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Abstract

Real-world applications of machine learning require robustness to shifts in the data distri-
bution over time. A critical limitation of standard artificial neural networks trained with
backpropagation (BP) is their susceptibility to catastrophic forgetting: they “forget” prior
knowledge when trained on a new task, while biological neural networks tend to be more
robust to catastrophic forgetting. While various algorithmic ways of mitigating catastrophic
forgetting have been proposed, developing an algorithm that is capable of learning contin-
uously remains an open problem. Motivated by recent theoretical results, here we explore
whether a biologically inspired learning algorithm like Direct Feedback Alignment (DFA)
can mitigate catastrophic forgetting in artificial neural networks. We train fully-connected
networks on several continual learning benchmarks using DFA and compare its performance
to vanilla back propagation, random features, and other continual learning algorithms. We
find that an inherent bias of DFA, called “degeneracy breaking”, leads to low average forget-
ting on common continual learning benchmarks when using DFA in the Domain-Incremental
learning scenario and in the Task-Incremental learning scenario. We show how to control
the trade-off between learning and forgetting with DFA, and relate different modes of using
DFA to other methods in the field.

1 Introduction

Neural networks have demonstrated remarkable achievements in various domains, including image recogni-
tion (Krizhevsky et al., 2012; LeCun et al., 2015; Simonyan & Zisserman, 2015; He et al., 2016; Dosovitskiy
et al., 2021) and natural language processing (Devlin et al., 2019; Howard & Ruder, 2018; Radford et al.,
2018; Brown et al., 2020; OpenAI, 2024). However, a significant drawback of traditional neural networks is
their susceptibility to catastrophic forgetting (Goodfellow et al., 2015; McCloskey & Cohen, 1989). Catas-
trophic forgetting refers to a loss in performance on previously learned tasks when the network is trained
on new tasks or data distributions. This limitation impedes the ability of neural networks to continuously
learn and adapt to evolving environments, limiting their practical applicability in real-world scenarios.

Continual learning (CL) focuses on developing algorithms and techniques that enable systems to maintain old
knowledge, while also being able to learn new information. This requires resolving the “stability–plasticity
dilemma” (Carpenter, 1986; Mermillod et al., 2013): a model needs plasticity to obtain new knowledge
and adapt to new environments, while also requiring stability to prevent forgetting of previous information.
Typical approaches to CL include dynamic architectures (Razavian et al., 2014), progressive learning (Fayek
et al., 2020), regularisation techniques (Kirkpatrick et al., 2017; Zenke et al., 2017), or episodic memory
replay (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2019; Rebuffi et al., 2017; Shin et al., 2017; Kamra
et al., 2017; Seff et al., 2017); see (De Lange et al., 2021) for a review.

Meanwhile, biological neural networks do not suffer from catastrophic forgetting nearly as badly as artifi-
cial neural networks. Consequently, several approaches to mitigate catastrophic forgetting have taken direct
inspiration from biology: for example, the complexity of synaptic plasticity in biological neurons inspired reg-
ularisation approaches such as Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017) and Synaptic
Intelligence (Zenke et al., 2017).
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Here, we continue this line of thought by investigating the potential of a biologically plausible learning
algorithm to mitigate catastrophic forgetting: Direct Feedback Alignment (DFA). Proposed by Nøkland
(2016) as a biologically plausible algorithm to train neural networks, DFA propagates the error signal through
fixed, random feedback connections directly to the hidden layers, thereby solving the weight transport
problem that plagues vanilla backpropagation (Grossberg, 1987; Crick, 1989). Decoupling the weight updates
of different layers enables parallel and local updates, which are considered key features of synaptic updates
in the brain (Bengio et al., 2015).

We focus on the potential of DFA not just because of its greater biological plausibility compared to vanilla
backpropagation. We are encouraged by the recent analysis of Refinetti et al. (2021), who showed that
DFA has a degeneracy breaking property. To learn with DFA, the neural network has to first align its
weights (to some extent) with the feedback matrices to ensure that the error signal can be backpropagated
efficiently (Lillicrap et al., 2016). This alignment has the effect that neural networks trained by DFA always
converge to the same region in the loss landscape, independently of their initialisation, and in contrast to
networks trained by vanilla back propagation. In other words, DFA will drive a neural network to a specific
region in the loss landscape. The location of this region depends on the feedback matrices, thereby breaking
the degeneracy of the solutions of vanilla SGD. In this work, we ask whether we can use the influence of
the DFA feedback matrix on the weights learnt by a neural network to mitigate catastrophic forgetting. We
formulate and test two different hypotheses for how DFA can facilitate continual learning.

Our first hypothesis is that using the same feedback matrix for different tasks in a continual learning cur-
riculum prevents catastrophic forgetting by implicitly biasing the weights to a single region of loss landscape,
as they always need to align with the same feedback matrix. In this case, DFA would act as a an implicit
regulariser, similar to other algorithms like Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017),
a popular implicit regularisation technique. We will call this approach DFA-same.

