimally utilizes
label information to selectively filter specific samples for
comparison, enhancing the quality of learned embeddings.
We define quality context Contrastive loss as follows:

LCon =
−1

|Fpo|
∑

F+∈Fpo

log

(
exp(F·F+

τ )

exp(F·F+

τ ) +
∑

F−∈Fne

exp(F·F−

τ )

)
,

(5)
where τ is a temperature hyper-parameter, F denotes the
query image embedding, and Fpo and Fne represent the
sets of image embeddings for positive and negative sam-
ples, respectively. The selection strategy for these samples
is detailed in § 3.4. We leverage the distance ranking of
quality labels between images to accurately select positive
and negative samples. The overarching objective is to mini-
mize the distance between samples of similar quality while
maximizing the distance between those of differing quality,
thereby refining the embedding space.

Overall Loss. The logits-based supervised loss in Eq. 4 and
the contrastive loss in Eq. 5 complement each other. The
LLog helps the model identify relevant quality features from
a “local” perspective, while the LCon refines the embedding
space from a “global” perspective, promoting compactness
for similar-quality images and separability for different-
quality ones. This approach aligns with human perception,
enabling a global-to-local attentive evaluation. The hyper-
parameter λ2 is used to balance LLog and LCon. Details on
the selection of λ2 can be found in § E. Here, L denotes the
number of encoder layers. The total loss is defined as:

LScon =
∑

I
(LLog + λ2

L∑
l=1

LCon). (6)

3.4. Easy-Hard Sampling Strategy

To implement Eq. 5, we first define a coarse-grained set
of positive and negative samples. We then refine this set
by employing easy example sampling and hard example
sampling to select samples that are either easier or more
challenging as the positive and negative sample sets for
Eq. 5. Specifically, we define a given query sample’s rough
positive and negative sample sets by calculating the distance
between the query and the quality scores of other samples
in the current mini-batch and then ranking these distances.

Roughly Define Positive-Negative Samples. To roughly
distinguish between positive and negative samples, we be-
gin by extending the score vector y ∈ RB×1 to a matrix
Y ∈ RB×B , where B represents the batch size. The score
distance matrix Yd is then calculated using the Manhattan
distance D. For a given query image Ia and another image
Ij , we sort the a-th row of Yd in ascending order to obtain
the quality rank vector Ya

d . The index of the score distance
between Ia and Ij in Ya

d is denoted as C. If it is within the
top γ1 ·B percentile of the Ya

d vector, then Ij is considered
a positive sample. Conversely, if the index C falls within
the last γ2 ·B percentile of the Ya

d vector, Ij is considered
a negative sample. Here, γ1 and γ2 are hyperparameters,
which we empirically set to 20% and 60%, respectively. The
definition of the rough classifier is as follows:

Yd = D(Y − Y T ),

Classifier(Ia, Ij) ∈

{
Fr
po, if C ≤ γ1 ·B,

Fr
ne, if C ≥ (1− γ2) ·B.

(7)

Easy-Hard Example Sampling. Previous studies (Schroff
et al., 2015; Kalantidis et al., 2020) have highlighted the
importance of selecting training samples in metric learning.
When considering a query embedding F, the gradient of the
contrastive loss (Eq. 5) can be expressed as follows:

∂LCon

∂F
=− 1

τ |Fpo|
∑

F+∈Fpo

(
(1− p+) · F+

)
− 1

τ |Fpo|
∑

F+∈Fpo

∑
F−∈Fne

p− · F−.

(8)

The matching probability between a positive or negative
sample F+/− and the query embedding F represents as

p+/− =
exp(F·F+/−/τ)∑

F′∈Fpo∪Fne exp(F·F′/τ)
∈ [0, 1]. Hard negative and

positive samples (i.e., negatives but similar features and
positives but dissimilar features) have a higher contribu-
tion to the gradient compared to easy negative and positive
samples (Wang et al., 2021). Inspired by this, we aim to
explore how learning from hard samples helps the model ac-
quire more quality-aware features. To identify hard samples
of query embedding, we employ a distillation framework
for sampling, which selects positive (negative) samples that
have similar (different) quality but different (similar) pseudo-
labels generated by the teacher for contrastive learning. By
focusing on these challenging samples, the model can better
distinguish fine-grained quality differences. Furthermore, to
reduce the risk of the model becoming stuck in local optima,
we also incorporate easy samples into the sampling process.

• Easy Example Sampling. The sampling process is simi-
lar to that described in Eq. 7. For each query embedding
F, we sample the top 10% and the last 40% of available
samples from the Yd matrix sorted in ascending order as
easy positive samples Fe

po and negative samples Fe
ne.
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Table 1. Performance comparison measured by averages of SRCC and PLCC, where bold entries indicate best results, underlines indicate
the second-best.

LIVE CSIQ TID2013 KADID LIVEC KonIQ LIVEFB SPAQ

Method PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

BRISQUE (Mittal et al., 2012) 0.944 0.929 0.748 0.812 0.571 0.626 0.567 0.528 0.629 0.629 0.685 0.681 0.341 0.303 0.817 0.809
ILNIQE (Zhang et al., 2015) 0.906 0.902 0.865 0.822 0.648 0.521 0.558 0.534 0.508 0.508 0.537 0.523 0.332 0.294 0.712 0.713
BIECON (Kim & Lee, 2016) 0.961 0.958 0.823 0.815 0.762 0.717 0.648 0.623 0.613 0.613 0.654 0.651 0.428 0.407 - -
MEON (Ma et al., 2017b) 0.955 0.951 0.864 0.852 0.824 0.808 0.691 0.604 0.710 0.697 0.628 0.611 0.394 0.365 - -
WaDIQaM (Bosse et al., 2017) 0.955 0.960 0.844 0.852 0.855 0.835 0.752 0.739 0.671 0.682 0.807 0.804 0.467 0.455 - -
DBCNN (Zhang et al., 2018) 0.971 0.968 0.959 0.946 0.865 0.816 0.856 0.851 0.869 0.851 0.884 0.875 0.551 0.545 0.915 0.911
TIQA (You & Korhonen, 2021) 0.965 0.949 0.838 0.825 0.858 0.846 0.855 0.85 0.861 0.845 0.903 0.892 0.581 0.541 - -
MetaIQA (Zhu et al., 2020) 0.959 0.960 0.908 0.899 0.868 0.856 0.775 0.762 0.802 0.835 0.856 0.887 0.507 0.54 - -
P2P-BM (Ying et al., 2020) 0.958 0.959 0.902 0.899 0.856 0.862 0.849 0.84 0.842 0.844 0.885 0.872 0.598 0.526 - -
HyperIQA (Su et al., 2020) 0.966 0.962 0.942 0.923 0.858 0.840 0.845 0.852 0.882 0.859 0.917 0.906 0.602 0.544 0.915 0.911
TReS (Golestaneh et al., 2022) 0.968 0.969 0.942 0.922 0.883 0.863 0.858 0.859 0.877 0.846 0.928 0.915 0.625 0.554 - -
MUSIQ (Ke et al., 2021) 0.911 0.940 0.893 0.871 0.815 0.773 0.872 0.875 0.746 0.702 0.928 0.916 0.661 0.566 0.921 0.918
DACNN (Pan et al., 2022) 0.980 0.978 0.957 0.943 0.889 0.871 0.905 0.905 0.884 0.866 0.912 0.901 - - 0.921 0.915
CONTRIQUE (Madhusudana et al., 2022) 0.961 0.960 0.955 0.942 0.857 0.843 0.937 0.934 0.857 0.845 0.906 0.894 0.641 0.580 0.919 0.914
DEIQT (Qin et al., 2023) 0.982 0.980 0.963 0.946 0.908 0.892 0.887 0.889 0.894 0.875 0.934 0.921 0.663 0.571 0.923 0.919
Re-IQA (Saha et al., 2023) 0.971 0.970 0.960 0.947 0.861 0.804 0.885 0.872 0.854 0.840 0.923 0.914 0.733 0.645 0.925 0.918

