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Abstract
In this work, we introduce DOPRA, a novel approach designed
to mitigate hallucinations in multi-modal large language models
(MLLMs). Unlike existing solutions that typically involve costly sup-
plementary training data or the integration of external knowledge
sources, DOPRA innovatively addresses hallucinations by decod-
ing specific weighted layer penalties and redistribution, offering
an economical and effective solution without additional resources.
DOPRA is grounded in unique insights into the intrinsic mech-
anisms controlling hallucinations within MLLMs, especially the
models’ tendency to over-rely on a subset of summary tokens in
the self-attention matrix, neglecting critical image-related infor-
mation. This phenomenon is particularly pronounced in certain
strata. To counteract this over-reliance, DOPRA employs a strategy
of weighted overlay penalties and redistribution in specific layers,
such as the 12th layer, during the decoding process. Furthermore,
DOPRA includes a retrospective allocation process that re-examines
the sequence of generated tokens, allowing the algorithm to reallo-
cate token selection to better align with the actual image content,
thereby reducing the incidence of hallucinatory descriptions in
auto-generated captions. Overall, DOPRA represents a significant
step forward in improving the output quality of MLLMs by sys-
tematically reducing hallucinations through targeted adjustments
during the decoding process.
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The image features a young girl wearing a pink dress, standing in a 

living room and playing a video game. She is holding a Nintendo 

Wii controller in her hands, engaged in the gaming experience.

The living room is furnished with two couches, one on the left side 

and the other on the right side of the room. The girl is positioned in 

the middle of the room, between the two couches.

The image features a young girl wearing a pink dress, standing 

in a living room and playing a video game on a Nintendo Wii 

console. She is holding a Wii remote in her hand, engaged with 

the game.

The living room is furnishing with a couch in the background 

and a chair nearby. The girl appears to be enjoying her gaming 

session on the Wii.

The image features a young girl wearing a pink dress, standing 

in a living room and playing a video game on a Nintendo Wii 

console. She is holding a Wii remote in her hand, fully engaged 

with the game.

The living room is furnishing with a couch in the background 

and a chair nearby. The girl appears to be enjoying her gaming 

session on the Wii.
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Figure 1: Compare results of LLaVA-1.5 with DOPRA and
OPERA.

1 Introduction
Recently, Multimodal Large Language Models (MLLMs)[1, 2, 13,
15, 32, 38, 48, 55, 58, 63] have made groundbreaking advancements,
fundamentally altering the way AI interacts with visual data and
significantly enhancing fluent communication based on image se-
mantic content. Despite their remarkable performance in handling a
range of visually-centered tasks [4, 7, 8, 25, 29, 30, 57], understand-
ing complex contexts[23, 59], or generating coherent narratives
[4, 6, 25], MLLMs still grapple with a profound challenge: the "hallu-
cination" problem. This refers to instances where MLLMs generate
inaccurate or disjointed responses to visual inputs by incorrectly
identifying nonexistent objects, attributes, or relationships within
provided images. Such errors carry significant risks, particularly in
high-stakes applications like autonomous driving [41, 45], where
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misinterpreting visual cues could lead to life-threatening situations.
While numerous methods [36, 42, 49, 52, 62] have been proposed
to tackle hallucination issues, these often require costly interven-
tions such as fine-tuning with annotated data [28], incorporating
auxiliary models, or leveraging external knowledge sources.

This paper delves into addressing the hallucination conundrum
during MLLMs’ reasoning process without relying on supplemen-
tary data, external models, or specialized knowledge. Our investi-
gation stems from a novel discovery related to what we term as
"summary tokens" in the generation sequence, where attention
weights accumulate early on. Analogous to recently discovered "an-
chor tokens" in the NLP domain [50], our analysis of self-attention
graphs reveals a recurring pattern that frequently follows the gener-
ation of tokens with columnar attention structures, often leading to
hallucinatory content. These summary tokens themselves tend not
to carry substantial informational content (such as punctuation).
However they appear to play a critical role in aggregating prior
knowledge and guiding subsequent sequence generation.

The reliance on this aggregation pattern seems to induce hal-
lucinations in contemporary MLLMs. To delve deeper into this
phenomenon and provide a visual representation of the existence
and impact of "summary tokens" in the generated sequences, we
conducted theoretical analyses of their potential roles in text gener-
ation and detailed visualization of all tokens’ self-attention weights.
The experimental results show that there indeed exist specific to-
kens with disproportionately high attention weights relative to
others. These high-weight tokens act as pivotal hubs, condensing
the core meaning from preceding generated content. Typically,
visual-related tokens are placed at the beginning of the sequence
to ground the model’s response in visual comprehension. However,
as the generated text grows longer, visual information can become
diluted through these summary tokens since they fail to adequately
encapsulate the visual context’s entire richness. Consequently, later
tokens may overly depend on recent summary tokens while disre-
garding initial image-representative markers, thereby giving rise
to model-bias-induced hallucinations; for example, inferring the
presence of a "car" or "person" merely from the mention of "road"
earlier in the sentence. Moreover, an increased number of summary
tokens tends to exacerbate the likelihood of MLLM hallucinations.

