
Similarity-aware Positive Instance Sampling for
Graph Contrastive Pre-training

Anonymous Author(s)
Affiliation
Address
email

Abstract

Graph instance contrastive learning has been proved as an effective task for Graph1

Neural Network (GNN) pre-training. However, one key issue may seriously impede2

the representative power in existing works: Positive instances created by current3

methods often miss crucial information of graphs or even yield illegal instances4

(such as non-chemically-aware graphs in molecular generation). To remedy this5

issue, we propose to select positive graph instances directly from existing graphs6

in the training set, which ultimately maintains the legality and similarity to the7

target graphs. Our selection is based on certain domain-specific pair-wise similarity8

measurements as well as sampling from a hierarchical graph encoding similarity9

relations among graphs. Besides, we develop an adaptive node-level pre-training10

method to dynamically mask nodes to distribute them evenly in the graph. We11

conduct extensive experiments on 13 graph classification and node classification12

benchmark datasets from various domains. The results demonstrate that the GNN13

models pre-trained by our strategies can outperform those trained-from-scratch14

models as well as the variants obtained by existing methods.15

1 Introduction16

Pre-training on graph data has received wide interests in recent years, with a large range of insightful17

works focused on learning universal graph structural patterns lying in different kinds of graph18

data [25, 15, 40, 28]. For instance, Hu et al. [15] pre-train graph neural networks on molecules19

and transfer the learned model to molecular graph classification tasks, while Qiu et al. [25] pioneer20

pre-training on big graphs. Compared with traditional semi-supervised or supervised training methods21

for graph neural networks [12, 18, 38, 10, 33], pre-training tasks formulate the training objective22

without the access of training labels, and they empower graph neural networks to be generalized to23

unseen graphs or nodes with no or minor fine-tuning training cost. How to define proper pre-training24

tasks comes as the principal and also the most challenging part in graph self-supervised learning.25

Among current works, graph instance contrastive learning based pre-training tasks have been proved26

effective to learn graph strcutrual information [25, 40]. It preforms contrast between positive/negative27

instance pairs extracted from real graphs observed in the dataset. Though positive pairs for graph28

contrastive learning seems easy to define for those tasks not performed on graph instances, like29

DeepWalk [22], node2vec [11], where near node-node pairs are treated as positive pairs and Infomax30

based models like DGI [34], InfoGraph [31], where node-graph pairs from a same graph are treated31

as positive pairs, it is not the case for graph instance contrastive learning. Attempts from previous32

literature mainly focus on devising suitable graph augmentation methods, such as graph sampling [25,33

40], node dropping [40], edge perturbation [40], and diffusion graph [13] to get positive graph34

instances from the original graph. Despite the achievements they have made using such graph data35

augmentation strategies, we assume that such perturbation based graph data augmentation methods36

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

are not universal strategies to get ideal positive samples preserving necessary information for graph37

contrastive learning for various kinds of graph data such as molecular graphs, social graphs, and38

academic graphs.39

0.10 0.15 0.20 0.25
Drop Edge Ratio

0.0

0.1

0.2

0.3

0.4

0.5

Po
ss

ib
ilit

y
/ S

im
ila

rit
y

0.0218 0.0224 0.0211 0.0224

0.4890

0.3890

0.3163
0.2736

Legal Prob.
Avg. Sim.

0.10 0.15 0.20 0.25
Drop Node Ratio

0.1

0.2

0.3

0.4

Po
ss

ib
ilit

y
/ S

im
ila

rit
y

0.0265 0.0254 0.0291 0.0345

0.4008

0.3030

0.2425
0.2118

Legal Prob.
Avg. Sim.

Figure 1: The fingerprint similarity scores (in or-
ange) and percent of legal molecular outputs (in blue)
generated by graph data augmentation strategies: drop-
ping nodes and dropping edges from a same molecule
w.r.t. the ratio of nodes / edges being dropped on
1000 molecular graphs. The fingerprint similarity and
the percent of legal molecular outputs decreased dra-
matically even for the small proportion of nod/edge
dropping.

We make our assumptions on the necessary in-40

formation that should be preserved in positive in-41

stances in the contrastive learning process, which42

though have not been proved theoretically, are rea-43

sonable and are arrived from the re-thinking of the44

purpose and inherent principle of the contrastive45

learning and what should positive samples pre-46

serve to get an effective method. Such unproved47

but reasonable assumptions for positive instances48

are as follows:49

• Positive instances should be semantically sim-50

ilar with the target instance;51

• Positive samples for the same target instance52

should also be similar with each other;53

• Positive instances should preserve certain do-54

main information if necessary.55

Based on such assumptions, we can see that some widely used graph data augmentation strategies56

cannot always get positive instances with such properties preserved when being applied on different57

kinds of graph data. As shown in Fig. 1, simple edge-perturbation or node-dropping for molecular58

graph contrastive learning strategies can hardly get legal graph instances given the fact that molecules59

are specifically formulated in accordance to strict chemical constraints which will be easily broken if60

some edges/nodes, even of a very small number, are perturbed. Moreover, subgraph sampling strategy,61

though effective when applied on graphs without node/edge attributes, may always lead to positive62

instances that are dissimilar with the target instance when applied on molecular graphs. Statistical63

results for subgraph sampling and another data augmentation strategy suffering from similar problems64