Our second hypothesis is that using different feedback matrices for each task will effectively update the
weight matrices in different directions for each task, thus preventing catastrophic forgetting. This DFA-diff
approach is inspired by various CL algorithms that explicitly orthogonalise gradients (Zeng et al., 2019; He &
Jaeger, 2018; Bennani & Sugiyama, 2020). This idea can also be motivated from a neuroscientific perspective
given recent evidence that neural population codes orthogonalize with learning (Flesch et al., 2022; Failor
et al., 2021; Zeng et al., 2019).

Since efficient training of convolutional neural networks (CNNs) with DFA remains an open problem (Crafton
et al., 2019; Launay et al., 2020), we focus on fully-connected networks and limit ourselves to simple bench-
mark datasets based on MNIST and FMNIST where these architectures achieve good performance. In
particular, we use the split and the permuted manipulations of MNIST and FMNIST that turn the 10-class
classification tasks into a set of successive classification tasks (Kirkpatrick et al., 2017; Zenke et al., 2017).

The contributions of this paper are threefold:

1. We empirically show that DFA performs better at Continual Learning than vanilla back-propagation
and other baselines, such as random features (RF) and Elastic Weight Consolidation (EWC).

2. We benchmark the performance of different DFA strategies for Continual Learning, either sharing
or changing feedback matrices between tasks, and show how the best strategy depends on the type
of continual learning task and the network architecture.

3. We show that the scale of the feedback matrix allows one to trade-off plasticity vs. stability in
continual learning, beyond what can be achieved by choosing layer-specific learning rates.

Exploring the potential of DFA to mitigate catastrophic forgetting both deepens our understanding of the
working mechanism behind DFA by testing it in a continual learning setting, and it adds to the tool set
that can be tested on continual learning problems. The remainder of this paper is organized as follows: In
section 2, we provide the details of the experimental setup. Section 3 presents our results by benchmarking
DFA on various continual learning tasks and contrasting its performance with various baselines. Section 4
is dedicated to a discussion of our results and gives some concluding perspectives.
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2 Methods

Direct Feedback Alignment (DFA) DFA presents a departure from the traditional backpropagation
algorithm (Rumelhart et al., 1988), which relies on weight symmetry and precise weight updates for accurate
error propagation. Instead, DFA employs random feedback matrices that are decoupled from the forward
weight matrices, enabling more flexible weight updates without the constraints imposed by weight symmetry
(Nøkland, 2016).

To state the DFA weight updates clearly, and to contrast them with vanilla backpropagation, we consider
mini-batches of input-output pairs (x, y) that we want the network to learn. For simplicity, we consider a
simple network composed of two fully-connected layers and one softmax layer at the end. We denote as Wi,
hi and ai the weight matrix, activation function and activations of layer i; The output of the network is ŷ
and the activations of the output layer are ay. The error e is the derivative of the loss J and in case of a
cross-entropy loss it is equal to:

e = δay = ∂J

∂ay
= ŷ − y (1)

Denoting ⊙ as the Hadamard product, for BP (on the left) and DFA (on the right), the gradients of the
hidden layers are calculated as

BP DFA

δW3 = −ehT
2 δW3 = −ehT

2 (2)

δW2 = ∂J

∂a2
= (W T

3 e) ⊙ f ′(a2)hT
1 δW2 = ∂J

∂a1
= (B2e) ⊙ f ′(a2)hT

1 (3)

δW1 = (W T
2 δa2) ⊙ f ′(a1)xT δW1 = (B1e) ⊙ f ′(a1)xT (4)

While the final layer (the readout layer) is updated in the same way with both algorithms, the weight updates
for the other layers are all different. BP implements the exact gradient for each layer by applying the chain
rule to compute the derivatives of the loss; instead, DFA keeps only the error term and substitutes the
derivative of the following layer by an entry of the feedback matrix. A detailed theoretical analysis of the
evolution of the update dynamics can be found in Refinetti et al. (2021).

In the case of DFA-same, the feedback matrices (B1 and B2) are initialized according to a uniform distribution
and kept unchanged during the training of all tasks. According to the degeneracy breaking of DFA discussed
in the introduction, DFA-same could alleviate catastrophic forgetting by keeping the weights of the network
when training on the second task close to the weights learnt on the first task, etc.