Figure 2: Attention weighting graph comparison. Layer 8
weight maps are shown on the left and layer 12 weight maps
are shown on the right.

An example of LLaVA’s hallucinations can be seen in Fig. 1. After
experiments, we find that this kind of weight stacking actually exists
in transformer’s middle layer (for example, 12-20 layers), which is
called "premature stacking".

Upon further scrutiny of the visualized attention weight maps,
it is revealed that these highly accumulated weights do not develop
gradually towards the end of decoding but instead start accumu-
lating relatively early in the generation sequence. As shown in Fig.
2, the accumulation of attentional weights becomes very obvious
from layer 12 onwards, accumulating much more than layer 8.

To tackle this issue of "premature stacking," we introduce DO-
PRA, an innovative decoding framework built around two core
strategies: Decoding Over-accumulation Penalization at specific
attention layers and Re-allocation. DOPRA ingeniously integrates
over-accumulation penalties into the beam search [5, 16, 47] pro-
cess by applying weighted scores to candidate selections, effec-
tively preventing tokens that exhibit strong patterns of over-trust.
Specifically, for each decoding token, DOPRA inspects its local
self-attention window, devising a column-wise metric to measure
the strength of knowledge aggregation patterns and adjusts the
model’s log-probabilities accordingly to penalize the emergence of
such patterns.

In addition, recognizing the persistence of knowledge aggrega-
tion patterns and the potential for hallucinations to permeate all
candidate generations, DOPRA implements a retrospective real-
location strategy. This strategic retreat involves rolling back the
decoding process to the position of summary tokens and judiciously
reselecting candidates that bypass excessive accumulation patterns.
Once an accumulated penalty score reaches a predefined threshold
within the attention window, this rollback mechanism is triggered.

In this study, we specifically focus on vividly demonstrating the
intrinsic connection between generated text tokens and their corre-
sponding image attention regions. To this end, we visualize the top
50most relevant highly responsive regions in the generated text (see
Fig. 6). By combining textual information with visual embeddings,
we are able to efficiently generate representative tokens for LLM
that capture key visual features. Finally, by generating heat maps,
we can visually check whether the generated text matches well with
the corresponding image content. This approach not only gives us
insight into how themodel integrates textual and visual information
during the generation process, but also allows us to clearly identify
which visual elements play a decisive role in the generation process.
Through this methodology, we not only deepen our understanding
of the intrinsic workingmechanism of multimodal languagemodels,
but also visualize the interactions between the generated text to-
kens and the attentional high-response regions of the images, thus
enhancing the transparency of the model and the interpretability
of the generated content. We conduct extensive empirical evalu-
ations on benchmark datasets, employing hallucination-specific
metrics, and testing advanced MLLMs, thereby substantiating DO-
PRA’s effectiveness in universally reducing hallucinations across
various MLLM architectures. Our contributions can be summarized
as follows:

• DOPRA presents an innovative solution that addresses hallu-
cination issues inMLLMs during inference without requiring



DOPRA: Decoding Over-accumulation Penalization and Re-allocation in Specific Weighting Layer MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

external data, knowledge repositories, or additional training
procedures.

• Through meticulous examination, DOPRA identifies the crit-
ical role played by summary tokens in the formation of hallu-
cinations and develops a penalty-based decoding technique
augmented with a backtracking reallocation strategy to dis-
rupt excessive accumulation dynamics.

• Comprehensive evaluations demonstrate DOPRA’s superior
performance, proving it to be a practically cost-free interven-
tion that effectively mitigates hallucinations in multimodal
language models, thereby enhancing the credibility and reli-
ability of these powerful AI tools in real-world applications.

2 Related Work
2.1 MLLM Development and Capacity
In recent years, Multimodal Large Language Models (MLLMs)[1, 2,
9, 10, 13, 32–34, 38, 48, 51, 63] have rapidly emerged and become
the focus of both academia and industry. Since 2021, a series of
representative models such as CLIP [43] and BLIP [26, 27] have pi-
oneered large-scale pre-trained multimodal models, demonstrating
the powerful ability to deeply integrate natural language with vi-
sual information, enabling accurate image description, cross-modal
reasoning, and other functions. Entering 2023, this field is even
more explosive, including but not limited to GPT-4V [1], LLaVA
[38], minGPT-4 [63], InstructBLIP [13], Qwen-VL [2], CogVLM [51],
and many other new multimodal macromodels have emerged one
after another, which further enhance the model’s ability of under-
standing and generating multimodal inputs, and make the MLLM
get closer and closer to the general-purpose Artificial Intelligence
[3, 18] in its ideal form.

