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Abstract

Recent years have witnessed increasing attentions on two-sample test with diverse
real applications, while this work takes one more step on the exploration of local
significant differences for two-sample test. We propose the MEMaBiD, an effective
test for two-sample testing, and the basic idea is to exploit local information by
multiple Mahalanobis kernels and introduce bi-directional hypothesis for testing.
On the exploration of local significant differences, we first partition the embedding
space into several rectangle regions via a new splitting criterion, which is relevant to
test power and data correlation. We then explore local significant differences based
on our bi-directional masked p-value together with the MEMaBiD test. Theoretically,
we present the asymptotic distribution and lower bounds of test power for our
MEMaBiD test, and control the familywise error rate on the exploration of local
significant differences. We finally conduct extensive experiments to validate the
effectiveness of our proposed methods on two-sample test and the exploration of
local significant differences.

1 Introduction

Two-sample test has attracted much attention with diverse applications such as cancer detection [1],
distribution-shift detection [2], generative modeling [3, 4], etc. The basic problem is to assess
whether two i.i.d. samples are drawn from the same distribution. Various kernel-based methods have
been developed for two-sample test such as Maximum Mean Discrepancy (MMD) [5–8] and Mean
Embedding (ME) [9–11]. Another relevant approach is to construct a binary classifier and assess two
samples according to classification performance [12–20]. For an overview of two-sample test, we
refer to a survey [21, and references therein].

In many real applications, however, it is necessary to take one more step to explore and understand
local significant differences, rather than only two-sample test. For example, a scientific problem in
galaxy morphology is to identify some local regions of significant differences between two kinds of
galaxies, which is important to discover galaxy formation and evolution history [22]. On the analysis
of mass cytometry data in cell biology, researchers are always interested in finding local regions of
significantly different abundance between disease and healthy samples [23].

Several attempts have been made to explore local significant differences in the past years. A feasible
solution is to partition space into several regions, and identify significantly different regions according
to their cardinalities of samples [24–27]. Another relevant work is to identify local significant
differences by estimating kernel densities [28, 29] and conditional probabilities [30]. Generally, it
is not easy to deal with complex data by simply counting cardinalities of samples, regardless of
data intrinsic correlations, and it is also difficult to make accurate estimation of kernel densities and
conditional probabilities without sufficient data, especially for many regions with finite samples.
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Figure 1: An illustration of different contours of Mahalnobis and Gaussian kernels for two-sample test.

This work presents a new two-sample test from local and directional information, and further explore
local significant differences. The main contributions can be summarized as follows:

• We propose the effective MEMaBiD test for two-sample testing, and the basic idea is to exploit
local information by multiple Mahalanobis kernels and introduce bi-directional hypothesis
for testing. Intuitively, Mahalanobis kernels are more flexible to exploit local differences
from neighborhoods and feature maps, and the bi-directional hypothesis is beneficial to
improve the sensitivity of two-sample test with proper parameter adaptation.

• We partition the embedding space into several rectangle regions based on a new splitting
criterion, which is relevant to test power and data correlation. We introduce the bi-directional
masked p-value for each rectangle region, and finally explore local regions with significant
difference based on our bi-directional masked p-value together with the MEMaBiD test.

• We present theoretical guarantees for our MEMaBiD test via the asymptotic distribution, as
well as the lower bounds on the test power for our test. We also present the upper bounds on
familywise error rate for our exploration of local significant differences.

• We conduct extensive experiments to validate the effectiveness and efficiency of our methods.
Specifically, our methods achieve better performance on most datasets for two-sample test
and exploring local significant differences, along with comparable or smaller running time.

The rest of this work is organized as follows: Section 2 presents our MEMaBiD test. Section 3 explores
local significant differences. Section 4 conducts extensive experiments, and Section 5 concludes with
future work. All technical proofs are given in Appendix A.

2 Our MEMaBiD Test for Two-Sample Testing

Let P and Q denote two (unknown) Borel probability measures over an instance space X ⊆ Rd, and
X = {xi}mi=1 and Y = {yj}nj=1 are two i.i.d. samples from P and Q, respectively. The goal of
two-sample test is to assess whether X and Y are drawn from the same distribution; in other words,
we aim to assess whether P = Q from two samples X and Y .

We introduce some necessary notations used in this work. Write [τ ] = {1, 2, · · · , τ} for integer
τ ≥ 2, and |A| denotes the cardinality of setA. Let Id be the identity matrix of size d×d. For a vector
a = [a1, a2, · · · , ad], denote by sgn(a) = [sgn(a1), sgn(a2), · · · , sgn(ad)] with sgn(ai) = ai/|ai|
for ai 6= 0; otherwise, sgn(ai) = 0. Let χ2

` be the χ2 distribution with ` degree of freedom, as well
as the p-value function χ2

`(·). Denote by χ2
`,α the α-quantile of distribution χ2

` for α ∈ (0, 1).

Learning multiple Mahalanobis kernels via maximizing test power in training

Following ME test [9, 10], we begin with a set of test locations V = {v1,v2, . . . ,v`} ⊂ X to
construct discriminative features. For every vi ∈ V , we introduce a Mahalanobis kernel as follows:

κi(x,vi) = exp
(
−(x− vi)>Mi(x− vi)/2γ2i

)
for γi > 0 and positive definite matrix Mi. (1)

Here, we propose multiple Mahalanobis kernels for two-sample test, which is motivated from multiple
kernel learning [31, 32] and Mahalanobis distance [33–35]. The advantage of multiple Mahalanobis
kernels is to exploit intrinsic structures and correlations from different directions and regions, and
adjust geometrical distribution of data so as to enlarge the distance between different samples [36, 37].

2



This is different from previous Gaussian kernel κi(x,vi) = exp(−‖x− vi‖2 /2γ2) [10, 38], which
deals with every direction isotropically without difference. Figure 1 presents an illustration of different
contours of Mahalnobis and Gaussian kernels for two-sample test. As we can see, Mahalanobis
kernels are more flexible to exploit different directional information than Gaussian kernels. Our work
is also different from previous deep kernel approaches [4, 39], which train single one deep neural
network combined with Gaussian kernel for variations in distribution smoothness and shape.

We then embed each element in X = {xi}mi=1 and Y = {yj}nj=1 into an `-dimensional space as

x̂i = (κ1(xi,v1), · · · , κ`(xi,v`))> and ŷj = (κ1(yj ,v1), · · · , κ`(yj ,v`))>, respectively . (2)

Denote by X̂ = {x̂i}mi=1 and Ŷ = {ŷj}nj=1. We define the pooled covariance matrix as

ΣX̂,Ŷ =

m∑
i=1

(x̂i − cX̂)(x̂i − cX̂)>

m+ n− 2
+

n∑
i=1

(ŷi − cŶ )(ŷi − cŶ )>

m+ n− 2
+ εId , (3)

where cX̂ =
∑m
i=1 x̂i/m and cŶ =

∑n
j=1 ŷi/n, and εId is introduced to guarantee the positive

definiteness for small constant ε > 0. We consider the Hotelling T 2 statistic, as in [40–42],

T (X̂, Ŷ ) = mn(cX̂ − cŶ )>Σ−1
X̂,Ŷ

(cX̂ − cŶ )
/

(m+ n) . (4)

Test power is the probability of correctly identifying two different samples. Maximizing T (X̂, Ŷ ) is
essentially equivalent to maximizing a lower bound of test power [10, 11], and we learn test locations
and Mahalanobis kernels as follows:

{V,M1, · · · ,M`, γ1, · · · , γ`} ∈ arg max{T (X̂, Ŷ )} . (5)

We take gradient method [43] to solve the above optimization, as done by Jitkrittum et al. [10], and
the details are presented in Appendix B.

We decompose ΣX̂,Ŷ = LL via the Schur method [44] to remove feature correlations, and it follows

T (X̂, Ŷ ) =
mn

m+ n
(cX̂ − cŶ )>Σ−1

X̂,Ŷ
(cX̂ − cŶ ) =

mn

m+ n

∥∥L−1cX̂ −L−1cŶ ∥∥22 .
Hence, T (X̂, Ŷ ) essentially measures the difference between two samples via the L2-norm of vector
L−1cX̂ −L−1cŶ . We further exploit their inference direction, defined by

F = sgn
(
L−1cX̂ −L−1cŶ

)
∈ {−1, 0,+1}` . (6)

Bi-directional hypothesis for testing

Let P̂ and Q̂ be the corresponding embedding distributions from the original P and Q, respectively.
Denote by µP̂ = Ex̂′∼P̂[x̂′] and µQ̂ = Eŷ′∼Q̂[ŷ′]. We consider the following null hypothesis

H0 : µP̂ = µQ̂ .

The null hypothesis H0 can be used to test whether P = Q by the following lemma:
Lemma 1. We have µP̂ = µQ̂ iff P = Q, for bounded Mahalanobis kernels {κj}`j=1 and for test
locations {vj}`j=1 drawn i.i.d. from a absolutely-continuous distribution w.r.t. Lebesgue measure.

Let X̂ ′ = {x̂′i}m
′

i=1 and Ŷ ′ = {ŷ′j}n
′

j=1 denote two embedding testing samples. We make similar
Schur decomposition ΣX̂′,Ŷ ′ = L′L′, and calculate testing statistic T (X̂ ′, Ŷ ′) according to Eqn. (4).
Based on Lemma 1, we can present the asymptotic distribution of statistic T (X̂ ′, Ŷ ′) as follows:

Theorem 2. The testing statistic T (X̂ ′, Ŷ ′) is almost surely asymptotically distributed as χ2
` if

P = Q; otherwise, χ2
`(T (X̂ ′, Ŷ ′))→ 0 as m′n′/(m′ + n′)→∞.

From Theorem 2, we propose the bi-directional hypothesis, by considering inference direction,

h(X̂ ′, Ŷ ′) =


I
[
χ2
`

(
T (X̂ ′, Ŷ ′)

)
≤ βα

]
for F>L′−1(cX̂′ − cŶ ′) ≥ 0

I
[
χ2
`

(
T (X̂ ′, Ŷ ′)

)
≤ (2− β)α

]
for F>L′−1(cX̂′ − cŶ ′) < 0,

(7)
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Figure 2: An illustration of different rejection regions on two samples for our bi-directional hypothesis and
previous non/one-directional hypothesis. Our rejection region can be adaptive according to different datasets.

where α ∈ (0, 1) is the significance level of hypothesis test, and β ∈ [1, 2] is an adaptive parameter.

Our bi-directional hypothesis is essentially about designing a rejection region of null hypothesis [45].
How to design an efficient rejection region is an interesting problem from the early work [46],
and some techniques has been developed for selecting rejection regions [47–49]. We consider the
most discriminative directions F and −F in our bi-directional hypothesis, which could improve the
sensitivity for two-sample test by selecting appropriate parameters according to different datasets.

Our bi-directional hypothesis can be viewed as a generalization of previous hypotheses, that is,

• By setting β = 1, our test has been the non-directional hypothesis [9, 11, 50] regardless of
direction information, which is also referred to as two-sided/tailed hypothesis [49, 51, 52];

• By setting β = 2 and F = (1, 1, · · · , 1)>, our test has become one-directional hypothesis
[53–55], which is also referred to as one-sided/tailed hypothesis [52, 56].

Notice that previous non/one-directional hypotheses fix the structures of rejection region for a given
significance level α, whereas our bi-directional hypothesis could adjust rejection region according to
inference direction F w.r.t. different datasets, which can be illustrated in Figure 2. Here, we consider
an illustrative dataset, and our bi-directional hypothesis gives the rejection region adaptive to dataset,
which could yield higher test power in two-sample test, as shown in Figure 5 (in Section 4).

We can also present some distribution and probability information for F>L′−1(cX̂′ − cŶ ′) ≥ 0 in
Eqn. (7). Denote by LP̂,Q̂ = EX̂′∼P̂m′ ,Ŷ ′∼Q̂n′ [L

′] and ξ = Pr[F>L′−1(cX̂′ − cŶ ′) ≥ 0]. We have

Lemma 3. For inference direction F in Eqn. (6) and for embedding samples X̂ ′ and Ŷ ′, we have

L′−1(cX̂′ − cŶ ′) ∼ N
(
L−1

P̂,Q̂
(µP̂ − µQ̂), ω−1I`

)
and sgn(F>L′−1(cX̂′ − cŶ ′)) ∼ T P(ξ)

with ω = m′n′/(m′+n′) and ξ = 1−Φ(−
√
ω/`F>L−1

P̂,Q̂
(µP̂−µQ̂)). Here, Φ(·) is the distribution

function of standard Gaussian, and T P(ξ) denotes a distribution over {−1,+1} with probability ξ
on the selection of +1.

The selection of parameter β is highly positive-relevant to the probability ξ. This is because a larger
ξ implies larger difference between two samples in the inference direction F , and we should select a
larger β to enlarge the rejection region and improve the sensitivity of dataset. Figure 6 (in Section 4)
shows such positive relevance between the optimal parameter β and probability ξ empirically.

