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Abstract

Inference-time scaling methods improve language model performance, but existing
methods lack the efficiency and flexibility to synthesize information across multiple
long-form generation samples. We introduce Consensus Graphs (CONGRS), a
flexible DAG-based data structure that represents shared content and semantic
variation across a set of LM responses to the same prompt. We construct CONGRS
using an efficient lexical sequence alignment algorithm from bioinformatics, sup-
plemented by the targeted usage of a secondary LM judge. We design and evaluate
task-dependent decoding methods to synthesize final responses from CONGRS.
Our experiments show that synthesizing responses from CONGRS improves factual
precision on a biography generation task by up to 31% over an average response
and reduces reliance on LM judges by more than 80% compared to other methods.
We apply our approach to the MATH and AIME reasoning tasks and find an im-
provement over self-verification and majority vote baselines by up to 6 points of
accuracy. CONGRS efficiently encode the variation among responses, which can
then be used to improve downstream performance on various tasks.

1 Introduction and Related Work

Inference-time scaling methods improve language model performance by generating more tokens.
This can occur serially within a model’s chain-of-thought as with reasoning models [1, 2], or in
parallel by sampling multiple response generations for a single query [3, 4]. Such parallel methods
typically take the majority vote over final short answers [4] or select a single best response [5, 6].
However, selecting the single best parallel response can result in excluding valuable information,
while serial methods can generate many redundant tokens [7]. Existing methods to aggregate
information across multiple parallel long-form response generations often incur high costs by relying
heavily on LMs to decompose responses into smaller units [8–11]. Thus, we ask: How can we
efficiently synthesize information from multiple responses in long-form generation?

To answer this question, we exploit recent findings about the lack of textual diversity in generations
from post-trained models. Specifically, RLHF alignment reduces the textual diversity of responses [12–
14], resulting in anchor spans: sequences of words that occur in the same order across responses [15].
For example, instruction-tuned QWEN 2.5 72B responses to a query from a biography generation
task share on average 7 anchor spans of 7.7 words each (details in §2).

We introduce Consensus Graphs (CONGRS), a data structure to capture similarities and differences
within a set of sampled LM responses (Figure 1). Our work is inspired by the task of finding common
regions in biological sequence data in bioinformatics, called Multiple Sequence Alignment (MSA).
We use a two-step process to construct a directed acyclic graph of response text, where each path
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Tell me a biography of Felipe (footballer, born 1977). 

Synthesized response:

1/3

2/3

1/3

2/3

Felipe, born in 1977, is a retired Argentine footballer who played as a midfielder. He had a successful career in Europe, playing for clubs such as Lazio and Roma.

Felipe, born in 1977, is a former Brazilian footballer who played as a midfielder. He had a successful career spanning from the late 1990s to the mid-2000s, 
playing for several clubs including São Paulo and Real Zaragoza.

Felipe, born in 1977, is a retired Brazilian footballer who played as a midfielder. He had a successful career in Europe, playing for clubs such as AC Milan and Roma.

Felipe, born in 1977, is a former Brazilian footballer who played as a midfielder. He had a successful career in Europe, playing for clubs.
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Felipe, born in 1977, is a
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Consensus graph (ConGr)

former Brazilian
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in Europe
footballer who played as a midfielder. 

He had a successful career
playing for clubs such as

CONGR construction (section 2)

Consensus decoding (section 3) combines nodes with many responses using an LM

Edge weights denote the fraction 
of responses following that edge

Multiple generations from a language model for a single query:

Disagreement nodes store information 
that varies across responses

Consensus nodes store text 
that is stable across responses

A high number of disagreement nodes 
indicates possible hallucinations

Figure 1: Consensus Graphs (CONGRS) capture the variation in a set of sampled LM responses. A
CONGR is a weighted DAG that contains: consensus nodes that encode anchor spans of text present
in all responses in the same order and disagreement nodes that encode differences between responses.
A node’s weighted-degree represents how many responses contain the information in that node. This
information can be used differently for different tasks. For a task of improving factuality when
generating biographies, disagreement nodes with lower weighted degree might be hallucinations.

through the graph corresponds to a single response. First, we adapt the Needleman-Wunsch algorithm
[16, 17], a foundational MSA algorithm, to efficiently identify anchor spans shared by all responses
(consensus nodes in Figure 1). We then use a secondary LM judge only to analyze whether the
remaining parts of the responses, i.e., lexically different spans, are also semantically different, within
the context of the graph (disagreement nodes in Figure 1). CONGRS capture agreement between
model responses at various levels, from sentences to single words, going beyond approaches that only
consider full-sentence agreement [18].