– attribute masking, are presented in Appendix A.5.1.65

Thus, in this paper, we move beyond the widely used graph data augmentation strategies for an66

effective and more universal method to get positive graph instances for graph instance contrastive67

learning. We propose a simple but effective similarity based positive instances sampling strategy that68

can be applied on various kinds of graph data. Unlike previous methods that construct contrastive69

pairs by graph augmentation, our method encodes the pair-wise similarity information, measured by70

certain domain-specific similarity/proximity, into a hierarchical structure and selects positive graph71

instances from such a structure which ultimately maintains the legality of the sampled instances72

and high similarity to the target graphs (see Appendix C for details). Moreover, we also propose73

an improvement for a widely-used node-level pre-training strategy [15], which, together with our74

similarity aware graph positive sampling strategy, brings us an upper strategy design philosophy. That75

is, the necessary of introducing prior knowledge or bias in random strategies.76

We conduct extensive experiments on three representative kinds of graph data: molecular graphs,77

social graphs as well as big social and academic graphs where nodes are of interest to demonstrate the78

effectiveness and superiority of our proposed sampling based strategy over previous graph contrastive79

learning strategies and also some other strategies not based on contrastive learning for different80

kinds of graph data. Besides, some additional experiments which try to transfer the GNN models81

pre-trained on molecular graph dataset to downstream social graph classification task let us have82

a glimpse of the potential possibility of the pre-trained models’ ability to capture universal graph83

structural information underlying different kinds of graph data as well as the possibility to get such84

a universally transferable pre-trained model. Similar things have been explored in other domains85

such as multi-lingual language models. However, to our best knowledge, we are the first to propose86

such possibility for pre-trained GNN models, which, though lacks further and thorough exploration87

in the paper, can probably point out a new possibly meaningful research direction and cast light on88

successive work.89

2

2 Related Works90

Graph Representation Learning. How to generate expressive representation vectors for nodes or91

graphs that can capture both node-level information, like node attributes and node proximities [32,92

22, 11], as well as graph-level information, like structural proximity between nodes [26] and graph93

property [10], is a vital question and has aroused great interests from graph learning community.94

Common approaches include unsupervised manners [22, 11, 32, 31, 34, 42, 24, 23], which always95

adopt a shallow architecture, semi-supervised and supervised approaches [33, 18, 12, 10, 38], which96

always leverage expressive graph neural networks to capture critical information from both graph97

structure and node/edge attributes. In this work, we adopt graph neural networks as our graph encoder98

to generate expressive representations for nodes or graphs.99

Contrastive Learning. Contrastive learning has proved its efficiency to learn highly expressive100

representations in Computer Vision domain [5, 14]. Moreover, contrastive learning has also been101

used in graph learning for a long time, like doing contrast between node-node pairs [22, 11] to102

encode various node proximities into node representations. Recently, there are also efforts focusing103

on using contrastive learning on graph instances to learn instance-level representations that can be104

aware of critical graph structural information [25, 40]. In this work, we also focus on graph instance105

contrastive learning, but turn to approach this problem in a new manner.106

Graph Pre-training. Pre-trained models have proved their highly transferable ability when being107

applied on downstream datasets in other domains, such as the language models [6] in NLP domain.108

Famous pre-training strategies for GNNs on graph data largely fall into two genres: node-level and109

graph-level strategies. Node-level strategies aim to design proper tasks that can help GNNs learn110

node/edge attribute distribution information [15, 28]. More universally, graph-level strategies try to111

learn design tasks that can learn structural information for both nodes and graphs [25, 40]. In this112

work, we aim to design more powerful pre-training strategies for graph data from both graph-level113

and node-level.114

3 Preliminary115

We denote an attributed graph as G(V, E ,X), where |V| = n refers to a set of n nodes and |E| = m116

refers to a set of m edges. We denote xv ∈ Rd as the initial feature of node v and euv as the initial117

feature of edge (u, v).118

Graph Neural Networks (GNNs) can be modeled as the a messaging passing process, which involves119

neighborhood aggregation among nodes in graph and message updating to the next layer. Namely,120

the general message passing process is defined as:121

m(l+1)
v = AGGREGATE({(h(l)

v ,h
(l)
u , euv)|u ∈ Nv}),

hl+1
v = σ(W (l)m(l+1)

v + b(l)),

where hl+1
v refers to the hidden state of v at (l + 1)-th layer with h

(0)
v = xv and m

(l+1)
v refers122

to the aggregated message of v at (l + 1)-th layer. Nv denotes the neighbor node set of node v.123

AGGREGATE(·) aggregates the hidden states of v’s neighbor nodes and edges, such as mean/max124

pooling and graph attention[38, 33]. σ(·) is the activation function, such as ReLU(·). W (l) and b(l)125

are the trainable parameters. If the modelML contains L layers, the output of last layer {h(L)
v }v∈v126

usually represents the node-level embeddings of input graph. Moreover, the graph-level embedding127

hG is derived by simply applying a READOUT function as128

hG = READOUT({h(L)
v }v∈Nv).

Representations generated by GNNs over graphs, including node-level and graph-level representa-129

tions, are meaningful embeddings to perform various downstream graph learning tasks, like node130

classification [44, 4], graph classification [31, 15, 28], and so on.131

4 Similarity-aware Positive Graph Instance Sampling132

In this section, we propose our similarity-aware hierarchical graph positive instance sampling method133

to sample positive graph instances with three kinds of information mentioned in Sec. 1 preserved. We134

3

Similarity

function

𝑠𝑖𝑚(. , .)

Similarity-based

hierarchical graph

Positive

pairs
Hierarchical

sampling
The model

Similarity estimation
The input graphs

Figure 2: Illustration of the hierarchical graph instance sampling process for the molecular graphs.

first explain our motivation w.r.t. why we turn to other graph instances in the pre-training dataset135

for positive instances and why it may work for graph data. Then we propose our sampling strategies136

as well as two versions of the sampling process. We also give some further discussions for such137

two sampling strategies. Moreover, we also propose an improvement of the widely used node-level138

pre-training strategy, which is an additional contribution of our work.139

4.1 Motivation: Sampling or Constructing?140

As discussed in Sec. 1, it is hard to design a clean and elegant data augmentation strategy universally141

for various kinds of graph data to get positive instances that are similar enough with the target graph142

instance and can also preserve necessary domain specific information. Since what we care about143

for positive graph instances are their similarity with the target graph instance, rather than the way144

to obtaining them, we move beyond popular graph data augmentation skills and propose to sample145

positive instances from the pre-training dataset for the target graph instance. Specifically, we propose146

to use approximate similarity functions that can reveal the semantic similarity between two graph147

instances to some extend to estimate the semantic similarity scores between two graph instances. The148

similarity relations between each pair of graphs are then encoded into a similarity hierarchy, which is149

then used for positive instance sampling. We also make some further discussions for the proposed150

similarity-aware sampling process, which may inspire future design for other sampling strategies.151

