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Abstract

Deep learning with noisy labels is a challenging task, which has received much attention
from the machine learning and computer vision communities. Recent prominent methods
that build on a specific sample selection (SS) strategy and a specific semi-supervised learning
(SSL) model achieved state-of-the-art performance. Intuitively, better performance could
be achieved if stronger SS strategies and SSL models are employed. Following this intuition,
one might easily derive various effective noisy-label learning methods using different combi-
nations of SS strategies and SSL models, which is, however, simply reinventing the wheel in
essence. To prevent this problem, we propose SemiNLL, a versatile framework that investi-
gates how to naturally combine different SS and SSL components based on their effects and
efficiencies. We conduct a systematic and detailed analysis of the combinations of possible
components based on our framework. Our framework can absorb various SS strategies and
SSL backbones, utilizing their power to achieve promising performance. The instantiations
of our framework demonstrate substantial improvements over state-of-the-art methods on
benchmark-simulated and real-world datasets with noisy labels.

1 Introduction

Deep Neural Networks (DNNs) have achieved great success in various real-world applications, such as image
classification (Krizhevsky et al., 2012), detection (Ren et al., 2015), and semantic segmentation (Long et al.,
2015). Such a great success is demanding for large datasets with clean human-annotated labels. However,
it is costly and time-consuming to correctly label massive images for building a large-scale dataset like
ImageNet (Deng et al., 2009). Some common and less expensive ways to collect large datasets are through
online search engines (Schroff et al., 2010) or crowdsourcing (Yu et al., 2018), which would, unfortunately,
bring wrongly annotated labels to the collected datasets. Besides, an in-depth study (Zhang et al., 2016)
showed that deep learning with noisy labels can lead to severe performance deterioration. Thus, it is crucial
to alleviate the negative effects caused by noisy labels for training DNNs.

A typical strategy is to conduct sample selection (SS) and to train DNNs with selected samples (Han et al.,
2018; Jiang et al., 2018; Song et al., 2019; Yu et al., 2019; Wei et al., 2020; Yao et al., 2020a; Xia et al.,
2022). Since DNNs tend to learn simple patterns first before fitting noisy samples (Arpit et al., 2017),
many studies utilize the small-loss trick, where the samples with smaller losses are taken as clean ones.
For example, Co-teaching (Han et al., 2018) leverages two networks to select small-loss samples within each
mini-batch for training each other. Later, Yu et al. (2019) pointed out the importance of the disagreement
between two networks and proposed Co-teaching+, which updates the two networks using the data on which
the two networks hold different predictions. By contrast, JoCoR (Wei et al., 2020) proposes to reduce
the diversity between two networks by training them simultaneously with a joint loss calculated from the
selected small-loss samples. Although these methods have achieved satisfactory performance by training
with selected small-loss samples, they simply discard other large-loss samples which may contain potentially
useful information for the training process.

To make full use of all given samples, a prominent strategy is to consider selected samples as labeled “clean”
data and other samples as unlabeled data, and to perform semi-supervised learning (SSL) (Laine & Aila,
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2016; Tarvainen & Valpola, 2017; Berthelot et al., 2019; Arazo et al., 2020; Xie et al., 2020; Sohn et al., 2020;
Zhang et al., 2021). Following this strategy, SELF (Nguyen et al., 2020) detects clean samples by removing
noisy samples whose self-ensemble predictions of the model do not match the given labels in each iteration.
With the selected labeled and unlabeled data, the problem becomes an SSL problem, and a Mean-Teacher
model (Tarvainen & Valpola, 2017) can be trained. Another recent method, DivideMix (Li et al., 2020),
leverages Gaussian Mixture Model (GMM) (Permuter et al., 2006) to distinguish clean and noisy data. After
removing the labels of noisy samples, DivideMix uses a strong SSL backbone called MixMatch (Berthelot
et al., 2019) for training.

As shown above, both methods rely on a specific SS strategy and a specific SSL model. The two components
play a vitally important role for combating label noise, and stronger components are expected to achieve
better performance. This motivates us to investigate a versatile algorithmic framework that can leverage
various SS strategies and SSL models. In this paper, we propose SemiNLL, which is a versatile framework to
bridge the gap between SSL and noisy-label learning (NLL). Our framework can absorb various SS strategies
and SSL backbones, utilizing their power to achieve promising performance. Guided by our framework, one
can easily instantiate a specific learning algorithm for NLL, by specifying a commonly used SSL backbone
with an SS strategy. The key contributions of our paper can be summarized as follows:

• Our framework can not only provide an important prototype in the NLL community for further
exploration into SS and SSL, but can also act as a conclusive work to prevent future researchers
from simply reinventing the wheel.

• To instantiate our framework, we propose DivideMix+ by replacing the epoch-level selection strategy
of DivideMix (Li et al., 2020) with a mini-batch level one. We also propose GPL, another instan-
tiation of our framework that leverages a two-component Gaussian mixture model (Li et al., 2020;
Permuter et al., 2006) to select labeled (unlabeled) data and uses Pseudo-Labeling (Arazo et al.,
2020) as the SSL backbone.

• We conduct extensive experiments on benchmark-simulated and real-world datasets with noisy la-
bels. Our instantiations, DivideMix+ and GPL, outperform other state-of-the-art noisy-label learn-
ing methods. We also analyze the effects and efficiencies of different instantiations of our framework.

The rest of this paper is organized as follows. In Section 2, we first review the related works. Then, the
overview of the framework is introduced in Section 3. Section 4 illustrates the instantiations of our framework
in detail. After that, we demonstrate the experimental results in Section 5 and give detailed ablation studies
and discussions in Section 6. The conclusion is in Section 7.

2 RELATED WORK

In this section, we briefly review several related aspects on which our framework builds.

2.1 Learning with noisy labels

For NLL, most of the existing methods could be roughly categorized into the following groups:

Sample selection. This family of methods regards samples with small loss as “clean” and trains the model
only on selected clean samples. For example, self-paced MentorNet (Jiang et al., 2018), or equivalently
self-teaching, selects small-loss samples and uses them to train the network by itself. To alleviate the
sample-selection bias in self-teaching, Han et al. (2018) proposed an algorithm called Co-teaching, where two
networks choose the next batch of data for each other for training based on the samples with smaller loss
values. Co-teaching+ (Yu et al., 2019) bridges the disagreement strategy (Malach & Shalev-Shwartz, 2017)
with Co-teaching (Han et al., 2018) by updating the networks over data where two networks make different
predictions. In contrast, Wei et al. (2020) leveraged the agreement maximization algorithm (Kumar et al.,
2010) by designing a joint loss to train two networks on the same mini-batch data and selected small-loss
samples to update the parameters of both networks. The mini-batch SS strategy in our framework belongs
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to this direction. However, instead of ignoring the large-loss unclean samples, we just discard their labels
and exploit the associated images in an SSL setup.

Noise transition estimation. Another line of NLL is to estimate the noise transition matrix for loss
correction (Natarajan et al., 2013; Menon et al., 2015; Xiao et al., 2015; Goldberger & Ben-Reuven, 2016;
Patrini et al., 2017; Hendrycks et al., 2018; Wang et al., 2020; Yao et al., 2020b; Wu et al., 2021a). Patrini
et al. (2017) first estimated the noise transition matrix and trained the network with two different loss
corrections. Hendrycks et al. (2018) proposed a loss correction technique that utilizes a small portion of
trusted samples to estimate the noise transition matrix. Wang et al. (2020) proposed a model-agnostic
approach to learn the transition matrix directly from data via meta-learning. However, the limitation of
these methods is that they do not perform well on datasets with a large number of classes.

Other deep learning methods. Some other interesting and promising directions for NLL include meta-
learning (Finn et al., 2017; Snell et al., 2017) based, pseudo-label estimation (Lee, 2013) based, and robust
loss (Feng et al., 2020; Ghosh et al., 2017; Ma et al., 2020; Wang et al., 2019; Xu et al., 2019; Zhang &
Sabuncu, 2018; Hu et al., 2021) based approaches. For meta-learning based approaches, most studies fall
into two main categories: training a model that adapts fast to different learning tasks without overfitting
to corrupted labels (Garcia et al., 2016; Li et al., 2019), and learning to reweight loss of each mini-batch to
alleviate the adverse effects of corrupted labels (Ren et al., 2018; Shu et al., 2019; Zhang et al., 2020; Wu
et al., 2021b; Zheng et al., 2021). Pseudo-label estimation based approaches reassign the labels for noisy
samples. For example, Joint-Optim (Tanaka et al., 2018) corrects labels during training and updates network
parameters simultaneously. PENCIL (Yi & Wu, 2019) proposes a probabilistic model, which can update
network parameters and reassign labels as label distributions. The family of pseudo-label estimation has a
close relationship with semi-supervised learning (Han et al., 2019; Lee, 2013; Tanaka et al., 2018; Yi & Wu,
2019). Robust loss based approaches focus on designing loss functions that are robust to noisy labels.