In real-world contexts, disagreements between traditional information sources can signal unreliability:
information appearing in many sources may be more likely to be true [19, 20]. We study two
tasks where high variation across responses might indicate model errors: biography factuality and
mathematical reasoning. We devise two approaches to synthesize a response from a CONGR; each
approach is tailored to the nature of its task. For biography factuality, we develop consensus decoding,
which selectively aggregates text across multiple responses with the goal of removing hallucinations.
A single biography can contain facts that need not logically rely on each other, so consensus decoding
seeks to combine the most reliable facts from across responses. On the other hand, a reasoning task
requires an argument that is logically consistent from start to end. We therefore develop guided
self-verification to identify possible errors in existing reasoning responses instead of combining text
from different responses. Standard self-verification, where a model evaluates its own generations
for correctness, is a promising alternative to relying on a secondary LM judge, but current models
struggle to self-verify on reasoning tasks [21] unless error locations are provided [22]. We use
CONGRS to localize possible errors by finding high-variability regions across responses.

For the task of generating factual biographies, consensus decoding improves factual precision by up
to 31% over an average response. It also achieves performance comparable to that of an alternative
method that heavily uses LMs for claim analysis [8] at less than 20% of the cost in secondary LM API
calls. For reasoning tasks, guided self-verification boosts performance on MATH by up to 6 points
of accuracy beyond self-consistency and standard self-verification. CONGRS can also drastically
improve refusal for questions without factual answers (Appendix I). Our approach efficiently identifies
information that varies across model responses and shows that using this variation as a proxy for
unreliability can improve performance on diverse downstream tasks. Future work will explore how
variation can also encode alternate perspectives and creative possibilities for more open-ended tasks.

2 Capturing LM Response Variation with Consensus Graphs

Consensus Graphs (CONGRS) capture the lexical and semantic variation across a set of model
responses to a prompt. We briefly describe how to construct CONGRS; a complete formal description
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of the data structure and the construction process is provided in Appendix C. Given a set of responses
sampled from an LM in response to a prompt, a CONGR is a weighted directed acyclic graph. Nodes
in this graph are partitioned into consensus nodes and disagreement nodes. Each response will
correspond to a path through the graph. First, we use the Needleman-Wunsch algorithm [16] to align
words across responses and organize response text into a DAG, using the approach of Lee et al. [17].
Each text span present in all responses becomes a consensus node. For example, the first consensus
node in Figure 1 contains the text that begins all responses: “Felipe, born in 1977, is a”. Second,
we use a secondary LM as a judge to determine if the parts of responses between consensus nodes
are semantically equivalent. In Figure 1, the text spans between the first two consensus nodes are 1)

“retired Argentine”, 2) “former Brazilian”, and 3) “retired Brazilian”. Two disagreement nodes are
constructed: the first for span 1 and the second for spans 2 and 3. This process is repeated for the
spans between each pair of successive consensus nodes. Finally, each edge in the graph is given a
weight equal to the fraction of responses that pass through that edge. The edge weight between the
first consensus node and the first disagreement node is 1⁄3 because 1 out of 3 responses contain that
text, and the edge weight between the first consensus node and the second disagreement node is 2⁄3.

Table 1: Descriptive statistics for CONGRS constructed
from five QWEN 2.5 72B responses per evaluation ex-
ample, averaged across examples.