CSIQA (Ours) 0.985 0.983 0.970 0.960 0.941 0.926 0.919 0.919 0.920 0.898 0.943 0.929 0.688 0.594 0.935 0.930

• Hard Example Sampling. We generate a pseudo-scores
vector ŷ using the teacher network and expand it into a
matrix Ŷ , which is then used to compute Ŷd, similarly
to Eq. 7. The final error matrix is Yerror =

Yd

Ŷd
. We select

the top 10% and last 40% samples from the Yerror matrix
sorted in ascending order to obtain hard samples Fh

po and
Fh
ne, which is then intersected with the set Fr

po and Fr
ne in

Eq. 7, respectively, to reduce sampling deviation.

• Easy-Hard Example Merging. For contrastive learning,
we combine easy positives Fe

po and hard positives Fh
po into

the set Fpo = Fe
po ∪ Fh

po, and similarly, easy negatives
Fe
ne and hard negatives Fh

ne into the set Fne = Fe
ne ∪ Fh

ne.
In Eq. 5, we aim to position similar samples Fpo closer
and dissimilar samples Fne farther apart. This approach
of integrating both easy and difficult samples ensures that
the model not only focuses on challenging examples but
also reduces the risk of overfitting.

4. Experiments
4.1. Benchmark Datasets and Evaluation Protocols

Our method is evaluated on eight public BIQA datasets,
including four synthetic datasets and four authentic datasets.
The synthetic datasets are LIVE (Sheikh et al., 2006),
CSIQ (Larson & Chandler, 2010), TID2013 (Ponomarenko
et al., 2015), and KADID (Lin et al., 2019). The au-
thentic datasets are LIVEC (Ghadiyaram & Bovik, 2015),
KONIQ (Hosu et al., 2020), LIVEFB (Ying et al., 2020),
and SPAQ (Fang et al., 2020). The synthetic datasets involve
original images distorted artificially using methods such as
JPEG compression and Gaussian blur. LIVE and CSIQ
consist of 779 and 866 synthetically distorted images, re-
spectively, each with five and six distortion types. TID2013

and KADID contain 3,000 and 10,125 synthetically dis-
torted images, respectively, covering 24 and 25 distortion
types. For the authentic datasets, LIVEC contains 1,162
images captured by different mobile devices and photogra-
phers. SPAQ includes 11,125 photos from 66 smartphones.
KonIQ comprises 10,073 images from public sources, while
LIVEFB is the largest authentic dataset to date, with 39,810
images. Performance is assessed using Spearman’s Rank
Order Correlation Coefficient (SRCC) and Pearson’s Linear
Correlation Coefficient (PLCC), both ranging from -1 to 1.
Higher values indicate superior accuracy and monotonicity.

4.2. Implementation Details

Following (Qin et al., 2023; Ke et al., 2021), we employ a
pre-trained encoder based on ViT-S (Touvron et al., 2022)
as the mask encoder of our CSIQA, with a depth of 12,
and the Decoder depth is set to one. We train the model
for 9 epochs using a learning rate of 2× 10−4 and a decay
factor of 10 every 3 epochs. The size of the batch depends
on the size of the dataset, ranging from 16 to 128. We
split the datasets into 80% for training and 20% for testing,
repeating the process ten times to reduce performance bias.
We report the average of SRCC and PLCC to quantify the
model’s performance in terms of prediction accuracy and
monotonicity. For synthetic distortion datasets, training
and testing sets are divided by reference images for content
independence. More details about the student and teacher
network’s structure, training, performance, and selection
principle are in Appendix C.

4.3. Overall Prediction Performance Comparison

The results of the comparison between CSIQA and 16 clas-
sical or state-of-the-art BIQA methods, which include hand-
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Best CSIQA

Worst CSIQA

Fixed DEIQT

Best CSIQA

Worst CSIQA

Fixed DEIQT

Best DEIQT

Worst DEIQT

Fixed CSIQA

Best DEIQT

Worst DEIQT

Fixed CSIQA

(a) (b) (c) (d)

Figure 3. gMAD competition results between DEIQT (Qin et al., 2023) and CSIQA. (a) Fixed DEIQT at the low-quality level. (b) Fixed
DEIQT at the high-quality level. (c) Fixed CSIQA at the low-quality level. (d) Fixed CSIQA at the high-quality level.

Table 2. Integration of quality context contrastive learning into
IQA networks TIQA and DEIQT, both employing the VIT back-
bone. The "+" indicates the incorporation of our learning strategy.

CSIQ LIVEC KonIQ

Method PLCC SRCC PLCC SRCC PLCC SRCC

TIQA 0.945 0.930 0.881 0.863 0.930 0.914
TIQA + 0.963 0.951 0.910 0.883 0.940 0.926

(+1.8) (+2.1) (+2.9) (+2.0) (+1.0) (+1.2)
DEIQT 0.961 0.950 0.894 0.875 0.934 0.921
DEIQT + 0.968 0.956 0.916 0.893 0.941 0.926

(+0.7) (+0.6) (+2.2) (+1.8) (+0.7) (+0.5)

crafted feature-based BIQA methods like ILNIQE (Zhang
et al., 2015) and BRISQUE (Mittal et al., 2012), as well
as deep learning-based methods such as MUSIQ (Ke et al.,
2021) and DEIQT (Qin et al., 2023), are presented in Table 1.
It can be observed on six of the eight datasets that CSIQA
outperforms all other methods in terms of performance.
Achieving leading performance on all of these datasets is
a challenging task due to the wide range of image content
and distortion types. Therefore, these observations confirm
the effectiveness and superiority of CSIQA in accurately
characterizing image quality.