2.2 Semi-supervised learning

SSL methods leverage unlabeled data to provide additional information for the training model. A line of work
is based on the concept of consistency regularization: if a perturbation is given to an unlabeled sample, the
model predictions of the same sample should not be too different. Laine & Aila (2016) applied consistency
between the output of the current network and the exponential moving average (EMA) of the output from
the past epochs. Instead of averaging the model outputs, Tarvainen & Valpola (2017) proposed to update the
network on every mini-batch using an EMA of model parameter values. Berthelot et al. (2019) introduced
a holistic approach that well combines MixUp (Zhang et al., 2018), entropy minimization, and consistency
regularization. Another line of SSL is pseudo-labeling, the objective of which is to generate pseudo-labels
for unlabeled samples to enhance the learning process. Arazo et al. (2020) proposed a method to improve
previous pseudo-labeling methods (Iscen et al., 2019) by adding MixUp augmentation (Zhang et al., 2018).
Xie et al. (2020) and Sohn et al. (2020)used a confidence-based strategy pseudo labeling to select unlabeled
data with high confidence. Zhang et al. (2021) proposed a curriculum learning method to leverage unlabeled
data for SSL.

2.3 Combination of SS and SSL

Some previous studies that combine a specific SS strategy and a specific SSL backbone could be regarded
as special cases in our framework. Ding et al. (2018) used a pre-trained DNN on the noisy dataset to select
labeled samples. In the SSL stage, Temporal Ensembling (Laine & Aila, 2016) was used to handle labeled
and unlabeled data. Nguyen et al. (2020) proposed a progressive noise filtering mechanism based on the
Mean-Teacher model (Tarvainen & Valpola, 2017) and its self-ensemble prediction. Li et al. (2020) used a
Gaussian Mixture Model (GMM) to divide noisy and clean samples based on their training losses and fitted
them into a recent SSL algorithm called MixMatch (Berthelot et al., 2019). Each specific component used in
these methods has its own pros and cons. This motivates us to propose a versatile framework that can build
on various SS strategies and SSL backbones. In other words, many recent publications (Arazo et al., 2019;
Li et al., 2020; Nguyen et al., 2020) or preprints (Cordeiro et al., 2021; Wei et al., 2021b) could be taken
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Figure 1: The schematic of SemiNLL. First, each mini-batch of data is forwarded to the network to conduct
SS, which divides the original data into the labeled/unlabeled sets. Second, labeled/unlabeled samples are
used to train the SSL backbone to produce accurate model output.

as special instantiations of our framework, which indicates that a conclusive work like this paper is vitally
necessary to prevent future researchers from simply reinventing the wheel.

3 The Overview of SemiNLL

Algorithm 1 SemiNLL
Input: Network fθ, SS strategy select, SSL method

semi, epoch Tmax, iteration Imax;
1: for t = 1,2,. . . ,Tmax do
2: Shuffle training set Dtrain;
3: for n = 1, . . . , Imax do
4: Fetch mini-batch Dn from Dtrain;
5: Obtain Xm,Um ← select(Dn, fθ);
6: Update fθ ← semi(Xm,Um, fθ);
7: end for
8: end for
Output: fθ

In this section, we present SemiNLL, a versatile
framework of learning with noisy labels by SSL. The
idea behind our framework is that we effectively take
advantage of the whole training set by trusting the
labels of undoubtedly correct samples and utiliz-
ing only the image content of potentially corrupted
samples. Previous sample selection methods (Han
et al., 2018; Jiang et al., 2018; Yu et al., 2019; Wei
et al., 2020) train the network only with selected
clean samples, and they discard all potentially cor-
rupted samples to avoid the harmful memorization
of DNNs caused by the noisy labels of these samples.
In this way, the feature information contained in the
associated images might be discarded without being exploited. Our framework, alternatively, makes use of
those corrupted samples by ignoring their labels while keeping the associated image content, transforming
the NLL problem into an SSL setup. The mechanism of SSL that leverages labeled data to guide the learning
of unlabeled data naturally fits well in training the model with the clean and noisy samples divided by our SS
strategy. We first discuss the advantages of the mini-batch SS strategy in our framework and then introduce
several SSL backbones used in our framework. The schematic of our framework is shown in Figure 1.

3.1 Mini-batch sample selection

During the SS process, a hazard called confirmation bias (Tarvainen & Valpola, 2017) is worth noting. Since
the model is trained using the selected clean (labeled) and noisy (unlabeled) samples, wrongly selected
clean samples in this iteration may keep being considered clean ones in the next iteration due to the model
overfitting to their labels. Most existing methods (Li et al., 2020; Nguyen et al., 2020) divide the whole
training set into the clean/noisy set on an epoch level. Our mini-batch SS strategy divides each mini-batch
of samples into the clean subset Xm and the noisy subset Um (Line 5 in Algorithm 1) right before updating the
network using SSL backbones. The advantages of our mini-batch SS over epoch-wise SS are: (i) Avoiding
confirmation bias: In the case of epoch-wise SS, the divided clean/noisy sets are incorporated into the SSL
phase and will not be updated till the next epoch. Thus, the confirmation bias induced from those wrongly
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divided samples will accumulate within the whole epoch. Our mini-batch SS strategy divides each mini-batch
of samples into clean/noisy batches right before updating the network using SSL backbones. In the next mini-
batch, the updated network can better distinguish clean and noisy samples, alleviating the confirmation bias
mini-batch by mini-batch. (ii) Improving computational efficiency: Since the time complexity of most
SS methods (including GMM and self-prediction divider) is not linear, the number of operations increases
dramatically as the input size increases. Table 6.4 compares the training time of DividMix+ (mini-batch-
wise) and DivideMix (epoch-wise) on CIFAR-10, showing DivideMix+ is more computationally efficient than
DivideMix in both the SS process and the whole training process. (iii) Injecting stochasticity: During the
epoch-wise SS process, the model tends to select the confident samples that have been selected in previous
epochs due to the model overfitting their labels. In this way, some confident but noisy samples will keep being
selected by the model, resulting in performance degradation. The mini-batch-wise SS can inject stochasticity
in training since each mini-batch of data is randomly sampled from the whole dataset, avoiding the model
constantly selecting the same confident samples. (iv) Up-to-date model for SS: The mini-batch-wise
usage of SS and SSL makes the data selection up-to-date. The model used to select the clean samples is
updated using the SSL method at each mini-batch. In comparison, the epoch-wise usage of the SS process
selects the clean samples based on the model trained by SSL from the last epoch.

3.2 SSL backbones

The mechanism of SSL that uses labeled data to guide the learning of unlabeled data fits well when dealing
with clean/noisy data in NLL. The difference lies in an extra procedure, as introduced in Subsection 3.1, that
divides the whole dataset into clean and noisy data. After the SS process, clean samples are considered labeled
data and keep their annotated labels. The others are considered noisy samples, and their labels are discarded
to be treated as unlabeled ones in SSL backbones. SemiNLL can build on a variety of SSL algorithms without
any modifications to form an end-to-end training scheme for NLL. Concretely, we consider the following
representative SSL backbones ranging from weak to strong according to their performance in SSL tasks: (i)
Temporal Ensembling (Laine & Aila, 2016). The model uses an exponential moving average (EMA) of label
predictions from the past epochs as a target for the unsupervised loss. It enforces consistency of predictions
by minimizing the difference between the current outputs and the EMA outputs. (ii) MixMatch (Berthelot
et al., 2019). MixMatch is a holistic method that combines MixUp (Zhang et al., 2018), entropy minimization,
consistency regularization, and other traditional regularization tricks. It guesses low-entropy labels for
augmented unlabeled samples and mixes labeled and unlabeled data using MixUp (Zhang et al., 2018). (iii)
Pseudo-Labeling (Arazo et al., 2020). This method learns from unlabeled data by combining soft pseudo-label
generation (Tanaka et al., 2018) and MixUp augmentation (Zhang et al., 2018) to reduce confirmation bias
in training. In the next section, we will instantiate our framework by applying specific SS strategies and SSL
backbones to the select and semi placeholders in Algorithm 1.