4.2 Similarity-aware Positive Graph Instance Sampling152

Following [1], we assume that each graph instance Gi ∈ G has its semantic class class(Gi) = ci.153

Thus, the optimal positive sampling strategy should choose graph instances of the same semantic154

class with the graph instance Gi as its positive instances. Formally, the rate for sampling graph Gj as155

the positive instance of Gi is:156

P+
i (Gj) =

{
1
|G+
i |

If class(Gi) = class(Gj),

0 otherwise
(1)

where G+i = {Gk|Gk ∈ G, class(Gk) = class(Gi)} is the set of graph instances of the same class157

with graph instance Gi. We can then assume that there exists a ground-truth semantic similarity158

function simgt(·, ·) which reveals whether two graph instances belong to a same semantic class159

accurately:160

simgt(Gi, Gj) =

{
1 If class(Gi) = class(Gj),
0 otherwise

(2)

However, we have no knowledge of the such ground-truth semantic similarity function since our161

pre-training graph datasets are always unlabeled. Thus we propose to use approximate similarity162

functions that can be obtained from the real-world and applied in practice easily to estimate the163

similarity between two graph instances. We can make some assumptions for the chosen approximate164

similarity functions to ensure their good quality, which are deferred to Appendix B.1.165

Specifically, we choose a similarity score function sim(·, ·) to estimate the semantic similarity between166

two graphs. To further use the similarity measurement to perform flexible positive sampling, we167

propose a two-step approach1 to encode pair-wise similarity into a more abstract and structural168

hierarchy efficiently – a similarity-based hierarchical graphH(G, EH), where G is the set of graphs in169

our pre-training dataset, EH is the edge set. Formally, we introduce a similarity threshold τ(0 < τ <170

1Please refer to Appendix A.4.1 for details.

4

1), and based on which the edge set is defined as: EH = {(Gi, Gj)|sim(Gi, Gj) ≥ τ,Gi ∈ G, Gj ∈171

G}. Many similarity functions are good candidates for sim(·, ·) such as fingerprint similarity [27] for172

molecular graphs, Weisfeiler-Lehman Graph Kernel [29] normalized similarity for graphs without173

node/edge attributes and node proximity for nodes in a big graph.174

The constructed hierarchical graph, which encodes more information beyond pair-wise similarity2,175

can be used to design flexible sampling strategies for positive graph instance selection. We propose176

two sampling strategies:177

• First-order neighbourhood sampling. For each graph Gi, sample a one-hop neighbour set of a178

fixed size as its positive instances.179

• High-order graph sampling. We perform l-hops random walks starting from graph Gi for k180

times and choose positive instances according to their appearance frequencies.181

An illustration for HGC is presented in Fig. 2. We will give some further discussions w.r.t. why we182

use similarity for positive instance sampling and how would high-order sampling potentially benefit183

the sampling process and the resulting positive instances in the next section.184

4.3 Further Discussion for Similarity-aware Sampling Strategy185

In this section, we want to answer two questions: Q1: Why we still sample positive instances based on186

approximate pair-wise similarity scores, though it may not be an accurate similarity estimation? Q2:187

How would high-order sampling potentially benefit the sampling process and the resulting positive188

instances? Moreover, we also propose some further discussions for the proposed similarity-aware189

positive instance sampling strategy.190

To begin with, we propose a property of the contrastive learning that is intuitively correct:191

Property 1. Avoiding false-positives is important in the contrastive learning process.192

Here, “false-positives” denotes positive instances selected by a non-optimal positive sampling strategy193

whose semantic classes are not same with the target graph instance. We explain why such a property194

holds in Appendix B.2 in detail, though it should be correct intuitively.195

Then, Q1 can be answered by proposing the following property of the positive instances sampled196

according to their similarity scores with the target graph instance:197

Property 2. If the similarity threshold τ is changing in a proper range, an instance that has a high198

similarity score with the target instance will also has a high probability to be a ground-truth positive199

instance.200

We would explain why this property holds in detail in Appendix B.3, based on our assumptions on201

good properties of the approximate similarity function (Def. 2). Thus, the answer for Q1 could be:202

sampling positive instances according to their similarity scores with the target graph instance may203

help avoid sampling false-positives.204

To answer Q2, we first propose one limitation of the first-order similarity sampling strategy by205

pointing out a crucial property of the ground-truth similarity function that the approximate similarity206

functions always fail to preserve – the transitivity of the ground-truth similarity function:207

Property 3 (Transitivity of the ground-truth similarity function). Ground-truth similarity function is208

transitive: if simgt(Gi, Gj) = 1 and simgt(Gi, Gk) = 1, then simgt(Gj , Gk) = 1.209

Such transitivity of the ground-truth similarity function ensures the transitivity of the relations210

between nodes in the hierarchical graph constructed based on the ground-truth similarity measurement.211

However, it is obvious that relations between nodes in our constructed similarity-based hierarchical212

graph – represented by edges, are not fully-transitive. It is because that the approximate similarity213

function we use in practice is not an optimal one.214

We introduce the definition of connectivity and connectivity order between nodes in the graph in215

Appendix B.4. The transitivity of the ground-truth similarity function ensures that Gi’s positive216

instances sampled by first-order neighbourhood sampling strategy can have connectivity orders with217

Gi ranging from 1 to |G+i | − 1. It is hard for first-order sampling strategy applied on the hierarchical218

2Such information will be discussed in Sec. 4.3.