In DFA-diff, we use a different feedback matrix for each task, by sampling the new ones from the same
Uniform distribution used to sampled the first one. Our hypothesis is that the different feedback matrices
may bias the dynamics of the networks in orthogonal directions of the weight landscape for every task. In fact,
due to the large dimensions of the matrix and their sampling from uniform distributions, the new feedback
matrices are approximately orthogonal to the previous ones. The gradient alignment will then be directed to
orthogonal directions for every task. Making the gradients explicitly orthogonal to each other is known to help
against catastrophic forgetting, and the idea is exploited in methods such as Orthogonal Weight Modification
(OWM) (Zeng et al., 2019), conceptor-aided backprop (He & Jaeger, 2018), and orthogonal gradient descent
(Bennani & Sugiyama, 2020), because the features of different tasks are learned along orthogonal manifolds,
and the weights updates do not interfere with the previous ones. Appendix A confirms that the gradients are
indeed orthogonal when two networks are trained on the same dataset with orthogonal feedback matrices.

Benchmark datasets We report results on the FashionMNIST (FMNIST) dataset (Xiao et al., 2017), but
our findings are consistent with the MNIST dataset, see appendix C. We do not apply data augmentation
techniques, and train the networks on two different CL benchmark tasks: In our experimental evaluations,
we use:
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Figure 1: A One example of the first three tasks in the split (Binary classification) and permuted dataset
(classification). B Similarity measures of the images in the same class averaged over the different classes
of the Split and Permuted datasets. The permuted-FMNIST dataset is the one where the images have the
highest similarity among tasks, while split-FMNIST has very different images in the same class. See section
appendix E for a description of the similarity measures. C One example of a three-layer architecture used
in the Domain-IL and Task-IL scenarios. In the second case, one output node is dedicated to training and
evaluating one specific task.

1. Permuted FMNIST (pFMNIST), where we generate a sequence of learning tasks by permuting the
pixels of each image; the idea here is to test a model’s ability to incrementally learn new information
with similar feature representations (Kemker et al., 2017).

2. Split FMNIST (sFMNIST), where we split the original dataset of 10 classes into five smaller datasets
with two disjoint classes for each. The resulting smaller datasets will have different modalities, so
a model trained sequentially on them needs to be able to incrementally learn new information with
dramatically different feature representations.

We show an example of the split and permuted FMNIST in fig. 1, panel A.

Experimental setup We test DFA in two continual learning scenarios (van de Ven & Tolias, 2019) (Panel
C, fig. 1):

1. In the Domain-IL scenario, the network does not have the information about the task-ID during
inference. The whole architecture is shared among the tasks, including the output layer.

2. In the Task-IL scenario, the network can use the task-ID during both training and testing. We
implement this approach by having task-specific output layers that are updated only during the
training on the corresponding task and used whenever testing on the same task.
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Figure 2: Illustration on Average Forgetting (AF) and Average Performance (AP) in the case of back-
propagation on the p-FMNIST task in the Task-IL scenario, where the network has a separate head for
each task. AP describes the test accuracy of the network, averaged over the tasks, while AF quantifies the
average of the difference in accuracy on a given task after training on it and at the end of the whole training
trajectory.

We show in Figure 4 and in appendix A that the weight alignment and gradient alignment of DFA are
preserved if the output layer is re-initialized. These tests are important because the degeneracy breaking
feature of DFA was previously observed in networks with weights sampled from independent distributions,
while in this case only the output layers of the networks in comparison are different.

In our experiments, we use 3-layer Fully-Connected Networks with 1000 neurons in each hidden layer. We
train the networks for a maximum of 1000 epochs and apply early-stopping by halting the training as soon as
the network overcomes 99% training accuracy. All layers are initialized using the Xavier uniform initialization
(Glorot & Bengio, 2010). We choose a logistic activation function in the output layer and ReLU in the other
layers. The loss function is cross-entropy.

Evaluation metrics Performance in continual learning is difficult to report by one single measure due to
the stability–plasticity trade-off. We will summarize the performances of the algorithms under study using
average performance (AP) and average forgetting (AF) (Lopez-Paz & Ranzato, 2022; Chaudhry et al., 2018),
which we visualize in fig. 2. To define AF and AP, we consider a number of tasks T and denote by Accij

the accuracy of the network on the jth task at the end of training on the ith task, where j, i ∈ {1, . . . , T}.
AP quantifies the performance of the network by calculating the mean test accuracy of the network on each
task, directly after training on it:

AP = 1
T

T∑
i=1

Acci,i. (5)

AF measures how much the model loses accuracy on previous tasks during continual learning:

AF = 1
T − 1

T −1∑
i=1

Acci,i − Acci,T (6)

Baselines and hyper-parameters tuning To benchmark the performance of DFA, we consider the
following additional baselines:

1. Backpropagation is the most important baseline: we train the same fully-connected networks, adding
a Dropout layer (Srivastava et al., 2014) after each layer, which we find helps with generalization,
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Figure 3: Performance of the first task throughout learning all tasks evaluated on the permuted-FMNIST
(above) in the Task-IL scenario. DFA-same is more powerful than RF (purple line). Compared to BP,
DFA-same has less forgetting in both cases: when we optimize the models for maximum performance and
for least forgetting.

in accordance to the literature (Mirzadeh et al., 2020). We perform a grid-search optimization for
the learning rate in the range between 1e-2 and 1e-4.