We finally present theoretical analysis on test power and type-I error of our bi-directional hypothesis.
Let f(x : n1, n2, λ) be the density function of noncentral F -distribution with n1 and n2 degrees
of freedom and non-centrality parameter λ, and denote by Fn1,n2,α the α-quantile of central F -
distribution with n1 and n2 degrees of freedom for α ∈ (0, 1). We define the following probability,
from the work of [57],

q(n1, n2, λ, α) =

∫ ∞
Fn1,n2,α

f (x | n1, n2, λ) dx . (8)

Theorem 4. For our bi-directional hypothesis h(X̂ ′, Ŷ ′), the test power can be lower bounded by

q(`, ν − `, λ, βα) · ξ + Φ
(
−(χ2

`,(2−β)α)1/2 − (ω/`)1/2F>L−1
P̂,Q̂

(µP̂ − µQ̂)
)
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Algorithm 1 Construction of partition tree

Input: Two embeddding samples X̂ and Ŷ
Output: Partition tree T
Initialize: Tree T with only a root [0, 1]`

1: for t = 1, . . . , s− 1 do
2: Randomly select one of the leaf node B of the largest |X̂ ∩ B|
3: Initialize the best splitting feature j∗ = 0
4: for j = 1, . . . , ` do
5: Calculate the median value in j-th dimension τj = median{x̂i,j : x̂i ∈ X̂ ∩ B}
6: Split two samples X̂B and ŶB into X̂Bjl , ŶBjl and X̂Bjr , ŶBjr , according to τj
7: Calculate T (X̂Bjl

, ŶBjl
) and T (X̂Bjr , ŶBjr ) based on Eqn. (4)

8: Update j∗ = j if T (X̂Bjl
, ŶBjl

)T (X̂Bjr , ŶBjr ) > T (X̂Bj∗l
, ŶBj∗l

)T (X̂Bj∗r , ŶBj
∗
r

)

9: end for
10: Update node B with two children Bj

∗

l and Bj∗r w.r.t the splitting feature j∗ and position τj∗
11: end for

if F>L−1
P̂,Q̂
µP̂ > F

>L−1
P̂,Q̂
µQ̂; and the test power can also be lower bounded by

q(`, ν − `, λ, (2− β)α)(1− ξ) + 1− Φ
(

(χ2
`,βα)1/2 − (ω/`)1/2F>L−1

P̂,Q̂
(µP̂ − µQ̂)

)
if F>L−1

P̂,Q̂
µP̂ < F>L−1

P̂,Q̂
µQ̂; and the type-I error rate is equal to α if µP̂ = µQ̂. Here, ω =

m′n′/(m′ + n′), ν = m′ + n′ − 1 and λ = ω‖L−1
P̂,Q̂

(µP̂ − µQ̂)‖22.

This theorem presents lower bounds on test power, and the performance of the statistical test is
maintained under the general condition. Notice that the type-I error in our hypothesis test is controlled
only by the significant level α, regardless of different ξ and β.

We call our test as MEMaBiD test because of multiple Mahalanobis kernels in training and our bi-
directional hypothesis in testing.

3 Explore Local Significant Differences for Two-sample Test

On the exploration of local significant difference, most previous studies [24–28] partition the instance
space into several regions, and then exploit the difference on each region from two samples. Motivated
from pólya tree method [26, 58], we first partition the embedding instance space with a new splitting
criterion, which is relevant to test power and data correlations. We then exploit local regions (i.e.,
leaves nodes of partition tree) with significant difference.

Partition of the embedding instance space

Our partition tree is constructed iteratively as follows: We initiate the tree root with embedding space
(0, 1]`. In each iteration, each node is associated with a rectangle region, and all leaves constitute a
partition of embedding instance space. The following procedure is repeated s− 1 iterations (s ≥ 2):

• Randomly select a leaf node, denote by B, uniformly over leaf nodes of the largest |X̂ ∩ B|.
• Let τj = median{x̂i,j : x̂i ∈ X̂ ∩ B} for j ∈ [`]. We select the best splitting feature

j∗ ∈ arg maxj∈[`]

{
T (X̂Bjl

, ŶBjl
)× T (X̂Bjr , ŶBjr )

}
,

with X̂Bjl = Bjl ∩ X̂ , X̂Bjr = Bjr ∩ X̂ , ŶBjl = Bjl ∩ Ŷ and ŶBjr = Bjr ∩ Ŷ . Here, Bjl and
Bjr are left and right children of B w.r.t. the j-th splitting feature and splitting position τj ,
respectively, and T (·, ·) is defined by Eqn. (4).

• Select the splitting position τj∗ = median{x̂i,j∗ : x̂i ∈ X̂ ∩ B}.
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Table 1: Datasets

Dataset # Inst. # Feat. Dataset # Inst. # Feat. Dataset # Inst. # Feat. Dataset # Inst. # Feat.

dna 3,186 180 kropt 27,705 6 santan 200,000 200 adult 1,000,000 14

agnos 3,468 970 diamon 53,940 9 codrna 487,867 8 labor 1,000,000 16

topo21 8,885 266 cifar10 60,000 3072 blob 1,000,000 2 poker 1,025,010 10

har 10,299 561 mnist 70,000 784 sea50 1,000,000 3 higgs 11,000,000 4

We finally get the partition tree with s leaf nodes, associated with s rectangle regions B1,B2, . . . ,Bs.
Algorithm 1 presents the detailed description on tree construction and rectangle region splitting.

We take the statistic T (·, ·) as a splitting criterion, relevant to test power and data correlations, and it
is helpful to exploit local significant difference directly. We also adopt the median splitting position
with equal probabilities on partitioned regions, i.e., balanced examples for each partition region, and
this could yield better performance than regular grids, as shown empirically in [59, 60].

Our partition tree is different from previous p-value histogram based on Chi-square test [61, 62],
where the difference is measured by cardinalities of elements in two samples over a local rectangle
region. Our splitting criterion is also different from that of previous decision trees [63–66], which
consider some information-theoretic criterions such as entropy, Gini index, information gain, etc. In
comparisons, our statistic T (·, ·) is more essential to reflect the test power for two-sample test.

For each rectangle region Bi, let cX̂Bi and cŶBi be the means of X̂Bi = Bi ∩ X̂ and ŶBi = Bi ∩ Ŷ ,
respectively. We make similar Schur decomposition LBiLBi = ΣX̂Bi ,ŶBi

for covariance matrix
ΣX̂Bi ,ŶBi

, and introduce the local inference direction for each Bi as follow:

FBi = sgn
(
L−1Bi cX̂Bi

−L−1Bi cŶBi
)
∈ {−1, 0,+1}` . (9)

For different rectangle regions, we could have different or even contrary inference directions, which
is helpful to exploit local differences from distributional shapes of two samples.

Exploration of local significant differences

For testing embedding samples X̂ ′ and Ŷ ′, we denote by X̂ ′Bi = Bi ∩ X̂ ′ and Ŷ ′Bi = Bi ∩ Ŷ ′ with
their respective means cX̂′Bi

and cŶ ′Bi
for each rectangle region Bi, and calculate testing statistic

TBi = T (X̂ ′Bi , Ŷ
′
Bi) by Eqn. (4).

We propose the new bi-directional masked p-value for each rectangle region Bi as follows:

g(X̂ ′Bi , Ŷ
′
Bi) =


min

{
χ2
`(TBi )
β ,

p∗

(
1−χ2

`(TBi )
)

1−βp∗

}
for F>BiL

′−1
Bi (cX̂′Bi

− cŶ ′Bi ) ≥ 0

min

{
χ2
`(TBi )
2−β ,

p∗

(
1−χ2

`(TBi )
)

1−(2−β)p∗

}
for F>BiL

′−1
Bi (cX̂′Bi

− cŶ ′Bi ) < 0 ,

(10)

where L′−1Bi is from Schur decomposition ΣX̂′Bi ,Ŷ
′
Bi

= L′−1Bi L
′−1
Bi , p∗ ∈ (0, 1) is a parameter on

significance level, and β is an adaptive parameter. Here, we also consider two discriminative directions
FBi and −FBi on each rectangle region Bi, which is different from previous masked p-value [67]
without directional information.

Our bi-directional masked p-value directly reflects the significant level of local difference when there
is a significant difference in local Bi, similarly to [67]. The smaller the bi-directional masked p-value,
the more significant the local difference. On the other hand, the bi-directional masked p-value is a
random number with uniform distribution over (0, p∗) when there is no significant difference in Bi,
since χ2

`(TBi) follows a uniform distribution in such case [68].

Based on such recognition, we resort rectangle regions as B〈1〉,B〈2〉, . . . ,B〈s〉 according to their
bi-directional masked p-value, i.e.,

g(X̂ ′B〈1〉 , Ŷ
′
B〈1〉) ≤ g(X̂ ′B〈2〉 , Ŷ

′
B〈2〉) ≤ · · · ≤ g(X̂ ′B〈s〉 , Ŷ

′
B〈s〉) .
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Table 2: Comparisons of test powers (mean±std) on two-sample test. Bold denotes the highest mean in per row.

Dataset Our MEMaBiD ME MMDAgg MMD-D C2ST-L C2ST-S AutoMLTST
blob .985±.009 .823±.000 .935±.012 .963±.010 .972±.078 .946±.037 .980±.029

dna .717±.068 .536±.059 .659±.070 .628±.006 .699±.028 .505±.044 .603±.085

agnos .812±.018 .602±.033 .779±.046 .734±.006 .742±.012 .679±.051 .632±.077

topo21 .692±.006 .526±.058 .605±.077 .633±.062 .679±.046 .517±.046 .591±.006

har .858±.065 .816±.015 .814±.026 .728±.064 .761±.093 .738±.063 .740±.058

kropt .992±.012 .875±.027 .971±.024 .916±.066 .946±.013 .929±.031 .971±.026

diamon .837±.066 .697±.068 .676±.047 .755±.056 .747±.086 .727±.076 .831±.062

cifar .893±.022 .859±.075 .866±.091 .878±.090 .834±.099 .798±.019 .882±.086

mnist .985±.017 .926±.056 .932±.068 .972±.051 .969±.042 .930±.029 .963±.074

santan 1.00±.000 .896±.060 1.00±.000 .887±.021 .911±.084 .850±.021 .954±.012

codrna 1.00±.000 .946±.085 .926±.037 .914±.076 1.00±.000 1.00±.000 .876±.067

sea50 .993±.018 .993±.018 .982±.012 .993±.018 .993±.018 .970±.053 .989±.029

adult .996±.002 .875±.034 .967±.029 .908±.072 .761±.091 .854±.058 .992±.006

labor .992±.012 .807±.078 .988±.010 .930±.093 .756±.059 .791±.031 1.00±.000
poker .821±.079 .719±.096 .712±.033 .701±.056 .743±.039 .731±.052 .832±.048
higgs .979±.024 .818±.090 .938±.047 .953±.055 .968±.043 .933±.013 .969±.030

Average .909±.026 .795±.053 .859±.039 .843±.050 .842±.052 .806±.039 .863±.043

We then take our bi-directional hypothesis h(X̂ ′Bi , Ŷ
′
Bi) with parameter β and α = p∗ as in Eqn. (7),

and finally get the local regions with significant differences as{
B〈i〉 : i ≤ t∗ and h(X̂ ′B〈i〉 , Ŷ

′
B〈i〉) = 1

}
,

where

t∗ = arg max
t∈[s]

{
t−
∣∣∣{i ∈ [t] : h(X̂ ′B〈i〉 , Ŷ

′
B〈i〉) = 1}

∣∣∣+ 1 ≤ ln(1− α∗)
ln(1− p∗)

}
. (11)

Here, p∗ is selected as in Eqn. (10), and α∗ ∈ [p∗, 1) is a parameter to control the probability of
mis-identifying at least one rectangle region without significant difference, also called familywise
error rate [69–72]. We present theoretical analysis for familywise error rate as follows:
Theorem 5. For our exploration, the familywise error rate is upper bounded by α∗, if 1) the p-values
of local regions without differences are mutually independent; and 2) the p-values of local regions
with differences are independent to those p-values of local regions without differences.

Our method is different from previous space partition methods of trees or clusters [24–27, 60], where
the splitting criterion is taken as the cardinalities of samples in each region. Duong [28] partitioned
and searched local regions from the estimated density function, and Kim et al. [30] identified local
regions by clustering data samples from the estimated conditional probabilities. It is not easy to
make accurate estimation for density and conditional probabilities without sufficient data, particularly
for multiple small regions. Other relevant studies detected local differences implicitly based on
interactive rank test [73] or a learned classifier [74].

4 Experiments

We conduct experiments on 16 datasets1 as summarized in Table 1. Most dataset have been studied in
previous two-sample test, and features have been scaled to [0, 1] for all datasets. All experiments are
performed with Python on nodes of a computational cluster with a single CPU (Intel Core i9-10900X
3.7GHz) and a single GPU (GeForce RTX 2080 Ti), running Ubuntu with 128GB main memory.

Experimental comparisons for two-sample test

We compare our MEMaBiD with the state-of-the-art approaches on two-sample test as follows:
1Dataset blob is downloaded from github.com/fengliu90/DK-for-TST,
and other datasets are downloaded from www.openml.org.
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Table 3: Comparisons of density differences (mean±std) on the exploration of local significant differences, and
the bold denotes the highest mean in per row.

Dataset Our method FDG KPRIM MRS MMDT BTLDD TEAM
blob .945±.082 .902±.075 .879±.045 .849±.075 .909±.091 .932±.046 .877±.067

diamon .974±.054 .852±.010 .895±.089 .876±.066 .867±.104 .951±.070 .947±.022

codrna .969±.026 .936±.037 .876±.061 .966±.045 .884±.105 .905±.050 .863±.036

sea50 .977±.056 .975±.062 .933±.074 .928±.058 .985±.045 .892±.059 .944±.065

adult .953±.048 .862±.044 .838±.109 .911±.085 .927±.101 .875±.074 .880±.070

labor .959±.062 .894±.080 .905±.016 .900±.037 .911±.093 .922±.048 .932±.067

poker .945±.030 .901±.030 .882±.027 .925±.023 .927±.057 .894±.028 .884±.064

higgs .946±.016 .932±.011 .918±.001 .940±.000 .927±.026 .926±.027 .937±.002

Average .959±.047 .907±.044 .891±.053 .912±.049 .917±.078 .912±.050 .908±.049

• ME: Mean Embeddings over multiple test locations and a single Gaussian kernel [9, 10];
• MMD-D: Maximum Mean Discrepancy based on a Deep kernel [39];
• MMDAgg: Maximum Mean Discrepancy with Aggregating of multiple Gaussian kernels [75];

• C2ST-S: Train a binary classification network and test its accuracy on a hold-out set [13];
• C2ST-L: Train a binary classification network with a statistic about class probabilities [14, 18];

• AutoMLTST: Train a binary classifier based on AutoML method with a statistic as C2ST-L [19].