5

graph constructed in practice to get positive instances that also have high-order connectivity (e.g.,219

second-order connectivity) with the target graph instance. The reason is that first-order information220

cannot reveal high-order information (e.g., high-order connectivity with the target graph instance)221

in the constructed hierarchical graph, while it can fully reveal higher-order connectivity in the222

constructed hierarchical graph based on ground-truth similarity function (i.e., if a graph instance Gj223

is 1-connected to Gi, then it is 2, 3, ..., |G+i | − 1 connected to Gi as well).224

We can prove that first-order neighbouring positive instances sampled by second-order sampling225

process are more likely to be connected with each other (see Appendix B.4 for details). This can226

remedy the limitation of the first-order sampling strategy, which cannot guarantee the similarity227

between positive instances. Moreover, it can be empirically verified that positive instances that are228

both first-order and second-order connected to the target instance are also more similar with the target229

instance. More details are deferred to Appendix B.4. We also expect that higher-order sampling230

process can bring more benefit to the resulting positive instances and worth trying in practice.231

Additionally, we propose further discussions w.r.t. how would the changing similarity threshold τ232

influence the balance between the increasing sampling rate estimation accuracy for ground-truth233

positive instances and the risk of sampling more false-positive instances. Detailed discussions are234

deferred to Appendix B.5.235

4.4 Adaptive Masking for Node-level Pre-training236

In this section, we propose our improvement of the widely used attribute masking node-level pre-237

training strategy: Adaptive Masking, which is designed for attributed graphs only. As introduced238

in [15], attribute masking task, which is inspired from “masked language model” (MLM) in NLP,239

helps the model learn node/edge attribute distribution across the graph. Formally, attribute masking240

task is defined as:241

Definition 1. (Attribute masking task): Given an attributed graph G(V, E ,X), a target node v ∈ V242

and its corresponding feature vector xv , attribute masking task is first to mask a subset of the features243

xsub ⊆ xv in feature vector xv and produce a new feature vector x′v for node v. Then let a modelM244

to make the prediction of the masked feature set xsub given the new feature vector x′v as input.245

Hu et al. [15] follows the same protocol in MLM by uniformly selecting the nodes set from graphs246

to construct the attribute mask task. But, we argue that the uniform selection may break structural247

relations among nodes in graphs so that the model may miss critical information for node attribute248

distribution from such relations. We introduce a toy example in the Appendix A.4.2.249

Inspired by Kmean++[2], which aims to obtain the good initial centroids with widely separated250

in space, we also adopt the adaptive masking (AdaM) to generate the mask node set within less251

correlations. In particular, we divide the masking process into T steps. At the first step, we uniformly252

sample a small mask set. Secondly, the masking weight of each candidate node is adaptive by function253

PScore. The detail of PScore is demonstrate in Algorithm 2 (see Appendix A.4.2). In PScore, for the254

candidate node v, we calculate the similarity of model output between before and after masking. High255

similarity indicates that node v is not influenced by the mask operation at the current step, resulting256

in the low correlation between node v and current mask set Scur. Finally, we randomly sample a node257

set K with the probability constructed by masking weight. The algorithmic details are provided in the258

supplementary material.259

According to the adaptive masking operation, we can dynamically adjust the importance of nodes260

during training and obtain a more representative mask node set for the attribute masking task. Such261

intuition is further discussed in Appendix A.7.262

5 Experiments263

5.1 Experimental Configuration264

Pretraining Data Collection. We conduct the pretraining on four datasets from various domains:265

1). academic and purchasing graphs: we collect four data sources from Deep Graph Library [36]266

and merge them into one pretraining dataset dubbed AP_NF. 2). social graphs: we construct two267

pretraining datasets termed SocS_NF and SocL_NF. SocS_NF contains five data sources, while268

6

Table 1: Experimental results (ROC-AUC) on molecular datasets. The numbers in brackets are standard
deviations. Numbers in gray are the best results achieved by backbone models. Bold numbers represent the best
results by different backbones. Bold numbers in green represent the best results over all backbones.

Backbone Strategy SIDER ClinTox BACE HIV BBBP Tox21 ToxCast
#Molecules 1427 1478 1513 41127 2039 7831 8575

#Prediction tasks 27 2 1 1 1 12 617

GIN

GraphCL 0.5946(0.0055) 0.6592(0.0074) 0.7713(0.0057) 0.7754(0.0093) 0.7050(0.0012) 0.7562(0.0024) 0.6289(0.0023)
C_Subgraph 0.5838(0.0022) 0.6390(0.0071) 0.7736(0.0140) 0.7341(0.0079) 0.6901(0.0026) 0.7521(0.0044) 0.6263(0.0061)
Edge_Pred 0.5949(0.0032) 0.6335(0.0168) 0.7939(0.0064) 0.7757(0.0096) 0.6623(0.0229) 0.7589(0.0033) 0.6456(0.0023)

Infomax 0.5755(0.0024) 0.6944(0.0187) 0.7571(0.0094) 0.7653(0.0040) 0.6929(0.0054) 0.7674(0.0020) 0.6302(0.0007)
Attr_Mask 0.5947(0.0083) 0.6685(0.0093) 0.8064(0.0042) 0.7668(0.0106) 0.6316(0.0007) 0.7657(0.0054) 0.6463(0.0029)

Context_Pred 0.6132(0.0050) 0.6476(0.0168) 0.8055(0.0115) 0.7807(0.0054) 0.7026(0.0097) 0.7715(0.0022) 0.6427(0.0024)
HGC 0.6333(0.0121) 0.8134(0.0115) 0.8442(0.0138) 0.7853(0.0072) 0.7217(0.0042) 0.7770(0.0022) 0.6520(0.0052)
AdaM 0.6164(0.0051) 0.7797(0.0040) 0.8224(0.0041) 0.7704(0.0073) 0.7273(0.0146) 0.7696(0.0014) 0.6603(0.0004)