2. Random Features (Rahimi & Recht, 2008; 2009) are fully-connected networks in which we train
only the readout layer with BP. The first and the intermediate layers are kept unchanged during
the training phase. This model can be applied only in the Task-IL scenario because it requires a
different output layer for each task in the testing phase. The motivation for using this model is to
understand the performance of a neural network that does not learn data-dependent features, akin
to the lazy regime (Chizat et al., 2019). We use a learning rate of 1e-2.

3. Elastic weight consolidation (EWC) (Kirkpatrick et al., 2017) adds a regularisation term on the loss
that penalizes the change of the weights that are more important for previous tasks. It achieves this
by pre-multiplying the BP weight updates using the inverse of the diagonal approximation of the
Fisher information matrix of the model. In our EWC experiments, we chose a learning rate of 1e-3
and an “importance” of 1000, which is another important hyper-parameter for EWC.

The error bars in table 1 are computed over a repetition of the experiment with 5 random seeds.

3 Results

3.1 DFA between the two ends of the plasticity-stability trade-off

Catastrophic forgetting arises in Backpropagation (Rumelhart et al., 1988) due to the fact that the weights of
the network are updated in the direction of the minimum of the loss, irrespective of the previous tasks. In this
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Table 1: Results in terms of Average Performance (AP) and Average Forgetting (AF) in the different
datasets and scenarios (Task-IL and Domain-IL) for all the methods (DFA–diff, DFA–same, BP, BP–ablated,
EWC, RF ). In the first column, the networks are optimized for maximum performances and in the second
column for minimum forgetting. We discuss all these results in detail in section 3 and we present them
visually in Figure 5. In the case of minimized forgetting, we report here the minimum AP % values above
the RF baseline.

AP AF AP AF
Optimized for performance Minimizing forgetting

Split FMNIST DFA-diff 100 ± 0 9.8 ± 2 93.9 ± 0.1 0 ± 0
Task-IL DFA-same 100 ± 0 29.4 ± 1.2 95.4 ± 0 0 ± 0

BP 100 ± 0 15 ± 2.3 89.5 ± 0.1 0.3 ± 0.3
BP ablated 100 ± 0 9.7 ± 1.6 94 ± 0 0 ± 0

EWC 99.2 ± 0.2 4.5 ± 1.5 99.1 ± 0.2 3.4 ± 1.8
RF 93.4 ± 0.1 0 ± 0 93.4 ± 0.1 0 ± 0

Permuted FMNIST DFA-diff 88.5 ± 0.1 44.5 ± 2.4 83 ± 0 0 ± 0
Task-IL DFA-same 88.2 ± 0.1 50.1 ± 2.5 83 ± 0 0 ± 0

BP 90.0 ± 0.1 49.5 ± 2.5 83 ± 0 11.8 ± 0.8
BP ablated 90 ± 0.1 47 ± 2 82.8 ± 0.1 0 ± 0

EWC 88.7 ± 0.1 46.5 ± 2.7 83 ± 0 8.7 ± 1.2
RF 80.9 ± 0.1 0 ± 0 80.9 ± 0.1 0 ± 0

Split FMNIST DFA-diff 100 ± 0 45.8 ±2.4 94.0 ± 0 35.56 ± 1.6
Domain-IL DFA-same 100 ± 0 35.5 ± 0.2 98.2 ± 0 32.1 ± 1.6

BP 100 ± 0 37.8 ± 0.4 94.5 ± 0.1 35.8 ± 0.6
BP ablated 100 ± 0 40.5 ± 1.7 98.4 ± 0.1 34.7 ± 0.7

EWC 100 ± 0 46.9 ± 4.8 98.7 ± 0.4 40.4 ± 3.1

Permuted FMNIST DFA-diff 88.3 ± 0 71.8 ± 1.2 82.3 ± 0.1 29.1 ± 0.9
Domain-IL DFA-same 88.2 ± 0.1 45.8 ± 1.9 85.8 ± 0 26.2 ± 1.9

BP 89.7 ± 0.1 57.6 ± 1.1 85.4 ± 0.1 23.1± 1.5
BP ablated 88.7 ± 0.1 49.4 ± 0.4 84 ± 0.1 26.2 ± 2.4

EWC 80.7 ±0.2 55.7 ± 2.5 80.7 ± 0.2 55.7 ± 2.5

case the network is flexible to fit the task at hand, but forgetting is high. Random features are at the other
extreme, since only the weights in the output layer are trained on the task it results in a more rigid method
that retains previous performances. BP and random features therefore delineate the two extremes between
which we would like to interpolate: we would like DFA to be less susceptible to catastrophic forgetting
than BP, while being able to learn data-dependent features that allow it to beat the performance of random
features. We report the results of our experiments that we obtain by optimizing the hyper-parameters for
maximum AP or for minimum AF in table 1.