Following [39, 76], we train on a subset of each available data, and test on 100 random subsets from
the remaining dataset, and the ratio is set as 4 : 1 for training and testing. We repeat such process 10
times for each dataset. More details are given in Appendix C. For our MEMaBiD, we set α = 0.05
and take 5-fold cross validation to select β ∈ [1 : 0.2 : 2]. We limit the cardinality of test locations
within 20 for ME and MEMaBiD as in [9–11], and optimization parameters of Eqn. (5) is presented in
Appendix C. We take parameter settings for other methods as in their respective inferences.

Table 2 summarizes the average of test powers and standard deviations. It is evident that our MEMaBiD
takes better performance than ME and MMDAgg, because they both take Gaussian kernels with
isotropic scale, and ignore the distributional differences from different directions. Our method is still
better than MMD-D with a deep kernel, and a reason is that multiple Mahalanobis kernels are more
flexible than a deep kernel to capture local difference from multiple neighborhoods and directions.

From Table 2, it is also observed that our MEMaBiD outperforms three classifier-based methods
C2ST-S, C2ST-L and AutoML expect for datasets labor and poker, since those methods focus merely
on the prediction information from outputs of classifiers, rather than local and directional information
among data samples. For datasets labor and poker, AutoML generates new features automatically
from the original mixture of continuous and symbolic features, and thus achieves better performance.

We further compare the average running time (in seconds) for different methods on two-sample test,
as shown in Figure 3. As expected, ME takes the least running time since it considers only one
Gaussian kernel, yet with the smallest average of test powers in Table 2. Our MEMaBiD method takes
smaller and comparable running time in contrast to other methods since our method takes relatively
smaller time on training Mahalanobis kernels without permutation test in the testing process.

Experiments on the exploration of local significant differences

We compare with the state-of-the-art approaches on exploring local significant difference as follows:

• FDG: Partition space by probability binning and compare cardinalities of two samples [24];
• K-PRIM: Partition space by patient rule induction and estimate kernel density differences [28];
• MRS: Partition space by pólya tree and measure difference via Binomial distributions [26];
• TEAM: Partition space by data variance and measure difference via Binomial distributions [27];
• BTLDD: Estimate conditional probabilities of two samples and cluster data via difference [77];
• MMDT: Partition space into equal grids and test density difference via Welch’s statistic [29].
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Figure 3: Comparisons of running time for different methods on two-sample test. Note that y-axis is in log-scale.
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Figure 4: Visualization of the local significant differences with partition tree of s = 8 (left) and s = 16 (right)
rectangle regions. The bigger the values, the larger the density difference.

For fair comparisons with some methods of density estimations, we select eight large datasets:
diamond, codrna, blob, sea50, adult, labor, poker and higgs, whose instance numbers are more than
50,000 and feature numbers are smaller than 20. We randomly select 10, 000 instances during the
exploration of local significant differences. For the BTLDD method, we set the percentage of selected
samples as 6.25% for local regions in a cluster, while for other methods, we partition the space into
64 rectangle regions, and identify 4 rectangle regions with the most local differences.

We take density differences [78] between two samples in a local region as an evaluation measure for
local significant differences, and follow the works of [79, 80] based on k-NN density estimator with
k = 20. We calculate the difference between two estimated density functions in an identified local
region, and normalize the returned values into [0, 1].

Table 3 summarizes the average of density differences and standard deviations. As can be seen, our
method takes better explorations on local significant difference than FDG, MRS and TEAM, since
those methods simply take cardinalities of samples to measure significant difference. Our exploration
is still better than K-PRIM, BTLDD and MMDT except for dataset sea50, because those methods
estimate density or conditional probabilities from two samples, and it is not easy to make accurate
estimation without sufficient data, especially for small regions with finite samples. MMDT could
estimate density function well on dataset sea50, and achieves better exploration via Welch’s statistic.

We further visualize the local significant differences on mnist (sample X) and Fake-mnist (sample Y )
in Figure 4. Here, we take partition trees with s = 8 (left) and s = 16 (right) rectangle regions. As
can be seen, our method achieves the largest local differences via new splitting criterion for partition
tree, and our proposed MEMaBiD test and bi-directional masked p-values.

Parameter analysis

We now present some parameter influence for our MEMaBiD test and the exploration of local significant
difference. We only present the results on four datasets due to pages limit, but the trends are similar
on other datasets, and more results can be found in Appendix D.
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Figure 5: The comparisons of test power vs sample size for our bi-directional hypothesis and previous one/non-
directional hypothesis.
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Figure 6: The relationship between the optimal adaptive parameter β and probability ξ for our MEMaBiD.
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Figure 7: The type-I error is limited about α = 0.05 w.r.t different β for our MEMaBiD.
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Figure 8: The FWER is limited about α∗ = 0.05 w.r.t. different s for exploring local significant difference.

Figure 5 illustrates the test power versus sample size for our bi-directional hypothesis, non-directional
hypothesis and one-directional hypothesis. As can be seen, our bi-directional hypothesis achieves
higher test power by considering the inference and its contrary direction and adaptive parameter
selection. Figure 6 exploits the relationship between the optimal parameter β and the probability
ξ = Pr[F>L′−1(cX̂′−cŶ ′) ≥ 0] for our MEMaBiD method. We can easily find the positive relevance
between β and ξ: the larger the probability ξ, the larger the optimal parameter β.

Figure 7 indicates that the type-I error is limited about α = 0.05 for different β in our experiments, as
shown in Theorem 4, and thus our method could effectively control the rate of falsely reject the null
hypothesis, which empirically verify the trustworthiness of our MEMaBiD test. Figure 8 empirically
shows the familywise error rate is limited about α∗ = 0.05 for different number of local regions s;
therefore, our exploring method could control the rate of incorrectly exploiting the local regions with
significant difference, and this is nicely in accordance with Theorem 5.

5 Conclusion

This work takes one more step on the exploration of local significant differences. We propose the
MEMaBiD test by exploiting local information from multiple Mahalanobis kernels and introducing
bi-directional hypothesis for testing. We partition embedding space via a new splitting criterion, and
then identify local significant differences based on our bi-directional masked p-value and MEMaBiD
test. We verify the effectiveness of our proposed methods both theoretically and empirically. An
interesting work is to explore other local and directional information for local significant differences.
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A Detailed Proofs for Our Theoretical Results

A.1 Proof of Lemma 1

We begin with some useful definitions and lemmas as follows:
Definition 6. (Random Metric [9]). We say that ρ is a random metric with values in R, indexed
with pairs from the set of probability measuresM, i.e., ρ = {ρ(P,Q) : P,Q ∈M}, if it satisfies the
conditions for a metric with qualification ‘almost surely’. Formally, for every P,Q,U ∈M, random
variables ρ(P,Q), ρ(P,U) and ρ(Q,U) satisfy

1. ρ(P,Q) ≥ 0 a.s.

2. if P = Q, then ρ(P,Q) = 0 a.s, if P 6= Q then ρ(P,Q) 6= 0 a.s.

3. ρ(P,Q) = ρ(Q,P) a.s.

4. ρ(P,Q) ≤ ρ(P,U) + ρ(U,Q) a.s.

Lemma 7. [11] Let µ be a absolutely continuous Lebesgue measure on Rd. A non-zero analytic
function f can be zero at most in the set of measure 0 w.r.t. µ.
Lemma 8. [9] If κ is a bounded and analytic kernel on Rd×Rd, then it is analytic for every function
in the RKHS associated with this kernel.
Definition 9. For test locations V = {v1,v2, · · · ,v`} and Mahalanobis kernels κ1, κ2, · · · , κ` given
by Eqn. (1), we define

ρµ1,µ2,··· ,µ`(P,Q) =
∑̀
j=1

([µjP] (vj)− [µjQ] (vj))
2
, (12)

where [µjP] (vj) = Ex∼P[κj(x,vj)] and [µjQ] (vj) = Ey∼Q[κj(y,vj)].

We show that the above distance metric for two probability measures is a random metric as follows:
Lemma 10. If v1,v2, · · · ,v` are drawn i.i.d. from a absolutely continuous distribution G, then
ρµ1,µ2,··· ,µ`(·, ·) is a random metric for bounded kernels {κ1, κ2, · · · , κ`}.

Proof. For j ∈ [`], we first introduce a function

ρµj (P,Q) = ([µjP] (vj)− [µjQ] (vj))
2
,

and it is sufficient to prove that ρµj (P,Q) is a random metric for each j ∈ [`] from Eqn. (12).

It is well-known that Mahalanobis kernels in Eqn. (1) are characteristic and analytic from [81], and
the corresponding mapping

µj : P→ µjP and µj : Q→ µjQ

are injective for κj , where µjP and µjQ denote the images of measures P and Q, respectively. Hence,
the image of µj is a subset of analytic functions for analytic and bounded κj , according to Lemma 8.

If P = Q, then we have

fj = µjP− µjQ = 0 and ρµj (P,Q) = ([µjP] (vj)− [µjQ] (vj))
2 = 0 .

We now prove that if P 6= Q then fj 6= 0 almost surely, by applying Lemma 7 to analytic function
fj = µjP− µjQ with distribution G. For injective map µj , there exists at least one point a such that
fj(a) 6= 0, and there exists a ball around a with non-zero fj from the continuity of fj . Hence, f is
almost everywhere nonzero based on Lemma 7, and this follows that

ρµj (P,Q) = ([µjP] (vj)− [µjQ] (vj))
2 > 0 a.s. for P 6= Q .

Hence, ρµj is random metric from Definition 6 from the symmetry and triangle inequality of ρµj .

Proof of Lemma 1. We first have

µP̂ = Ex̂∼P[x̂] = ([µ1P](v1), [µ2P](v2), · · · , [µ`P](v`)) ,

µQ̂ = Eŷ∼Q[ŷ] = ([µ1Q](v1), [µ2Q](v2), · · · , [µ`Q](v`)) ,
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and further rewrite Eqn. (12) as

ρµ1,µ2,··· ,µ`(P,Q) =
∑̀
j=1

([µjP] (vj)− [µjQ] (vj))
2

=
∑̀
j=1

(
µP̂,j − µQ̂,j

)2
=
∥∥∥µP̂ − µQ̂

∥∥∥2
2
.

From Lemma 10, we can see that ρµ1,µ2,··· ,µ`(P,Q) = 0 if and only if P = Q, and this implies that
µP̂ = µQ̂ if and only if P = Q. This completes the proof of Lemma 1.

A.2 Proof of Theorem 2

We begin with a useful lemma from [11] as follows.

Lemma 11. For symmetric and positive definite matrix Σ, function h(Σ) = Σ−1/2 is continuous
and well-defined on the positive definite space.

Based on this lemma, we present the detailed proof of Theorem 2 as follows:

Proof of Theorem 2. For embedding testing sample X̂ ′ = {x̂′1, · · · , x̂′m′} and Ŷ ′ = {ŷ′1, · · · , ŷ′n′},
recall the pooled covariance matrix in Eqn. (3) as

ΣX̂′,Ŷ ′ =
(m′ − 1)ΣX̂ + (n′ − 1)ΣŶ

m′ + n′ − 2
+ εId ,

and we also define
ΣP̂,Q̂ = EX̂′∼P̂m′ ,Ŷ ′∼Q̂n′

[
ΣX̂′,Ŷ ′

]
.

We first prove that testing statistic T (X̂ ′, Ŷ ′) is almost surely asymptotically distributed as χ2
` with `

degrees of freedom under the condition µP̂ = µQ̂ for small ε.

For i.i.d. samples X̂ ′ and Ŷ ′, cx̂ is independent to cŷ. If µP̂ = µQ̂, then z̄ = cX̂ − cŶ follows
a multivariate normal distribution with mean µ = µP̂ − µQ̂ = 0 and covariance matrix (m′ +

n′)ΣP̂,Q̂/m
′n′, from [41, 82] and the Slutsky’s theorem [83], that is

z̄
d→ N (0, (m′ + n′)ΣP̂,Q̂/m

′n′) ,

where d→ denotes convergence in distribution.

The matrix L is symmetric and invertible in the Schur decomposition ΣX̂′,Ŷ ′ = LL. Our statistic
can be formalized as

T (X̂ ′, Ŷ ′) = m′n′ z̄>Σ−1
X̂,Ŷ

z̄/(m′ + n′)

= m′n′ z̄>L′−1L′−1z̄/(m′ + n′)

=
(√

m′n′
∥∥L′−1z̄∥∥

2

/√
m′ + n′

)2
,

and by applying the Slutsky’s theorem, we have
√
m′n′L′−1z̄

/√
m′ + n′

d−→ N (0, I`) .

This follows that

T (X̂ ′, Ŷ ′) =
m′n′

m′ + n′

∑̀
j=1

(L′−1z̄)2j ,

where (L′−1z̄)j is the j-th dimension value of L′−1z̄, and
√
m′n′/(m′ + n′)(L′−1z̄)j follows the

standard normal distribution. This proves the χ2
` distribution for T (X̂ ′, Ŷ ′) from the sum of ` squares

of standard (i.i.d.) normal random variables.

We then prove that χ2
`(T (X̂ ′, Ŷ ′)) → 0 as m′n′/(m′ + n′) → ∞ if µP̂ 6= µQ̂, and hence our test

rejects H0 almost surely.
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From Lemma 11, we have

lim
m′n′/(m′+n′)→∞

L′−1 = lim
m′n′/(m′+n′)→∞

Σ
−1/2
X̂′,Ŷ ′

= Σ
−1/2
P̂,Q̂

= L−1
P̂,Q̂

.