4 The Instantiations of SemiNLL

4.1 Instantiation 1: DivideMix+

In Algorithm 1, if we (i) specify the select placeholder as a GMM (Permuter et al., 2006), (ii) specify
the semi placeholder as MixMatch (Berthelot et al., 2019) mentioned in Subsection 3.2, and (iii) train two
independent networks wherein each network selects clean/noisy samples in the SS phase and predicts labels
in the SSL phase for the other network, then our framework is instantiated into a mini-batch version of
DivideMix (Li et al., 2020). Specifically, during the SS process, DivideMix (Li et al., 2020) fits a two-
component GMM to the loss of each sample using the Expectation-Maximization technique and obtains the
posterior probability of a sample being clean or noisy. During the SSL phase, the clean set Xe and the
noisy set Ue are fit into an improved MixMatch (Berthelot et al., 2019) strategy with label co-refinement
and co-guessing. As shown in Figure 4 (b) in Appendix, the SS strategy (GMM) of DivideMix (Li et al.,
2020) is conducted on an epoch level. Since Xe and Ue are updated only once per epoch, the confirmation
bias induced from the wrongly divided samples will be accumulated within the whole epoch. However, our
mini-batch version, which is called DivideMix+ (Figure 4 (c) in Appendix), divides each mini-batch of data
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into a clean subset Xm and a noisy subset Um, and updates the networks using the SSL backbone right
afterwards. In the next mini-batch, the updated networks could better distinguish clean and noisy samples.

4.2 Instantiation 2: GPL

Intuitively, the choice of stronger SS strategies and SSL models would achieve better performance based on
our framework. Thus, we still choose GMM to distinguish clean and noisy samples due to its flexibility in
the sharpness of distribution (Li et al., 2020). As for the SSL backbone, we choose the strongest Pseudo-
Labeling (Arazo et al., 2020) introduced in Subsection 3.2. We call this instantiation GPL (GMM + Pseudo-
Labeling). To keep our instantiation simple, we do not train two networks in GPL as in DivideMix (Li
et al., 2020) and DivideMix+. To our understanding, training two networks simultaneously might provide
significant performance improvements. We will give detailed discussions about the effectiveness and efficiency
of two networks in Section 6.5.

4.3 Self-prediction divider

Inspired by SELF (Nguyen et al., 2020), we introduce the self-prediction divider, a simple yet effective SS
strategy which leverages the information provided by the network’s own prediction to distinguish clean and
noisy samples. Based on the phenomenon that DNN’s predictions tend to be consistent on clean samples
and inconsistent on noisy samples in different training iterations, we select the correctly annotated samples
via the consistency between the original label set and the model’s own predictions. The self-prediction
divider determines potentially clean samples in a mini-batch if the samples’ maximal likelihood predictions
of the network match their annotated labels. Specifically, the samples are divided into the labeled set only
if the model predicts the annotated label to be the correct class with the highest likelihood. The others
are considered noisy samples, and their labels will be discarded to be regarded as unlabeled ones in SSL
backbones. Compared to previous small-loss SS methods (Han et al., 2018; Wei et al., 2020; Yu et al.,
2019), which depend on a known noise ratio to control how many small-loss samples should be selected
in each training iteration, self-prediction divider does not need any additional information to perform SS
strategy where the clean subset and the noisy subset are determined by the network itself. Concretely,
we instantiate three learning algorithms by combining our self-prediction divider (SPD) with three SSL
backbones introduced in Subsection 3.2 and denote them as SPD-Temporal Ensembling, SPD-MixMatch,
and SPD-Pseudo-Labeling, respectively.

4.4 Effects of the two components

This section demonstrates the effects of SS strategies and SSL backbones in our framework. To prove that
a more robust SS strategy can boost performance for our framework, we propose DivideMix- (Figure 4)
(a) by replacing the GMM in DivideMix (Li et al., 2020) with our self-prediction divider on an epoch level.
Since self-prediction divider is supposed to be weaker than GMM, DivideMix- is expected to achieve lower
performance than DivideMix (Li et al., 2020). To prove the effectiveness of the SSL backbone, we remove it
after the SS process and only update the model using the supervised loss calculated from the clean samples.
We will give detailed discussions in Section 6.

5 Experiment

5.1 Experiment setup

Datasets. We compare our method with five state-of-the-art algorithms in PU learning: We thor-
oughly evaluate our proposed DivideMix+ and GPL on six datasets, including MNIST (Lecun et al.,
1998), FASHION-MNIST (Xiao et al., 2017), CIFAR-10, CIFAR-100 (Krizhevsky & Hinton, 2009), Cloth-
ing1M (Xiao et al., 2015), and WebVision (Li et al., 2017). The detailed characteristics of the datasets in
the experiments are shown in Table 9. MNIST and FASHION-MNIST contain 60K training images and 10K
test images of size 28× 28. CIFAR-10 and CIFAR-100 contain 50K training images and 10K test images of
size 32 × 32 with three channels. According to previous studies (Zhang & Sabuncu, 2018; Li et al., 2020;
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Table 1: Average test accuracy (%) and standard deviation (5 runs) in various datasets under symmetric
label noise. The best accuracy is bold-faced. The second-best accuracy is underlined.

Datasets Method
Symmetric
Noise ratio Mean

20% 40% 60% 80%

MNIST

Cross-Entropy 86.16± 0.34 70.39± 0.59 50.35± 0.51 23.41± 0.96 57.58
Co-teaching 91.20± 0.03 90.02± 0.02 83.21± 0.71 25.33± 0.84 72.44
F-correction 93.93± 0.10 84.30± 0.43 65.06± 0.64 29.81± 0.63 68.27

JoCoR 94.30± 0.09 92.66± 0.13 89.94± 0.24 75.37± 0.74 88.07
GCE 94.36± 0.11 93.61± 0.17 92.46± 0.20 85.04± 0.66 91.37

M-correction 97.25 ± 0.03 96.63± 0.04 95.07± 0.08 86.19± 0.42 93.79
DivideMix 96.80± 0.08 96.53± 0.06 96.47± 0.04 95.15± 0.25 96.24

GPL (ours) 96.67± 0.09 96.27± 0.08 95.82± 0.09 94.81± 0.15 95.89
DivideMix+ (ours) 96.83± 0.06 96.79 ± 0.06 96.69 ± 0.03 95.91 ± 0.10 96.56

FASHION
MNIST

Cross-Entropy 90.83± 0.26 86.44± 0.11 77.27± 0.56 61.84± 1.27 79.10
Co-teaching 89.18± 0.32 89.13± 0.05 80.08± 0.25 60.36± 2.15 79.69
F-correction 93.37 ± 0.17 92.27± 0.06 90.32± 0.30 85.78± 0.06 90.43

JoCoR 91.43± 0.14 90.55± 0.11 86.89± 0.29 79.61± 0.41 87.12
GCE 93.35± 0.09 92.58± 0.11 91.30± 0.20 88.01± 0.22 91.31

M-correction 93.03± 0.15 92.74± 0.42 91.61± 0.02 85.25± 0.23 90.66
DivideMix 92.98± 0.17 92.55± 0.13 91.55± 0.31 88.55± 0.24 90.66

GPL (ours) 92.94± 0.20 91.38± 0.54 89.97± 0.16 87.14± 0.65 90.36
DivideMix+ (ours) 93.20± 0.08 92.89 ± 0.15 92.15 ± 0.16 88.70 ± 0.17 91.74

CIFAR-10

Cross-Entropy 83.48± 0.17 68.49± 0.40 48.65± 0.06 27.56± 0.43 57.05
Co-teaching 67.73± 0.71 62.83± 0.72 48.81± 0.78 27.56± 2.71 51.73
F-correction 83.27± 0.04 73.67± 0.30 77.64± 0.11 63.95± 0.32 74.63

JoCoR 85.22± 0.06 80.27± 0.37 58.72± 0.29 29.67± 0.68 63.47
GCE 89.72± 0.10 87.75± 0.05 84.11± 0.26 72.84± 0.30 83.61

M-correction 92.01± 0.40 90.09± 0.68 85.90± 0.22 70.57± 0.85 84.64
DivideMix 94.82± 0.09 93.95± 0.14 92.28± 0.08 89.30± 0.17 92.59

GPL (ours) 94.45± 0.20 94.00± 0.22 93.32 ± 0.10 91.76± 0.23 93.38
DivideMix+ (ours) 94.84 ± 0.12 94.03 ± 0.20 93.08± 0.19 91.91 ± 0.07 93.47