When we train DFA and BP at the same training conditions, we can see that DFA can reach the same
performance of 100% accuracy as BP on the split dataset (where the tasks are binary classifications) and
almost reach it on the permuted dataset (where the tasks consist of 10-class classifications), where DFA
achieves 88.2 ± 0.1 1 and BP 89.7 ± 0.1. Thus, DFA proves to be able to adapt the network to learn the
new tasks efficiently. In terms of forgetting, DFA achieves 10% less AF than BP in both split and permuted

1We notice that letting DFA train for more epochs, it can achieve the same level as BP, but we decided to keep a maximum
of 1000 epochs for all methods.
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datasets in the Domain-IL scenario. This trend is conserved when the experiments are performed with the
MNIST datasets (see appendix C). The advantage of DFA in the Domain-IL scenario is in accordance to
the hypothesis for which DFA learns close representations for different tasks. In fact, the Domain-IL has
a unique output layer shared among all the tasks and this requires similar representations among different
tasks in order to correctly classify the previous ones.

In the Task-IL scenario, the average forgetting of BP improves with respect to the Domain-IL scenario by 8%
and 22% for the Split and Permuted FMNIST datasets respectively. On the other hand, DFA improves only
by 6% on the split dataset and become worse, with AF from 45.8% to 50.1%, in the permuted-FMNIST. This
trend brings DFA to perform worse than BP on the split dataset and comparably to BP on the permuted
dataset2. The accuracy trend of DFA can be explained in light of our hypothesis: if the output layer is
specialized for every task, keeping the representations similar to each other can bring a disadvantage, as the
previous representations are “overwritten”.

Regarding the comparison of Random Features and DFA with minimized forgetting, we find that DFA
can achieve a better Average Performance than a Random Feature model, both in the split and permuted
datasets, while maintaining zero forgetting, just as RF. Specifically, DFA shows AP at least 2% higher than
RF (see table 1, column “Minimizing forgetting”). One example is shown in fig. 3, where DFA reaches 83%
accuracy while Random Features reaches 80.9%. The fact that DFA reaches higher performances than RF
means that the weights of the first two layers are updated, and the null forgetting values DFA means that
this weights update can happen in such a way that the information of the previous tasks is conserved.

Overall, we find that DFA can embody different behaviours according to the value of its hyper-parameters. It
can almost reach the same generalization performances as BP while displaying less forgetting in the majority
of the cases; and it can achieve zero forgetting like RF, while generalizing better than RF. It thus occupies
a sweet-spot between the plastic BP and the static RF.

3.2 Extension of DFA to the Task-IL scenario

We showed that the standard DFA cannot benefit from the introduction of a specialized output layer for every
task (Task-IL scenario). We propose an extension of DFA in which there is a different feedback matrix for
every task: in fig. 4, we show that in this setting the representations of one dataset are learned in different
manifolds. According to our hypothesis, this phenomenon can be extended to the learning of different
datasets and this would allow to learn new tasks with less interference with previous representations. We
expect that the combination of a dedicated feedback matrix alongside a dedicated output layer can reduce
forgetting in the Task-IL scenario. In the remaining, we will denote the standard DFA as DFA-same and
this extension as DFA-diff.

We find that the main differences with respect to DFA-same are in the Average Forgetting measure and are
in accordance to the hypothesis: when optimized for performance and in the Task-IL scenario, DFA-diff has
9.8% ± 2% AF. This value is around 20% lower than the one of DFA-same and 5% lower than BP’s. In
the Domain-IL scenario, on the other hand, DFA-diff has at least 8% more forgetting than BP and 10%
more than DFA-same. When optimized for minimal forgetting, DFA-diff also achieves null forgetting in the
Task-IL scenario, but it shows lower performances than DFA-same (up to 4.2% less than DFA-same in the
split Domain-IL).

3.3 Comparing DFA with Elastic weight consolidation

In the Domain-IL scenario there is an advantage of DFA-same over EWC of about 10% AF. This could be
due to the underlying hypothesis that in DFA-same the implicit regularisation given by the feedback matrix
is kept constant. On the other hand, the regularisation factor in EWC is different for every new task, as
explained in section 2. On the permuted dataset, EWC has a performance that is intermediate between

2The comparable value of AF between DFA and BP in the Task-IL permuted case hinders the advantage of DFA for the
forgetting of the earliest tasks. We show in fig. 3 the trend of forgetting of the first task and we can notice a clear advantage.
In ?? we report the forgetting trends of all the tasks, where one can see that DFA forgets more tasks seen one or two epochs
before, but is more stable for earlier ones.
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Figure 4: Cosine similarity of the change in activations due to the nth training vs the change since the first
initialization. Values Averaged over the first two layers of the network and the images of the test dataset.
The network is trained repeatedly on the same dataset (FMNIST) while the output layer is re-initialized
at the beginning of every session. The overall change in activation in DFA-same is always aligned with the
change taking place in every single training, while in DFA-diff it is less and less aligned with the changes
due to subsequent trainings.