HGC_AdaM 0.6183(0.0063) 0.7845(0.0499) 0.8428(0.0064) 0.7839(0.0073) 0.7172(0.0052) 0.7692(0.0030) 0.6537(0.0030)

GCN
HGC 0.6243(0.0044) 0.8638(0.0051) 0.8405(0.0006) 0.7724(0.0206) 0.7168(0.0014) 0.7581(0.0026) 0.6490(0.0024)
AdaM 0.6209(0.0028) 0.8553(0.0044) 0.8205(0.0120) 0.7693(0.0032) 0.7018(0.0074) 0.7533(0.0059) 0.6449(0.0035)

HGC_AdaM 0.6164(0.0103) 0.8231(0.0325) 0.8249(0.0059) 0.7946(0.0102) 0.7189(0.0103) 0.7636(0.0070) 0.6525(0.0025)

GraphSAGE
HGC 0.6286(0.0016) 0.7395(0.0284) 0.8368(0.0008) 0.7722(0.0149) 0.7129(0.0153) 0.7583(0.0012) 0.6505(0.0004)

AdaM 0.6148(0.0100) 0.7098(0.0244) 0.8212(0.0019) 0.7730(0.0057) 0.6982(0.0088) 0.7643(0.0011) 0.6492(0.0004)
HGC_AdaM 0.6250(0.0029) 0.8127(0.0213) 0.7812(0.0038) 0.7708(0.0053) 0.7187(0.0019) 0.7610(0.0008) 0.6442(0.0018)

SocL_NF contains 13 data sources collected from TUDataset [19]. 3). molecular graphs: we use269

the same pretraining dataset with 2 million molecules in [15] and denote it as MolD. The suffix NF270

indicates “no feature”. Since the data sources have different features, we remove all feature and only271

pretrain these datasets with HGC. The details are presented in Appendix A.1.272

Downstream Tasks. We mainly evaluate the peformance on two tasks, node classfication and273

graph classification. For the node classification, we conduct the experiments on two datasets,274

US-Airport [26] and H-index [41] following the same splitting protocol in [25]. For the graph275

classification, we conduct the experiments on 11 datasets from molecular graph (7 datasets from [37])276

and social graphs (4 datasets from [39]). Details of those datasets are deferred to Appendix A.1.277

Baselines. For molecular graph classification, we comprehensively compare our pre-training278

strategies with recent 6 self-supervised learning strategies for graphs. Among them, Edge_Pred,279

Infomax, Attr_Mask, Context_Pred, are proposed in [15], all of which are node-level pre-training280

strategies. GraphCL [40] and C_Subgraph [25] are graph level contrastive pre-training strategies. For281

node classification and social network graph classification, we compare our model with the best result282

of GCC [25] and several other models (i.e., ProNE [42], GraphWave [7], DGK [39], graph2vec [20],283

InfoGraph [31], DGCNN [43] and GIN [38]). Details for the implementation, pre-training and284

fine-tuning settings of baseline models will be discussed in the Appendix A.2 and A.3.285

Pre-training Settings. We use Adam [17] for optimization with the learning rate of 0.001, β1 =286

0.9, β2 = 0.999 and weight decay of 0, learning rate warms up over the first 10% steps and then287

decays linearly. Gradient norm clipping is applied with range [−1, 1]. The temperature τ is set288

to 0.07 in HGC pre-training stage. The batch size of MolD pre-training is 256. For SocL_NF and289

SocS_NF pre-training, the batch size is 32. For the graph classification task, we use mean-pooling290

to get graph-level representations following [15]. More pre-training details, including backbones,291

hyper-parameters and training steps are deferred to Appendix A.2.2.292

Fine-tuning Settings. For each fine-tuning task, we train models for 100 epochs. For graph293

classification tasks (whether social graphs or molecular graphs), we select the best model by their294

corresponding validation metrics, while the last model after 100 epochs training on downstream295

training sets are used for further evaluation on downstream evaluation sets, the same with [25]. We296

adopt micro F1-score and ROC-AUC as the evaluation measures for different tasks. For molecular297

dataset, as suggested by [37], we apply three independent randomly initialized runs on each dataset298

and report the mean and standard deviation. More details are are deferred to Appendix A.2.2.299

5.2 Results of Downstream Tasks300

5.2.1 Graph Classification301

We evaluate both HGC and AdaM on 7 popular molecular graph classification datasets and HGC on 4302

social network graph classification datasets.303

7

The result of molecular graph classification. For molecular graph classification datasets, we304

report our pre-training strategies on different backbones, including GIN [38], GCN [18], Graph-305

SAGE [12]. Meanwhile, since only MolD contain node features, we apply both HGC and AdaM306

strategies on the molecular datasets. HGC_AdaM indicates the combination of two strategies.307

As shown in Table 1, we have the following observations: (1). GIN model pre-trained by308

our pre-training strategies can consistently outperform those pre-trained by other existing strate-309

gies, with large margin on most of them. The overall absolute improvement is 2.98% in av-310

erage. (2). Specially, HGC can consistently outperform those graph-data-augmentation-based311

contrastive learning strategies (i.e., GraphCL and C_Subgraph) . It verifies our stand point that312

the graph data augmentation will lose some crucial domain information and compromise the fi-313

nal performance, while HGC dose not lose such information and leads to better performance.314

Table 2: Results on graph classification datasets. The
evaluation metric is micro F1-score.