Biographies MATH AIME

# nodes 27.50 47.22 133.37
% consensus nodes 26.8% 30.7% 24.5%
% disagreement nodes 73.2% 69.3% 75.5%
# branches from consensus nodes 2.39 2.29 3.21
# words in consensus nodes 7.70 2.67 3.68
# words in disagreement nodes 25.71 36.06 38.30

Descriptive statistics of CONGRS. For
the three datasets we consider, responses
share enough text spans to construct con-
sensus nodes (Table 1). For example, a
CONGR for the biography generation task
has, on average, 7 consensus nodes con-
sisting of 7.7 words each. For the same
task, 28.0% of consensus nodes contain
only stopwords, and only 1.8% of disagree-
ment nodes contain only stopwords. Only
6 out of 100 examples yield responses with so much variability that no consensus nodes are made. For
the mathematical reasoning tasks, MATH and AIME, there are no degenerate graphs containing zero
consensus nodes. While reasoning solutions can diverge, there is consensus in the form of explicit
mentions of solution steps and common intermediate calculations.

3 Synthesizing Responses from Consensus Graphs

The structure of a CONGR provides data about the variability in a set of model responses. We devise
two approaches that use CONGRS in different ways to synthesize a response: consensus decoding
and guided self-verification. Details and prompts are in Appendix F.

Consensus decoding. Consensus decoding generates a synthesized response from a CONGR by
incorporating text present in many of the original responses. We start with a set R with |R| = m
responses and a hyperparameter consensus threshold τ ∈ [0, 1], where higher values mean that a
text span must be present in more responses to make it into the final response. Consensus decoding
traverses the CONGR in topological order and selects nodes with weighted degrees of at least τ ,
i.e., including text present in at least τm of the original responses. Then, the text in each selected
node is concatenated to form a draft response. Since this can result in disfluencies, we prompt the
same secondary LM that was used for CONGR construction to fix grammatical errors. This step also
includes explicit instructions to abstain when the selected content is too fragmented to produce a
coherent response. In practice, we find via manual inspection that this task is constrained enough that
the secondary LM does not introduce (or remove) further hallucinations.

Guided self-verification. We design consensus decoding to combine text across responses since
biographies can contain facts that need not logically rely on each other. For example, a person’s birth
city does not directly dictate that person’s occupation. Reasoning chains require a globally coherent
argument from start to end, so here we do not combine text spans across responses. Instead, we use
the variation represented by a CONGR to mark locations of potential errors for self-verification. Given
a set R with |R| = m responses generated by modelM and a pruning threshold hyperparameter
κ ∈ [0, 1], guided self-verification uses self-verification on partial responses to prune out incorrect
responses. We initialize a set of candidate responses C with R and traverse the CONGR in a
topological order, marking consensus nodes which are followed by at least κm disagreement nodes.
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Table 2: Results for biography generation for larger models: FActScore, numbers of supported (#T)
and unsupported (#F) facts, and response ratio (R, how often the model doesn’t abstain). We report
mean values over five replications. Standard deviation across runs is in small font.

QWEN 2.5 72B LLAMA 3.3 70B

Method FActScore #T #F R FActScore #T #F R

Greedy 0.677 0.002 18.771 0.192 8.553 0.149 0.974 0.005 0.645 0.073 16.343 2.965 6.271 0.532 0.620 0.115

Mean of m 0.681 0.005 19.209 0.146 8.455 0.156 0.966 0.007 0.641 0.007 16.420 0.565 6.487 0.129 0.589 0.016

Shortest 0.689 0.009 19.018 0.338 8.121 0.258 0.952 0.004 0.692 0.023 16.989 0.551 4.931 0.427 0.482 0.027

LM consensus 0.693 0.010 20.925 0.330 8.979 0.448 0.974 0.005 0.687 0.014 19.966 0.299 6.587 0.318 0.618 0.019