DFA-same and DFA-diff. In fact, EWC can be considered a method in between DFA-same and DFA-diff
because the “pulling forces” in the loss due to the feedback matrices will not be parallel to the ones of the
previous tasks as in DFA-same, but not orthogonal as in DFA-diff, either. On the split datasets, on the
other hand, EWC tends to be better than DFA-diff. In the Task-IL scenario EWC is the best method both
when we evaluate on MNIST (see appendix C) and FMNIST. In the Domain-IL it is the best only in the
experiments on MNIST. This might be due to a difficulty to find the correct hyper-parameters that would
render EWC performative on FMNIST.

3.4 Ablation experiments

In order to investigate the reasons behind the success of DFA in some of the CL scenarios, we look for the
underlying mechanism that influences DFA’s stability to forgetting the most. For achieving minimum AF,
we performed a grid-search over the hyper-parameters and we find that forgetting is reduced with smaller
variance of the feedback matrix for both DFA-same and DFA-diff, see fig. 5. This impact can be easily
explained by observing that the entries of the Feedback matrix are a multiplicative factor in the update
rule of the layers 1 and 2 (see section 2, in the right column of equations 3 and 4); thus the smaller the
values in the matrix, the smaller will be the update of the weights of these two layers. The output layer is
updated exactly as in BP, so this layer is not affected by the variance of the Feedback matrix. In the limit
of a matrix filled with zeroes, DFA approaches a Random Feature behaviour where only the readout layer
is updated. We therefore performed an ablation experiment with BP where we reduced the learning rate
of BP in the first two layers to mimic the effect of feedback matrices with reduced variance, while keeping
the learning rate of the readout layer fixed and similar to the one used for DFA. We show the results of the
ablated experiment in all the datasets in fig. 5. We found that lowering the learning rate of the intermediate
layer indeed brings BP towards lower AF and lower AP, similarly to the effect of lowering the variance in
DFA’s feedback matrix. In fact, BP with reduced learning rates can surpass DFA’s stability in some cases,
for example in the Task-IL, permuted case. In all the other cases, BP-ablated can reach AF similar to DFA,
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Figure 5: AF-AP plots for all datasets (by rows) and scenarios (by columns). In each plot, the increasing
size of the marker in DFA and DFA-diff indicates an increase in the variance of the feedback matrix (from
1.8 × 10−3 to 1.8) and for BP an increase of the learning rate of the first two layers (from 10−8 to 10−3);
the learning rate of the third layer is kept to 0.01 to match the value used in DFA. We can notice that for
larger values of the feedback matrix variance, DFA can reach higher AP at the price of smaller AF (smaller
dots moving towards the top-left part of the plots, which culminates in the RF regime). The same trend is
followed by BP when the learning rate of the first two layers decreases (BP ablated).

underlining the importance of variance of the feedback matrix for the stability of DFA. Crucially, DFA still
retains higher accuracy for old tasks in the long run: As we show in appendix B, figure fig. 7, the accuracy
drop for the case of Task-IL p-FMNIST in DFA is bounded to a maximum of 59% while BP-ablated reaches
67% forgetting.

4 Conclusions

We have explored the potential of a biologically inspired learning algorithm, direct feedback alignment, to
alleviate catastrophic forgetting in artificial neural networks. By comparing the performance of DFA and
various baseline algorithms on several benchmarks, we found that DFA has potential as an algorithm for
continual learning. For example, we found that DFA-same can alleviate catastrophic forgetting better than
BP and EWC in the Domain-IL scenario. This result is consistent with the first hypothesis, whereby DFA-
same imposes weight alignment in the presence of different datasets. We saw that the networks are indeed
able to exploit this for mitigating catastrophic forgetting. According to our hypothesis, DFA-same works as
an implicitly regularised method like EWC, but with the advantage of keeping exactly the same constraints
on the weights, while EWC adjusts the constraint of the weights after every new dataset encountered.
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Empirical evaluation also shows that DFA with different feedback matrices for each task in the curriculum
has an advantage with respect to EWC and BP in the Task-IL scenario. This is the architectural scenario in
which the output layer is specific for every task. This allows learning the features on different manifolds in
weight space, while still permitting an efficient encoding of the features for a successful classification of the
different tasks. In continual learning, when the features are learned on different manifolds, the learning of the
new tasks does not interfere with the separating hyperplane of the previous tasks, so it can be an advantage in
the Task-IL scenario. The drastic improvements of DFA-diff in the Task-IL scenario in contrast to the minor
improvement of DFA-same in this setting corroborates our second hypothesis, whereby gradient alignment
extends to the case of different datasets, allowing DFA-diff to learn in different manifolds. This approach can
thus be employed for an effective mitigation to catastrophic forgetting. Finally, we tested gradient alignment
in two specific experiments, and we find it visible in the case in which DFA is trained on the same series of
datasets starting from different initialisations with the same feedback matrices (appendix A, panel C) and
when DFA is trained on the same dataset repeatedly but with different Feedback Matrices (Figure 4).