Strategy IMDB-B IMDB-M RDT-B RDT-M
graphs 1000 1500 2000 5000
classes 2 3 2 5
DGK 0.670 0.446 0.780 0.413
graph2vec 0.711 0.504 0.758 0.479
InfoGraph 0.730 0.497 0.825 0.535
DGCNN 0.700 0.478 - -
GIN(No-Pret.) 0.734 0.433 0.885 0.635
GIN_GCC (Best) 0.756 0.509 0.898 0.530
GIN_HGC(SocS_NF) 0.765 0.474 0.913 0.657
GIN_HGC(SocL_NF) 0.756 0.490 0.914 0.652

(3). Even though GCN/GraphSAGE can not315

surpass the our pre-trained model on GIN pre-316

trained model, they still outperform the other317

pretraining strategy, which reaffirms the effec-318

tiveness of our pre-training strategies. (4). The319

combined strategy HGC_AdaM achieve more320

benefits on GCN and GraphSAGE than that of321

GIN. We conjecture that GIN encodes the addi-322

tional noise which is introduced by this simple323

combination due to its strong expressive power.324

The result of social graph classification. To check the transferability of HGC, we conduct the325

finetune experiments on two models pretrained by SocL_NF and SocS_NF. SocL_NF contains the326

unlabeled data set used in finetune while SocS_NF does not. Table 2 documents the performance327

of GIN model pre-trained by HGC on SocL_NF and SocS_NF datasets. Such results show that328

GIN model pre-trained by HGC achieves the best performance on three out of four datasets. The329

comparison between GIN_HGC and GIN(No-Pret.) also confirms the benefits of HGC. Another330

interesting observation is that the pretrain model based on SocS_NF can obtain the better performance331

than than SocL_NF on two out of four datasets. It implies that HGC dose not just memorize the332

training samples. It can encode the latent structural information from unseen graphs and transfer the333

knowledge to the downstream tasks.334

5.2.2 Node Classification.335 Table 3: Results on node classi-
fication datasets. The evaluation
metric is micro F1-score.

Datasets US-Ariport H-index
|V | 1190 5000
|E| 13599 44020

ProNE 0.623 0.691
GraphWave 0.602 0.703
Struc2vec 0.662 -

GCC (Best) 0.683 0.806
HGC(AP_NF) 0.706 0.824

We evaluate our model pre-trained by HGC on AP_NF on two down-336

stream node classification datasets and summarize the results in337

Table 3. Among different versions of GCC, the best ones are pre-338

sented. From Table 3, the model pre-trained by our HGC strategy339

can outperform the best GCC model on both datasets. It is worth340

noting that the pre-training dataset AP_NF contains only 70k graphs,341

which is much smaller than that of GCC(9M graphs). This verifies342

the efficiency of HGC in the information extraction.343

5.3 Ablation Study344

How useful are the proposed self-supervised tasks?345

Table 4: Effectiveness of the pre-
training on GIN. Bold numbers for ab-
solute improvements larger than 0.05.

No-Pret. SS-Pret. Abs. Imp.
SIDER 0.5637 0.6333 +0.0696
ClinTox 0.6480 0.8134 +0.1654
BACE 0.6653 0.8442 +0.1789
HIV 0.7475 0.7853 +0.0378

BBBP 0.6939 0.7273 +0.0334
Tox21 0.7580 0.7770 +0.0190

ToxCast 0.6370 0.6603 +0.0233

To evaluate the contribution of our pre-training strategies, we346

compare the the performance of the pre-trained model by HGC347

and AdaM, with the model without any pre-training, each of348

which shares the same hyper-parameter setting. Results are349

summarized in Table 4 for backbone GIN. It can be seen clearly350

that all GIN models benefit from self-supervised pre-training351

tasks on all datasets. To be more specific, for GIN, absolute352

17.9% ROC-AUC increase is observed on the dataset BACE,353

16.5% on ClinTox, and 6.96% on SIDER, leading to 7.53% on354

average. Furthermore, pre-trained models gain larger improve-355

ment on datasets of relatively small size (e.g., BACE, ClinTox and SIDER), which is also observed356

8

in [28]. It indicates that self-supervised pre-training helps GNN models learn more inherent graph357

properties, thus getting better performance in small downstream datasets where labeled graphs are358

scarce.359

Table 5: Results for pretraining transferability on graph classifica-
tion datasets. Numbers in red are the negative transfer cases.

Pretraining
Type Strategy IMDB-B IMDB-M RDT-B RDT-M

None GIN(No-Pret.) 0.734 0.433 0.885 0.635
GIN_GCC (best) 0.756 0.509 0.898 0.530
HGC(SocS_NF) 0.765 0.474 0.913 0.657Social
HGC(SocL_NF) 0.756 0.490 0.914 0.652

Context_Pred (MolD) 0.734 0.473 0.875 0.635
S_Context_Pred (MolD) 0.763 0.460 0.818 0.625

HGC(MolD) 0.768 0.504 0.912 0.656
AdaM(MolD) 0.740 0.486 0.880 0.654

Molecular

HGC_AdaM(MolD) 0.743 0.509 0.896 0.665

Can we transfer pre-trained mod-360

els to downstream datasets that361

are dramatically different from the362

pre-training one? It has long been363

known that the pre-trained model can364

be generalized to unseen data in pre-365

training dataset [25, 15, 6, 28, 40].366

However, previous literature [25, 15,367

40] largely focuses on transferring368

the pre-trained model to downstream369

datasets with similar type of data. Here, what we are interested in asking is can we transfer the370

pre-trained model to the downstream datasets with clearly different type of graphs compared to the371

ones in the pre-training dataset? To show this, we demonstrate the case from molecular graph to372

social network graph classification. We pre-train GIN in two different ways: one is pretrained by373

HGC on two social network graph datasets: SocS_NF and SocL_NF, the other is by HGC, AdaM or374

HGC_AdaM as well as Context_Pred or S_Context_Pred [15] on the molecular dataset MolD.375

The results are summarized in Table 5, which offers the following observations: (1). Perhaps376

surprisingly, our methods including HGC and HGC_AdaM enable the models pre-trained on molec-377

ular graphs to even outperform those pre-trained on social graphs. For example, the accuracy of378