4.4. Generalization Capability Validation

To assess the generalization capacity of CSIQA, we conduct
cross-dataset validation experiments. In these experiments,
the model trains on one dataset and subsequently tests on
others, without any fine-tuning or adjustment of parame-
ters. The outcomes of these experiments are displayed in
Table 3, which shows the SRCC values achieved across five
different datasets. Importantly, CSIQA surpasses state-of-
the-art (SOTA) models in all four experiments involving

Table 3. SRCC on the cross datasets validation. The best perfor-
mances are highlighted in boldface.

Training LIVEFB LIVEC KonIQ LIVE CSIQ

Testing KonIQ LIVEC KonIQ LIVEC CSIQ LIVE

DBCNN 0.716 0.724 0.754 0.755 0.758 0.877
P2P-BM 0.755 0.738 0.74 0.77 0.712 -

HyperIQA 0.758 0.735 0.772 0.785 0.744 0.926
TReS 0.713 0.74 0.733 0.786 0.761 -

CONTRIQUE - - 0.676 0.731 0.823 0.925
DEIQT 0.733 0.781 0.744 0.794 0.781 0.932

CSIQA 0.760 0.787 0.777 0.814 0.818 0.945

cross-authentic datasets. This includes significant improve-
ments in the LIVEC and KonIQ datasets. Additionally,
CSIQA demonstrates substantial competitiveness on syn-
thetic datasets like LIVE and CSIQ.

4.5. Qualitative Results.

Generalization Capability. To further assess our frame-
work’s generalization, we train models on the entire LIVE
database and then test them using the gMAD competi-
tion (Ma et al., 2016b) on the Waterloo Database (Ma
et al., 2016a). gMAD efficiently selects image pairs with
maximum quality difference predicted by an attacking IQA
model to challenge another defending model, which con-
siders them to be of the same quality level. The selected
pairs are shown to the observer to determine whether the
attacker or the defender is robust. As shown in Fig. 3, in
the first two columns, our model attacks the competing
method DEIQT, where each column represents images cho-
sen from the poorer and better quality levels predicted by
the defender. In the last two columns, we fix our model
as the defender, giving image pairs selected from poorer
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Figure 4. Activation maps of DEIQT (Qin et al., 2023) and CSIQA using Grad-CAM (Selvaraju et al., 2017) on authentic dataset LIVEC.
The scores below the first row of images represent Mean Opinion Scores (MOS). Our model pays more attention to image distortion
regions, and correspondingly our image quality prediction ability is closer to the true value. Rows 1-3 represent input images, CAMs from
DEIQT (Qin et al., 2023), and CAMs from CSIQA, respectively.

and better quality levels, respectively. From Fig. 3, it is evi-
dent that when our model serves as the defender, the image
pairs chosen by the attacker show little perceptual quality
change, whereas, as the attacker, our model selects image
pairs with more significant quality differences in succession.
This indicates that the model has strong defensive and offen-
sive capabilities. Moreover, it is worth mentioning that our
model successfully identifies low-quality images with flat
content in terms of image quality background (the images
of the second column), although they deceive the defending
model into considering them as high quality. These results
further demonstrate that the proposed model has a strong
generalization ability to challenge complex distortions in
authentic images.

Framework Portability. To demonstrate the portability of
our proposed quality contrastive learning framework (only
contrastive learning and distillation are included), which
can be applied to any IQA model, we perform an abla-
tion study on previous methods TIQA and DEIQT with the
backbone of VIT for fine-tuning, as shown in Table 2. We
generate pseudo-labels using the original models (perfor-
mance shown in rows one and three) and then apply our
proposed contrastive framework. The reported results show
a significant improvement of 1 to 2 points across multi-
ple datasets, highlighting the universal effectiveness of the
proposed method in enhancing existing IQA networks.

Visualization of attention map. Using GradCAM (Sel-
varaju et al., 2017), we visualize the feature attention map
in Fig.4. CSIQA adeptly concentrates on local distortions
(e.g., motion blur in column three, underexposure in the last,

and overexposure in the third to last column). In contrast,
DEIQT often misdirects its focus to clear backgrounds, over-
looking distortions like exposure or motion blur. The figure
compares CSIQA’s and DEIQT’s predictions on images
with authentic distortions, highlighting CSIQA’s superior
performance, particularly in moderately distorted images.
Additional visualizations are provided in the Appendix F.

4.6. Ablation Study

Effect of Logit Distillation. In Table 4, we compare indices
a) with d), f) with i), and g) with k) to elucidate the varying
enhancements brought about by logit distillation. By inte-
grating regularization provided by pseudo-label during the
training, we bolster the universal inference capabilities for
quality estimation, thereby reinforcing generalization. This
observation aligns with and validates Theorem A.1.

Effect of Quality-Aware Mask Attention. Next, we com-
pare indices a) and b), showing that mask attention (denoted
as MA) improves quality representation extraction, yield-
ing a performance boost of 0.6% to 1.5% across all datasets.
It is worth noting that the random masking inevitably intro-
duces a certain degree of noise to the attention mechanism,
which may require further regularization to improve stabil-
ity. Comparing indices c) and d), logits distillation (denoted
as LD) enhances the MA by providing more effective su-
pervision information. This improvement is attributed to the
effective regularization provided by LD and the reduction
of error bounds resulting from LD. These factors play a
crucial role in enhancing the overall stability of the model.
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Table 4. Ablation experiments on three datasets. Here, EA and HA refers to contrastive learning with easy and hard sampling; MA
refers to mask attention; LD refers to logits distillation. The best performances are highlighted in boldface.

Index EA HA MA LD TID2013 LIVEC KonIQ
PLCC SRCC PLCC SRCC PLCC SRCC

a) 0.910 0.891 0.891 0.867 0.928 0.913
b) " 0.918 0.898 0.906 0.879 0.934 0.919
c) " 0.922 0.903 0.908 0.885 0.935 0.921
d) " " 0.927+1.7% 0.907+1.6% 0.910+1.9% 0.882+1.5% 0.938+1.0% 0.924+1.1%

e) " 0.927 0.909 0.908 0.882 0.935 0.919
f) " " 0.939 0.925 0.910 0.889 0.936 0.919
g) " " " 0.940+3.0% 0.926+3.5% 0.912+2.1% 0.889+2.2% 0.938+1.0% 0.923+1.0%

h) " " " 0.928 0.910 0.918 0.897 0.942 0.927
i) " " " 0.940 0.925 0.914 0.892 0.941 0.926
k) " " " " 0.941+3.1% 0.926+3.5% 0.920+2.9% 0.898+3.1% 0.943+1.5% 0.929+1.6%

Effect of Contrast Learning with Easy-hard Sampling.
We compare indices a) and e) to evaluate the impact of con-
trastive learning. Notably, employing contrastive learning
with easy sampling (denoted as EA) yields a significant
enhancement, demonstrating an approximate 1.7% perfor-
mance improvement relative to the baseline on the TID2013
dataset. When combined with hard sampling, denoted as
HA, we observe an additional performance increase of
nearly 1% on the TID dataset, along with slight enhance-
ments on other datasets. These variations in improvement
across different datasets can be attributed to the differentia-
tion of positive and negative samples, as well as the batch
sizes selected for training. For example, the batch sizes
of 16 and 128, used for training on the LIVEC and KonIQ
datasets respectively, may result in either a scarcity or a
redundancy of positive and negative samples.