While backpropagation with layer-specific learning rates in the first two layers (BP ablated) has a significantly
lower overall forgetting than DFA-same in the case of Task-IL and permuted dataset, DFA-same retained
its advantage with respect to BP and BP ablated for the tasks that were processed at the beginning (see ??
and fig. 3). The design of BP ablated itself was inspired by the impact of the scale of DFA’s feedback matrix
on forgetting. The advantage of DFA-same over this method is further evidence that weight alignment is
taking place and is beneficial against catastrophic forgetting beyond the impact of the Feedback matrix on
the learning rate.

In the future, it will be interesting to investigate how the architecture of the networks, and specifically the
width and the depth of the networks influence the plasticity-stability trade off curves. In the case of the
split dataset, the forgetting is heavily dependent on the similarity of consecutive tasks (see larger error bars
in fig. 5). On top of curriculum learning, it might also be beneficial to use convolutional layers before the
Fully–Connected part to replace the highly-variable distribution of pixels with more rationalized features
(Crafton et al., 2019). We tested the Continual Learning scenarios where the model is given the task–ID at
test time (Task-IL) or not (Domain-IL). The next challenge is the class–incremental learning scenario where
the model has to provide the task-ID when solving a task as is the case, for example, in many reinforcement
learning scenarios. Increasing the biological plausibility of DFA is another interesting direction. Investigating
the viability of DFA extensions that go toward more local update rules like the one analysed by Dellaferrera
et al. (2021) would be particularly interesting.
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A Degeneracy breaking of DFA

Previous work on DFA (Refinetti et al., 2021) and FA (Lillicrap et al., 2016) has shown that DFA brings
the gradients and the weights to align with the feedback matrix. This phenomenon is called degeneracy
breaking because among all the combinations of the weights that can fit the dataset, DFA selects one that
is closest to the one aligned to the feedback matrix. Gradient Alignment and Weight Alignment were
previously measured on the same dataset, starting from different initialization seeds. Here, we show the
overlap of the weights (in panel A) and the overlap of the gradients (in panel B) among networks with
the same/different initialization seed on the weight (yellow/purple in the first column of panel A) and the
same/different feedback matrix (DFA-same/DFA-diff). In the training on Task 1 all the networks have the
same feedback matrix.

Figure 6: A: Dot product of the weights at the end of training on the different tasks (averaged over the
first two layers, Domain-IL architecture structure) of two networks trained with DFA-same or DFA-diff in
contrast with a reference network trained with DFA-same. Weight Alignment can be appreciated mostly
by looking at the second row, the case in which the networks are initialized from different seeds (seed 1 for
the reference network and seed 2 for the network in the second row): the weights at first do not overlap, but
thanks to the fact that the networks are trained with the same feedback matrix, the weights overlap more
and more. B: Overlap of gradients averaged over two different checkpoints during the training on the same
dataset (splitFMNIST, Task-IL architecture structure) of two networks trained with DFA-same or DFA-diff
in contrast with a reference network trained with DFA-same. Gradient Alignment is more visible in the
first and the third row: the gradients in panel B become orthogonal (overlap equal to 0) starting from the
second task, as soon as the feedback matrix changes, irrespective of the fact that the networks are initialized
in the same way (first row) or if the networks are initialized differently (third row).

B DFA-same versus BP and BP-ablated in the long run

In order to answer the question, "Is DFA mitigation for catastrophic forgetting solely due to the small
learning rate in the first two layers?" we propose a deeper comparison with BP ablated in the context of the
permuted dataset. The same results apply to the split dataset. In fig. 7 below, we display the accuracy of
all the tasks during the CL pipeline (training one task at a time and always monitoring the accuracy of the
other tasks; in the case of Task-IL scenario, either for training and for testing one task, the corresponding
output layer is used). We compare the case in which BP ablated has the most similar AF to DFA-same
and we find that DFA has the tendency of forgetting more than BP and BP ablated after few stages but is
more stable in the long run, for example after 6 tasks in the Task-IL and after 1 or 9 tasks in the Domain-IL
scenario; the black and the grey lines in the plot of DFA-same visually show the point where the advantage
starts. We conclude that a small learning rate in the first two layers is not always enough to reproduce
DFA-same stability and this advantage in the long run might be due to the alignment of the weights.
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Figure 7: Accuracy interpolation lines along the stages. On the left (red lines) we show the results for the
Task-IL scenario, we can notice that even though DFA-same has higher average forgetting than BP and
BP-ablated, it has lower forgetting for the first three (vs BP) or four tasks (vs BP ablated): DFA-same
retains the accuracy better than BP and BP-ablated in the long run, while it forgets more in the shorter
run. This is also true in the Domain-IL scenario (blue lines, on the right) in which DFA has better average
forgetting than BP and worse compared to BP-ablated.
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C Results evaluated on MNIST

The plots displaying the results of the methods applied to the MNIST datasets in the Task-IL scenario can
be found in fig. 8. The points in the circle indicates the Split-MNIST, otherwise they refer to the results on
the Permuted-MNIST.