MBR 0.696 0.006 19.469 0.097 7.984 0.333 0.962 0.007 0.676 0.014 17.505 0.359 5.779 0.592 0.566 0.017

QWQ 32B 0.562 0.003 19.830 0.283 15.073 0.196 0.974 0.006 0.562 0.003 19.830 0.283 15.073 0.196 0.974 0.006

ASC (Θ = 2) 0.688 0.008 18.766 0.332 6.128 0.174 0.968 0.008 0.715 0.031 13.179 4.619 3.367 0.282 0.578 0.017

ASC (Θ = 3) 0.733 0.013 12.880 0.602 2.988 0.366 0.882 0.015 0.796 0.018 9.483 3.662 1.933 0.241 0.486 0.014

CONGRS (τ=0.3) 0.715 0.014 20.784 0.379 6.007 0.509 0.924 0.008 0.827 0.005 22.226 1.120 2.722 0.264 0.462 0.023

CONGRS (τ=0.5) 0.795 0.021 17.462 0.358 2.970 0.270 0.846 0.021 0.845 0.004 18.395 1.157 1.814 0.148 0.430 0.014

These regions of high variability may correspond to different valid reasoning steps or to an error. To
distinguish between these cases, we compare partial responses using self-verification: we provideM
with each partial solution up to the next consensus node and ask if an error has occurred. If a partial
response is said to contain an error, we prune that response from C. After repeating this process at all
uncertain nodes, we use the remaining responses in C as the context to promptM to synthesize a
final response.

4 Results

Consensus decoding improves factuality of long-form generations. We apply consensus decod-
ing to the task of biography generation for 100 randomly sampled entities from FActScore [23]. We
use the FActScore metric for evaluation, which measures the fraction of facts in a response deemed
to be supported in a reference text by an LM judge [23]. We generate m = 5 responses each from the
instruction-tuned models LLAMA 3.3 70B [24] and QWEN 2.5 72B [25] with temperature 0.9. We
compare to: mean scores of the original responses, Greedy decoding, MBR Decoding [5], Shortest
response [26], Reasoning model response from QWQ 32B [25], and an LM-generated consensus from
the responses without a CONGR. We also compare to Atomic Self-Consistency (ASC, Thirukovalluru
et al. 18), a synthesis method that uses sentence clustering. Additional models, method descriptions,
and prompts are in Appendices G and H. We report mean results over five replications.
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Figure 2: Consensus decoding with CONGRS achieves
a better trade-off between FActScore (the fraction of a
response’s claims that are true) and the number of true
claims. Up and right is better. Results for QWEN 2.5
72B. Error bars show standard deviation across runs.

Table 2 shows that consensus decoding
with CONGRS improves factuality over
baselines. For instance, consensus decod-
ing with a consensus threshold of τ = 0.3
on Qwen increases mean FActScore over
the original responses from 0.681 to 0.715
and increases the mean number of sup-
ported facts from 19.202 to 20.784. A
threshold of τ = 0.5 improves FActScore
further at the expense of the number of
supported facts. Consensus decoding has
higher FActScores than the corresponding
ASC setting (e.g., τ = 0.3 corresponds to
Θ = 2), albeit with slightly lower response
rates. When consensus decoding abstains,
the original responses often had low factu-
ality. For example, responses from QWEN
2.5 72B on average have a FActScore
of 0.68, but the average FActScore of re-
sponses that lead consensus decoding (with
τ = 0.3) to abstain have a mean FActScore
of only 0.31 (details in Appendix H, Table 6).
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Figure 2 shows that consensus decoding yields a better trade-off between FActScore and number
of supported facts than baselines, even accounting for the differences in response rates (details in
Appendix H). At nearly all settings of τ , consensus decoding is at the Pareto frontier of factual
precision and factual recall. Choosing a selection threshold τ is a matter for the user to decide
whether their use-case requires a) higher factuality and fewer facts or b) more facts at the expense of
lower factuality.

Consensus decoding uses fewer tokens from secondary LMs than an alternative. Uncertainty-Aware
Decoding (UAD) with Closeness Centrality is a successful approach to response synthesis for
factuality that uses a secondary LM to split responses into claims [8]. Due to the cost of running
UAD, we compare our method using a smaller evaluation set of 25 random entities. Consensus
decoding uses less than 20% as many secondary LM API tokens (13,392 vs. 76,220 per entity on
average) while achieving a slightly higher FActScore and the same response ratio. Details and full
results are in Appendix H.