In a similar manner, z̄ = cX̂ − cŶ converges to µP̂ − µQ̂ in probability. For µP̂ 6= µQ̂, we have∥∥∥Σ
− 1

2

P̂,Q̂
(µP̂ − µQ̂)

∥∥∥2
2
> 0 .

Then, ‖L′−1z̄‖22 is a continuous function with entries z̄ and L′−1, and it is convergent to some
positive constant. We have (m′ + n′)/(m′n′)χ2

`,α → 0, and

Pr

[
m′n′

m′ + n′
∥∥L′−1z̄∥∥2

2
> χ2

`,α

]
= P

(∥∥L′−1z̄∥∥2
2
>
m′ + n′

m′n′
χ2
`,α

)
→ 1 .

This follows that

χ2
`

(
T (X̂ ′, Ŷ ′)

)
= χ2

`

(
m′n′

m′ + n′
∥∥L′−1z̄∥∥2

2

)
→ 0 ,

and hence χ2
`(T (X̂ ′, Ŷ ′))→ 0 as m′n′/(m′ + n′)→∞ if µP̂ 6= µQ̂.

A.3 Proof of Lemma 3

Recall the pooled covariance matrix ΣX̂′,Ŷ ′ and ΣP̂,Q̂ = EX̂′∼P̂m′ ,Ŷ ′∼Q̂n′ [ΣX̂′,Ŷ ′ ] in the proof of
Theorem 2, and z̄ = (cX̂′ − cŶ ′) follows a multivariate normal distribution with mean µP̂ −µQ̂ and
covariance matrix (m′ + n′)ΣP̂,Q̂/m

′n′. We first observe

LP̂,Q̂ = EX̂′∼P̂m′ ,Ŷ ′∼Q̂n′ [L
′] = Σ

1/2

P̂,Q̂
,

and this follows that

L′−1 z̄ ∼ N
(
L−1

P̂,Q̂
(µP̂ − µQ̂),

m′ + n′

m′n′
I`

)
.

This is because E[L′−1z̄] = L−1
P̂,Q̂

(µP̂ − µQ̂) and the covariance matrix is given by

Cov(L′−1z̄,L′−1z̄) = L−1
P̂,Q̂

(
m′ + n′

m′n′
ΣP̂,Q̂

)
L−1

P̂,Q̂

= L−1
P̂,Q̂

(
m′ + n′

m′n′
LP̂,Q̂LP̂,Q̂

)
L−1

P̂,Q̂
=
m′ + n′

m′n′
I` .

WriteB =
√
m′n′/(m′ + n′)L′−1diag(F )z̄, and we have

B>B =

(√
m′n′

m′ + n′
L′−1diag(F )z̄

)>(√
m′n′

m′ + n′
L′−1diag(F )z̄

)

=
m′n′

m′ + n′
z̄>diag(F )(L′−1)>L′−1diag(F )z̄ =

m′n′

m′ + n′
z̄>diag(F )Σ−1

X̂′,Ŷ ′
diag(F )z̄

=
m′n′

m′ + n′
z̄>diag(F )diag(F )Σ−1

X̂′,Ŷ ′
z̄ =

m′n′

m′ + n′
z̄>diag(1)Σ−1

X̂′,Ŷ ′
z̄

=
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄

by using the symmetry of Σ−1
X̂′,Ŷ ′

. It is easy to get

E[B] =
√
m′n′/(m′ + n′)L−1

P̂,Q̂
diag(F )(µP̂ − µQ̂)

and covariance matrix is given by

Cov(B,B) =

√
m′n′

m′ + n′
L−1

P̂,Q̂
diag(F )

(m′ + n′

m′n′
ΣP̂,Q̂

)√ m′n′

m′ + n′
diag(F )L−1

P̂,Q̂

=

√
m′n′

m′ + n′
diag(F )L−1

P̂,Q̂

(m′ + n′

m′n′
LP̂,Q̂LP̂,Q̂

)√ m′n′

m′ + n′
diag(F )L−1

P̂,Q̂

= I` .
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This yields that

B ∼ N
(√

m′n′/(m′ + n′)L−1
P̂,Q̂

diag(F )(µP̂ − µQ̂), I`

)
,

and all random variables inB are mutually independent. Define

B̄ = 1>B/` =
∑̀
i=1

Bi/` and S2 =
∑̀
i=1

(Bi − B̄)2 ,

and B̄ is normally distributed with mean
√
m′n′/(m′ + n′)F>L−1

P̂,Q̂
(µP̂ − µQ̂)/` and variance 1/`.

It is easy to see that

F>L′−1 ( cX̂′ − cŶ ′) =
√

(m′ + n′)/m′n′1>B ,

which yields that

Pr
[
sgn(F>L′−1 ( cX̂′ − cŶ ′)) = 1

]
= Pr

[√
m′ + n′

m′n′
1>B > 0

]
= Pr

[
B̄ > 0

]
. (13)

We further have

Pr
[
sgn(F>L′−1 ( cX̂′ − cŶ ′)) = 1

]
= 1− Φ

(
−
√

m′n′

(m′ + n′)`
F>L−1

P̂,Q̂
(µP̂ − µQ̂)

)
,

where Φ(·) is the cumulative distribution function of standard Gaussian distribution. For continuous
normal distribution, we have

Pr
[
sgn(F>L′−1 ( cX̂′ − cŶ ′)) = 0

]
= Pr

[
B̄ = 0

]
= 0 ,

and this follows that

Pr
[
sgn(F>L′−1 ( cX̂′ − cŶ ′)) = −1

]
= Pr

[
B̄ < 0

]
= Φ

(
−
√

m′n′

(m′ + n′)`
F>L−1

P̂,Q̂
(µP̂ − µQ̂)

)
.

Hence, the sgn(F>L′−1 ( cX̂′ − cŶ ′ )) follows a two-point distribution T P(ξ) with parameter

ξ = 1− Φ

(
−
√

m′n′

(m′ + n′)`
F>L−1

P̂,Q̂
(µP̂ − µQ̂)

)
.

This completes the proof.

A.4 Proof of Theorem 4

Recall the pooled covariance matrix ΣX̂′,Ŷ ′ and ΣP̂,Q̂ = EX̂′∼P̂m′ ,Ŷ ′∼Q̂n′ [ΣX̂′,Ŷ ′ ] in the proof of
Theorem 2, and z̄ = (cX̂′ − cŶ ′) follows a multivariate normal distribution with mean µP̂ −µQ̂ and
covariance matrix (m′ + n′)ΣP̂,Q̂/m

′n′. We have LP̂,Q̂LP̂,Q̂ = ΣP̂,Q̂.

We begin with a useful lemma and corollary as follows.

Lemma 12. If F>L−1
P̂,Q̂
µP̂ > F

>L−1
P̂,Q̂
µQ̂ or null hypothesis H0 : µP̂ = µQ̂, we have

Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ c | F>L′−1z̄ ≥ 0

]
≥ Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ c

]
. (14)

Proof. RecallB =
√
m′n′/(m′ + n′)L′−1diag(F )z̄ and F>L′−1z̄ =

√
(m′ + n′)/m′n′1>B in

the proof of Lemma 3, and Eqn. (14) is equivalent to

Pr
[
B>B ≥ c | 1>B ≥ 0

]
≥ Pr

[
B>B ≥ c

]
. (15)

Recall that

B̄ = 1>B/` =
∑̀
i=1

Bi/` and S2 =
∑̀
i=1

(Bi − B̄)2 ,
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and from Eqn. (15), we have

Pr
[
B̄2 ≥ (c− S2)/`|B̄ ≥ 0

]
≥ Pr

[
B̄2 ≥ (c− S2)/`

]
.

From the independence of S2 and B̄, it is sufficient to prove that, for every δ ≥ 0,

Pr
[
B̄2 ≥ δ|B̄ ≥ 0

]
≥ Pr

[
B̄2 ≥ δ

]
. (16)

It’s easy to see that B̄ is normally distributed with mean
√
m′n′/(m′ + n′)F>L−1

P̂,Q̂
(µP̂ − µQ̂)/`

and variance 1/`. We define

a =
√
`δ and b =

√
m′n′

(m′ + n′)`
F>L−1

P̂,Q̂
(µP̂ − µQ̂) ,

and from Eqn. (16), we have
Φ(−b)

Φ(−b− a)
≥ Φ(b)

Φ(b− a)
,

where the equality holds from b = 0, i.e., µP̂ = µQ̂. This completes the proof.

Corollary 13. If F>L−1
P̂,Q̂
µP̂ < F

>L−1
P̂,Q̂
µQ̂, we have

Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ c | F>L′−1z̄ < 0

]
≥ Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ c

]
,

Lemma 14. If F>L−1
P̂,Q̂
µP̂ > F

>L−1
P̂,Q̂
µQ̂, then the test power of our bi-directional hypothesis can

be lower bounded by

q(`, ν − `, λ, βα) · ξ + Φ
(
−(χ2

`,(2−β)α)1/2 − (ω/`)1/2F>L−1
P̂,Q̂

(µP̂ − µQ̂)
)
,

where ω = m′n′/(m′ + n′), ν = m′ + n′ − 1 and λ = ω‖L−1
P̂,Q̂

(µP̂ − µQ̂)‖22.

Proof. From Lemma 12, we first have, for F>L−1
P̂,Q̂
µP̂ > F

>L−1
P̂,Q̂
µQ̂,

Pr[h = 1 | F>L′−1z̄ ≥ 0] = Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ χ2

`,βα | F>L′−1z̄ ≥ 0

]
> Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ χ2

`,βα

]
, (17)

by substituting c = χ2
`,βα into Eqn. (14). From µP̂ 6= µQ̂, we also have, from the work of [84],

m′ + n′ − `− 1

(m′ + n′ − 2)`
T (X̂ ′, Ŷ ′) =

m′ + n′ − `− 1

(m′ + n′ − 2)`
× m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ∼ F (`,m′+n′−1−`, λ) ,

where λ = m′n′(µP̂ −µQ̂)>Σ−1
P̂,Q̂

(µP̂ −µQ̂)/(m′ + n′). Given the significance level βα, we have

Pr

[
m′ + n′ − `− 1

(m′ + n′ − 2)`
T (X̂ ′, Ŷ ′) ≥ F`,m′+n′−1−`,βα

]
= q(`,m′ + n′ − 1− `, λ, βα) , (18)

and this follows that

Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ χ2

`,βα

]
= q(`,m′ + n′ − 1− `, λ, βα) .

Recall B =
√
m′n′/(m′ + n′)L′−1diag(F )z̄ and F>L′−1z̄ =

√
(m′ + n′)/m′n′1>B

in the proof of Lemma 3, and that B̄ = 1>B/` is normally distributed with mean√
m′n′/(m′ + n′)F>L−1

P̂,Q̂
(µP̂ − µQ̂)/` and variance 1/`. We have

Pr[F>L′−1z̄ > 0] = Pr[B̄ ≥ 0] = 1− Φ

(
−
√

m′n′

(m′ + n′)`
F>L−1

P̂,Q̂
(µP̂ − µQ̂)

)
, (19)

20



since B̄ is normally distributed with mean
√
m′n′/(m′ + n′)F>L−1

P̂,Q̂
(µP̂ − µQ̂)/` and variance

1/`. Combining with Eqns. (17)-(19), we have

Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ χ2

`,βα ∩ F>L′−1z̄ ≥ 0

]
= Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ χ2

`,βα | F>L′−1z̄ ≥ 0

]
Pr[F>L′−1z̄ ≥ 0]

> Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ χ2

`,βα

]
Pr[F>L′−1z̄ ≥ 0]

= q(`,m′ + n′ − 1− `, λ, βα)

(
1− Φ(−

√
m′n′

(m′ + n′)`
F>L−1

P̂,Q̂
(µP̂ − µQ̂))

)
. (20)

For F>L−1
P̂,Q̂
µP̂ > F

>L−1
P̂,Q̂
µQ̂, we substitute c = χ2

`,(2−β)α into Eqn. (14), and it holds that

Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ χ2

`,(2−β)α ∩ F>L′−1z̄ < 0

]
= Pr

[
B̄2 ≥ (χ2

`,(2−β)α − S2)/` ∩ B̄ < 0
]

= Pr
[
B̄ ≤ −

√
(χ2
`,(2−β)α − S2)/`

]
= Φ

[
−
√
χ2
`,(2−β)α − S2 −

√
m′n′

(m′ + n′)`
F>L−1

P̂,Q̂
(µP̂ − µQ̂)

]

> Φ

[
−
√
χ2
`,(2−β)α −

√
m′n′

(m′ + n′)`
F>L−1

P̂,Q̂
(µP̂ − µQ̂)

]
. (21)

Combining with Eqns. (20)-(21), we give a lower bound for the test power of bi-directional hypothesis

Pr [h = 1] = Pr
[
h = 1 ∩ F>L′−1z̄ > 0

]
+ Pr

[
h = 1 ∩ F>L′−1z̄ < 0

]
= Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ χ2

`,βα ∩ F>L′−1z̄ ≥ 0

]
+ Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ χ2

`,(2−β)α ∩ F>L′−1z̄ < 0

]
> q(`,m′ + n′ − 1− `, λ, βα)

(
1− Φ(−

√
m′n′

(m′ + n′)`
F>L−1

P̂,Q̂
(µP̂ − µQ̂))

)

+Φ

(
−
√
χ2
`,(2−β)α −

√
m′n′

(m′ + n′)`
F>L−1

P̂,Q̂
(µP̂ − µQ̂)

)
.

Lemma 15. If F>L−1
P̂,Q̂
µP̂ < F

>L−1
P̂,Q̂
µQ̂, then the test power of our bi-directional hypothesis can

be lower bounded by

q(`, ν − `, λ, (2− β)α)(1− ξ) + 1− Φ
(

(χ2
`,βα)1/2 − (ω/`)1/2F>L−1

P̂,Q̂
(µP̂ − µQ̂)

)
,

where ω = m′n′/(m′ + n′), ν = m′ + n′ − 1 and λ = ω‖L−1
P̂,Q̂

(µP̂ − µQ̂)‖22.