2.2 Two-Track Path to MLLM Development
The current research and development of multimodal large models
show two paths. On the one hand, researchers focus on continu-
ously expanding the training dataset and model parameter sizes of
the models in the hope of significantly improving their accuracy
and generalization performance by increasing the model capacity.
The new generation of multimodal large models, such as LLaVA-1.6-
34B [38], GPT-4V [1], InstructBLIP [13], etc., are strong examples
of this development trend, which have demonstrated their excel-
lent capabilities in various complex multimodal tasks by virtue
of their large number of parameters and rich training resources.
However, although such large models continue to break the perfor-
mance ceiling, the theoretical and technical challenges behind them
cannot be ignored, especially in terms of resource consumption
and computational efficiency. On the other hand, another research
direction is to explore the intrinsic potential of small multimodal
models [11, 54, 61, 64], and seek to achieve comparable or even
similar functional effects as those of large-scale models in a smaller
parameter space. The goal of this path is to optimize the model
structure and training methods so that it can perform efficient
multimodal understanding and generation under limited hardware
conditions and computational costs. Although some breakthroughs
have been made in such efforts, even the increasingly sophisticated
small-scale models are still unable to completely escape from the
"hallucination", a core problem shared by large multimodal models.

2.3 Strategies for Solving the MLLM
Hallucination Problem

The term "hallucination" [17, 22, 31, 37, 40, 56] refers to the fact
that multimodal models, when processing multimodal inputs, some-
times produce content that does not correspond to the actual inputs
or is even fictitious. Aiming at this key problem, which seriously
affects the credibility and practicality of models, the academic com-
munity has carried out a lot of fruitful research work and pro-
posed several innovative solutions. Among them, RLHF [46, 53, 60]
(Reinforcement Learning from Human Feedback) is an approach
that relies on human feedback reinforcement learning techniques,
which manually evaluates and guides model outputs, prompting
the model to pay more attention to factual basis and logical consis-
tency in the subsequent generation process. DoLa [12] improves
the model’s ability to capture and reproduce factual information
when generating text by comparing the decoded information at
different levels within the model. The Woodpecker [52] takes a
two-stage approach to hallucination, first optimising the model ini-
tially with DINO [39] (a self-supervised learning framework), and
then correcting the model’s multimodal outputs by combining it
with image captioning techniques. The OPERA [20] research team
proposes a novel strategy to effectively mitigate the false infer-
ences and hallucination representations generated by multimodal
large models due to over-trusting one modality when processing
complex scenes by applying the Over-Trust Penalty and Retrospec-
tion Allocation mechanisms. In the specific application scenarios of
visual-linguistic modelling, the VCD [24] technique helps to iden-
tify and correct the object hallucination that may occur when the
model is describing or reasoning about an image by introducing the
visual contrast decoding link. In conclusion, whether following the
traditional route of increasing model size or seeking the innovative
path of efficient small-scale models, suppressing the "hallucination"
phenomenon of large multimodal models has become an important
issue of common concern to researchers, and substantial progress
has been made in several cutting-edge researches. These strategies
not only enrich the design and optimisation of multimodal models,
but also lay a solid foundation for the construction of more accurate,
reliable and universal multimodal intelligent systems in the future.

3 Method
In this section, we will first show the model generation process by
introducing the modeling framework of MLLM. Then we will talk
about DOPRA’s Over-Accumulation Penalization and Re-allocation
Decoding Strategies as shown in Fig. 3. Finally, it will be shown
how high response works.

3.1 Anatomy of MLLM generation mechanism
Integration of Input Constructs. For the input construction
phase of MLLM, the core is integrating two types of data sources:
image and text. Regardless of the specific architecture, such models
usually employ a visual coder to extract visual element features
from the original image, and then transform and incorporate these
features into the input space of the language model through a cross-
modal mapping mechanism. We label this set of transformed visual
elements as the set 𝑥𝑣 = {𝑥0, 𝑥1, ..., 𝑥𝑁−1}, where 𝑁 represents the
number of visual elements and is fixed in many cases. Meanwhile,
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Figure 3: The structure of Our method. The decoding method uses our proposed DOPRA. "Text-Correlated Attention Heatmap
Generator" performs heatmap generation for 𝐸𝑡 , the pseudo-code of which we put into the supplementary material.

the textual input is processed by the disambiguation technique
and is represented as the sequence 𝑥𝑝 = 𝑥𝑁 , 𝑥𝑁+1, ..., 𝑥𝑀+𝑁−1. Fi-
nally, these two types of tokens are sequentially spliced to form the
complete input sequence {𝑥𝑖 }𝑇−1𝑡=0 , where 𝑇 is the sum of the total
number of tokens of the image and text, 𝑇 = 𝑁 +𝑀 .
Model forward propagation. The MLLM follows an autoregres-
sive model for training and uses a causal attention mechanism.
Within the model, each token predicts the immediately following
token based on the information of all the tokens preceding it, which
is mathematically formulated as:

ℎ = 𝑀𝐿𝐿𝑀 (x𝑖 )
ℎ = {ℎ0, ℎ1, . . . , ℎ𝑇−1}

(1)