CIFAR-100

Cross-Entropy 60.93± 0.40 46.24± 0.74 29.00± 0.38 11.42± 0.19 36.90
F-correction 60.49± 0.29 48.93± 0.21 48.74± 0.41 22.93± 0.78 45.27

JoCoR 65.89± 0.08 49.65± 0.51 32.38± 0.60 16.91± 0.63 41.21
GCE 69.20± 0.10 65.90± 0.25 57.33± 0.18 18.19± 1.15 52.66

M-correction 67.96± 0.17 64.48± 0.76 55.37± 0.72 24.21± 1.06 53.01
DivideMix 73.17± 0.28 71.01± 0.16 66.61± 0.18 43.25± 0.82 63.51

GPL (ours) 71.24± 0.24 68.89± 0.07 65.80± 0.63 59.96 ± 0.15 66.47
DivideMix+ (ours) 73.22 ± 0.21 71.03 ± 0.32 67.52 ± 0.19 58.07± 0.71 67.46

Wei et al., 2020), we experiment with two types of label noise: symmetric noise and asymmetric noise. Sym-
metric label noise is produced by changing the original label to all possible labels randomly and uniformly
according to the noise ratio. Asymmetric label noise is similar to real-world noise, where labels are flipped
to similar classes. Clothing1M is a large-scale real-world dataset that consists of one million training images
from online shopping websites with labels annotated from surrounding texts. The estimated noise ratio is
about 40%. WebVision is a large-scale dataset which consists of real-world web noise. We follow Chen et al.
(2019); Li et al. (2020) to create a mini version of WebVision that uses the Google subset images of the top
50 classes.

Network structure and optimizer. Following previous works (Arazo et al., 2020; Li et al., 2020; Wei
et al., 2020; Zhang & Sabuncu, 2018), we use a 2-layer MLP for MNIST, a ResNet-18 (He et al., 2016)
for FASHION-MNIST, the well-known “13-CNN” architecture (Tarvainen & Valpola, 2017) for CIFAR-10
and CIFAR-100, a ResNet-50 (He et al., 2016) for Clothing1M and the inception-resnet v2 (Szegedy et al.,
2017) for mini WebVision. To ensure a fair comparison between the instantiations of our framework and
other methods, we keep the training settings for MNIST, CIFAR-10, CIFAR-100, Clothing1M, and mini
WebVision as close as possible to DivideMix (Li et al., 2020) and FASHION-MNIST close to GCE (Zhang
& Sabuncu, 2018). For FASHION-MNIST, the network is trained using stochastic gradient descent (SGD)
with 0.9 momentum and a weight decay of 1×10−4 for 120 epochs. For MNIST, CIFAR-10, and CIFAR-100,
all networks are trained using SGD with 0.9 momentum and a weight decay of 5× 10−4 for 300 epochs.
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Baselines. We compare DivideMix+ and GPL to previous state-of-the-art algorithms from Co-
teaching (Han et al., 2018), F-correction (Patrini et al., 2017), GCE (Zhang & Sabuncu, 2018), M-
correction (Arazo et al., 2019), and DivideMix (Li et al., 2020). We implement all methods by PyTorch
on NVIDIA Tesla V100 GPUs. (1) Cross-Entropy, which trains the network using the cross-entropy loss. (2)
Coteaching (Han et al., 2018), which trains two networks and cross-updates the parameters of peer networks.
(3) F-correction (Patrini et al., 2017), which corrects the prediction by the label transition matrix. As sug-
gested by the authors, we first train a standard network using the cross-entropy loss to estimate the transition
matrix. (4) JoCoR (Wei et al., 2020), which uses a joint loss to train two networks on the same mini-batch
data and selects small-loss samples to update the networks. (5) GCE (Zhang & Sabuncu, 2018), which uses
a theoretically grounded and easy-to-use loss function, the Lq loss, for NLL. (6) M-correction (Arazo et al.,
2019), which models clean and noisy samples by fitting a two-component BMM and applies MixUp data
augmentation (Zhang et al., 2018). (7) DivideMix (Li et al., 2020), which divides clean and noisy samples
by using a GMM on an epoch level and leverages MixMatch (Berthelot et al., 2019) as the SSL backbone.

Table 2: Average test accuracy (%) and standard deviation (5 runs) in various datasets under asymmetric
label noise. The best accuracy is bold-faced. The second-best accuracy is underlined.

Datasets Method
Asymmetric
Noise ratio Mean

10% 20% 30% 40%

MNIST

Cross-Entropy 95.78± 0.19 91.15± 0.26 86.01± 0.25 79.92± 0.32 88.22
Co-teaching 90.32± 0.02 89.03± 0.02 79.80± 0.27 64.94± 0.02 81.02
F-correction 96.39± 0.04 94.27± 0.21 89.33± 0.94 81.61± 0.42 90.40

JoCoR 95.43± 0.04 94.39± 0.13 90.15± 0.24 87.31± 0.05 91.82
GCE 94.61± 0.13 94.43± 0.07 94.00± 0.12 93.42± 0.12 94.12

M-correction 96.74± 0.03 96.70± 0.10 96.67 ± 0.07 94.85± 0.40 96.24
DivideMix 96.17± 0.06 96.11± 0.09 95.88± 0.05 95.83± 0.05 96.00

GPL (ours) 96.76 ± 0.04 96.71 ± 0.03 96.49± 0.08 96.45± 0.04 96.60
DivideMix+ (ours) 96.67± 0.04 96.66± 0.07 96.50± 0.04 96.46 ± 0.04 96.57

FASHION
MNIST

Cross-Entropy 93.88± 0.16 92.20± 0.33 90.41± 0.67 84.56± 0.41 90.26
Co-teaching 88.01± 0.03 78.88± 0.20 70.07± 0.38 61.97± 0.21 74.73
F-correction 94.17± 0.12 93.88 ± 0.10 93.50 ± 0.10 93.25 ± 0.16 93.7

JoCoR 91.54± 0.13 88.60± 0.47 84.37± 0.24 81.68± 0.62 86.55
GCE 93.51± 0.17 93.24± 0.14 92.21± 0.27 89.53± 0.53 92.12

M-correction 92.11± 0.93 91.26± 1.35 89.79± 1.28 89.58± 2.20 90.69
DivideMix 91.83± 0.24 91.09± 0.08 89.90± 0.26 87.58± 0.26 90.10

GPL (ours) 92.52± 0.22 92.23± 0.09 92.15± 0.26 91.64± 0.31 92.14
DivideMix+ (ours) 92.56± 0.39 92.25± 0.21 91.62± 0.08 89.67± 0.44 91.53

CIFAR-10

Cross-Entropy 90.85± 0.06 87.23± 0.40 81.92± 0.32 76.23± 0.45 84.06
Co-teaching 62.85± 2.20 61.04± 1.31 54.50± 0.39 51.68± 1.66 57.52
F-correction 89.79± 0.33 86.79± 0.67 83.34± 0.30 76.81± 1.08 84.18

JoCoR 88.62± 0.21 89.79± 0.17 82.37± 0.12 77.90± 0.69 84.67
GCE 90.40± 0.09 89.30± 0.13 86.89± 0.22 82.60± 0.17 87.30

M-correction 92.28± 0.12 92.13± 0.17 91.38± 0.11 90.43± 0.23 91.56
DivideMix 93.61± 0.15 92.99± 0.21 91.79± 0.36 90.57± 0.31 92.24

GPL (ours) 94.32 ± 0.01 94.23 ± 0.07 93.79 ± 0.06 93.02 ± 0.30 93.84
DivideMix+ (ours) 94.27± 0.23 93.92± 0.20 92.82± 0.28 91.91± 0.24 93.23

CIFAR-100

Cross-Entropy 68.58± 0.34 68.82± 0.22 53.99± 0.50 44.31± 0.23 58.93
F-correction 68.87± 0.06 64.11± 0.37 56.45± 0.59 46.44± 0.50 58.97

JoCoR 69.44± 0.16 66.91± 0.54 54.71± 0.42 39.76± 0.97 57.71
GCE 70.77± 0.14 69.22± 0.15 64.60± 0.25 51.72± 1.17 64.08

M-correction 69.44± 0.52 67.25± 0.81 63.16± 1.55 52.90± 1.79 63.19
DivideMix 74.00 ± 0.29 73.28± 0.42 72.84 ± 0.36 54.33± 0.69 68.61

GPL (ours) 71.94± 0.29 71.22± 0.11 70.56± 0.23 69.84 ± 0.41 70.89
DivideMix+ (ours) 73.49± 0.31 73.30 ± 0.22 72.36± 0.43 55.63± 0.60 68.70