Effect of sampling mode in Easy-hard Sampling. In this
section, we further investigate the impact of different sam-
pling methods on contrastive learning on the LIVEC dataset,
as shown in Table 5. Initially, we set different sampling
ratios at 10%/40% and 20%/60%. The results indicate that
our contrastive learning approach is relatively insensitive
to these hyperparameters. When combining easy and hard
sampling, our results outperform those obtained from using
either easy or hard sampling alone. This improvement can
be attributed to our proposed fine-grained contrast scheme,
which models the quality correlations of easily distinguish-
able and challenging sample pairs. This approach enables
us to concentrate on images that pose greater challenges for
quality prediction, thereby enhancing the robustness of our
method. Additionally, we explored two adaptive selection
strategies: 1) Using Average Quality as a Threshold: This
strategy employs the average quality within a batch as a
threshold to adaptively adjust the ratio of positive and neg-
ative samples in different batches. 2) Adaptive Sampling
Technique: Inspired by adaptive sampling concepts (Liu

Table 5. Ablation experiments of sampling mode in Easy-Hard
Sampling. The best performances are highlighted in boldface.

Sampling Pos. / Neg. PLCC SRCC

Easy 10% / 40% 0.908 0.882
Easy 20% / 60% 0.905 0.883
Hard 10% / 40% 0.903 0.884
Hard 20% / 60% 0.904 0.886

Easy-Hard 10% / 40% 0.910 0.889
Easy-Hard 20% / 60% 0.907 0.887
Easy-Hard 40% / 60% 0.908 0.890
Easy-Hard Adaptive Sampling 0.911 0.892
Easy-Hard Adaptive Average 0.909 0.891

et al., 2019), this experiment dynamically adjusts the sam-
pling probability based on the relative difficulty of ranking.
More details can be found in the Appendix D. These strate-
gies aim to refine the selection process, further contributing
to the effectiveness of our contrastive learning, which in-
spires us to explore smarter sampling schemes in the future.

5. Conclusion
In this study, we present CSIQA, an innovative quality con-
trastive learning methodology for BIQA. Contrary to con-
ventional models that predominantly concentrate on local
intra-image analysis, CSIQA accentuates both the global
context quality contrast and the nuances of local distor-
tions. It incorporates a quality context contrastive module,
facilitated by pseudo-labels, to underscore samples with
unpredictable quality, thereby capturing global quality con-
trastive relations. Additionally, a quality-aware mask atten-
tion module is employed to refine quality discrimination
by focusing on local distortions. Experiments show that
CSIQA surpasses current SOTA methods. Moreover, our
training approach seamlessly integrates with existing meth-
ods, yielding notable enhancements.
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Overview
This Appendix contains six sections. § A.1 offers a theoretical proof underscoring the reliability of incorporating pseudo-
labels. § A.2 provides a theoretical demonstration that contrastive learning exhibits greater robustness to noise compared to
rank learning. § B presents some details of the CSIQA model architecture § C delves deeper into the training and evaluation
specifics. § D extends our discussion with additional ablation studies related to our CSIQA. This includes an exploration
of the quality-aware token and an examination of the efficacy of logit distillation in hastening convergence. § E conducts
a sensitivity analysis focusing on hyperparameters, specifically addressing mask probability and the weight of the loss
function. § F presents a thorough qualitative assessment of CSIQA. This encompasses visual representations of feature
distributions across a range of quality scores and a visualization of the activation map.

A. PROOFS

A.1. Qualitative Proof of Theorem 1

The soundness of pseudo-labels is meticulously ensured by both mathematical proofs and experiments. We start with the
following three assumptions. 1) The teacher network generates enough pseudo-labels. 2) The pseudo-labels generated by
the teacher network are relatively balanced with the samples in the dataset. 3) The teacher randomly samples in the process
of generating pseudo-labels.

1. Definition: T (x) represents the teacher’s distribution. R(x) represents the true distribution. S(x) represents the student’s
distribution. f(x) is the probability distribution of x.

2. Minimization of Expression: Let a, b ∈ [0, 1], and a+ b = 1. The goal is to find the student’s distribution Ŝ(x) that
minimizes the expression involving the differences between the student’s distribution and the teacher’s distribution, as well
as the true distribution:

Ŝ(x) = argmin
S

∑
i

a |S (xi)− T (xi)|+ b |S (xi)−R (xi)|

3. Inequality Derivation: The optimal solution, denoted as Ŝ(x), was pursued within the context of this analysis. The
derivation is as follows:∫ (

a
∣∣∣Ŝ(x)− T (x)

∣∣∣+ b
∣∣∣Ŝ(x)−R(x)

∣∣∣) f(x)dx ≤
∫

(a|S − T |+ b|S −R|)f(x)dx

(Let: S(x) = bT + aR)∫ (
a
∣∣∣Ŝ(x)− T (x)

∣∣∣+ b
∣∣∣Ŝ(x)−R(x)

∣∣∣) f(x)dx ≤
∫

(a|bT + aR− T |+ b|bT + aR−R|)f(x)dx

=

∫
(a2|R− T |+ b2|T −R|)f(x)dx

=
(
a2 + b2

) ∫
|R− T |f(x)dx

< (a+ b)

∫
|R− T |f(x)dx

4. Conclusion: Through deduction, the Ŝ(x) will be influenced by the teacher and will be superior to the teacher. We
conclude that with a sufficiently abundant quantity of pseudo-labels (ensuring the expectation), and a relatively balanced
distribution between pseudo-labels and dataset samples (for any values of ‘a’ and ‘b’), our anticipated loss is lower compared
to training solely with ground truth. Consequently, under these three assumptions, the reliability of pseudo-labels can be
ensured.