Figure 8: We can notice that the results are consistent with the results on F-MNIST: In the Task-IL split-
MNIST DFA lays in an intermediate position between RF and BP, slightly behind EWC; In the permuted
Task-IL, DFA-diff has less forgetting than all the other methods while achieving the same AP of BP. In
Domain-IL (panel on the right), DFA-same is comparable or equal in AF to BP while DFA-diff has the worst
performances; EWC is in an intermediate level between DFA-same and DFA-diff on the permuted dataset
while is superior to DFA on the split datasets.

D Random Seed impact on the accuracy of the firstly learned task
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Figure 9: Complete illustration of forgetting the first learned task for all methods (Accuracy % on the y-axis
and stage number on the x-axis). The different figures display one method at a time in the following order:
DFA-same, DFA-diff, BP-ablated, BP, EWC; permuted FMNIST above and split FMNIST below. The
dotted lines are the ones optimized for minimizing forgetting. In EWC permuted FMNIST, the blue dotted
line coincides with the blue solid line.
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E Similarity Measures of datasets

In fig. 1, panel B, we analyze the similarity of the datasets arising from the division into the different tasks.
We take in the rows all the images of one class in the dataset corresponding to task1 (and their pixels in the
columns) and we compare it to the matrix of images of the same class in the next dataset. We average over
all the couples of datasets and over the different classes. The similarity measures we apply (described below)
measure the similarity from a merely geometrical perspective and we find that in this point of the tasks have
classes more similar to each other in the permuted dataset. By construction, the reshuffle of the pixels does
not change the mean and the standard deviation of the distributions of the pixels. Nevertheless, the split
datasets is easier because it has only two classes and in the Task-IL learning the difference in distribution
can be an advantage. In fact, the average forgetting in the Task-IL scenario are overall much smaller than
the average forgetting on the permuted dataset. On the other hand, the permuted dataset has only slightly
more forgetting in the Domain-IL scenario in the case in which the models are optimized for performance.

we use the following similarity measures:

1. Cosine similarity: Dot product of the matrices reshaped into vectors and subsequently normalized
by the L2 norm of the two vectors.

2. Canonical Correlation Analysis (CCA) (Hardoon et al., 2005): Similarity measure which is invariant
to affine transformations (any linear invertible transformation including scaling, rotations, transla-
tions).

3. Centered Kernel Alignment (CKA) (Kornblith et al., 2019): Similarity measure which is invariant
to orthogonal transformations, which is a subset of the invertible linear transformations.

CCA is 1 when the two matrices are linearly invariant (they are linked by any affine transformation) and 0
when they are not; CKA is 1 in the case that the two matrices are orthogonally invariant (can be linked by
a rotation).

With the plot in fig. 1 we show that the permuted dataset is composed of images with distributional similarity
among the tasks. This holds also from the point of view of the representations inside the network of the
different tasks. We report in table 2 the similarity of the activation matrices (input images in the rows, and
number of neurons in the columns). In the permuted dataset there is a larger overlap (especially in the case
with shared output) than the disjoint datasets.

F Analysis of the representations

Since the training is driven by both the architecture (weights, activation functions) and the data distribution,
it can useful to inspect how the activations of the network in different stages vary during the training on
different tasks.

In Neuroscience, similarity measures of the activations of neurons have proven to be a valid tool for computing
differences in the activation patterns of neurons. These methods have been applied to ANNs to compare
the internal representations of the networks among layers, epochs of training, different initialization seeds,
different training algorithms, training architectures, and datasets.

We showed that the gradients and weights align in two networks with different weight initialization and same
feedback matrix (fig. 4 and Appendix appendix A). In this part, we provide an analysis of the representations
overlap. In table 2 we report the dot product of the differences in activations of the fist two layers obtained
feeding the test images of two subsequent datasets into the network in the same stage of training, averaged for
all couples of adjacent datasets and stages of training. It is evident that in the split datasets the activations
of subsequent tasks do not overlap at all; while in the permuted dataset some overlap is present.
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Table 2: The dot product represents the overlap of the activations (0: no overlap, 1: complete overlap).
Task-IL Domain-IL

Dot product of changes overlaps of different datasets
Split BP 0 0

DFA-same 0 0
DFA-diff 0 0

EWC 0 0
Permuted BP 0.045 0.87

DFA-same 0.08 0.96
DFA-diff 0.09 0.97

EWC 0.06 0.92
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