5.2 Performance comparison

The results of all the methods under symmetric and asymmetric noise types on MNIST, FASHION-MNIST,
CIFAR-10, and CIFAR-100 are shown in Table 1 and Table 2. The results on Clothing1M and mini WebVision
are shown in Table 3 and Table 4. Furthermore, We delve into the reasons beyond these results in Section 6.
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Table 3: Test accuracy (%) on Clothing1M.
Methods Test Accuracy
Cross-Entropy 69.21
F-correction (Patrini et al., 2017) 69.84
M-correction (Arazo et al., 2019) 71.00
Joint-Optim (Tanaka et al., 2018) 72.16
Meta-Learning (Li et al., 2019) 73.47
PENCIL (Yi & Wu, 2019) 73.49
Dividemix (Li et al., 2020) 73.91
GPL(ours) 73.89
Dividemix+(ours) 74.14

Results on MNIST. DivideMix+ surpasses DivideMix
across symmetric and asymmetric noise at all noise ratios,
showing the effectiveness of the mini-batch SS strategy
in our framework. GPL performs worse than DivideMix
under symmetric noise while outperforming it under sym-
metric noise. In the cases of Symmetric 20% and 40%, Di-
videMix+ and M-correction perform better than the other
methods. When it comes to Asymmetric noise, GPL and
M-correction demonstrate better performance. However,
the performance of M-correction drops dramatically in the more challenging Symmetric 80% case where
DivideMix+ surpasses all the other algorithms.

Results on FASHION-MNIST. FASHION-MNIST is quite similar to MNIST but more complicated.
DivideMix+ still outperforms DivideMix on symmetric and asymmetric noise at all noise ratios. GPL still
performs worse than DivideMix under symmetric noise and better under symmetric noise. Under symmetric
noise, DivideMix+ outperforms most of other methods, while F-correction and GCE surprisingly achieve
comparable test accuracy under asymmetric noise.

Results on CIFAR-10. DivideMix+ constantly outperforms DivideMix, especially in the cases with higher
noise ratios. DivideMix+ achieves an improvement in the accuracy of +2.61% in Symmetric 80% and +1.34%
in Asymmetric 40% over DivideMix. We believe the reason is that the mini-batch SS strategy used in
our framework can better mitigate the confirmation bias induced from wrongly divided samples in more
challenging scenarios. In the easiest Symmetric 20%, 40%, DivideMix, DivideMix+ and GPL tie closely with
DivideMix+ slightly working better than the other two. In the harder cases (symmetric 60%, symmetric
80% and all asymmetric cases), GPL and DivideMix+ surpass the other methods over a large margin. GPL
shows superior performance under asymmetric noise.

Table 4: Test accuracy (%) on (mini) WebVision.
Methods Test Accuracy
F-correction (Patrini et al., 2017) 61.12
Decoupling (Malach & Shalev-Shwartz, 2017) 62.54
D2L (Ma et al., 2018) 62.68
MentorNet (Jiang et al., 2018) 63.00
Co-teaching (Han et al., 2018) 63.58
Iterative-CV (Chen et al., 2019) 65.24
Dividemix (Li et al., 2020) 77.32
GPL(ours) 77.84
Dividemix+(ours) 78.28

Results on CIFAR-100. There are 100 classes
in CIFAR-100, making it more challenging to train
than CIFAR-10. Coteaching tends to fail in CIFAR-
100 even under low noise ratios. In most cases, Di-
videMix+ and DivideMix achieve higher test accu-
racy than the other approaches, with DivideMix+
performing better. Specifically, DivideMix+ sur-
passes DivideMix by 14.82% in the hardest symmet-
ric 80% case. GPL is surpassed by DivideMix in
most cases except for the hardest symmetric 80%
and asymmetric 40% cases. An interesting phe-
nomenon is that all the approaches suffer from performance deterioration in the asymmetric 40% cases
except GPL, which significantly outperforms the second-best algorithm over +14%.

Results on real-world datasets. To show the robustness of our framework under real-world noisy labels,
we demonstrate the effectiveness of DivideMix+ and GPL on Clothing1M and mini WebVision. As shown
in Table 3, the performance of DivideMix+ is better than that of DivideMix and other methods. GPL is
slightly lower than DivideMix without using two networks for training. In Table 4, both DivideMix+ and
GPL outperform compared methods.

6 Ablation Studies and Discussions

In this section, we investigate our framework in depth to gain more insights. Specifically, we analyze the pros
and cons of different SS and SSL components, and also analyze the effects and efficiencies of the instantiations
of our framework, which sheds light on how SSL components affect SS process. Moreover, we conduct an
ablation study on training with two networks.
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(a) CIFAR-10 sym 80% (b) CIFAR-100 asym 40%

Figure 2: Results of ablation study. For (a) and (b), left: accuracy vs. epochs; right: precision vs. epochs.
6.1 The effects of mini-batch mechanism

In Table 5, the test accuracy of DivideMix+ constantly outperforms DivideMix in most cases. This is because
our mini-batch mechanism injects more stochasticity in training and reduces the harm of confirmation bias.
In Figure 2 (a) and (b), the precision of DivideMix+ outperforms DivideMix during the training process,
showing that our approach is better at finding clean instances. We also compare GPL (mini-batch) with
GPL (epoch) on CIFAR-10 in Appendix E.4.

6.2 The effects of different SS strategies

To study how SS strategies can affect the performance of our framework, we propose DivideMix- by re-
placing the GMM component in DivideMix with our self-prediction divider yet maintaining the epoch-level
SS strategy for a fair comparison. In CIFAR-10, the difference between DivideMix- and DivideMix is not
obvious in the lower noise ratios. However, in the most difficult symmetric 80% case, the test accuracy of
DivideMix is +12.69% higher than DivideMix- and the precision of DivideMix in Figure 2 (a) outperforms
DivideMix-. In CIFAR-100, the difference of test accuracy is even greater under symmetric noise. An im-
pressive phenomenon to note is that DivideMix- excels in the asymmetric 40% case in CIFAR-100 with the
highest precision and accuracy. This is because GMM distinguishes clean and noisy samples by fitting their
loss distribution, which works effectively for symmetric noise. However, for asymmetric noise, most sam-
ples have near-zero normalized loss due to the low entropy predictions of the network, causing performance
deterioration for GMM. Since SPD leverages the prediction of its own network to choose clean samples, its
performance is more sensitive to noisy rates rather than noise type.

6.3 The effects of different SSL backbones

We evaluate the effects of SSL backbones in our framework by combining the self-prediction divider (SPD)
with three different SSL methods and a baseline which only updates the model using the cross-entropy loss
calculated from clean samples. We denote them as SPD-Temporal Ensembling (TE), SPD-MixMatch (MM),
SPD-Pseudo-Labeling (PL), and SPD-Cross-Entropy (CE), respectively. For a fair comparison, we use the
“13-CNN” architecture (Tarvainen & Valpola, 2017) for all methods across different datasets. We keep most
hyperparameters introduced by the SSL methods close to their original papers (Arazo et al., 2020; Berthelot
et al., 2019; Laine & Aila, 2016), since they can be easily integrated into our framework without massive
adjustments. In Table 6, SPD-MM and SPD-PL outperform SPD-TE by a large domain in both CIFAR-10
and CIFAR-100, especially under 80% noise ratio. This phenomenon is reasonable because TE (Laine &
Aila, 2016) only uses consistency regularization for unsupervised loss, while MM (Berthelot et al., 2019) and
PL (Arazo et al., 2020) also leverage entropy regularization as well as MixUp data augmentation (Zhang
et al., 2018). Moreover, SPD-PL achieves remarkable test accuracy under 80% noise ratio in CIFAR-100.
This is due to the additional loss used in SPD-PL that prevents the model from assigning all labels to a
single class at the early training stage. From the results of SPD-CE, we can see that after the removal of the
SSL backbone, the test accuracy drops dramatically compared to SPD-MM and SPD-PL. This is due to the
substantial amount of data that has been removed by the SPD, leaving very few samples per class. Thus,
instead of discarding noisy samples, transferring them to unlabeled ones in SSL backbones is an effective
way to combat noisy labels.
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Table 5: Test accuracy (%) of DivideMix-, DivideMix, and DivideMix+.