Here, ℎ is the sequence of hidden state vectors output by the last
layer of the MLLM. Next, the model uses the vocabulary header
mapping function 𝐻 to map the hidden state into a probability
distribution for the next token prediction:

𝑝 (𝑥𝑡 |𝑥<𝑡 ) = 𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥 [𝐻 (ℎ𝑡 )]𝑥𝑡 , 𝑥𝑡 ∈ 𝑋 (2)

Here x<𝑡 is a compact representation of all previous tokens, and X
represents the entire vocabulary set.
Diverse Decoding Strategies. Based on the predicted probability
distribution 𝑝 (x𝑡 |x<𝑡 ) of each token obtained from the above com-
putation, various decoding algorithms have been developed in the
industry, such as the Greedy Decoding Method, the Beam Search
algorithm, and advanced decoding strategies such as DoLa [12] and
OPERA [20]. In the actual generation process, new tokens decoded
at each step are added to the end of the original input text as the
starting point for the next round of generation. OPERA visualizes
the last layer of self-attention weights of the generated content
by visualizing the last layer of self-attention weights. It develops
a penalty strategy to enable it to reduce the impact of excessive
accumulation of attention weights. However, there is a shortcoming
that OPERA only investigates the occurrence of stacking at layer
32. We found that the accumulation of attention weights is not only

in 32 layers, but also in 32 layers, and the hallucination is actually
generated "early".

3.2 "Over-accumulation" Attention-based
Penalty

As shown in Fig. 4, in addressing the issue of delayed manifesta-
tion—whereby patterns indicative of over-reliance on potentially
hallucinated information emerge only after several tokens have
been decoded—we introduce the "Over-accumulation Attention
Penalty" mechanism. This approach cumulatively applies a penalty
to the beam search scores during generation, this method selec-
tively targets and penalizes the accumulation of attention weights
in a specified layer, particularly the 12th layer,influencing both
the current token selection and the overall candidate sequences,
thereby reducing the likelihood of selecting outputs containing
hallucinations.

To realize this concept, we focus on the self-attention weights
in the 12th layer local context window. Consider the generated
sequence until time step 𝑡 , denoted as {𝑥𝑖 }𝑡−1𝑖=0 , and the causal self-
attention weights used in Layer 12 to predict the next marker
{𝜔𝑡−1, 𝑗 }𝑡−1𝑗=0 pertaining to the next token prediction, where 𝜔 =

𝑆𝑜 𝑓 𝑡𝑀𝑎𝑥

(
𝑄𝐾⊤
√
𝐷

)
, and 𝑄,𝐾, 𝐷 represent query, key features, and

the feature dimension, respectively. To capture the accumulation
of knowledge aggregation patterns, we define a layer-specific local
window of attention𝑊 𝑡−1

𝑘
for layer 12 as follows:

𝑊
𝑡−1,𝑎=12
𝑘

= {𝑤𝑎𝑖 }
𝑡−1
𝑖=𝑡−𝑘 ,where𝑤

𝑎
𝑖 = {𝜔𝑎𝑖,𝑗 }

𝑡−1
𝑗=𝑡−𝑘 and 𝑎 = 12 (3)

Here, 𝑘 represents the size of the local window cropped from
the attention map, and 𝜔𝑖, 𝑗 is the attention weight given by token
𝑗 to token 𝑖 . Notably, we exclude attention weights from image
tokens or prompt tokens, focusing exclusively on generated tokens
(𝑡 − 𝑘 ≥ 𝑁 + 𝑀). Additionally, we take the maximum attention
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Figure 4: The flow chart of DOPRA’s decoder. The tokens of LLaVA1.5 are divided into system token, image token, user token
and answer token. DOPRA carries out attention accumulation penalty for answer token.

weight across multi-heads and renormalize these values as they
often reflect high model confidence.

Upon obtaining𝑊 𝑡−1
𝑘

, we preprocess the attention weights by
setting the upper triangle to zero and scaling up the remaining
attention values for better representation, as shown in Equation :

𝑊
𝑡−1,𝑎=12
𝑘

≜ {𝑤𝑎𝑖 }
𝑡−1
𝑖=𝑡−𝑘 ,where𝑤

𝑎
𝑖 = {𝜎𝜔𝑎𝑖,𝑗 }

𝑖+1
𝑗=𝑡−𝑘 , for 𝑎 = 12

(4)
The scaled attention matrix’s lower triangle undergoes column-

wise multiplication to generate a vector of scores, where higher
scores suggest stronger knowledge aggregation patterns. The maxi-
mum value of this column-wise score vector serves as the pattern’s
descriptor:

𝜙12 (𝜔12
≤𝑡 ) =

𝑡−1∏
𝑐=𝑡

𝜎 (𝑤12
𝑖,𝑐 ), 𝑐 = arg max

𝑡−𝑘≤ 𝑗≤𝑡−1

𝑡−1∏
𝑡− 𝑗

𝜎 (𝑤12
𝑖, 𝑗 ) (5)