Proof. From Corollary 13, we have, for F>L−1
P̂,Q̂
µP̂ < F

>L−1
P̂,Q̂
µQ̂,

Pr[h = 1 | F>L′−1z̄ ≤ 0] = Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ χ2

`,(2−β)α | F>L′−1z̄ < 0

]
> Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ χ2

`,(2−β)α

]
,
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Recall that

Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ χ2

`,(2−β)α

]
= q(`,m′ + n′ − 1− `, λ, (2− β)α)

in the proof of Lemma 14, and this follows that

Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ χ2

`,(2−β)α ∩ F>L′−1z̄ < 0

]
= Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ χ2

`,(2−β)α | F>L′−1z̄ < 0

]
Pr[F>L′−1z̄ < 0]

> Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ χ2

`,(2−β)α

]
Pr[F>L′−1z̄ < 0]

= q (`,m′ + n′ − 1− `, λ, (2− β)α) Φ

(
−
√

m′n′

(m′ + n′)`
F>L−1

P̂,Q̂
(µP̂ − µQ̂)

)
. (22)

Recall B =
√
m′n′/(m′ + n′)L′−1diag(F )z̄ and F>L′−1z̄ =

√
(m′ + n′)/m′n′1>B

in the proof of Lemma 3, and that B̄ = 1>B/` is normally distributed with mean√
m′n′/(m′ + n′)F>L−1

P̂,Q̂
(µP̂ − µQ̂)/` and variance 1/`. We have, if F>L−1

P̂,Q̂
µP̂ < F

>L−1
P̂,Q̂
µQ̂,

Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ χ2

`,βα ∩ F>L′−1z̄ ≥ 0

]
= Pr

[
B̄2 ≥ (χ2

`,βα − S2)/` ∩ B̄ ≥ 0
]

= Pr
[
B̄ ≥

√
(χ2
`,βα − S2)/`

]
= 1− Φ

(√
χ2
`,βα − S2 −

√
m′n′

(m′ + n′)`
F>L−1

P̂,Q̂
(µP̂ − µQ̂)

)

> 1− Φ

(√
χ2
`,βα −

√
m′n′

(m′ + n′)`
F>L−1

P̂,Q̂
(µP̂ − µQ̂)

)
. (23)

Combining with Eqns. (22)-(23), we give a lower bound for the test power of bi-directional hypothesis

Pr [h = 1] = Pr
[
h = 1 ∩ F>L′−1z̄ ≥ 0

]
+ Pr

[
h = 1 ∩ F>L′−1z̄ < 0

]
= Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ χ2

`,βα ∩ F>L′−1z̄ ≥ 0

]
+ Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ χ2

`,(2−β)α ∩ F>L′−1z̄ < 0

]
> q(`,m′ + n′ − 1− `, λ, (2− β)α)Φ

(
−
√

m′n′

(m′ + n′)`
F>L−1

P̂,Q̂
(µP̂ − µQ̂)

)

+1− Φ

(√
χ2
`,βα −

√
m′n′

(m′ + n′)`
F>L−1

P̂,Q̂
(µP̂ − µQ̂)

)
.

This completes the proof.

Lemma 16. For our bi-directional hypothesis, the type-I error rate is equal to α if µP̂ = µQ̂.

Proof. We first consider the case F>L′−1z̄ > 0. By substituting c = χ2
`,βα into Eqn. (14), we have

Pr[h = 1|F>L′−1z̄ ≥ 0]

= Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ χ2

`,βα | F>L′−1z̄ ≥ 0

]
= Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ χ2

`,βα

]
= βα .
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Recall B =
√
m′n′/(m′ + n′)L′−1diag(F )z̄ and F>L′−1z̄ =

√
(m′ + n′)/m′n′1>B

in the proof of Lemma 3, and that B̄ = 1>B/` is normally distributed with mean√
m′n′/(m′ + n′)F>L−1

P̂,Q̂
(µP̂ − µQ̂)/` and variance 1/`. We have

Pr[F>L′−1z̄ ≥ 0] = Pr[B̄ ≥ 0] = 1/2 ,

and we have

P

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ χ2

`,βα ∩ F>L′−1z̄ ≥ 0

]
= Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ χ2

`,βα | F>L′−1z̄ ≥ 0

]
Pr[F>L′−1z̄ ≥ 0] =

βα

2
, (24)

since B̄ is normally distributed with mean 0.

For the case F>L′−1z̄ < 0, we similarly substitute c = χ2
`,(2−β)α into Eqn. (14), and it follows that

Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ χ2

`,(2−β)α ∩ F>L′−1z̄ < 0

]
= Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ χ2

`,(2−β)α

]
−Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ χ2

`,(2−β)α ∩ F>L′−1z̄ ≥ 0

]
= Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ χ2

`,(2−β)α

]
−Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ χ2

`,(2−β)α

]
Pr[F>L′−1z̄ ≥ 0]

= Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ χ2

`,(2−β)α

]
− 1

2
Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ χ2

`,(2−β)α

]
=

1

2
Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ χ2

`,(2−β)α

]
= (1− β/2)α . (25)

From Eqns. (24)-(25), we have

Pr [h = 1] = Pr
[
h = 1 ∩ F>L′−1z̄ > 0

]
+ Pr

[
h = 1 ∩ F>L′−1z̄ < 0

]
= Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ χ2

`,βα ∩ F>L′−1z̄ ≥ 0

]
+ Pr

[
m′n′

m′ + n′
z̄>Σ−1

X̂′,Ŷ ′
z̄ ≥ χ2

`,(2−β)α ∩ F>L′−1z̄ < 0

]
=

βα

2
+ (1− β/2)α = α .

This completes the proof.

Theorem 4 follows from Lemmas 14-16.

A.5 Proof of Theorem 5

Recall that B〈1〉,B〈2〉, . . . ,B〈s〉 are rectangle regions of a non-increasing order w.r.t. g(·, ·). For each
rectangle region B〈i〉, we could define its local null hypothesis

H0,〈i〉 : µP̂B〈i〉
= µQ̂B〈i〉

with µP̂B〈i〉
= Ex̂′∼P̂B〈i〉

[x̂′] and µQ̂B〈i〉
= Eŷ′∼Q̂B〈i〉

[ŷ′] .

From Theorem 2, the testing statistic T (X ′B〈i〉 , Y
′
B〈i〉) follows the χ2 distribution with freedom of `

degrees under the local null hypothesis H0,〈i〉. Denote by χ2
`(T (X̂ ′Bi , Ŷ

′
Bi)) the p-value, and we have
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Lemma 17. [68] The p-value χ2
`(T (X̂ ′B,〈i〉 , Ŷ

′
B,〈i〉)) follows a uniform distribution U [0, 1] under the

local null hypothesis H0,〈i〉 : µP̂B〈i〉
= µQ̂B〈i〉

.

We take an interactive multi-step testing procedure to identify the index set of rectangle regions of
local significant differences. Define the candidate rejection set R(t) = {H0,〈i〉}ti=1 for 1 ≤ t ≤ s
withR(0) = ∅, and exclude one null hypothesis H0,〈t〉 at the t-th step. We could generate a sequence
as follows:

{H0,〈i〉}si=1 = R(s) ⊇ R(s− 1) ⊇ R(s− 2) ⊇ · · · ⊇ R(0) = ∅ . (26)

and it holds that H0,〈i〉 = R(i) \ R(i− 1). Recall the local bi-directional hypothesis

h〈i〉 = h(X̂ ′B〈i〉 , Ŷ
′
B〈i〉) for i ∈ [s] .

Denote by p∗ the parameter of significant level for the local two-sample test and masked p-value.
From Theorem 4, we have Pr[h〈i〉 = 1] = p∗ under the null local hypothesis H0,〈i〉. We further
present some useful lemmas as follows.

Lemma 18. [67] We haveE[h〈i〉] = p∗ for i ∈ [s] and h〈1〉, h〈2〉, · · · , h〈s〉 are mutually independent,
if µP̂B〈i〉

= µQ̂B〈i〉
for every i ∈ [s] and the p-values are uniformly distributed.

Denote by B̃ the set of rectangle regions that the local two samples X̂ ′B〈i〉 and Ŷ ′B〈i〉 are actually
drawn from one identical distribution, and we define

H0 =
{
H0,〈i〉 : B〈i〉 ∈ B̃

}
.

Lemma 19. [67] If there is some rectangle region such that µP̂B〈·〉
6= µQ̂B〈·〉

, and if the p-value

follows a uniform distribution under null hypothesis H0,〈·〉, then we have

E
[
h〈i〉 |

{
h〈k〉

}s
k=i+1

,
{
I
(
H0,〈k〉 ∈ H0

)}s
k=i+1

, H0,〈i〉 ∈ H0

]
= p∗ for i ∈ [s] .

We also define the weighted mirror-conservativeness, motivated from [85, 67], as follows.

Definition 20. We say that a density function f(·) satisfies the weighted mirror-conservativeness if
it holds that, for some given p ∈ (0, 1],

f(aw) ≤ f(1− (1− wp)a/p) for every w ∈ [1, 2], a ∈ [0, p] .

Here, we introduce an additional parameter w to incorporate two directions for our method, which is
different from the previous mirror-conservativeness [85, 67]. We could also present two sufficient
conditions for weighted mirror-conservativeness from [85, 67]: i) the non-decrease of f and ii) the
convexity of cumulative density function of p-value.

Lemma 21. If the density function of the p-value satisfies the weighted mirror-conservativeness
under local null hypothesis H0,〈·〉, and if there is some rectangle region such that µP̂B〈·〉

6= µQ̂B〈·〉
,

then we have, for every i ∈ [s],

E
[
h〈i〉 | {h〈k〉}sk=i+1,

{
I(h〈k〉 ∈ H0)

}s
k=i+1

, H0,〈i〉 ∈ H0, {g〈k〉}sk=1

]
≤ p∗ , (27)

where g〈k〉 = g(X̂ ′B〈k〉 , Ŷ
′
B〈k〉).

Proof. We first prove

E[h〈i〉 | g〈i〉 = a] ≤ p∗ for H0,〈i〉 ∈ H0 , (28)

from our bi-directional hypothesis and masked p-value with β ∈ [1, 2] in Eqn. (7), and it is sufficient
to consider the following two cases:
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• For F>B〈i〉L
′−1
B〈i〉(cX̂′B〈i〉

− cŶ ′B〈i〉 ) ≥ 0, we have

E

[
h〈i〉 | g〈i〉 = a,F>B〈i〉L

′−1
B〈i〉(cX̂′B〈i〉

− cŶ ′B〈i〉 ) > 0

]
=

p∗f(βa)

p∗f(βa) + (1− p∗)f(1− 1−βp∗
p∗

a)

=
p∗

p∗ + (1− p∗)f(1− 1−βp∗
p∗

a)/f(βa)

≤ p∗ ,

where the last inequality holds from the weighted mirror-conservativeness with p-value’s
uniform distribution U [0, 1].

• For F>B〈i〉L
′−1
B〈i〉(cX̂′B〈i〉

− cŶ ′B〈i〉 ) < 0, we similarly have

E

[
h〈i〉 | g〈i〉 = a,F>B〈i〉L

′−1
B〈i〉(cX̂′B〈i〉

− cŶ ′B〈i〉 ) < 0

]
=

p∗f((2− β)a)

p∗f((2− β)a) + (1− p∗)f(1− 1−(2−β)p∗
p∗

a)

=
p∗

p∗ + (1− p∗)f(1− 1−(2−β)p∗
p∗

a)/f((2− β)a)

≤ p∗ .

We define the information available for choosing H0,〈i〉 as a filtration (sequence of nested σ-fields)

F〈i〉 = σ
(
{B〈k〉, g〈k〉}sk=1, {χ2

`(T (X̂ ′B〈k〉 , Ŷ
′
B〈k〉))}

s
k=i+1

)
,

and also define the filtration
Fh〈i〉 = σ

(
{h〈k〉}sk=i+1,

{
I(H0,〈k〉 ∈ H0)

}s
k=i+1

)
.

This follows that
E
[
h〈i〉 | {h〈k〉}sk=i+1,

{
I(h〈k〉 ∈ H0)

}s
k=i+1

, H0,〈i〉 ∈ H0, {g〈k〉}sk=1

]
= E

[
h〈i〉 | Fh〈i〉, H0,〈i〉 ∈ H0, {g〈k〉}sk=1

]
= E

[
E
[
h〈i〉 | F〈i〉,Fh〈i〉, H0,〈i〉 ∈ H0, {g〈k〉}sk=1

] ∣∣Fh〈i〉, H0,〈i〉 ∈ H0, {g〈k〉}sk=1

]
where the last equality holds from the law of total expectation. We have

E
[
h〈i〉 | F〈i〉,Fh〈i〉, H0,〈i〉 ∈ H0, {g〈k〉}sk=1

]
=

∑
H0,j∈R(i)∩H0

E[h〈i〉|F〈i〉,Fh〈i〉, H0,〈i〉 ∈ H0, {g〈k〉}sk=1]

×Pr
[
H0,〈i〉 = H0,j |F〈i〉,Fh〈i〉, H0,〈i〉 ∈ H0, {g〈k〉}sk=1

]
=

∑
H0,j∈R(i)∩H0

E
[
h〈i〉 | F〈i〉

]
Pr
[
H0,〈i〉 = H0,j | F〈i〉,Fh〈i〉, H0,〈i〉 ∈ H0, {g〈k〉}sk=1

]
,

where the last equation holds from the fact that {Fh〈i〉, H0,〈i〉 ∈ H0, {g〈k〉}sk=1} is a subset of F〈i〉.
We further have, since h〈i〉 is independent of other information in F〈i〉,

E
[
h〈i〉 | F〈i〉,Fh〈i〉, H0,〈i〉 ∈ H0, {g〈k〉}sk=1

]
=

∑
H0,j∈R(i)∩H0

E
[
h〈i〉 | g〈i〉

]
Pr
[
H0,〈i〉 = H0,j | F〈i〉,Fh〈i〉, H0,〈i〉 ∈ H0, {g〈k〉}sk=1

]
≤ p∗

∑
H0,j∈R(i)∩H0

Pr
[
H0,〈i〉 = H0,j | F〈i〉,Fh〈i〉, H0,〈i〉 ∈ H0, {g〈k〉}sk=1

]
= p∗ ,
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which completes the proof.