A.2. Qualitative Proof of Theorem 2

1. The formalism of contrastive learning (CL) and rank learning (RL): We present the general formalism of CL and
RL at the label level: The loss function of CL simplifies to “distance of positive pair-distance of negative pair" (here we
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disregard the "partition function"). For the purpose of demonstration, we select one sample each from the maximum and
minimum values, using them as negative and positive examples respectively. The proof for multiple examples follows the
same logic.:

LCL = min |y+ − y| −max |y− − y|
For a label y sample, y+ and y− are its positive/negative samples.

The general form of loss in RL is typically the “negative of the distance":

LRL = −|y1 − y0|

Here we assume without loss of generality that the quality score of y1 is larger than y0.

2. Rank Learning (RL) Analysis: Consider a label y0 for a sample point. We sample around y0 using a distribution to
obtain y1, where y1 = y0 + ξ and ξ follows the sampling distribution. Given noise η in the "Teacher" model, we define the
noisy label as z = y1 + η when incorporating noise η. The RL with noise η can be expressed as:∫

−|z − y0|f(η)g(ξ)dηdξ =

∫
−|η + ξ|f(η)g(ξ)dηdξ

In the absence of noise η in RL: ∫
−|y1 − y0|g(ξ)dξ =

∫
−|ξ|f(η)g(ξ)dηdξ

3. Contrastive Learning (CL) Analysis: With n+ 2 samples {ŷ1, ..., ŷn+2}, the probability of |ŷi − y0| ≥ |ŷj − y0| is p.
Thus, the probability that all samples are farther from y0 than the positive sample ŷj is pn+1. The probability density is
(n + 1)pnh(η, ξ), where h(η, ξ) represents the probability density of p concerning η and ξ. The CL with noise η can be
expressed as: ∫

(n+ 1)pnh|η + ξ|fgdηdξ −
∫
(n+ 1)(1− p)n(−h)|η + ξ|fgdηdξ

=

∫
(n+ 1)[pn + (1− p)n]|η + ξ|fghdηdξ

In the absence of noise η in CL (due to the absence of noise η, p̂ and ĥ are used instead to replace p and h from before).∫
(n+ 1)p̂nĥ|ξ|gdξ −

∫
(n+ 1)(1− p̂)n(−ĥ)|ξ|gdξ

=

∫
(n+ 1)[p̂n + (1− p̂)n]ĥ|ξ|fgdηdξ

4. Comparative Analysis of Robustness: We qualitatively prove the robustness of CL and RL:

Evaluating the impact of noise on RL:∣∣∣∣∫ −|η + ξ|fgdηdξ −
∫

−|ξ|fgdηdξ
∣∣∣∣ = ∫

||η + ξ| − |ξ||fgdηdξ (9)

Evaluating the impact of noise on CL:∣∣∣∣(n+ 1){
∫
[pn + (1− p)n] · h|η + ξ|fgdηdξ −

∫
[p̂n + (1− p̂)n] · ĥ|ξ|fgdηdξ}

∣∣∣∣
=

∫
|[pn + (1− pn)] · |η + ξ| · h− [p̂n + (1− p̂)n] · |ξ| · ĥ| · f · g · (n+ 1)dηdξ (10)

Let p̃ = max{pn + (1− p)n, p̂n + (1− p̂)n} and h̃ = argmax
{h,ĥ}

{h, ĥ}, i.e.,

Equ.10 ≤
∫

||η + ξ| − |ξ|| · [p̃n + (1− p̃)n] · h̃ · f · g · (n+ 1)dηdξ ≤ Equ.9 (11)
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5. Conclusion: From the aforementioned equation, it can be deduced that when n is sufficiently large and 0 < p̃ < 1,
contrastive learning exhibits enhanced robustness to noise η due to its inherent filtering mechanism. In our empirical
validation, both contrastive learning and rank learning techniques were applied across various backbones, with training
conducted on noisy labels. The experimental findings underscore that contrastive learning is notably more robust. Further
details can be found in Sec. D.

B. Architecture
B.1. Encoder Details

The quality-aware token in the encoder functions in a manner akin to the CLS token, leveraging a self-attention mechanism.
Distinctively, it attends solely to visible patches. In the encoder’s formulation (Eq. 2 as depicted in the manuscript), a mask
operation is designed to regulate the interaction scope of the quality token during forward propagation. The feature values
from the Multi-Head Self-Attention (MHSA) block are subsequently refined through a Multi-Layer Perceptron (MLP) and a
residual connection. The mathematical representation is as follows:

Fl =

{
σ
(
logM +Ql

(
Kl

)⊤)
Vl + Fl−1, 0 < l ≤ L

F, l = 0

F l = MLP
(
Norm

(
F l

))
+ F l

F = {Fqua; [Fcls;F1:N−1]} ∈ R(N+1)×D be the embedding sequence, where N is the number of patches plus one CLS
token. Here, Fqua and Fcls symbolize the QUA token and CLS token. After extracting features through the L layers of the
encoder, the final output FL is obtained.

B.2. Decoder Details

Within the decoder, both the QUA token and CLS token undergo refinement. The QUA and CLS token is processed inside
the MHSA block to discern dependencies among its constituents. The output from the MHSA is then integrated with residual
connections, resulting in a query for the transformer decoder. This process is mathematically captured as:

Qqua = MHSA (Norm (Fqua)) + Fqua

Qcls = MHSA (Norm (Fcls)) + Fcls

Subsequently, the patch embeddings, excluding the QUA and CLS tokens, are used as keys and values for the decoder,
represented by Kd and Vd, respectively. The queries Qqua and Qcls are linear transformations of Fqua and Fcls. The
interaction through Multi-Head Cross-Attention (MHCA) helps derive the refined features Fqua and Fcls. Finally, we employ
a Multi-Layer Perceptron (MLP) to regress the final quality score based on the concatenated features of Fqua and Fcls.

Fqua = MLP (MHCA (Norm (Qqua) ,Kd,Vd) +Qqua)

Fcls = MLP (MHCA (Norm (Qcls) ,Kd,Vd) +Qcls)

Y = MLP (Cat (Fqua,Fcls))

C. Training and Evaluation Details
Student Network. 1) Training. To train the student network, we adopt a standard approach of randomly cropping input
images into ten patches, each with a 224×224 resolution. Subsequently, we reshape these patches into a sequence of smaller
patches with a patch size of p = 16 and an input token dimension of D = 384. Furthermore, we present additional training
preprocessing details for various datasets, which are not included in the main paper, as shown in Table 6. For different
benchmarks, we employ different training settings for a fair comparison. In the training phase, we perform an easy-hard
sampling of images within each batch to obtain positive and negative samples for contrastive learning. The contrastive loss
is then calculated using InfoNCE (Oord et al., 2018).
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Table 6. Training preprocessing details of selected BIQA datasets.