To efficiently apply the penalty without distorting the model’s
predictions towards unreasonable outputs, we form a candidate
set 𝑌 comprising the top-𝑁𝑐𝑎𝑛 logits from each beam, where |𝑌 | =
𝑁𝑐𝑎𝑛 × 𝑁𝑏𝑒𝑎𝑚 and 𝑁𝑏𝑒𝑎𝑚 is the number of beams. Then, we inte-
grate the pattern metric 𝜙 (𝑤≤𝑡 ) into the model logits to predict the
next token while constraining it within 𝑌 :

𝑝 (𝑥𝑡 |𝑥<𝑡 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 [𝐻 (ℎ𝑡 ) − 𝛼12 · 𝜙12 (𝑤12
≤𝑡 )]𝑡𝑥 , s.t. 𝑥𝑡 ∈ 𝑌 (6)

Here, 𝑤≤𝑡 summarizes all attention weights up to time step 𝑡 ,
and 𝛼 is a tunable hyperparameter controlling the strength of the

penalty applied to the logit. By introducing the "Over-accumulation
Attention Penalty" with attention weight 𝛼 = 12 specifically em-
phasized, we aim to mitigate the risk of over-trust in potential
hallucinations and guide the model toward more reliable genera-
tions.

3.3 Penalization and Re-allocation Strategy
Utilizing the "Over-accumulation" attention-based Penalty, we can
proficiently detect the emergence of knowledge aggregation pat-
terns after the generation of several consequent tokens. Ordinarily,
the penalty discourages candidates exhibiting these patterns, thus
encouraging the selection of others. Despite this, there are instances
where all candidates are penalized even though hallucination has
already taken place. This situation drives us to revisit the root
cause of these aggregation patterns: they arise from early tokens
excessively trusting the summary token, and the penalty fails to
rectify this over-reliance. Therefore, a natural yet assertive solution
is to eliminate tokens leading to hallucination and reallocate by
choosing suitable tokens after the summary token. This leads us to
propose the Retrospective Allocation strategy.

When the decoding process encounters a knowledge aggregation
pattern and hallucination appears unavoidable, it reverses to the
summary token and selects alternative candidates for the next
token prediction, excluding those chosen earlier. The empirical
condition for triggering retrospective decoding is based on the
location overlap of the maximum values in the column-wise scores
corresponding to multiple successive tokens, with a manually set
threshold count denoted as 𝑟 . Location counting proves more robust
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and general compared to directly using the maximum value that
varies across different models.

The complete retrospective process is detailed in Fig. 4. Lever-
aging the insights from Section 3.2, we can easily determine the
location coordinate 𝑐 of the maximum score through Eq. (5). Follow-
ing this, we establish the set of location coordinates for the recently
decoded tokens 𝑥𝑡−𝑙 , . . . , 𝑥𝑡−1, which is given by:

𝐶 = {𝑐 : 𝑐 = arg max
𝑡−𝑘≤ 𝑗≤𝑧

𝑧∏
𝑖=𝑗

𝜎 (𝑤𝑖, 𝑗 ), 𝑧 ∈ [𝑡 − 𝑙, 𝑡 − 1]} (7)

Here, 𝑙 > 𝑟 is usually specified, and by default, we set 𝑙 = 𝑘 .
Given a sequence {𝑥0, 𝑥1, . . . , 𝑥𝑡−1} and its associated recent

location coordinate set 𝐶 , we can assess the consistency of these
coordinates. Formally, the overlap count is calculated as:

𝑁𝑜𝑣𝑒𝑟𝑙𝑎𝑝 =
∑︁
𝑐∈𝐶

𝐼𝑐=𝑠 , where 𝑠 = Mode(𝐶) (8)

𝐼 is the indicator function returning 1 if the condition holds
and 0 otherwise, and Mode gives the most frequent value in a set.
If 𝑁𝑜𝑣𝑒𝑟𝑙𝑎𝑝 ≥ 𝑟 , we initiate the retrospective action, considering
𝑠 = Mode(𝐶) as the position of the summary token.

In the event that the sequence {𝑥0, 𝑥1, . . . , 𝑥𝑠 , . . . , 𝑥𝑡−1} displays
a knowledge aggregation pattern at the summary token 𝑥𝑠 , the
decoder rewinds to the subsequence {𝑥0, 𝑥1, . . . , 𝑥𝑠 } and selects a
new next token from the complementary set 𝑌 \ {𝑥𝑠+1}. To en-
sure progressive rollback, we require that the rollback location 𝑠
monotonically increases. Moreover, we impose a maximum rollback
limit 𝛽 ; if 𝑥𝑠 reaches its rollback cap, we consider rolling back to
{𝑥0, 𝑥1, . . . , 𝑥𝑠−1}.