We say that a random variable Z follows a Bernoulli distribution with parameter p, denoted by
Z ∼ Bern(p), if

Pr[Z = 1] = p and Pr[Z = 0] = 1− p .

We also say that a random variable Z follows a negative binomial distribution with parameters r and
p, denoted by Z ∼ NB(r, p), if

Pr[Z = k] =

(
k + r − 1

k

)
(1− p)rpk .

It is necessary to introduce a definition as follows:
Definition 22. We say that a random variable Z is stochastically dominated by a distribution G,
denoted by

Z � G ,

if for random variable X ∼ G, it holds that

Pr[Z ≥ x] ≤ Pr[X ≥ x] for x ∈ (−∞,+∞).

We further introduce some useful lemmas as follows:
Lemma 23. [67] Let Z1, · · · , Zs be i.i.d random variables with Zi ∼ Bern(p∗) for some p∗ > 0,
and write Ñt =

∑t
j=1 Zj and G̃t = σ(Ñt, {Zj}sj=t+1) for t ∈ [s]. We have

Ñτ̃ � NB(v, p∗) ,

where the stopping index τ̃ is parameterized by some constant v(≥ 1), defined by

τ̃ = max
{

0 < t ≤ s : t− Ñt < v or t = 1
}
.

We further introduce a weighted version of Lemma 23 as follows:
Lemma 24. [67] Let {Wj}sj=1 be a sequence of weights, drawn from a Bernoulli distribution, s.t.∑s
j=1Wj = u for fixed constant u ≤ s; and Zj | σ

(
{Zk,Wk}sk=j+1,Wj = 1

)
∼ Bern(p∗).

Write Nw
t =

∑t
j=1WjZj , and we have

Nw
τw � NB(v, p∗) ,

where the stopping index τw is parameterized by some constant v(≥ 1), defined by

τw = max

0 < t ≤ s :

t∑
j=1

Wj −Nw
t < v or t = 1

 .

We now introduce a different version of Lemma 24 by considering different parameter for Bernoulli
distribution as follows:
Lemma 25. [67] Let Zj | σ

(
{Zk,Wk}sk=j+1,Wj = 1

)
follow a Bernoulli distribution with param-

eter p({Zk,Wk}sk=j+1) for j ∈ [s], respectively. We have

Nw
τw � NB

(
v, p({Zk,Wk}sk=j+1)

)
� NB(v, p∗) ,

if p({Zk,Wk}sk=j+1) ≤ p∗ for every j ∈ [s].

We now present the detailed proof of Theorem 5 as follows.

Proof of Theorem 5. We first consider µP̂B〈i〉
= µQ̂B〈i〉

for every i ∈ [s]. From Lemma 18,

{h〈i〉}si=1 are s i.i.d. random variables with h〈i〉 ∼ Bern(p∗). Recall that the stopping rule in our
testing, i.e., Eqn. (11), which is equivalent to

1− (1− p∗)t−|I(t)|+1 ≤ α∗ ,
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where α∗ is a parameter to control familywise error rate and I(t) = {i ∈ [t] : h(X̂ ′B〈i〉 , Ŷ
′
B〈i〉) = 1}.

The stopping rule can be rewritten as t− |I(t)| < v with

v = bln(1− α∗)/ln(1− p∗)c . (29)

Let Zj = h〈j〉 and Ñt =
∑t
j=1 Zj . We define the stopping index τ̃ as follows

τ̃ = max
{

0 < t ≤ s : t− Ñt < v or t = 1
}
.

From Lemma 23, the number of rejections at the stopping index is given by

|I(τ̃)| =
τ̃∑
j=1

h〈j〉 = Ñτ̃ � NB(v, p∗) .

If µP̂B〈i〉
= µQ̂B〈i〉

for every i ∈ [s], then the number of false rejections is

|I(τ̃) ∩H0| = |I(τ̃)| � NB(v, p∗) ,

and hence the familywise error rate (FWER) is upper bounded by

Pr [|I(τ̃) ∩H0| ≥ 1] ≤ 1− (1− p∗)v ≤ α∗ ,
where the last inequality follows from Eqn. (29).

We now consider that there is some rectangle region with µP̂B〈·〉
6= µQ̂B〈·〉

. In such case, we provide

an upper bound for familywise error rate without the information of masked p-values, and prove that
the number of false rejections is stochastically dominated by NB(v, p∗).

Let Zj = h〈j〉 and Wj = I(H0,〈j〉 ∈ H0). We define the stopping index τw as follows:

τw = max

0 < t ≤ s :

t∑
j=1

I[h〈j〉 = 0 ∩H0,〈j〉 ∈ H0] =

t∑
j=1

Wj(1− Zj) < v or t = 1

 ,

where v is given in Eqn. (29). It is easy to see that

Zj | σ
(
{Zk,Wk}sk=j+1,Wj = 1

)
∼ Bern(p∗)

from Lemma 19. Denote by u = |H0|, and we have
∑s
j=1Wj = u and u ≤ s. From Lemma 24, we

have the number of false rejections
τw∑
j=1

I[h〈j〉 = 1 ∩H0,〈j〉 ∈ H0] =

τw∑
j=1

WjZj = Nw
τw � NB(v, p∗) . (30)

Recall that t − |I(t)| < v is our stopping rule on the exploration of local significant differences.
Denote by τwT the stopping index in our exploration, and we have

τwT∑
j=1

I[h〈j〉 = 0 ∩H0,〈j〉 ∈ H0]

≤
τwT∑
j=1

I[h〈j〉 = 0] = τwT −
τwT∑
j=1

I[h〈j〉 = 1] = τwT − I(τwT ) < v .

Since Nw
t is non-decreasing with respect to t, it is easy to obtain

τwT ≤ τw and Nw
τwT
≤ Nw

τw ,

and we have the number of false rejections

|I(τwT ) ∩H0| =
τwT∑
j=1

I[h〈j〉 = 1 ∩H0,〈j〉 ∈ H0] = Nw
τwT
≤ Nw

τw � NB(v, p∗) . (31)
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We upper bound the familywise error rate without considering the masked p-values as follows:

Pr [|I(τwT ) ∩H0| ≥ 1] ≤ Pr [|I(τw) ∩H0| ≥ 1] ≤ 1− (1− p∗)v ≤ α∗ .

We finally take masked p-values {g〈k〉}sk=1 into consideration. From Lemma 21, it is easy to observe

Zj | σ
(
{Zk,Wk}sk=j+1,Wj = 1

)
∼ Bern(p({Zk,Wk}sk=j+1)) ,

where

p({Zk,Wk}sk=j+1) = E
[
h〈j〉 | {h〈k〉}sk=j+1, {I(h〈k〉 ∈ H0)}sk=j+1, H0,〈j〉 ∈ H0, {g〈k〉}sk=1

]
≤ p∗ .

This follows that
NB

(
v, p

(
{Zk,Wk}sk=j+1

))
� NB(v, p∗) ,

and we further have, from Lemma 25,

|I(τwT ) ∩H0| =
τw∑
j=1

WjZj = Nw
τw � NB

(
v, p

(
{Zk,Wk}sk=j+1

))
� NB(v, p∗) .

We finally upper bound the familywise error rate by considering the masked p-values
{
g〈k〉

}s
k=1

as

Pr
[
|I(τwT ) ∩H0| ≥ 1 | {g〈k〉}sk=1

]
≤ P

(
|I(τw) ∩H0| ≥ 1 | {g〈k〉}sk=1

)
≤ 1− (1− p∗)v ≤ α∗ .

This completes the proof.

B Optimization for Test Locations and Mahalanobis Kernels

We take gradient method [43] for the optimization of Eqn. (5) as in the work of [10]. Specifically, we
calculate gradients, and update test locations and Mahalanobis kernels iteratively. In the following of
this section, we present the calculation of some crucial gradients in optimization.

For test location vj with j ∈ [`], we have

∇vjT (X̂, Ŷ ) =

(
∂T (X̂, Ŷ )

∂vj,1
,
∂T (X̂, Ŷ )

∂vj,2
, . . . ,

∂T (X̂, Ŷ )

∂vj,`

)>
, (32)

where, for i ∈ [`],

∂T (X̂, Ŷ )

∂vj,i
=
∂T (X̂, Ŷ )

∂cX̂

∂cX̂
∂vj,i

+
∂T (X̂, Ŷ )

∂cŶ

∂cŶ
∂vj,i

+ Tr

[
∂T (X̂, Ŷ )

∂ΣX̂,Ŷ

∂ΣX̂,Ŷ
∂vj,i

]
, (33)

where Tr[·] denotes the trace.

We further have

∂T (X̂, Ŷ )

∂cX̂
= 2mnΣ−1

X̂,Ŷ
(cX̂ − cŶ )/(m+ n) ,

∂cX̂
∂vj,i

=
1

m

m∑
r=1

∂x̂r
∂vj,i

with
∂x̂r
∂vj,i

=

(
0, · · · , 0, ∂κj(x̂r,vj)

∂vj,i
, 0, · · · , 0

)>
,

where all elements are zeros except for the j-th element. We also have

∂κj(xr,vj)

∂vj,i
=

∂

∂vj,i

{
exp

(
−(xr − vj)>Mj(xr − vj)/2γ2j

)}
= κj(x̂r,vj)(Mj(x̂r − vj))>(0, . . . , 1, . . . , 0)>/γ2j ,

where the i-th element is 1. We similarly calculate ∂T (X̂, Ŷ )/∂cŶ × ∂cŶ /∂vj,i.
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For the third term in Eqn. (33), we have

∂T (X̂, Ŷ )

∂ΣX̂,Ŷ
= Σ−1

X̂,Ŷ
(cX̂ − cŶ )(cX̂ − cŶ )>Σ−1

X̂,Ŷ
,

∂ΣX̂,Ŷ
∂vj,i

=
1

m+ n− 2

(
m∑
r=1

∂(x̂r − cX̂)(x̂r − cX̂)>

∂vj,i
+

n∑
r=1

∂(ŷr − cŶ )(ŷr − cŶ )>

∂vj,i

)
,

where

∂(x̂r − cX̂)(x̂r − cX̂)>

∂vj,i

=



0 · · · ∂(x̂r−cX̂)(x̂r−cX̂)>1,j
∂vj,i

· · · 0
...

. . .
...

. . .
...

∂(x̂r−cX̂)(x̂r−cX̂)>j,1
∂vj,i

· · · ∂(x̂r−cX̂)(x̂r−cX̂)>j,j
∂vj,i

· · · ∂(x̂r−cX̂)(x̂r−cX̂)>j,`
∂vj,i

...
. . .

...
. . .

...

0 · · · ∂(x̂r−cX̂)(x̂r−cX̂)>`,j
∂vj,i

· · · 0


.

Here, (x̂r − cX̂)(x̂r − cX̂)>j,t denotes the element in j-th row and t-th column, and we have

(x̂r − cX̂)(x̂r − cX̂)>j,t

=

m− 1

m
κt(xr,vj)−

1

m

m∑
s6=r

κt(xs,vj)

m− 1

m
κt(xr,vt)−

1

m

m∑
s6=r

κt(xs,vt)

 ,

and this follows that

∂(x̂r − cX̂)(x̂r − cX̂)>j,t
∂vj,i

=

m− 1

m
κj(xr,vt)−

1

m

m∑
s6=r

κj(xs,vt)

m− 1

m

∂κj(xr,vj)

∂vj,i
− 1

m

m∑
s6=r

∂κj(xs,vj)

∂vj,i

 .

We similarly have

∂(x̂r − cX̂)(x̂r − cX̂)>j,j
∂vj,i

= 2

m− 1

m
κj(xr,vj)−

1

m

m∑
s6=r

κj(xs,vj)

(m− 1

m

∂κj(xr,vj)

∂vj,i
− 1

m

m∑
s=r

∂κj(xs,vj)

∂vj,i

)
.

For gamma parameter γj with j ∈ [`], we have

∇γjT (X̂, Ŷ ) =
∂T (X̂, Ŷ )

∂cX̂

∂cX̂
∂γj

+
∂T (X̂, Ŷ )

∂cŶ

∂cŶ
∂γj

+ Tr

[
∂T (X̂, Ŷ )

∂ΣX̂,Ŷ

∂ΣX̂,Ŷ
∂γj

]
. (34)

We further have

∂cX̂
∂γj

=
1

m

m∑
r=1

∂x̂r
∂γj

with
∂x̂r
∂γj

=

(
0, . . . ,

∂κj(x̂r,vj)

∂γj
, . . . , 0

)>
,

where

∂κj(xr,vj)

∂γj
=

∂ exp
(
−(xr − vj)>Mj(xr − vj)/2γ2j

)
∂γj

= κj(x̂r,vj)(xr − vj)>Mj(xr − vj)γ−3j .
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We similarly calculate

∂ΣX̂,Ŷ
∂γj

=
1

m+ n− 2

(
m∑
r=1

∂(x̂r − cX̂)(x̂r − cX̂)>

∂γj
+

n∑
r=1

∂(ŷr − cŶ )(ŷr − cŶ )>

∂γj

)
,

where
∂(x̂r − cX̂)(x̂r − cX̂)>

∂γj

=



0 · · · ∂(x̂r−cX̂)(x̂r−cX̂)>1,j
∂γj

· · · 0
...