Table 3: Guided self-verification with CONGRS
gets higher accuracy than self-consistency and self-
verification. Pass@m is an upper bound.

Method QWEN 2.5 72B LLAMA 3.3 70B
MATH AIME MATH AIME

Self-verification 0.66 0.15 0.56 0.19
Self-consistency 0.68 0.2 0.59 0.23

Consensus decoding (τ=0.5) 0.68 0.2 0.61 0.23
Guided self-verification (κ=0.7) 0.70 0.2 0.65 0.27

Pass@m 0.74 0.2 0.7 0.33

Guided self-verification from CON-
GRS improves reasoning performance.
We evaluate our guided self-verification
method using AIME 2024 [27] and the test
split of MATH [28]. We generate m = 5
responses each from LLAMA 3.3 70B and
QWEN 2.5 72B with a temperature of 0.9.
We compare to: Self-consistency [4] and
Self-verification [29, 30]. Appendix G con-
tains details and prompts. We have only
run one replicate for reasoning results due
to computational constraints. Table 3 shows that for MATH, guided self-verification achieves 2 and 6
point accuracy gains over self-consistency for Qwen and Llama respectively, as well as larger gains
against a standard self-verification baseline. On the more challenging AIME dataset, guided self-
verification achieves a 4 point gain over self-consistency for Llama and no gain for Qwen. Consensus
decoding in this setting does only as well as self-consistency on three out of four tasks, likely because
it is also taking the majority vote of final answers. In all cases, guided self-verification outperforms
or matches consensus decoding. Guided self-verification narrows the gap between self-consistency
and Pass@m, demonstrating that comparing reasoning chains can improve performance.

Conclusion. We have introduced CONGRS, a DAG-based data structure that represents the variabil-
ity in a set of LM responses. By combining fast lexical alignment with targeted use of secondary
LMs, CONGRS can be constructed efficiently. We show how CONGRS can be used to synthesize
information across responses and can be used to guide self-verification for reasoning problems. We
plan to explore how CONGRS scale with more responses and the extent to which the structured
information in CONGRS can be useful for more tasks.
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A n-gram Overlap Experiment

2 4 6 8 10 12 14 16 18
n-gram length

0

10

20

30

M
ea

n 
n-

gr
am

s
sh

ar
ed

 b
y 

al
l r

es
po

ns
es 5 responses

10 responses
20 responses
50 responses

Figure 3: Independently gen-
erated preference-tuned LM
responses to the same query
share many n-grams.

Figure 3 shows that independently generated responses from aligned
LMs have a high amount of n-gram overlap. To construct Figure 1,
we randomly sample 50 named entities from the FActScore Biogra-
phies dataset and generate m ∈ [5, 10, 20, 50] biographies from
LLAMA 3.3 70B. The y-axis is averaged over all 50 entities.

B Additional Related Work

Inference-Time Scaling. Inference-time scaling strategies vary
widely, with most selecting one response and only operating on
short responses. Selection methods include Minimum Bayes Risk
(MBR) decoding [5, 31], Universal Self-Consistency [6], and re-
jection sampling/Best-of-N sampling [32, 3, 33]. Other methods
aggregate one model’s responses using sophisticated intermediate generation structures [34–36] that
decode partial sequences in parallel. Some approaches also aggregate across responses from multiple
LMs [37, 38] through multi-agent debates. In comparison, our methods sample full independent
responses from one model and then synthesize novel responses.

LM Response Factuality. Several methods improve long-form response factuality from LMs.
Many involve additional fine-tuning [39], which has mixed results in terms of consistent improvement
[40, 41]. Some methods involve only sampling one generation with novel decoding algorithms
[42, 43]. Others rely on discussions between multiple LLMs [44–46] or self-correction strategies [47–
51]. Some methods create claim-level uncertainty estimates based on multiple sampled generations
and use them to filter out low-confidence claims [8, 51–54, 18, 9, 10].
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Figure 4: From a set of responses, we construct a CONGR by 1) Using Needleman-Wunsch [17] to
construct a lexical DAG where each node’s text is a single token, 2) Merging consecutive sequences
of nodes that are present in all responses to create consensus nodes, 3) Extracting paths between
consecutive pairs of consecutive nodes and using a LM to create semantic equivalence classes, 4)
Creating a disagreement node for each semantic equivalence class.