3.4 High-Response Region Visualization and
Cross-modal Interaction

To explore the relationship between generated text tokens and their
correspondence with image attention in a more vivid manner, we
visualize the high-response regions of the top 50 scores in Fig. 5.
Given user input, we generate a text-guided query vector 𝑄𝑡 ∈
R𝑀×𝐶 , where𝑀 denotes the number of queries. As shown in Fig.
3, this cross-modal interaction primarily occurs within the text
decoder and can be readily instantiated using BERT [14] or Q-
former [26] models. The generated text query 𝑄𝑡 encapsulates
salient visual cues that are most relevant to the user’s command.

Employing the text query 𝑄𝑡 along with the visual embeddings
𝑋𝑣 , we can effectively generate representative tokens for the LLM
that capture essential visual features. Specifically, the mixed atten-
tion mechanism aims to aggregate and condense visual features
related to the text into a single context token. This process, de-
picted in Fig. 3, takes𝑄𝑡 and 𝑋𝑣 as inputs and formulates the mixed
embedding of text and image, 𝐸𝑡 ∈ R1×𝐶 , as:

𝐸𝑡 = 𝑄𝑡 × 𝑋𝑇𝑣 , (9)
Contrary to Q-former, which employs 32 visual queries as LLM

markers, our approach uses only the text query 𝑄𝑡 to aggregate
visual features with high response scores relative to the input com-
mand. Consequently, the compressed embedding 𝐸𝑡 efficiently re-
tains the most critical visual cues associated with the user’s input.

Finally, by normalizing 𝐸𝑡 and creating a heatmap, we can visu-
ally inspect whether the generated text corresponds well with the
corresponding image content. Through this method, not only do
we gain insight into how the model combines textual and visual
information during generation, but we also clearly discern which
visual elements play a decisive role in the generative process.

4 Experiment
4.1 Experimental Setup
Decoding strategies. Regarding decoding strategies, we have ex-
ecuted a variety of approaches for comparison and optimization.
These include greedy decoding, which selects words at each step
based on their highest probability; beam search [5, 16, 47] decod-
ing with varying numbers of beams (𝑁𝑏𝑒𝑎𝑚 set as 5, 4, 3, 2, 1),
allowing us to explore the impact of different search space widths;
top-p nucleus sampling [19], using a standard setting of 𝑝 = 0.9
to concentrate on the main body of the probability distribution;
and the introduction of VCD [24] method that addresses object
hallucination issues in large-scale models.For specialized decoding
algorithms, like the DoLa [12] method designed to mitigate hallu-
cinations in LLMs, within our experiments, we selected multiple
candidate pre-mature layer indices ("0, 2, 4, 6, 8, 10, 12, 14") along
with a fixed mature layer index at 32 to achieve fine-grained control
over the internal decision-making process of the model.During the
beam search decoding phase in the DOPRA experiment, we also set
the scaling factor 𝜎 to 50 to ensure effective discrimination of at-
tention weights in the knowledge aggregation mode, where salient
regions receive values greater than 1 while secondary areas get less
than 1. Moreover, we established a default candidate number Ncan
of 5, understanding that this hyperparameter can be adjusted but,
in this experimental stage, we primarily study performance under
default settings, considering that larger Ncan values could signif-
icantly increase the computational cost of the decoding process.
Implementation details. Lastly, for other key hyperparameters
influencing the decoding behavior in the LLaVA-1.5 model, we uni-
formly set 𝛼 = 1 , 𝛽 = 5, and 𝑟 = 15, these configurations help
maintain a stable experimental environment and allow us to focus
on the effectiveness analysis of the proposed decoding strategies.

In summary, the DOPRA experiment delves deeply into exploring
the performance boundaries of the LLaVA-1.5 model on multimodal
tasks by employing a series of meticulously designed decoding
strategies and parameter tuning. The aim is to validate the effects
of different decoding techniques on the model’s accuracy and ro-
bustness.

4.2 Quantitative Results
DOPRA evaluation on hallucinations using CHAIR. The Cap-
tion Hallucination Assessment with Image Relevance (CHAIR) [44]
is a tailored metric for measuring object hallucination issues in
image captioning tasks. For DOPRA, we utilize CHAIR to quan-
tify the extent of hallucinated objects by computing the ratio of
objects mentioned in the generated description that are absent in
the ground-truth label set. CHAIR offers two separate assessments:
CHAIR𝑆 (denoted as 𝐶𝑆 ) measures sentence-level hallucinations
and CHAIR𝐼 (denoted as 𝐶𝐼 ) measures image-level hallucinations,
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Table 1: Compare results of DOPRA decoder with other de-
coder methods (baseline:LLaVA-1.5-7B).