. . .
...

. . .
...

∂(x̂r−cX̂)(x̂r−cX̂)>j,1
∂γj

· · · ∂(x̂r−cX̂)(x̂r−cX̂)>j,j
∂γj

· · · ∂(x̂r−cX̂)(x̂r−cX̂)>j,`
∂γj

...
. . .

...
. . .

...

0 · · · ∂(x̂r−cX̂)(x̂r−cX̂)>`,j
∂γj

· · · 0


,

and this follows that
∂(x̂r − cX̂)(x̂r − cX̂)>j,t

∂γj

=

m− 1

m
κj(xr,vt)−

1

m

m∑
s6=r

κj(xs,vt)

m− 1

m

∂κj(xr,vj)

∂γj
− 1

m

m∑
s6=r

∂κj(xs,vj)

∂γj

 .

We similarly have

∂(x̂r − cX̂)(x̂r − cX̂)>j,j
∂γj

= 2

m− 1

m
κj(xr,vj)−

1

m

m∑
s6=r

κj(xs,vj)

(m− 1

m

∂κj(xr,vj)

∂γj
− 1

m

m∑
s=r

∂κj(xs,vj)

∂γj

)
.

For Mahalanobis matrix Mj with j ∈ [`], we have

∇Mj
T (X̂, Ŷ ) =


∂T (X̂,Ŷ )
∂Mj,1,1

· · · ∂T (X̂,Ŷ )
∂Mj,1,`

...
. . .

...
∂T (X̂,Ŷ )
∂Mj,`,1

· · · ∂T (X̂,Ŷ )
∂Mj,`,`

 , (35)

where we denote by Mj,a,b the element in a-th row and b-th column in Mj .

We further have

∂T (X̂, Ŷ )

∂Mj,a,b
=
∂T (X̂, Ŷ )

∂cX̂

∂cX̂
∂Mj,a,b

+
∂T (X̂, Ŷ )

∂cŶ

∂cŶ
∂Mj,a,b

+ Tr

[
∂T (X̂, Ŷ )

∂ΣX̂,Ŷ

∂ΣX̂,Ŷ
∂Mj,a,b

]
,

with

∂cX̂
∂Mj,a,b

=
1

m

m∑
r=1

∂x̂r
∂Mj,a,b

and
∂x̂r

∂Mj,a,b
=

(
0, . . . ,

∂κj(x̂r,vj)

∂Mj,a,b
, . . . , 0

)>
,

and

∂κj(xr,vj)

∂Mj,a,b
=

∂ exp
(
−(xr − vj)>Mj(xr − vj)/2γ2j

)
∂Mj,a,b

= −κj(xr,vj)
2γ2j

Tr
[
∂(xr − vj)>Mj(xr − vj)

∂Mj

∂Mj

∂Mj,a,b

]
= −κj(xr,vj)

2γ2j
Tr
[
(xr − vj)(xr − vj)>Ja,b

]
,
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where Ja,b is the single-entry matrix (1 at (a, b) and zero elsewhere). We similarly calculate
∂cŶ /∂Mj,a,b and have

∂ΣX̂,Ŷ
∂Mj,a,b

=
1

m+ n− 2

(
m∑
r=1

∂(x̂r − cX̂)(x̂r − cX̂)>

∂Mj,a,b
+

n∑
r=1

∂(ŷr − cŶ )(ŷr − cŶ )>

∂Mj,a,b

)
,

where

∂(x̂r − cX̂)(x̂r − cX̂)>

∂Mj,a,b

=



0 · · · ∂(x̂r−cX̂)(x̂r−cX̂)>1,j
∂Mj,a,b

· · · 0
...

. . .
...

. . .
...

∂(x̂r−cX̂)(x̂r−cX̂)>j,1
∂Mj,a,b

· · · ∂(x̂r−cX̂)(x̂r−cX̂)>j,j
∂Mj,a,b

· · · ∂(x̂r−cX̂)(x̂r−cX̂)>j,`
∂Mj,a,b

...
. . .

...
. . .

...

0 · · · ∂(x̂r−cX̂)(x̂r−cX̂)>`,j
∂Mj,a,b

· · · 0


.

Here, we have

∂(x̂r − cX̂)(x̂r − cX̂)>j,t
∂Mj,a,b

=

m− 1

m
κj(xr,vt)−

1

m

m∑
s6=r

κj(xs,vt)

m− 1

m

∂κj(xr,vj)

∂Mj,a,b
− 1

m

m∑
s6=r

∂κj(xs,vj)

∂Mj,a,b

 .

We similarly have ∂(x̂r − cX̂)(x̂r − cX̂)>t,j / ∂Mj,a,b and

∂(x̂r − cX̂)(x̂r − cX̂)>j,j
∂Mj,a,b

= 2

m− 1

m
κj(xr,vj)−

1

m

m∑
s6=r

κj(xs,vj)

(m− 1

m

∂κj(xr,vj)

∂Mj,a,b
− 1

m

m∑
s=r

∂κj(xs,vj)

∂Mj,a,b

)
.

Project Mahalanobis matrix onto a positive definite cone

We can not guarantee the positive-definiteness of Mahalanobis matrices during the optimization
process via gradient ascend. Motivated from [43], we project Mahalanobis matrix onto a positive
definite cone as follows:

• Present the spectral (eigenvalue) decomposition of a Mahalanobis matrix M as

M =

d∑
i=1

λipip
T
i .

where λ1, λ2, · · · , λd are their eigenvalues with corresponding eigenvectors p1,p2, · · · ,pd.
• Project the Mahalanobis matrix M onto a positive definite cone

M =

d∑
i=1

max {λi, δ} vivTi for small positive constant δ .

C Datasets and Parameter Setting

Datasets

We partition datasets into several disjoint subsets, and then randomly draw data elements from
each subset based on the sample fraction, i.e., the proportion of samples to be selected from each

31



subset. We construct two different samples by using two different sample fractions in above stratified
sampling process, and construct two samples drawn from one identical distribution by adapting a
same sample fraction, as done in [60].

We provide the details of constructing two samples for each dataset as follows:

• blob is constructed as the mixture of nine Gaussian modes. We first write
u1 = [0, 0], u2 = [0, 1], u3 = [0, 2],

u4 = [1, 0], u5 = [1, 1], u6 = [1, 2],

u7 = [2, 0], u8 = [2, 1], u9 = [2, 2],

and

∆i =


−0.02− 0.002× (i− 1) for i < 5

0 for i = 5

0.02 + 0.002× (i− 6) for i > 5 .

To construct different distributions P and Q, we adapt different covariance structures and

P =

9∑
i=1

1

9
N (ui, 0.03× I2) and Q =

9∑
i=1

1

9
N
(
ui,

[
0.03 ∆i

∆i 0.03

])
.

To construct identical distribution for two samples, i.e., P = Q, we have

P =

9∑
i=1

1

9
N (ui, 0.03× I2) and Q =

9∑
i=1

1

9
N (ui, 0.03× I2) .

We set the sample size for training to 900 and for testing to 224.
• dna is a categorical dataset with 3 classes. For constructing two different samples, we

set the sample fraction for one sample to [0.30, 0.35, 0.35] and for the other sample to
[0.45, 0.25, 0.3]; To construct two samples with one identical distribution, we set the same
sample fraction [0.30, 0.35, 0.35] for two samples. We set the sample size for training to
1000 and for testing to 250.
• agnos (agnostic) is a categorical dataset with 2 classes. For constructing two different

samples, we set the sample fraction for one sample to [0.35, 0.65] and for the other sample
to [0.65, 0.35]; To construct two samples with one identical distribution, we set the same
sample fraction [0.35, 0.65] for two samples. We set the sample size for training to 1000
and for testing to 250.

• topo21 is a regression dataset with continuous target variables. Based on the sorted target
variables, we divide the data into 4 equal parts. For constructing two different samples,
we set the sample fraction for one sample to [0.1, 0.3, 0.2, 0.4] and for the other sample to
[0.5, 0.2, 0.1, 0.2]; To construct two samples with one identical distribution, we set the same
sample fraction [0.1, 0.3, 0.2, 0.4] for two samples. We set the sample size for training to
2200 and for testing to 550.
• har is a categorical dataset with 6 classes. For constructing two different samples, we set

the sample fraction for one sample to [0.10, 0.20, 0.10, 0.20, 0.20, 0.10] and for the other
sample to [0.15, 0.15, 0.20, 0.15, 0.20, 0.15]; To construct two samples with one identical
distribution, we set the same sample fraction [0.10, 0.20, 0.10, 0.20, 0.20, 0.10] for two
samples. We set the sample size for training to 2200 and for testing to 550.

• kropt is a categorical dataset with 18 classes, where we only consider categories 13, 14, 15
and 16 which have the majority of the data.. For constructing two different samples, we
set the sample fraction for one sample to [0.15, 0.2, 0.3, 0.35] and for the other sample to
[0.35, 0.35, 0.15, 0.15]; To construct two samples with one identical distribution, we set the
same sample fraction [0.25, 0.25, 0.25, 0.25] for two samples. We set the sample size for
training to 2000 and for testing to 500.

• diamon (diamonds) is a regression dataset with continuous target variables. Based on the
sorted target variables, we divide the data into 4 equal parts. For constructing two different
samples, we set the sample fraction for one sample to [0.35, 0.2, 0.2, 0.25] and for the other
sample to [0.2, 0.3, 0.3, 0.2]; To construct two samples with one identical distribution, we
set the same sample fraction [0.25, 0.25, 0.25, 0.25] for two samples. We set the sample size
for training to 2000 and for testing to 500.
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Table 4: Optimization parameters of our MEMaBiD test for different datasets.

Dataset # Test Locations Learning Rate Optimization Epoch
blob 17 0.007 1000
dna 15 0.0004 1000
agnos 15 0.001 200
topo21 15 0.001 1000
har 15 0.001 100
kropt 1 0.002 1000
diamon 2 0.0013 1000
cifar10 2 0.003 200
mnist 2 0.001 500
santan 10 0.001 1000
codrna 2 0.01 1000
sea50 1 0.01 1000
adult 1 0.001 1000
labor 1 0.001 1000
poker 3 0.002 200
higgs 15 0.001 1000

• Original cifar10 (samples P) is compared to adversarial-cifar10 (samples Q) following [19],
where adversarial-cifar10 is constructed by [86] for distribution shift detection. To construct
two samples with one identical distribution, we select randomly between original cifar10
and adversarial-cifar10 and drawn two samples from the same dataset. The image is scaled
to 32× 32 and we set the sample size for training to 200 and for testing to 50.

• mnist contains 70000 handwritten digit images, we compare true mnist data (samples P) to
Fake-mnist data (samples Q) following [39], where the Fake-mnist data is drawn from a
pre-trained deep convolutional generative adversarial network [87] and the image is scaled
to 32× 32. To construct two samples with one identical distribution, we select randomly
between original mnist and Fake-mnist and drawn two samples from the same dataset. We
set the sample size for training to 600 and for testing to 150.

• santan (santandercustomersatisfaction) is a categorical dataset with 2 classes. For construct-
ing two different samples, we set the sample fraction for one sample to [0.8, 0.2] and for the
other sample to [0.25, 0.75]; To construct two samples with one identical distribution, we
set the same sample fraction [0.5, 0.5] for two samples. We set the sample size for training
to 1000 and for testing to 250.

• codrna is a categorical dataset with 2 classes. For constructing two different samples, we set
the sample fraction for one sample to [0.7, 0.3] and for the other sample to [0.35, 0.65]; To
construct two samples with one identical distribution, we set same sample fraction [0.5, 0.5]
for two samples. We set the sample size for training to 1000 and for testing to 250.

• sea50 is a categorical dataset with 2 classes. For constructing two different samples, we
set the sample fraction for one sample to [0.7, 0.3] and for the other sample to [0.3, 0.7]; To
construct two samples with one identical distribution, we set same sample fraction [0.5, 0.5]
for two samples. We set the sample size for training to 5000 and for testing to 1250.

• adult is a categorical dataset with 2 classes. For constructing two different samples, we set
the sample fraction for one sample to [0.6, 0.4] and for the other sample to [0.4, 0.6]; To
construct two samples with one identical distribution, we set same sample fraction [0.5, 0.5]
for two samples. We set the sample size for training to 5000 and for testing to 1250.

• labor is a categorical dataset with 2 classes. For constructing two different samples, we set
the sample fraction for one sample to [0.6, 0.4] and for the other sample to [0.45, 0.55]; To
construct two samples with one identical distribution, we set same sample fraction [0.5, 0.5]
for two samples. We set the sample size for training to 5000 and for testing to 1250.

• poker is a categorical dataset with 2 classes. For constructing two different samples, we
set the sample fraction for one sample to [0.2, 0.8] and for the other sample to [0.8, 0.2]; To
construct two samples with one identical distribution, we set same sample fraction [0.5, 0.5]
for two samples. We set the sample size for training to 3000 and for testing to 750.
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Algorithm 2 MEMaBiD training
Input: Two training samples X and Y , number of test locations `, optimization epoch K, step size η
Output: {vi}`i=1, {Mi}`i=1, {γi}`i=1 and F

1: Initialize {vi}`i=1, {Mi}`i=1 = Id and {γi}`i=1 by Eqn. (36)
2: for k = 1, 2, . . . ,K do
3: Calculate the embeddding training samples X̂ and Ŷ based on Eqn (2)
4: Calculate the statistic T (X̂, Ŷ ) based on Eqn. (4)
5: Calculate gradient ∇vjT (X̂, Ŷ ),∇γjT (X̂, Ŷ ) and ∇Mj

T (X̂, Ŷ ) via Eqns. (32), (34), (35)
6: Gradient ascend based on Adam optimization method with step size η
7: end for
8: Calculate the embeddding training samples X̂ and Ŷ based on Eqn (2)
9: Calculate the pooled covariance matrix ΣX̂,Ŷ based on Eqn. (3)

10: Calculate the Schur decomposition of the pooled covariance matrix: LL = ΣX̂,Ŷ .
11: Calculate the inference direction F based on Eqn. (6)
12: return {vi}`i=1, {Mi}`i=1, {γi}`i=1 and F

• higgs is a categorical dataset with 2 classes. For constructing two different samples, we set
the sample fraction for one sample to [0.0, 1.0] and for the other sample to [1.0, 0.0]; To
construct two samples with one identical distribution, we set same sample fraction [1.0, 0.0]
for two samples. We set the sample size for training to 16000 and for testing to 4000.