C Detailed Consensus Graph Construction

Formal Definition. Given a set of responses R = {y1, . . . , ym} sampled from an LM M in
response to a prompt x, a CONGR is a weighted directed acyclic graph g(R) = (V,E,W ). Each
response corresponds to some path through the graph.

A CONGR consists of the following elements:
• V = VC ∪ VD ∪ {vSTART, vEND} is the set of nodes, where VC represents consensus nodes, VD

represents disagreement nodes, and vSTART, vEND are special nodes marking the beginning and end
of all paths. We use vtext to refer to a node’s text label.

• E ⊆ V × V is the set of directed edges
• W : E → [0, 1] is a weight function that indicates what fraction of original responses follow each

edge. We use dw(v) to refer to a node’s weighted degree and din(v), dout(v) to refer to unweighted
in-degree and out-degree respectively, normalized by the number of responses m. While CONGRS
are directed graphs, each node’s weighted in and out-degree are enforced to be equal, with the
exception being {vSTART, vEND}.

Consensus nodes c ∈ VC contain the text that is consistent across all model responses (as shown in
the green nodes in Figure 1). For all c ∈ VC , dw(c) = 1. These represent the anchor spans present
across the set of responses. Disagreement nodes v ∈ VD contain information that varies across
responses (as shown in the blue nodes in Figure 1). That is, they contain what is in between each
anchor span. With these elements, CONGRS simply represent the regions of similarity and diversity
across a range of responses. Because DAGs naturally induce partial orders on nodes, we can sort each
node set by topological order and index so that we can represent each node as an ordered sequence:
VC = c1, . . . , ck and VD = v1, . . . , vl, which facilitates the decoding algorithms explained in §3.

Step 1: Generating lexical partial order graphs. The first step in constructing a consensus graph
is finding common lexical subsequences (anchor spans) among a set of m model responses.

To do so, we adapt the Needleman-Wunsch algorithm [16], a dynamic programming-based algorithm
originally developed to align biological sequence data. While Li et al. [15] also use MSA to perform
sequence alignments, we perform several modifications to the standard versions of these algorithms.
In particular, we use the approach of Lee et al. [17] to create a lexical DAG from the alignments
produced by running Needleman-Wunsch. In addition, we adapt Needleman-Wunsch to process
lexical token sequences as opposed to single-character sequences.1 Further details are in Appendix D.

This step results in a weighted lexical DAG, with a node’s weighted degree corresponding to the
proportion of sequences containing that node. As seen Panel 2 of Figure 4, there is no distinction yet

1In this context, tokens are full words as opposed to the subwords commonly used by LM tokenizers for ease
of decoding responses.
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between consensus and disagreement nodes, and each node contains only one token. Nonetheless,
this structure already begins to show where responses converge and diverge.

Step 2: Creating consensus nodes. To create consensus nodes, we merge sequences of nodes that
are present in each generation. For each such sequence s = v1, v2, ..., vk, we: 1) Create a consensus
node c with ctext equal to the concatenation of all tokens in the sequence, 2) Replace each sequence
with its corresponding consensus node, and 3) Preserve edge connections at the beginning and end of
each sequence. Specifically, all edges that entered v1 now enter c, and all edges that exited vk now
exit c. Panel 3 of Figure 4 shows how the graph appears at the end of this step.