Method POPE ↑ CHAIR𝑆 ↓ CHAIR𝐼 ↓
Greedy 85.7 47.0 13.8
Nucleus 82.5 48.8 14.2

Beam Search 84.9 48.8 13.9
OPERA [21] 85.2 44.6 12.8
DoLa [12] 83.2 47.8 13.8
VCD [24] 84.5 - -
DOPRA 85.6 42.4 12.3

mathematically expressed as:

𝐶𝑆 =
|hallucinated objects|
|all mentioned objects|

𝐶𝐼 =
|captions w/ hallucinated objects|

|all captions|
On the MSCOCO dataset [35], which encompasses over 300,000

images annotated with 80 objects, we perform CHAIR evaluations.
Specifically, we randomly sample 500 images from the validation
set of COCO 2014 and prompt different MLLM models with "Please
describe this image in detail." to generate their descriptions. To
ensure fairness, we restrict the maximum number of new tokens for
generating descriptions of both long and short lengths. As displayed
in Table 1, DOPRA demonstrates a clear superiority over baseline
decoding methods in both 𝐶𝑆 and 𝐶𝐼 metrics. This advantage is
consistent across both long and short description generations.

The image captures a man skillfully riding a wave on a surfboard in 

the ocean.  He is wearing a wetsuit and appears to be enjoying the 

thrill of surfing.  The surfer is positioned in the center of the scene, 

with the surfboard beneath him as he skillfully navigates the wave.
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Figure 5: Attention compare results of reason tokens.

DOPRA evaluation on hallucinations using POPE. The Polling-
based Object Probing Evaluation (POPE) [31] is a recently devel-
oped method aimed at assessing hallucination issues in MLLMs.
Analogous to CHAIR, POPE scrutinizes object hallucination by
prompting the model with an inquiry akin to "Is There a <object>
in the image?" to gauge whether the model correctly identifies the
presence or absence of a specific object in the given image. POPE
includes three distinct evaluation scenarios: "random", "popular",
and "adversarial".

Table 2: Compare results of DOPRA with OPERA decoder on
POPE andCHAIR dataset(N represents beam search number).

Method Size N POPE ↑ CHAIR𝑆 ↓ CHAIR𝐼 ↓
LLaVA1.5+OPERA 7B 1 85.4 48.6 14.7
LLaVA1.5+OPERA 7B 2 85.5 48.4 14.5
LLaVA1.5+OPERA 7B 3 85.4 48.4 14.1
LLaVA1.5+OPERA 7B 4 85.3 49.5 14.5
LLaVA1.5+OPERA 7B 5 85.2 44.6 12.8

LLaVA1.5+DOPRA 7B 1 85.7 48.4 14.5
LLaVA1.5+DOPRA 7B 2 85.8 48.4 14.4
LLaVA1.5+DOPRA 7B 3 85.5 48.4 14.1
LLaVA1.5+DOPRA 7B 4 85.4 49.4 14.4
LLaVA1.5+DOPRA 7B 5 85.6 42.4 12.3

InstrcuBlip+OPERA 7B 1 84.7 48.5 15.5
InstrcutBlip+OPERA 7B 2 84.3 48.4 15.3
InstrcutBlip+OPERA 7B 3 84.2 48.5 15.1
InstrcutBlip+OPERA 7B 4 84.2 49.2 15.2
InstrcutBlip+OPERA 7B 5 84.6 46.7 14.4

InstrcutBlip+DOPRA 7B 1 85.3 48.2 15.1
InstrcutBlip+DOPRA 7B 2 84.7 48.1 14.9
InstrcutBlip+DOPRA 7B 3 84.7 48.0 14.8
InstrcutBlip+DOPRA 7B 4 84.7 48.7 14.8
InstrcutBlip+DOPRA 7B 5 85.1 46.1 14.0

MiniGPT4+OPERA 7B 1 73.3 28.7 10.2
MiniGPT4+OPERA 7B 2 72.4 26.9 10.0
MiniGPT4+OPERA 7B 3 71.6 26.8 9.7
MiniGPT4+OPERA 7B 4 71.8 26.8 9.9
MiniGPT4+OPERA 7B 5 72.8 26.2 9.5

MiniGPT4+DOPRA 7B 1 75.6 19.7 9.1
MiniGPT4+DOPRA 7B 2 73.6 19.3 9.0
MiniGPT4+DOPRA 7B 3 72.0 19.2 8.9
MiniGPT4+DOPRA 7B 4 72.1 24.9 8.9
MiniGPT4+DOPRA 7B 5 73.2 25.8 8.8

We validate DOPRA using POPE on LLaVA [38] MLLM models
and report the mean F1 scores in Table 1 and Table 2. When com-
pared with baseline decoding strategies, DOPRA also achieves the
best performance, although the improvements might be marginal.
It is important to note that DOPRA particularly excels in mitigating
hallucinations in longer sequences. In the context of POPE answers,
which tend to be brief responses starting with "Yes" or "No" followed
by confirmations like "Yes, there is a <object> in the image.", the
knowledge aggregation patterns—central to our method—may not
surface as conspicuously. Nevertheless, DOPRA still demonstrates
a competitive edge in controlling hallucinations across various
lengths of sequences and different evaluation contexts.