In optimization, we adapt Adam optimization method from the pytorch library in python [88, 89].
Table 4 presents the details of the hyperparameter settings for each dataset, including the number of
test locations, learning rate.

Experimental settings

At initialization, we usually set the Mahalanobis matrices {Mi}`i=1 to identity matrices. We further
provide an alternative initialization for the Mahalanobis matrices based on the correlation information
of two training samples as follows:

Mj =

m+n∑
i=1

(Sj,i − cSj )(Sj,i − cSj )>/(m+ n− 1) + δId ,

where Sj = {x1 − vj , ...,xm − vj ,y1 − vj , ...,yn − vj}, Sj,i is the i-th element of Sj , and
cSj =

∑m+n
i=1 Sj,i/(m + n). Id is an identity matrix of size d × d to guarantee the positive

definiteness with small constant δ > 0. Here, the elements x and y are come from training samples
X and Y , and m and n are the numbers of elements in X and Y respectively.

For initialization of test locations, we first fit a Gaussian distribution for each sample and draw half
of the number of test locations from each distribution. This could be expensive for high dimensional
dataset, and we can simplify the process by directly sampling test locations from original dataset.

For initialization of the bandwidth parameters of Mahalanobis kernels, we let γj = γ for every j ∈ [`]
and then linearly search for γ that maximize the statistic from a candidate list with fixed test locations
and Mahalanobis matrices, which can be formalized as follows:

γ∗ = argmaxγT (X̂, Ŷ ) for γ ∈ {med2 ·2−4, med2 ·2−3.8, med2 ·2−3.6, . . . , med2 ·24} , (36)

where med denotes the median of pairwise Euclidean distances of points in X and Y .

Compared methods

We now present the details for our compared methods as follows:

• ME2: The mean embeddding method learns a set of test locations and a single Gaussian
kernel, and then measures the difference between two mean embedddings with a statistic
following χ2 distribution [9, 10];

2The code is downloaded from github.com/wittawatj/interpretable-test.
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Algorithm 3 MEMaBiD testing
Input: Two testing samples X ′ and Y ′, test locations {vi}`i=1, Mahalanobis kernels parameters
{Mi}`i=1 and {γi}`i=1, inference direction F , significance level α and parameter β
Output: h

1: Calculate the embeddding testing samples X̂ ′ and Ŷ ′ based on Eqn. (2)
2: Calculate mean embeddings cX̂′ =

∑m′

i=1 x̂
′
i/m

′ and cŶ ′ =
∑n
j=1 ŷ

′
i/n
′

3: Calculate the pooled covariance matrix ΣX̂′,Ŷ ′ based on Eqn. (3)
4: Calculate the Schur decomposition of the pooled covariance matrix: L′L′ = ΣX̂′,Ŷ ′ .
5: if F T (cX̂′ − cŶ ′) ≥ 0 then
6: h = I[χ2

`(T (X̂ ′, Ŷ ′)) ≤ βα]
7: else
8: h = I[χ2

`(T (X̂ ′, Ŷ ′)) ≤ (2− β)α]
9: end if

10: return h

Algorithm 4 Exploring the local significant differences
Input: Two testing samples X,Y , Mahalanobis kernels’ parameters {Mi}`i=1 and {γi}`i=1, test
locations {vi}`i=1, partition tree T
Output: t∗

1: Calculate the embeddding testing samples X̂ ′ and Ŷ ′ based on Eqn. (2)
2: Get the local two samples X̂ ′Bi and Ŷ ′Bi for every i ∈ [s] based on partition Tree T
3: Calculate bi-directional masked p-value g(X̂ ′Bi , Ŷ

′
Bi) for each rectangle region Bi

4: Resort rectangle regions as B〈1〉,B〈2〉, . . . ,B〈s〉 in a non-increasing order based on g(·, ·)
5: Calculate bi-directional hypothesis h(X̂ ′Bi , Ŷ

′
Bi) for each rectangle region Bi by Eqn. (7)

6: Calculate the index set t∗ based on Eqn. (11)
7: return t∗

• C2ST-S3: A binary classification neural network is trained and the statistic is computed as
the accuracy over a hold-out set of two samples [13];

• MMDAgg4: A solution for the fundamental kernel selection problem involves the aggrega-
tion of a large number of kernels with several bandwidths, where the incomplete U -statistics
are used to measure the difference between two samples Schrab et al. [75]. Notice that we
set the testing sample size for MMDAgg to 5 times that of the other methods, since it does
not require training;

• MMD-D5: A deep kernel approach for Maximum Mean Discrepancy (MMD), where the
parameters of a neural network, two lengthscales of Gaussian kernels and a regularization
parameter are optimized [39];

• C2ST-L6: A binary classification neural network is trained and the statistic is computed as
the difference between outputs of the logit function corresponding to two samples [14, 18];

• AutoML7: A binary classifier is trained based on Automated Machine Learning techniques
and the statistic is same to C2ST-L approach [19].

We implement methods for exploring local significant differences in Python, following their respective
guidelines as follows:

• FDG: Partition the sample space based on probability binning and then compare the car-
dinalities of two samples over rectangle regions, where a normalized chi-squared value is
computed for each bin to measure the local difference [24];

3The code is downloaded from github.com/lopezpaz/classifier_tests.
4The code is downloaded from github.com/antoninschrab/agginc-paper.
5The code is downloaded from github.com/fengliu90/DK-for-TST.
6The code is downloaded from github.com/xycheng/net_logit_test.
7The code is downloaded from github.com/jmkuebler/autoML-TST-paper.
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Figure 9: An illustration for our partition tree with splitting regions.

• K-PRIM: Partition the space based on patient rule induction method along with the infor-
mation of kernel density estimation, and use a statistic following χ2

1 distribution to identify
local distributional difference [28];

• MRS: Partition the sample space based on pólya tree method, which splits a leaf node based
on the median of randomly selected feature, and then measure the difference between local
two samples based on Binomial distribution [26];

• TEAM: Partition the sample space on the median of the feature with largest sample variance,
and then measure differences between local two samples with Binomial distribution [27];

• BTLDD: Estimate the conditional probabilities of two samples based on a regression model
and then cluster those elements with significant different conditional probabilities [77];

• MMDT: Partition the sample space into multiple equal grids based on quantile values of the
features, and then estimate the kernel densities of two samples and measure local differences
based on Welch’s two-sample t-test statistic [29].

For the exploration of local significant differences, we take density differences [78] between two
samples in a local region as an evaluation measure for local significant differences, and follow the
works of [79, 80] based on k-NN density estimator with k = 20. Here, denote by X and Y the
available data for density evaluation, we have estimated density functions as follows:

fX(z) :=
20

N · vd · rX(z)d
and fY (z) :=

20

N · vd · rY (z)d
,

where z ∈ [0, 1]d, N denotes sample size for density estimation and vd is the volume of a unit ball
in Rd. Denote by rX(z)d and rY (z)d the distances from z to its 20-th nearest neighbors in X and
Y , respectively. For density estimation, we use all data of diamond, and 1, 000, 000 data of other
datasets due to the limitation of time complexity.

For our MEMaBiD test, we present the detailed training procedure in Algorithm 2 and testing procedure
in Algorithm 3. Figure 9 is a pictorial illustration to present the region-splitting method and clarify
that our partition tree is constructed iteratively: We initiate tree root with embedding space, and
during each iteration, we select randomly one of those leaves with the largest size of training data
points, and select the feature of the largest statistics value and with the median splitting position. We
present the detailed description on the exploration of local significant differences in Algorithm 4.
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Figure 10: Comparisons of training time for different methods on two-sample test. Note that y-axis is in
log-scale.
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Figure 11: Comparisons of testing time for different methods on two-sample test. Note that y-axis is in log-scale.

D Experimental comparisons

Running time

For fair comparisons, we run all experiments on a single core without parallel optimizations, and
experiments are performed with Python on nodes of a computational cluster with a single CPU
(Intel Core i9-10900X 3.7GHz) and a single GPU (GeForce RTX 2080 Ti), running Ubuntu with
128GB main memory. For these methods based on deep neural networks, such as C2ST-S, C2ST-L
and MMD-D, we run experiments on GPU. For other methods except for AutoMLTST, we run
experiments on CPU. For AutoMLTST, we run experiments on GPU for cifar and mnist, and run
experiments on CPU for other datasets.

We further compare the average training time and testing time (in seconds) for different methods on
two-sample test, as shown in Figure 10 and Figure 11. Notice that, the training time of MMDAgg is
0, since it has no training procedure. In testing procedure, our MEMaBiD and ME methods calculate
the rejection threshold based on the asymptotic distribution χ2

` , whereas other methods perform
permutation test or wild bootstrap.

Additional experimental comparisons

Table 5 presents the comparisons of type-I error for different methods. As can be seen, type-I error is
limited about α = 0.05 for all compared methods, which shows the effectiveness of test power in
experiments for different methods.

Figure 12 shows the experimental comparisons between Mahalanobis kernels and Gaussian kernels,
and it is obvious that Mahalanobis kernels achieves higher test power with better performance by
exploiting local regions and directional information. Figure 13 presents experimental comparisons of
test power with different training sample sizes. The testing sample size is set as 200 for blob, 1000 for
higgs, 200 for codrna and 150 for sea50. As can be seen, our MEMaBiD test takes better test powers
empirically than other methods w.r.t different training sample sizes by incorporating correlation and
directional information of two samples.
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Table 5: Comparisons of type-I error (mean±std).

Dataset Ours MEMaBiD ME MMDAgg MMD-D C2ST-L C2ST-S AutoMLTST
blob .043± .025 .064± .056 .061± .054 .064± .018 .037± .032 .004± .006 .019± .016
dna .045± .036 .052± .068 .061± .035 .002± .004 .037± .025 .059± .054 .033± .034

agnostic .047± .023 .049± .034 .051± .043 .002± .004 .042± .029 .063± .045 .046± .039
topo21 .033± .019 .049± .032 .038± .034 .049± .039 .019± .022 .051± .024 .038± .024

har .046± .033 .033± .026 .040± .030 .045± .028 .022± .014 .061± .041 .052± .041
kropt .033± .016 .021± .006 .013± .000 .030± .029 .046± .016 .033± .012 .033± .021

diamon .042± .024 .029± .024 .017± .012 .046± .023 .013± .010 .021± .016 .033± .031
cifar .015± .010 .012± .011 .025± .014 .078± .068 .021± .016 .027± .017 .020± .014
mnist .043± .038 .013± .016 .041± .028 .092± .068 .032± .041 .057± .026 .049± .039
santan .037± .031 .092± .043 .029± .006 .058± .019 .025± .018 .037± .027 .042± .036
codrna .013± .010 .017± .016 .075± .080 .042± .028 .046± .047 .042± .012 .008± .012
sea50 .032± .027 .021± .012 .058± .026 .088± .059 .029± .041 .058± .056 .050± .047
adult .024± .016 .021± .016 .029± .016 .038± .010 .033± .016 .033± .026 .062± .020
labor .017± .016 .037± .010 .054± .059 .056± .029 .029± .024 .029± .026 .042± .026
poker .029± .016 .013± .010 .054± .041 .078± .047 .029± .006 .058± .031 .050± .054
higgs .046± .011 .024± .016 .043± .031 .066± .028 .068± .098 .048± .017 .034± .039
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Figure 12: The comparisons of test power vs sample size for Mahalanobis kernel and Gaussian kernel.
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Figure 13: The comparisons of test power with different training sample sizes.
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Figure 14: The comparisons of test power vs sample size for our bi-directional masked p-value and prior Sidak.
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Figure 15: The comparisons of ξ with different sample size and number of test locations.

Figure 14 presents experimental comparisons between our bi-directional masked p-value and previous
Sidak [67]. As can be seen, our bi-directional masked p-value achieves higher test power by exploiting
the significant level of local difference. Figure 15 analyzes the relationship between probability
ξ = Pr[sgn(F>B L

′−1
B ( cX̂′B

− cŶ ′B )] ≥ 1) and sample size, by considering different numbers of test
locations ` ∈ {2, 6, 10, 14, 18}. As can be seen, ξ gradually increases as the sample size for different
number of test locations, which shows the necessity of directional information in two-sample test.

Figure 16 analyzes the relationship between the number of local regions s and probability
ξ = Pr[sgn(F>B L

′−1
B ( cX̂′B

− cŶ ′B )] ≥ 1). The probability ξ increases with s, and hence can
effectively partition the space into local regions with different inference directions. Figure 17 presents
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Figure 16: The comparisons of ξ for partition trees with s ∈ [20, 23]. The value of ξ increases as s increases.
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Figure 17: The correlation between the optimal parameter β and probability ξ = Pr[sgn(F>B L′−1
B ( cX̂′B

−
cŶ ′B

)] ≥ 1). Here, N denotes sample size.

additional experiments on the relationship between the optimal parameter β and the probability
ξ = Pr[F>L′−1(cX̂′ − cŶ ′) ≥ 0], as shown in Figure 6.
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