Step 3: Creating disagreement nodes. Now, the graph contains consensus nodes c1, . . . , ck that
include the anchor spans that are shared by all m responses. There are multiple directed paths between
each pair of consecutive consensus nodes (ci, ci+1). Concatenating the text corresponding to each
node in such a path (vi1)text ◦ · · · ◦ (vit)text recovers a substring of a response. As demonstrated in
Panel 3 of Figure 4, these paths represent how the original responses diverge between anchor spans.
The final step in creating a CONGR is determining whether these paths between consensus nodes
are semantically equivalent. We consider each pair of consecutive consensus nodes (ci, ci+1) and all
paths between them. We use a secondary LM to perform pairwise comparisons between each path to
create semantic equivalence classes, which are groups of paths judged to convey the same meaning
despite different wording. The complete prompt templates and judgment criteria are provided in
Appendix E. Panel 4 of Figure 4 shows a simple example of this process. For each equivalence class,
we create a disagreement node v ∈ Vd with one path’s text chosen as vtext. Importantly, we preserve
alternative phrasings as additional metadata in the node, in order to ensure none of original response
information is lost. We then replace nodes that are in between each pair of consecutive consensus
nodes with the newly created disagreement nodes, as shown in Panel 5 of Figure 4. This process
results in an alternating structure of consensus and disagreement nodes.

D Needleman-Wunsch Hyperparameters

We apply the Needleman-Wunsch multiple sequence alignment algorithm from Lee et al. [17]. We
create partial order graphs in an iterative fashion by aligning all sequences one by one. In our case;
each node in the graph represents a token (full word). In order to align an incoming response to
the intermediate partial order graph; we visit graph nodes in the order of the topological sort and
consider all valid positions for insertion through a dynamic programming approach. In particular,
we select an insertion which minimizes the total cost of aligning an incoming sequence to an
intermediate lexical partial order graph. The cost of two aligned positions between the graph and
the incoming sequence is determined by string similarity if both positions correspond to nodes; and
by a gap penalty if one or both positions correspond to gaps. We use an affine gap penalty scheme
as it is better suited for aligning our lexical sequences. We use the following hyper-parameters
for our alignment: gap_open_penalty = −1, gap_extend_penalty = −1, match_penalty = 1,
mismatch_penalty = −2.
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E CONGRS Construction Prompts

Pseudocode for creating disagreement nodes is in Algorithm 1. Prompts for pairwise comparison to
create equivalent classes with a secondary LM are below.

Algorithm 1: Creating Disagreement Nodes
Input: Set of m responses R, Graph g(R) = (V,E,W ) with consensus nodes

VC = {c1, c2, ..., ck}
Output: Complete CONGR with disagreement nodes
VD ← ∅
for Each consecutive pair (ci, ci+1) do

Pi,i+1 ← {p1, p2, ..., pl} ; // Paths between ci and ci+1

for each path pj ∈ Pi,i+1 do
pjtext ← “”
for each node v ∈ pj do

pjtext ← pjtext ◦ vtext
end

end
{E1, E2, ..., En} ← SemanticEquivalenceClasses(Pi,i+1) ; // Using LM
for each equivalence class Eq ∈ {E1, E2, ..., En} do

Create disagreement node vq with vqtext ← pjtext for some pj ∈ Eq;
Store alternative phrasings S(vq)← {pjtext |pj ∈ Eq} \ {vqtext};
Add edges (ci, vq) and (vq, ci+1) to E, preserving original weights;

end
Add vq to VD;

end
return Complete CONGR g

Comparison prompt for disagreement node construction for text
You are given two pieces of text. Your task is to determine whether they are semantically equivalent
based solely on their factual content.
Here are the specific guidelines:
- Texts are equivalent if they convey the same core information or concept, regardless of wording

or structure
- If one text has information that is a subset of the other text, then the texts are equivalent
- Focus ONLY on the essential claims, not on:

* Stylistic differences or tone
* Level of detail (if the core facts remain the same)
* Connotative differences between words
* Implied significance or emphasis
* Presentation order (if all key information is present in both)

- Minor additions of non-contradictory information should not make texts non-equivalent
- For ambiguous cases, prioritize the central claim or purpose of the text

Examples of equivalent pairs:
- "The meeting starts at 3pm" and "The 3 o’clock meeting will begin on time"
- "Research indicates a 15
- "was influential in the field" and "had a significant impact on the community"

Examples of non-equivalent pairs:
- "The project might be completed by Friday" and "The project will be finished by Friday"
- "Most experts agree on the approach" and "All experts support the approach"