In this section, we assess DOPRA’s effectiveness in reducing
hallucinations in both extended descriptions and concise VQA an-
swers as shown in Table 1. We show the difference between DOPRA
and OPERA in attention punishment in Fig. 5. It can be seen that
OPERA only carries out attention punishment in the last layer of
Transformer, namely layer 32, while we observe early attention
accumulation in the middle layer of transformer between layer 12
and 18, so we choose to intervene in layer 12. Our intervention
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measures are more consistent with the "early phenomena" of the
model than OPERA, and our indicators are better on the POPE and
CHAIR data sets.

4.3 High Response Example Analysis

The image features a large white polar bear in a 

pool of water, holding a carrot in its paw. The 

bear appears to be enjoying the carrot, possibly 

as a treat or a source of entertainment. The scene 

captures the bear's curiosity and playfulness as it 

interacts with the carrot.

(a) (b)

Figure 6: High response visual results of tokens (a is the input
image, b is the high repsonse results by caption).

As shown in Fig. 6, in this section, we delve into the significant ad-
vancements and core mechanisms within the realm of caption gen-
eration models—specifically focusing on the DOPRA algorithm—in
addressing and rectifying caption hallucination phenomena. We
begin by presenting an extensive examination of real-life cases
where caption hallucinations have been effectively corrected using
DOPRA, juxtaposing pre- and post-correction captions in situations
such as "is there any dog?", thereby illustrating DOPRA’s substan-
tial improvements in accurately capturing and conveying the actual
content of images.

Subsequently, we explore from the perspective of attentionmech-
anisms howDOPRA systematically refines its strategy for allocating
attention weights to precisely latch onto key visual features during
caption generation. This includes, among other things, displaying
different levels of attention maps and their evolution throughout
model optimization, highlighting how the model learns to disregard
irrelevant information and hone in on decisive visual cues within
an image, say, when discerning whether or not a dog is present.

To further unravel the inner workings of DOPRA’s efficacy in
enhancing caption veracity, we conduct a detailed investigation
into the genesis and case studies of high-response regions. Using
visualization techniques, we demonstrate visually how the model
responds differently to various areas of the input image, particularly
pinpointing those critical regions with exceedingly high response
values. These high-response zones not only reveal the pathways
the model follows in recognizing and interpreting image content
but are also vital for understanding the information extraction
and decision-making processes involved in generating accurate
captions.

5 Discussion and Limitations
The illusions generated by Large Language Models (LLMs) may
result from inadequate generalization or the model’s knowledge
not being updated in a timely manner. We believe the illusion is-
sues in Multimodal Large Language Models (MLLMs) are primarily
attributed to the visual component, possibly due to the coarse gran-
ularity of features (a problem that also needs addressing, as current
architectures like Q-Former tend to lose much information), or
possibly due to the use of noisy data during the alignment phase,
or insufficiently detailed alignment.

The illusion observed in captions is merely a superficial phenom-
enon; the root cause lies in the process of encoding by the vision
encoder, which is essentially a compression process, leading to a
significant loss of original image information. This fundamental
flaw in the architecture prevents effective captioning based on vi-
sual hidden representations and might even lead to illusions. This
is because the vision encoder, CLIP, is trained on images and highly
noisy captions.

Our overarching idea is that DOPRA is merely a temporary
solution, and there will undoubtedly be a need for end-to-end fine-
tuning and improvements in perceptual capabilities in the future.
Future research may explore avenues such as implementing more
meticulous data alignment procedures that go beyond aligning
entire images and texts at a superficial level, or incorporating fine-
grained visual features to overcome the perceptual limitations of
CLIP, which predominantly focuses on high-level semantic under-
standing rather than nuanced visual details.

6 Conlusion
In conclusion, DOPRA introduces a novel and cost-effective ap-
proach to address the prevalent issue of hallucination in multimodal
large language models (MLLMs), thereby enhancing their precision
and reliability for practical applications. By innovating a method
that penalizes decoding over-accumulation and reallocates atten-
tion in specific weighting layers, DOPRA circumvents the need
for additional training data or the integration of external knowl-
edge bases, setting it apart from existing methods. This technique
is grounded in a deep understanding of the mechanisms under-
lying hallucinations in MLLMs, particularly the disproportionate
reliance on summary tokens to the detriment of image-relevant
information in certain critical layers. Through the application of
a weight stacking penalty and a strategic reallocation during the
decoding phase, DOPRA effectively broadens the context consid-
ered by the model, while ensuring that generated captions more
accurately reflect the authentic content of images. The implemen-
tation of this method marks a considerable advancement in the
development of MLLMs by systematically reducing the occurrence
of hallucinations, thereby improving the overall output quality of
these models. DOPRA’s innovative approach not only signifies a
significant leap towards resolving a stubborn challenge in the field
of artificial intelligence but also paves the way for future research
and development in enhancing the interpretative and generative
capabilities of multimodal systems.
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