Datasets Method
Symmetric Asymmetric
Noise ratio Noise ratio

20% 40% 60% 80% 10% 20% 30% 40%

CIFAR-10
DivideMix- 94.49± 0.02 93.64± 0.12 91.65± 0.34 76.61± 1.26 93.58± 0.02 92.87± 0.14 91.21± 0.21 90.42± 0.23
DivideMix 94.82± 0.09 93.95± 0.14 92.28± 0.08 89.30± 0.17 93.61± 0.15 92.99± 0.21 91.79± 0.36 90.57± 0.31

DivideMix+ (ours) 94.84 ± 0.12 94.03 ± 0.20 93.08 ± 0.19 91.91 ± 0.07 94.27 ± 0.23 93.92 ± 0.20 92.82 ± 0.28 91.91 ± 0.24

CIFAR-100
DivideMix- 72.51± 0.32 69.27± 0.46 61.13± 0.60 25.96± 0.78 73.62± 0.12 72.32± 0.24 70.64± 0.20 68.04 ± 1.24
DivideMix 73.17± 0.28 71.01± 0.16 66.61± 0.18 43.25± 0.82 74.00 ± 0.29 73.28± 0.42 72.84 ± 0.36 54.33± 0.69

DivideMix+ (ours) 73.22 ± 0.21 71.03 ± 0.32 67.52 ± 0.19 58.07 ± 0.71 73.49± 0.31 73.30 ± 0.22 72.36± 0.43 55.63± 0.60

Table 6: Test accuracy (%) of the baseline and three SSL backbones integrated into our proposed framework.
Dataset CIFAR-10 CIFAR-100
Method/Noise rate 20% 50% 80% 20% 50% 80%
SPD-Cross-Entropy 83.13± 0.16 79.74± 0.10 49.14± 0.15 45.07± 0.55 35.02± 0.57 10.22± 0.10
SPD-Temporal Ensembling 83.15± 0.06 80.16± 0.36 49.10± 0.13 46.16± 0.12 39.91± 0.60 12.37± 0.67
SPD-MixMatch 93.53± 0.52 90.22± 0.18 88.77± 0.20 72.89± 0.30 68.57± 0.20 33.92± 0.20
SPD-Pseudo-Labeling 94.52 ± 0.06 93.24 ± 0.36 90.27 ± 0.34 73.84 ± 0.48 68.61 ± 0.40 55.37 ± 0.34

The benefits of using SSL methods in our framework are in these aspects: (i) improving SS performance
incrementally and (ii) leveraging the potentially noisy samples to learn feature representation. For (i), as
shown in Figure 2 (a) and (b), the precision of GPL is higher than DivideMix+ and DivideMix. This is
because the SSL backbone used in GPL, i.e., Pseudo-Labeling, can better alleviate the confirmation bias
induced during the SS process and improve the prediction results. In this way, GPL can achieve competitive
test accuracy in CIFAR-10 sym 80% without co-training two models. This finding is more prominent
in CIFAR-100 asym 40%. For (ii), we visualize feature representations of GPL and DivideMix+ in 2-
dimensional embeddings using t-SNE (der Maaten & Hinton, 2008). Figure 3 presents the normalised 2D
embeddings of 500 randomly selected samples from each of two classes in CIFAR-10 sym 80%. We can see
that both GPL and DivideMix+ can accurately separate the clean instances of two classes (blue vs red).
As for noisy instances (magenta and cyan), the representations learned by GPL are more fragmented and
pushed away from clean clusters, showing that the SSL backbones of GPL is more effective in isolating noisy
samples from clean ones. However, DivideMix+ outperforms GPL in test accuracy because DivideMix+
leverage two models for training and testing to improve accuracy.

6.4 Efficiency analysis
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a) DivideMix+ b) GPL
Figure 3: Representations (t-SNE 2D embeddings) of two CIFAR-
10 classes, ‘cat’ and ‘truck’, learned by DivideMix+ (left) and
GPL (right), with 80% noise rate. Blue/red dots represent clean
samples of cat/truck, while magenta and cyan crosses represent
corrupted samples.

In Table 7, we study the efficiency of
these two components by dividing all our
instantiations into two parts and calcu-
lating their training time on CIFAR-10
sym 20% using an NVIDIA RTX 6000
GPU. We also break down the compu-
tation time per epoch (measured in sec-
onds) for the SS process (Alg. 1, line
5) and SSL process (Alg. 1, line 6).
For the efficiency of SS, DivideMix+
is much faster than DivideMix because
our per-minibatch SS strategy extracts
and divides each minibatch of data faster.
We can conclude that instantiations from
our framework work more efficiently than
simply combining SS and SSL compo-
nents. DivideMix- is faster than DivideMix, which shows that SPD (used by DivideMix-) is faster than
GMM. Moreover, GPL is much faster because only one network is trained. For the efficiency of SSL,
SPD-TE is faster than SPD-MM and SPD-PL because the last two methods need to take an additional
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MixUp operation. The small time differences between these three instantiations indicate that various SSL
backbones can be integrated into our framework efficiently.

Table 7: Comparison of training time on CIFAR-10.
Method GPL DivideMix+ DivideMix- DivideMix SPD-CE SPD-TE SPD-PL SPD-MM
Total 3.3 h 8.2 h 9.1 h 9.4 h 2.5 h 3.0 h 3.2 h 3.6 h
SS/epoch 9.2 s 12.1 s 15.5 s 18.2 s - 37.2 s 39.5 s 44.1 s

6.5 The Effectiveness and Efficiency of Two Networks

To study the effectiveness of training two networks on our instantiations, we compare six variants of our
framework on CIFAR-10: DivideMix (1 network), DivideMix (2 networks), DivideMix+ (1 network), Di-
videMix+ (2 networks), GPL (1 network), and GPL (2 networks). “1/2 network/networks” means the
instantiation without/with label co-refinement and co-guessing (Li et al., 2020). The results of test accuracy
and average training time are in Table 8. We observe that training with two networks provides a performance
boost for the corresponding instantiations. The performance at the high noise rate is more significant than
that of the medium noise rate. This is reasonable since the purpose of two diverged networks is to avoid
error accumulation (Li et al., 2020) during the training, a high noise rate will induce more errors for the
single model.

Table 8: Ablation Study of training with two networks on different instantiations on CIFAR-10.
Model Method Sym-40% Sym-80% Asym-40% Average training time

DivideMix 1 network 92.38 87.59 86.76 6.2 h
2 networks 93.76 89.33 90.66 9.5 h

DivideMix+ 1 network 92.50 90.66 89.36 5.4 h
2 networks 93.82 92.04 91.37 8.8 h

GPL 1 network 94.09 91.83 93.06 3.5 h
2 networks 94.68 93.38 93.75 5.2 h

6.6 Broader Impact

If the clean examples are incorrectly identified, the network could inadvertently ignore meaningful labels,
and vice versa, i.e., the network could learn from meaningless noise rather than clean labels. This motivates
a broad discussion about potentially catastrophic effects. We formalize a versatile framework that leverages
SS to select clean samples and SSL to fully use the noisy samples by removing their labels. And we believe
it will substantially impact labor-intensive jobs of checking data label quality, such as training models from
the web-crawled images (Schroff et al., 2010) and medical data analysis (Miotto et al., 2018). One potential
risk caused by the wrong sample selection process is the increased chances of the model over-fitting potential
outliers in the data that may lead to erroneous or misleading results, i.e., the misdiagnosing of patients. In
the future, we will develop more precious and safer SS strategies to alleviate this negative impact.

7 Conclusion

This paper proposes a versatile framework called SemiNLL for NLL. This framework consists of two main
parts: the mini-batch SS strategy and the SSL backbone. We conduct extensive experiments on benchmark-
simulated and real-world datasets to demonstrate that SemiNLL can absorb a variety of SS strategies and
SSL backbones, leveraging their power to achieve state-of-the-art performance in different noise scenarios.
Moreover, we thoroughly analyze the effects of the two components in our framework. Recommendations on
the choices of the components in our framework can be found in Appendix G. In future work, we hope to
develop more advanced algorithms guided by this framework to tackle noisy labels.
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A Datasets

MNIST and FASHION-MNIST contain 60K training images and 10K test images of size 28 × 28. CIFAR-
10 and CIFAR-100 contain 50K training images and 10K test images of size 32 × 32 with three channels.
Clothing1M is a large-scale real-world dataset that consists of one million training images of size 224× 224
from online shopping websites with labels annotated from surrounding texts. The estimated noise ratio is
approximately 40% Xiao et al. (2015). Webvision Li et al. (2017) contains 2.4 million images crawled from
the websites using the 1,000 concepts in ImageNet ILSVRC12Deng et al. (2009). Since the dataset is quite
large, for quick experiments, we use the first 50 classes of the Google image subset. We test the trained
models on the human-annotated WebVision validation set. The detailed characteristics of the datasets in
the experiments are shown in Table 9.