Dataset Resolution Resize Batch Size Label Range

LIVE (Sheikh et al., 2006) 768× 512 512× 384 12 DMOS [0,100]
CSIQ (Larson & Chandler, 2010) 512× 512 512× 512 12 DMOS [0,1]
TID2013 (Ponomarenko et al., 2015) 512× 384 512× 384 48 MOS [0,9]
KADID (Lin et al., 2019) 512× 384 512× 384 128 MOS [1,5]

LIVEC (Ghadiyaram & Bovik, 2015) 500P ∼ 640P 500P ∼ 640P 16 MOS [1,100]
KonIQ (Hosu et al., 2020) 768P 512× 384 128 MOS [0,5]
LIVEFB (Ying et al., 2020) 160P ∼ 700P 512× 512 128 MOS [0,100]
SPAQ (Fang et al., 2020) 1080P ∼ 4368P 512× 384 128 MOS [0,100]

Table 7. Teacher performance on authentic and synthetic datasets.

LIVE CSIQ TID2013 KADID

Method PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

Teacher 0.978 0.978 0.960 0.945 0.910 0.891 0.904 0.902

LIVEC KonIQ LIVEFB SPAQ

Method PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC
Teacher 0.900 0.878 0.930 0.914 0.667 0.567 0.922 0.920

Table 8. Experiments on the reliability ablation of teacher-generated pseudo-labels.

LIVE LIVEC

Method PLCC SRCC PLCC SRCC

baseline baseline 0.970 0.967 0.891 0.867
CSIQA w/ pesudo 0.983(+1.3%) 0.982(+1.5%) 0.916(+2.5%) 0.898(+3.1%)
CSIQA w/ pesudo+label 0.985(+1.5%) 0.983(+2.1%) 0.920(+2.9%) 0.898(+3.1%)

2) Testing. We do not adjust the hyperparameters during training and testing with different train-test dataset splits. We
repeat this process 10 times to mitigate performance bias, and we report the average SRCC and PLCC values.

Teacher Network. We will start with structure, training, performance, and selection principles to introduce the teacher:

• Structure. The pre-trained teacher transformer consists of VIT-S (Touvron et al., 2022) and one decoder layer (Qin et al.,
2023). It is worth noting that, as a general framework (Table 2 in our manuscript), the teacher network is all the pre-trained
version of the student network without mask attention.

• Teacher Training. The training process of the teacher network is consistent with the training process of the student
network, we use a learning rate of 2× 10−4 and a decay factor of 10 every 3 epochs to train the model for 9 epochs. During
training and inference, we adopt a standard approach of randomly cropping input images into ten patches, each with a 224 ×
224 resolution. Subsequently, we reshape these patches into a sequence of smaller patches with a patch size of p = 16 and an
input token dimension of D = 384.

• Performance. We guarantee a high accuracy of the pre-trained teacher model on multiple datasets to provide reliable
pseudo-labels, as shown in Table 7. Our study further illustrates that our teacher model produces relatively reliable pseudo-
labels: We compare the student model’s performance using pseudo-labels with its performance using the true labels. Table 8
indicates that the student model achieves similar performance with both, thus the pseudo-labels are reliable.
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Table 9. Experiments on the selection principle of teacher models.

DBCNN HyperNet VIT-D VIT-DF

Teacher PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

baseline 0.891 0.867 0.891 0.867 0.891 0.867 0.891 0.867
CSIQA 0.905 0.880 0.903 0.878 0.910 0.882 0.920 0.898

( 0, 35 ]

( 70, 99 ]
( 35, 70 ]

(a) (b) (c) (d)

t-SNE (LIVEC)t-SNE (LIVEC) Cosine Similarity (LIVEC) Cosine Similarity (KonIQ)
( 0, 35 ]

( 70, 99 ]
( 35, 70 ]

Figure 5. (a) and (b) depict the embedding space without and with the inclusion of a quality token. The comparison indicates that
introducing the quality token in contrastive learning optimizes more quality-related features by incorporating semantic information. This
results in a well-structured quality-aware embedding space (b). Furthermore, (c) and (d) demonstrate that the minimal similarity between
the quality token and cls token highlights their distinct focuses on different regions of distortion. Specifically, the cls token prioritizes
global distortion, while the quality token prioritizes local distortion. As a result, the quality perception becomes more comprehensive.

• Selection Principle. In our experiments on the LIVEC dataset, we explore two distinct settings to understand the influence
of teacher models on the student’s performance, as shown in Table 9: 1) Teacher models with identical architecture but
varying performances. Specifically, we consider models VIT-D and VIT-DF. Here, VIT-DF represents the fully converged
VIT-D, and the performance of VIT-DF is shown in Table 7. 2) Teacher models with differing architectures but consistent
performance. For this, we evaluate models DBCNN (Zhang et al., 2018), HyperNet (Su et al., 2020), and VIT-D. The PLCC
of these three teacher networks are 0.863, 0.867, and 0.868, respectively. From the results, it is evident that sharing the same
architecture between the teacher and student models significantly enhances the student’s performance. This is because our
contrastive learning method for sampling difficult examples is closely tied to the teacher’s predictive capabilities. When the
teacher and student share the same architecture, it highlights the potential shortcomings of the student model trained solely
under label supervision. Additionally, improvements in the teacher model’s performance also aid the student. This implies
that the best choice for the teacher is one that has both training convergence and shares the same architecture as the student,
thereby maximizing the effectiveness of our framework.

D. More Ablation Studies
Ablation about quality-aware token. To illustrate the effectiveness of introducing the QUA token in generating a well-
structured embedding space for contrastive learning, we categorize the quality scores of the LIVEC dataset into three distinct
categories: heavily distorted images (score 0-35), moderately distorted images (score 35-70), and lightly distorted images
(score 70-100). Each set includes a minimum of 300 images from the LIVEC real-world dataset. We then generate the
quality-aware feature representations using t-SNE (Van der Maaten & Hinton, 2008), which are depicted in Fig. 5 (a) and
(b). Fig. 5(b) presents the embedding space obtained when quality tokens are utilized and compared with the quality space
without quality tokens (Fig. 5(a)). The overlapping part of the red area represents those features that are difficult for the
model to distinguish. Our analysis reveals that our CSIQA is more discriminative for the quality features after introducing
the quality token. To further demonstrate the unique features modeled by different tokens (for cls token and quality token),
we compute the cosine similarity between the class token and quality token (averaged over the LIVEC and KonIQ datasets)
in Fig. 5(c) and (d), resulting in low values of 0.29 and 0.069, which is significantly lower than the similarity between class
and distillation labels in previous work (Touvron et al., 2021); 0.96 and 0.94 in DeiT-T and Deit-S, respectively (Naseer
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Figure 6. Average SRCC versus Epochs on different datasets ablation on logit distillation.