HGC_AdaM on IMDB-M (0.509) and RDT-M (0.665) is much better than that of HGC(SocS_NF)379

and HGC(SocL_NF). Apart from the universal graph-level properties, the results also inform that380

larger pre-training datasets can help the model learn such inherent properties better. (2). Different pre-381

training strategies could deliver different performance. Models pre-trained by graph-level pre-training382

strategies or combined strategies (i.e., HGC(MolD) and HGC_AdaM(MolD)) can always get better383

results than those pre-trained by node-level strategies (i.e., AdaM(MolD) and Context_Pred(MolD)),384

which indicates that graph-level pre-training strategies can help the model learn global graph-level385

properties that can be easily transferred to other domains. (3). We also observe the negative transfer386

brought by the supervised pretraining in some cases. For instance, S_Context_Pred (MolD)3 get387

worse performance than its no supervised trained version Context_Pred (MolD) on two datasets:388

RDT-B and RDT-M. It indicates that simple efforts to learn graph-level properties, such as training389

with labeled graphs, is probable to be limited in the certain domain, thus performing bad in such390

cross-domain transfer tasks. Despite this, our HGC and HGC_AdaM still consistently lead to better391

performance compared to other pretraining strategies, which, once again, versifies our assumption392

that our proposed graph contrastive learning strategy can learn more universal, even cross-domain,393

graph-level patterns.394

6 Conclusion395

In this work, we focus on developing an effective, efficient and more universal positive instances396

sampling method that can be applied on many different kinds of graph data for graph instance397

contrastive learning. We also propose an improvement for a widely used node-level pre-training398

strategy to adaptively select nodes to mask for an even distribution (AdaM). Moreover, we also399

discover the potential cross-domain transferring ability for the pre-trained GNN models. However,400

there are still some limitations in our work: 1). Though high-order graph sampling can get positive401

instances of better quality than those obtained by first-order sampling in our analysis, it cannot always402

outperform the model pre-trained by first-order sampling process. We guess that it is relevant with the403

pre-training dataset. 2). Just combining HGC and AdaM in a simple manner leads to no significant404

improvement. Though we make no further investigation into a more effective combination method405

since it is not the keypoint of the paper, it is a meaningful research direction. 3). We discover the406

potential cross-domain transferring ability for pre-trained GNN models. It is an interesting point but407

no further discussion is made in this paper. However, further relevant investigation is interesting and408

meaningful.409

3Supervised trained by a labeled graph dataset after unsupervised pre-training. See [15] for details.

9

References410

[1] Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis, and Nikunj411

Saunshi. A theoretical analysis of contrastive unsupervised representation learning. arXiv412

preprint arXiv:1902.09229, 2019.413

[2] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. Technical414

report, Stanford, 2006.415

[3] Guy W Bemis and Mark A Murcko. The properties of known drugs. 1. molecular frameworks.416

Journal of medicinal chemistry, 39(15):2887–2893, 1996.417

[4] Smriti Bhagat, Graham Cormode, and S Muthukrishnan. Node classification in social networks.418

In Social network data analytics. 2011.419

[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework420

for contrastive learning of visual representations. In International conference on machine421

learning, pages 1597–1607. PMLR, 2020.422

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of423

deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,424

2018.425

[7] Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. Learning structural node426

embeddings via diffusion wavelets. In Proceedings of the 24th ACM SIGKDD International427

Conference on Knowledge Discovery & Data Mining, pages 1320–1329, 2018.428

[8] Greg Landrum et al. Rdkit: Open-source cheminformatics. 2006.429

[9] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.430

In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.431

[10] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural432

message passing for quantum chemistry. In International Conference on Machine Learning,433

pages 1263–1272. PMLR, 2017.434

[11] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In435

Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and436

data mining, pages 855–864, 2016.437

[12] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large438

graphs. arXiv preprint arXiv:1706.02216, 2017.439

[13] Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning440

on graphs. In International Conference on Machine Learning, pages 4116–4126. PMLR, 2020.441

[14] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for442

unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on443

Computer Vision and Pattern Recognition, pages 9729–9738, 2020.444

[15] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure445

Leskovec. Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265,446

2019.447

[16] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali448

Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, et al. Population based449

training of neural networks. arXiv preprint arXiv:1711.09846, 2017.450

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint451

arXiv:1412.6980, 2014.452

[18] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional453

networks. arXiv preprint arXiv:1609.02907, 2016.454

10

[19] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion455

Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML456

2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020. URL457

www.graphlearning.io.458

[20] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang459

Liu, and Shantanu Jaiswal. graph2vec: Learning distributed representations of graphs. arXiv460

preprint arXiv:1707.05005, 2017.461

[21] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,462

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative463

style, high-performance deep learning library. arXiv preprint arXiv:1912.01703, 2019.464

[22] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-465

sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge466

discovery and data mining, pages 701–710, 2014.467

[23] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. Network embedding468

as matrix factorization: Unifying deepwalk, line, pte, and node2vec. In Proceedings of the469

eleventh ACM international conference on web search and data mining, pages 459–467, 2018.470

[24] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Chi Wang, Kuansan Wang, and Jie Tang.471

Netsmf: Large-scale network embedding as sparse matrix factorization. In The World Wide Web472

Conference, pages 1509–1520, 2019.473

[25] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan474

Wang, and Jie Tang. Gcc: Graph contrastive coding for graph neural network pre-training. In475

Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &476

Data Mining, pages 1150–1160, 2020.477

[26] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. struc2vec: Learning node478

representations from structural identity. In Proceedings of the 23rd ACM SIGKDD international479

conference on knowledge discovery and data mining, pages 385–394, 2017.480

[27] David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of chemical481

information and modeling, 50(5):742–754, 2010.482

[28] Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou483

Huang. Grover: Self-supervised message passing transformer on large-scale molecular data.484

arXiv preprint arXiv:2007.02835, 2020.485

[29] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M486

Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9),487

2011.488

[30] Teague Sterling and John J Irwin. Zinc 15–ligand discovery for everyone. Journal of chemical489

information and modeling, 55(11):2324–2337, 2015.490

[31] Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and491

semi-supervised graph-level representation learning via mutual information maximization. arXiv492

preprint arXiv:1908.01000, 2019.493

[32] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-494

scale information network embedding. In Proceedings of the 24th international conference on495

world wide web, pages 1067–1077, 2015.496

[33] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua497

Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.498

[34] Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon499

Hjelm. Deep graph infomax. In ICLR (Poster), 2019.500

[35] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou,501

Qi Huang, Chao Ma, et al. Deep graph library: Towards efficient and scalable deep learning on502

graphs. 2019.503

11

www.graphlearning.io

[36] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,504

Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.505

Deep graph library: A graph-centric, highly-performant package for graph neural networks.506

arXiv preprint arXiv:1909.01315, 2019.507

[37] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S508

Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine509

learning. Chemical science, 9(2):513–530, 2018.510

[38] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural511

networks? arXiv preprint arXiv:1810.00826, 2018.512

[39] Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM513

SIGKDD international conference on knowledge discovery and data mining, pages 1365–1374,514

2015.515

[40] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.516

Graph contrastive learning with augmentations. Advances in Neural Information Processing517

Systems, 33, 2020.518

[41] Fanjin Zhang, Xiao Liu, Jie Tang, Yuxiao Dong, Peiran Yao, Jie Zhang, Xiaotao Gu, Yan Wang,519

Bin Shao, Rui Li, et al. Oag: Toward linking large-scale heterogeneous entity graphs. In520

Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &521

Data Mining, pages 2585–2595, 2019.522

[42] Jie Zhang, Yuxiao Dong, Yan Wang, Jie Tang, and Ming Ding. Prone: Fast and scalable network523

representation learning. In IJCAI, volume 19, pages 4278–4284, 2019.524

[43] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning525

architecture for graph classification. In Proceedings of the AAAI Conference on Artificial526

Intelligence, volume 32, 2018.527

[44] Shenghuo Zhu, Kai Yu, Yun Chi, and Yihong Gong. Combining content and link for classifica-528

tion using matrix factorization. In SIGIR, 2007.529

12

Checklist530

1. For all authors...531

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s532

contributions and scope? [Yes] The main contribution of this paper is the proposal of533

an effective and more universal positive instance selection strategy that can be applied534

on various kinds of graph data in the contrastive learning process. We also propose535

an improvement of the a widely used node-level pre-training strategy to adaptively536

choose nodes to make them distributed evenly in the graph. Moreover, we discover the537

potential possibility of the cross-domain transferable ability of the pre-trained GNN538

models.539

(b) Did you describe the limitations of your work? [Yes] See Sec. 6.540

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Sec. C.541

(d) Have you read the ethics review guidelines and ensured that your paper conforms to542

them? [Yes]543

2. If you are including theoretical results...544

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Sec. A.7.545

We make reasonable assumptions on the possibility density function of the approximate546

similarity function on the ground-truth positive graph set and negative graph set. Some547

reasonable approximations are made in the derivation process.548

(b) Did you include complete proofs of all theoretical results? [Yes] See Sec. A.7.549

3. If you ran experiments...550

(a) Did you include the code, data, and instructions needed to reproduce the main experi-551

mental results (either in the supplemental material or as a URL)? [Yes] See Sec. A.1552

for descriptions and download links for datasets. Download links for our pre-processed553

data are shared along with the code. Code is provided with supplemental material.554

Instructions for reproduction are stated in README.md file in the supplemental555

material.556

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they557

were chosen)? [Yes] See Sec. A.2 for implementation details, including pre-training and558

fine-tuning configuration and hyper-parameter selection. See Sec. A.1 for descriptions559

for datasets and the splitting methods.560

(c) Did you report error bars (e.g., with respect to the random seed after running exper-561

iments multiple times)? [Yes] We report mean and std values for 3 independently562

random initialized run for each evaluation process on molecular graph datasets. See563

Table 1 and Table 12 for details.564

(d) Did you include the total amount of compute and the type of resources used (e.g.,565

type of GPUs, internal cluster, or cloud provider)? [Yes] See Sec. A.2 for hardware566

configurations.567

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...568

(a) If your work uses existing assets, did you citep the creators? [Yes] We provide links569

for data and code that are from public respiratory we used in our project. We also cite570

related papers. See Sec. A.1 and Sec. A.3.571

(b) Did you mention the license of the assets? [Yes] Datasets obtained from published572

works are with related papers cited. See Sec. A.1573

(c) Did you include any new assets either in the supplemental material or as a URL? [No]574

No new datasets are proposed.575

(d) Did you discuss whether and how consent was obtained from people whose data576

you’re using/curating? [Yes] Download links for public datasets we used are provided.577

Datasets obtained from published works are with related papers cited. See Sec. A.1578

(e) Did you discuss whether the data you are using/curating contains personally identifiable579

information or offensive content? [Yes] Datasets we use are obtained from public580

datasets, containing no such information. We provide links for them in Sec. A.1. .581

5. If you used crowdsourcing or conducted research with human subjects...582

13

(a) Did you include the full text of instructions given to participants and screenshots, if583

applicable? [N/A]584

(b) Did you describe any potential participant risks, with links to Institutional Review585

Board (IRB) approvals, if applicable? [N/A]586

(c) Did you include the estimated hourly wage paid to participants and the total amount587

spent on participant compensation? [N/A]588

14

	Introduction
	Related Works
	Preliminary
	Similarity-aware Positive Graph Instance Sampling
	Motivation: Sampling or Constructing?
	Similarity-aware Positive Graph Instance Sampling
	Further Discussion for Similarity-aware Sampling Strategy
	Adaptive Masking for Node-level Pre-training

	Experiments
	Experimental Configuration
	Results of Downstream Tasks
	Graph Classification
	Node Classification.

	Ablation Study

	Conclusion