Table 9: Summary of datasets used in the experiments.
# of training # of test # of class size

MNIST 60,000 10,000 10 1 × 28 × 28

F-MNIST 60,000 10,000 10 1 × 28 × 28

CIFAR-10 50,000 10,000 10 3 × 32 × 32

CIFAR-100 50,000 10,000 100 3 × 32 × 32

Clothing1M 1,000,000 10,000 14 3 × 224 × 224

B Network Structure

For MNIST, we use a simple 2-layer MLP following Jocor Wei et al. (2020). For FASHION-MNIST, we use
a ResNet-18 He et al. (2016) following GCE Zhang & Sabuncu (2018). For CIFAR-10 and CIFAR-100, we
use the “13-CNN” architecture Tarvainen & Valpola (2017), which is shown in Table 10. For Clothing1M,
we use a ResNet-50 He et al. (2016) following DivideMix Li et al. (2020). For mini WebVision, we use
the inception-resnetv2 Szegedy et al. (2017).

Table 10: The “13-CNN” network architecture used in CIFAR-10 and CIFAR-100.
Layer Hyperparameters
Input 32× 32 RGB image
Convolutional 128 filters, 3× 3, same padding
Convolutional 128 filters, 3× 3, same padding
Convolutional 128 filters, 3× 3, same padding
Pooling Maxpool 2× 2
Convolutional 256 filters, 3× 3, same padding
Convolutional 256 filters, 3× 3, same padding
Convolutional 256 filters, 3× 3, same padding
Pooling Maxpool 2× 2
Convolutional 512 filters, 3× 3, valid padding
Convolutional 256 filters, 1× 1, same padding
Convolutional 128 filters, 1× 1, same padding
Pooling Average pool (6× 6→ 1×1 pixels)
Softmax Fully connected 128→ 10 (100)

C Construction of Noisy Labels

The datasets used in our experiments are FASHION-MNIST, CIFAR-10, and CIFAR-100. To add noisy
labels, we corrupt these datasets by two widely-used types of noisy labels: symmetric noise and asymmetric
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noise (Li et al., 2020; Zhou et al., 2021). Following these works, we manually corrupt the dataset by the label
transition matrix Q, where Qij = p(ỹ = j|y = i) given that noisy ỹ is flipped from clean y. For symmetric
noise, we inject the symmetric label noise as follows:

Q =


1− ϵ ϵ

C−1 · · · ϵ
C−1

ϵ
C−1

ϵ
C−1 1− ϵ ϵ

C−1
...

. . .
...

ϵ
C−1 1− ϵ ϵ

C−1
ϵ

C−1
ϵ

C−1 · · · ϵ
C−1 1− ϵ

 , (1)

where C is the number of classes, and ϵ is the noise ratio. Asymmetric noise is a well-known simulation of
fine-grained classification with noisy labels, where annotators may make mistakes only within very similar
classes. Its noise transition matrix Q (taking 6 classes as an example) is obtained as follows:

Q =


1 0 0 0 0 0
0 1− ϵ 0 0 ϵ 0
ϵ 0 1− ϵ 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 ϵ 0 0 1− ϵ

 . (2)

D Description of SS Methods

GMM. Since DNNs tend to learn simple patterns first before fitting noisy samples (Arpit et al., 2017),
clean/noisy samples have lower/higher loss during the early epochs of training. Therefore, we can determine
whether a sample is more likely to be clean or noisy based on its loss value. Given a classification loss ℓi

(e.g., cross entropy) of sample (xi, ỹi) in the dataset, we calculate the probability density function (pdf) of a
mixture model of k (in our case k = 2) components on the loss ℓi using Expectation-Maximization technique:

p(k | ℓi) = p(k) p(ℓi | k)
p(ℓi)

, (3)

where k = 0 (1) denotes the clean (noisy) set, and p(clean | ℓi) is the posterior of the smaller-mean (clean)
component of the GMM. The clean set X and Y the noisy set can be defined as

X = {(xi, ỹi) : p (clean | ℓi) ≥ τ} ,
U = {(xi, ỹi) : p (clean | ℓi) < τ} ,

(4)

where τ is a threshold on p(clean | ℓi).

SPD. Based on the phenomenon that DNN’s predictions tend to be consistent on clean samples and
inconsistent on noisy samples in different training iterations (Nguyen et al., 2020), we select the correctly
annotated samples via the consistency between the original label set and the model’s own predictions. If the
model predicts the class with the highest likelihood to be the annotated label, the sample (xi, ỹi) is divided
into the clean set X . Otherwise, the sample is divided into the noisy set U . To be more specific, the model
prediction ŷi is defined as

ŷi ≜ arg max
j∈{1,2,··· ,C}

F (xi; θ)[j], (5)

where C is the number of class, θ is the model parameters, and F (xi; θ) is the softmax output of the model.
The clean set X and the noisy set Y can be defined as

X = {(xi, ỹi) : ŷi = ỹi} ,
U = {(xi, ỹi) : ŷi ̸= ỹi} ,

(6)
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E Additional Experiment Results

E.1 Results on More Real-world Datasets

We test two more real-world datasets, Food-101N (Lee et al., 2018) and ANIMAL-10N (Song et al., 2019).
Food-101N is a dataset for food classification. It consists of 310,009 training images and 25,000 testing images
in 101 classes collected from the web. The estimated label purity is 80%. We use ResNet-50 pre-trained on
ImageNet and there are 30 epochs in total. ANIMAL-10N contains 10 animals with confusing appearances
downloaded online. There are 50,000 training and 5,000 testing images. The estimated label noise rate is
8%. We use VGG-19 with batch normalization and there are 100 epochs in total. As shown in Table 11 and
Table 12, we can conclude that our instantiation, DivideMix+, consistently outperforms all base methods,
including its epoch-wise variant, DivideMix. GPL achieves competitive results using a single model.

Table 11: Test accuracy (%) on Food-101N.

Method Accuracy
Cross-Entropy 81.53
CleanNet (Lee et al., 2018) 83.95
DeepSelf (Han et al., 2019) 85.10
DivideMix (Li et al., 2020) 85.64
DivideMix+ (ours) 86.93
GPL (ours) 86.59

Table 12: Test accuracy (%) on ANIMAL-10N.

Method Accuracy
Cross-Entropy 79.4
Dropout (Srivastava et al., 2014) 81.3
SELFIE (Song et al., 2019) 81.8
DivideMix (Li et al., 2020) 82.4
DivideMix+ (ours) 83.6
GPL (ours) 83.2

E.2 Sensitivity to the Batch Size of SS

We conduct a sensitivity analysis on the batch size of our two instantiations, DivideMix+ and GPL, on
CIFAR-10 Sym 80%. In Table 13, we observe that larger the batch size achieves better test accuracy since
extremely high noise mini-batch can be avoided. Too large batch size might result in performance degradation
because the model might be trapped in local optimum (Loshchilov & Hutter, 2016).

Table 13: The test accuracy (%) of DivideMix+ and GPL with different batch sizes on CIFAR-10 Sym 80%.
Batch size 32 64 128 256 512

DivideMix+ 90.36 91.41 91.97 92.04 91.63
GPL 88.46 90.16 91.81 91.83 91.03

E.3 Results of Different Model Architectures

We compared DivideMix, DivideMix+, and GPL on CIFAR-10 Sym-40%, Sym-80%, and Asym-40% noise
with three different model architectures. We observe that DivideMix+ and GPL outperform DivideMix
regardless of using deeper/wider networks. DivideMix+ outperforms GPL under high symmetric noise,
while GPL achieves better results on low noise ratio and asymmetric noise.

21



Under review as submission to TMLR

Table 14: Comparison between DivideMix, DivideMix+, and GPL using different model architectures in test
accuracy (%) on CIFAR-10. Key: WRN (Wide ResNet), PRN (PreActivation ResNet).

Model Method Sym-40% Sym-80% Asym-40%

13-CNN
DivideMix 93.76 89.33 90.66
DivideMix+ 93.82 92.04 91.37
GPL 94.09 91.83 93.06

PRN-18
DivideMix 93.02 90.94 91.60
DivideMix+ 93.18 92.92 93.12
GPL 94.64 90.92 93.44

WRN-28
DivideMix 92.72 90.11 90.79
DivideMix+ 93.26 92.57 92.06
GPL 93.35 90.52 92.28

E.4 Comparison between GPL (mini-batch) and GPL (epoch)

To demonstrate the effectiveness of our mini-batch SS, we also compare GPL (mini-batch) with GPL (epoch)
with a batch size of 256 on CIFAR-10 in Table 15. We observe that the test accuracy of GPL (mini-batch)
constantly outperforms GPL (epoch).