Contrastive Loss Hyperparameter Logits Loss Hyperparameter 21Masked Probability

Figure 7. (a) Sensitivity analysis of patch mask probabilities (b) Hyperparameter λ1 for balanced logit distillation loss (c) Hyperparameter
λ2 for balanced contrastive loss. All these results were obtained on the TID2013 and LIVEC datasets.

et al., 2021). This finding supports our hypothesis that the use of individual tokens for partial patch features in ViT can
enable judges of the image quality from a different perspective (i.e., global and local).

Ablation about logit distillation. Fig. 6 presents the average SRCC with respect to the number of epochs on the LIVEC
and KonIQ test sets. The results indicate that our CSIQA method exhibits remarkably faster convergence compared to other
methods (Qin et al., 2023; Su et al., 2020; Zhang et al., 2018). Additionally, incorporating the logit distillation module in the
training process results in an accelerated convergence speed and a further improvement in performance on both the LIVEC
and KonIQ datasets (Compare CSIQA and w/o KD in Fig. 6). Notably, it achieves the fastest convergence after only a single
epoch of training, outperforming the second-best NR-IQA method mentioned in Table 1 of the main paper.

Ablation about decoder. Inspired by (Qin et al., 2023), we introduce a Transformer decoder for further improved
feature refinement. It uses masked self-attention and cross-attention on “CLS" and “QUA" tokens. Masked self-attention
minimizes irrelevant features, while cross-attention enhances quality-related aspects, adapting tokens for BIQA. The ablation
experiments presented in Table 10 further validate the efficacy of the decoder in refining features.

Ablation about the hard-easy sampling strategy with different backbone. Table11 outlines the fine-tuning outcomes
using the ResNet-50(He et al., 2016) backbone, employing both hard and hard-easy samples. When fine-tuning with simple
examples, there’s a slight performance drop, possibly due to model overfitting caused by an abundance of simple examples,
and fine-tuning with easy-hard samples yields a 1.3% enhancement on the LIVEC dataset. Easy-Hard Sampling helps us
circumvent the issue of excessive hard samples leading to local minima, while also addressing overfitting stemming from
straightforward examples.

18



Integrating Global Context Contrast and Local Sensitivity for Blind Image Quality Assessment

Table 10. Ablation experiments concerning the decoder.

LIVE LIVEC

Method PLCC SRCC PLCC SRCC

VIT 0.965 0.949 0.861 0.845
CSIQA w/o decoder 0.981 0.980 0.901 0.878
CSIQA 0.985(+0.4%) 0.983(+0.3%) 0.920(+1.9%) 0.898(+2.0%)

Table 11. Ablation study about hard-easy sampling strategy for ResNet-50

LIVE LIVEC

Sampling Method PLCC SRCC PLCC SRCC

ResNet-50 0.942 0.938 0.858 0.851
Easy ResNet-50 0.949 0.945 0.857 0.848
Hard ResNet-50 0.952(+1.0%) 0.947(+0.9%) 0.864(+0.6%) 0.858(+0.7%)
Easy-Hard ResNet-50 0.956(+1.4%) 0.950(+1.2%) 0.871(+1.3%) 0.858(+0.7%)

Ablation about sampling mode in hard-easy sampling. We explore two adaptive selection strategies, as shown in Table 5:

1. Mean Quality as Threshold: This strategy utilizes the mean quality within a batch as a threshold to adaptively adjust
the ratio of positive and negative samples across different batches.

2. Adaptive Sampling Technique: Inspired by the concept of adaptive sampling, this technique dynamically adjusts the
sampling probabilities according to the difficulty of relative ranking. Specifically:

• For a given sample, it is initially ranked according to the distance of its quality label from those of all other
samples in the same batch, from the nearest to the furthest. An initial sampling probability pi is then assigned to
each ranked position i.

• During the training phase, we assign a selection probability pi to each rank of samples. If the relative rank of a
sample within a batch is correctly identified, it is deemed an “easy rank” sample, leading to a reduction in the
sampling probability for this rank, recalculated as pi = (1 − δ) × pi. Conversely, a misprediction signifies a
“difficult rank” sample, prompting an increase in the sampling probability to pi = (1 + δ)× pi.

This dynamic, adaptive methodology shifts our focus progressively towards ranks that present more significant challenges
in accurate ranking, particularly those at intermediate positions within the sorting order. Simultaneously, it reduces our
emphasis on ranks with more apparent relative positions, such as those at the extremities of the sorting spectrum. These
dynamic adjustments help to improve the accuracy of quality predictions.

More comparisons with CONTRIQUE. To make a fair comparison with CONTRIQUE (Madhusudana et al., 2022), we
take the same ResNet-50 as our backbone. For further alignment, we try two training methods. One is to fine-tune only
the last encoder layer for contrastive learning and the fully connected layer (aligned with CONTRIQUE), and the other
is to fine-tune the entire network. The experimental results are shown in Table 12. In the case of the frozen encoder, the
method based on context contrastive learning shows a 0.7% (1.1% with fine-tuning) improvement over CONTRIQUE on
the synthetic dataset LIVE. It is worth noting that on the real dataset LIVEC, there is a significant increase of 2.6% (2.5%
with fine-tuning). CONTRIQUE treats each distorted image as a unique class and discusses the positive class contrast
information that other real images of similar quality can provide. This approach indirectly reduces the model’s ability to
perceive differences in real distorted images. However, our method compensates for this shortcoming by using accurate and
reliable labels, enabling it to explicitly mine the subtle differences between images with different quality scores.

More experimental results on the framework portability. We assess existing IQA methods’ generality, denoted by
"+," signifying our model with our learning strategy. Pseudo-labels are from original pre-trained IQA models. Reported
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Table 12. Comparison of CSIQA with CONTRIQUE using ResNet-50 as the backbone, Co. denotes CONTRIQUE.

LIVE LIVEC

Method Backbone PLCC SRCC PLCC SRCC

Baseline ResNet-50 0.947 0.923 0.852 0.827
Co.(Linear Regression) ResNet-50 0.961 0.960 0.857 0.845
CSIQA(Linear Regression) ResNet-50 0.968(+0.7%) 0.966(+0.6%) 0.883(+2.6%) 0.855(+1.0%)
CSIQA(fine-tuning) ResNet-50 0.972(+1.1%) 0.970(+1.0%) 0.882(+2.5%) 0.859(+1.4%)

Table 13. We assess existing IQA methods’ generality, denoted by "+" signifying our model with our learning strategy. Pseudo-labels are
from original pre-trained IQA models. Reported results show our method effectively enhances IQA networks.