Table 15: The test accuracy (%) of GPL (epoch) and GPL (mini-batch) CIFAR-10.
Method Sym-40% Sym-80% Asym-40%

GPL (epoch) 93.13 88.96 91.55
GPL (mini-batch) 94.09 91.83 93.06

F Limitations

Mini-batch SS. Noise ratios in different mini-batches inevitably fluctuate since each mini-batch of data
is randomly sampled from the whole dataset. When the overall noise level is high and the batch size is too
small, the SS strategy might have trouble distinguishing clean and noisy samples in some severely corrupted
mini-batches, which may deteriorate the overall performance. For example, in DivideMix+, we apply GMM
to each mini-batch of data. The fluctuation of the noisy ratio in each mini-batch might result in inconsistent
data selection criteria (clean threshold). Moreover, we conduct a sensitivity analysis on the batch size of our
two instantiations, DivideMix+ and GPL, on CIFAR-10 Sym 80% in Appendix E.2.

SSL component. Under the symmetric noise, the labels are uniformly corrupted. If the SS strategy
can distinguish clean/noisy samples well enough, the class distribution in the labeled/unlabeled sets is
uniform. While under the asymmetric noise, the labels are flipped to similar classes, resulting in the class-
imbalanced labeled/unlabeled data. However, traditional SSL methods (Berthelot et al., 2019; Arazo et al.,
2020; Sohn et al., 2020) (including the SSL backbones of our instantiations) assume that the class distribution
of labeled and/or unlabeled data is balanced. In Table 1 (symmetric noise), methods using SSL (DivideMix,
DivideMix+, and GPL) outperform others in most cases. In Table 2(asymmetric noise), methods using
SSL perform slightly worse than other SOTA methods in MNIST and FASHION MNIST. Please be noted
that our framework can absorb the advantages of various SS and SSL methods. To deal with the class-
imbalanced issue in asymmetric noise, we can develop new instantiations using SSL methods designed to
tackle class-imbalance data (Kim et al., 2020; Wei et al., 2021a).
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G Choices of the Components in Our Framework

The components considered in our framework are: SS ∈ {GMM, SPD}, SSL ∈ {Temporal Ensembling,
MixMatch, Pseudo-Labeling}, SS scope ∈ {Mini-batch, Epoch}, number of networks ∈ {1, 2}. We conduct
a more systematic comparison by considering all the components mentioned above. We also make some
recommendations based on the comparison.

G.1 Choices of SS Scope

Analysis. The advantages and limitations of mini-batch SS compared to epoch-wise SS are thoroughly
discussed in Section 3.1 and Appendix F, respectively.

Empirical evidence. In Section 6.2, we demonstrated the benefit of mini-batch-wise SS over epoch-wise SS
by comparing DivideMix and DivideMix+. In Appendix E.4, we also compare GPL (mini-batch) with GPL
(epoch) on CIFAR-10. A sensitivity analysis of the batch size of mini-batch SS is conducted in Appendix ??.

Our recommendation. If we choose a bigger batch size, our mini-batch-wise SS can be effective for both
symmetric and asymmetric noise. From the sensitivity analysis on the batch size, the batch size needs to
be bigger than 64 to avoid the fluctuation of the noisy ratio in each mini-batch. Thus, in the following
comparisons, we only use mini-batch-wise SS with a batch size of 256.

G.2 Choices of Number of Networks

Analysis. The purpose of two diverged networks is to avoid error accumulation (Li et al., 2020) during the
training. Under high noise rates, more errors will be induced during the training of a single model. Thus,
training with two diverged networks is more effective in severely corrupted datasets. The drawback is the
increase in training time and computational resources.

Empirical evidence. In Section 6.5, we demonstrated the effectiveness and efficiency of training with two
networks.

Our recommendation. Using two networks can boost performance for the corresponding instantiations,
especially at high noise rates. The shortcoming of using two networks is the increase in training time. So it
might not be necessary at low noise rates or on simple datasets (MNIST). In the following comparisons on
CIFAR-10, we will use two networks for all instantiations for a fair comparison.

G.3 Choices of Different SS and SSL Combinations

The methods considered in this work are SS ∈ {GMM, SPD}, SSL ∈ {Temporal Ensembling, MixMatch,
Pseudo-Labeling}. We combine each SS and each SSL method to conduct a systematic comparison in
Table 16. We denote these instantiations as “SS” + “SSL”. Please be noted that mini-batch SS and two
networks are used in all the instantiations according to previous recommendations.

Table 16: The test accuracy (%) of instantiations of different SS and SSL methods under high/low symmetric
noise in CIFAR-10.

Noise type SS\SSL Temporal Ensembling MixMatch Pseudo-Labeling

Sym-40% GMM 85.79 93.82 94.68
SPD 84.60 92.68 94.33

Sym-80% GMM 54.37 92.04 93.38
SPD 51.56 90.98 92.20

Asym-40% GMM 64.53 91.37 93.75
SPD 68.74 92.11 92.14

We discovered some general rules and synergistic pairs when combining different SS and SSL methods using
our framework:
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(i) General rules regarding SS: Under symmetric noise, instantiations with GMM achieve higher test accuracy
than instantiations with SPD, while the results are reversed under asymmetric noise. This is because GMM
distinguishes clean and noisy samples based on their loss distribution. For asymmetric noise, most samples
have near-zero normalized loss due to the low entropy predictions of the network (Li et al., 2020), causing
performance deterioration for GMM. Since SPD leverages the prediction of its network to choose clean
samples, its performance is more sensitive to noisy rates rather than noise type.

Our recommendation. For symmetric noise and high noise ratios, GMM should be used as the SS
strategy. For asymmetric noise, SPD should be used as the SS strategy. For low noise ratios, SPD might be
more computationally efficient (Table 7) in achieving competitive test accuracy.

(ii) General rules regarding SSL: Instantiations with Temporal Ensembling are much worse than those
with MixMatch and Pseudo-Labeling because Temporal Ensembling only uses consistency regularization for
unsupervised loss. In general, instantiations with Pseudo-Labeling achieve higher accuracy than the other
two because the regularization term used in Pseudo-Labeling prevents the model from assigning all labels to a
single class at the early training stage. From the results of Asym 40%, we observe performance degrade of all
SSL methods, especially Temporal Ensembling, combined with the same SS method (even though SPD can
alleviate the harm of asymmetric noise). This is because the class distribution in the labeled/unlabeled sets
after the SS process is class-imbalanced under the asymmetric noise. However, all the methods considered
in this paper assume that the class distribution of labeled and/or unlabeled data is balanced.

Our recommendation. Our guidance is to select a suitable SSL method for the corresponding la-
beled/unlabeled sets after the SS process instead of “using the strongest SSL algorithm” to achieve the
best test accuracy. For example, if the class distribution of labeled/unlabeled sets is (close to) balanced, we
can choose more advanced mainstream SSL methods (Sohn et al., 2020; Zhang et al., 2021) as long as we
take into account computational resources and efficiency. If labeled/unlabeled sets are class-imbalanced, we
can choose SSL methods specifically designed to tackle class-imbalance data (Kim et al., 2020; Wei et al.,
2021a).

(iii) Synergistic combination: We surprisingly find that GMM + Pseudo-Labeling, the two-network version
of the original GPL, achieves the best performance in all settings, including the asymmetric noise where
SPD is supposed to be stronger.

Our recommendation. GMM + Pseudo-Labeling achieves the best performance for both symmetric
and asymmetric noise. We believe its superior performance benefits from the conceptually simple idea of
Pseudo-Labeling to reduce confirmation bias generated from the SS process. Please be noted that Pseudo-
Labeling was not published at top conferences. That being said, we will keep exploring the possibility of
more combinations of SS and SSL based on our framework to figure out the chemistry in between, instead
of just simply piling up SOTA SS and SSL methods published in top conferences.

H Illustrations

To better understand the differences between DivideMix-, DivideMix, and DivideMix+, their illustrations
are shown in Figure 4 (a), (b), and (c), respectively.
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Figure 4: Comparisons between: (a) DivideMix-, (b) DivideMix, and (c) DivideMix+. Squares represent
data. Circles represent SS strategy. Octagons represent SSL backbone.
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