LIVE LIVEC

Method PLCC SRCC PLCC SRCC

DBCNN 0.957 0.955 0.859 0.833
DBCNN + 0.970+1.3% 0.968+1.3% 0.878+1.9% 0.859+2.6%

HyperNet 0.966 0.962 0.880 0.867
HyperNet + 0.974+0.8% 0.971+0.9% 0.903+2.3% 0.884+1.7%

TReS 0.968 0.969 0.866 0.848
TReS + - - 0.887+2.2% 0.865+1.7%

results show our method effectively enhances IQA networks. As evidenced by Table 13 and Table 14, our proposed model
seamlessly integrates with existing IQA methodologies, resulting in notable performance enhancements.

Experimental support for Theorem A.2. As shown in Table 15 and Table 16, to illustrate contrastive learning’s noise-
resilience, we conducted experiments using ResNet-50 and VGG-16 backbones in both contrastive and ranking settings
across diverse datasets. The choice of comparison samples for both methods was influenced by noisy labels. Results
summarized in the table highlight contrastive learning’s competitive advantage. With the VGG-16 backbone, we improved
by 8.1% on TID2013 and remained competitive on LIVE. Using RankNet-50, contrastive learning boosted performance
by 5.3% on Kadid and 2.7% on KonIQ. This is attributed to contrastive learning’s robustness in handling extreme sample
noise. While ranking learning can be vulnerable to noise, especially when samples are closely ranked, contrastive learning,
as demonstrated theoretically, sidesteps this issue. The ample size of ’n’ in the theoretical proof allows the largest
negative sample to converge toward its expectation and the smaller positive sample to approximate its positive counterpart.
Consequently, contrastive learning exhibits heightened noise robustness.

E. Sensitivity study of Hyperparameters
Patch Masked Probability. The probability of applying the random mask is a hyperparameter that adjusts the likelihood
of incorporating the random quality-aware mask attention citation. To assess its impact on CSIQA, we conduct ablation
experiments with varying random mask probabilities. As illustrated in Fig. 7(a), we find that a lower mask probability
decreases the effectiveness of the mask, whereas a higher mask probability also reduces its effectiveness due to the limited
information from each patch. Balancing these effects, we set the mask probability to α = 0.3 for our experiments.

Loss Weight Hyperparameter. In this paper, we utilize λ1 and λ2 to balance logit supervision and contrastive learning. In
this subsection, we conduct a sensitivity study of the hyperparameters to explore their effects. As shown in Fig. 7 (b) and (c),
CSIQA is found to be sensitive to the loss weight λ1, while less sensitive to the loss weight λ2. Specifically, small values of
λ1 weaken the impact of our logit distillation, while large values of λ1 may result in learning too many noisy pseudo-labels
and lead to performance degradation. Therefore, choosing an appropriate value of λ1(e.g., 0.9) is critical for achieving
optimal performance. On the other hand, our experiments show that CSIQA is less sensitive to λ2. However, it still plays an
essential role in the overall performance of our model. We recommend using a moderate value of λ2(e.g., 0.1) to achieve a
balance between contrastive learning and logit supervision.
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Table 14. Context contrastive learning paradigm is applied to the IQA network ADANet (Pan et al., 2022) with the backbone of
EfficientNet-b0 (Tan & Le, 2019) and RedNet101 (Li et al., 2021) (referred by “Effi-b0” and “Red101”, respectively)."+" refers to the
model combined with our learning strategy.

CSIQ LIVEC KonIQ

Method PLCC SRCC PLCC SRCC PLCC SRCC

Effi-b0 0.922 0.910 0.851 0.828 0.921 0.905
Effi-b0 + 0.932+1.0% 0.920+1.0% 0.865+1.4% 0.849+2.1% 0.928+0.7% 0.913+0.8%

Red101 0.942 0.931 0.757 0.734 0.881 0.877
Red101 + 0.949+0.7% 0.940+0.9% 0.798+4.2% 0.782+4.8% 0.890+0.9% 0.887+1.0%

Table 15. Comparison between contrastive learning and rank learning using the VGG16 backbone.

LIVE TID2013

Method Backbone PLCC SRCC PLCC SRCC

Learning to Rank VGG16 0.976(+0.3%) 0.975(+0.4%) 0.803 0.791
Contrast Learning VGG16 0.973 0.971 0.884(+8.1%) 0.863(+7.2%)

Table 16. Comparison between contrastive learning and rank learning using the ResNet backbone.

KADID KonIQ

Method Backbone PLCC SRCC PLCC SRCC

Learning to Rank ResNet-50 0.822 0.820 0.896 0.884
Contrast Learning ResNet-50 0.875(+5.3%) 0.881(+6.1%) 0.923(+2.7%) 0.910(+2.6%)

F. Qualitative Analysis
Visualization of activation map. In IQA datasets, there tend to be a large number of images with distinct fore-
ground/background or without any specific object of interest (Sheikh et al., 2006; Ghadiyaram & Bovik, 2015). In
the main paper, we show visualization results that show that our CSIQA can well focus on the distortion of the fore-
ground part, as this is also more in line with the feature that the Human Visual System is significantly more concerned
about (Ponomarenko et al., 2015; Hosu et al., 2020). In this section, we further visualize attention maps in images with
distinct backgrounds or without any specific object of interest to embody the comprehensive ability of our CSIQA to capture
image distortion. As shown in Fig. 8, compared to DEIQT (the second best method in Table 1), our CSIQA shows the
superior ability to accurately focus distinct backgrounds or lacking any specific object image distortion regions which are
highlighted in the green box (i.e., blur sun, dim clouds, and overly bright red lights), resulting in improved prediction.

Visualization of feature distributions across different quality scores. In Fig. 9, we further use t-SNE (Van der Maaten &
Hinton, 2008)to visualize the feature distribution of CSIQA and DEIQT (Qin et al., 2023), across all images of KonIQ (a
total of 10073 authentic images). The purple points represent lower-quality images (scoring less than 50 on a scale of
0-100), while the yellow points represent higher-quality images (scoring more than 50 on a scale of 0-100). As shown in
Fig. 9(b), CSIQA demonstrates superior discriminative capability in distinguishing between high-quality and low-quality
images. Specifically, the red box area highlights CSIQA’s ability to accurately capture the distinguishing features of images
with varying quality levels. Moreover, the intra-class distance between images of the same quality level is noticeably more
compact with CSIQA, indicating its effectiveness in producing more distinct feature representations.
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Figure 8. Activation maps of DEIQT (Qin et al., 2023) and CSIQA(ours) using Grad-CAM (Selvaraju et al., 2017). Scores in this figure
represent Mean Opinion Scores (MOS). CSIQA still well-performs on background or without any specific object of interest, resulting in
accurate prediction. Rows 1-3 represent input images, and CAMs from DEIQT and CSIQA, respectively.

(a) DEIQT   (b) CSIQA (Ours)
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Figure 9. The t-SNE of the current SOTA method DEIQT and our CSIQA visualizes 10073 (all images) quality-aware representations
learned from KonIQ.
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