Strictly follow these guidelines and return ONLY:
- equivalent
- not equivalent
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Comparison prompt for disagreement node construction for math
You are given two pieces of text from mathematical solutions. Your task is to determine whether the
two solution segments are mathematically equivalent in their content, while allowing for stylistic
variations.
Here are some important guidelines:
- Solutions should be considered equivalent if:

1. They communicate the same mathematical content/approach, even if word choice or phrasing
differs

2. They contain the same key mathematical ideas, even if expressed differently
3. The same mathematical steps are described, even if using different words
4. They present the same final answer, regardless of wording style or formatting

- Allow for these variations while still considering solutions equivalent:
1. Stylistic differences ("we will" vs. "we’ll" or "I’ll")
2. Different levels of formality in the explanation
3. Minor rephrasing that preserves the core mathematical content
4. Use of synonyms or alternative mathematical terminology for the same concept

- Solutions are NOT equivalent if:
1. They use fundamentally different mathematical approaches
2. They work with different formulas or equations
3. They present different mathematical steps or operations
4. They reach different conclusions or answers
5. One contains substantial mathematical content that the other lacks

- When examining final answers, focus on mathematical equivalence rather than stylistic presenta-
tion

- For solution steps, maintain the core mathematical approach while allowing for rephrasing
Examples of solutions that SHOULD be considered equivalent:
- "We will systematically evaluate each possible grouping" and "We’ll evaluate each grouping"
- "The answer is x = 5" and "Therefore, x equals 5"
- "Using the quadratic formula" and "Applying the quadratic formula"

Strictly follow the guidelines above.
Return your judgment in the following format. Do not include any other text:

- equivalent
- not equivalent
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Figure 5: Consensus decoding synthesizes responses by traversing a CONGR and selecting nodes
that are present in at least a τ fraction of responses, where τ ∈ [0, 1] is a hyperparameter (τ = 0.5 in
this example). The selected nodes’ text labels are concatenated and processed by a secondary LM to
produce a coherent response (top). When this is not possible, the result is an abstention (bottom).

F Decoding Algorithm Details

Figure 5 gives examples for applying consensus decoding in two different scenarios.

We present the pseudocode for our consensus decoding algorithm in Algorithm 2. We present the
pseudocode for our guided self-verification algorithm in Algorithm 3.

Algorithm 2: Consensus Decoding from
CONGRS

Input: CONGR g = (V,E,W ) with
V = VC ∪ VV ∪ {vSTART, vEND},
Consensus Threshold τ ∈ [0, 1], Edit
Function f

Output: Consensus Response yconsensus
yconsensus ← "" ; // Initialize empty
string
Vordered ← TopologicalSort(g) ; // Order
nodes

for each node v ∈ Vordered in order do
if dw(v) ≥ τ then

yconsensus ← yconsensus ◦ vtext ;
// Concatenate text

end
end
yconsensus ← f(yconsensus) ; // Apply
edits

return yconsensus

Algorithm 3: Guided Self-Verification using
CONGRS

Input: CONGR g(R) = (V,E,W ) with
V = VC ∪ VV ∪ {vSTART, vEND} for
a response set R of size m, LMM
which generated R, Pruning
Threshold κ ∈ [0, 1], Candidate
Solution set C ← R

Output: Decoded Response
V ← TopologicalSort(g) ; // Order all
nodes

for each consensus node u ∈ VC do
if dout(u) ≥ κ then

for each following variable nodes va
and vb with their corresponding
candidate solutions Ca and Cb,
such that (u, va), (u, vb) ∈ E do

Prune Ca, Cb from C based on
verification scores from
M(partial(Ca, va), partial(Cb, vb))

end
end

end
Synthesize final decoded response:
ydecoded =M(C)

return ydecoded
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The prompt for removing disfluencies with a secondary LM and hence synthesizing the final response
from the draft response is given below:

Consensus Decoding: Final synthesis prompt
You are given a piece of text that is a part of a {task}. This text may contain some minor errors that
make it incoherent as well as potentially redundant information. Your task is to fix the errors and
make the text coherent. Then, remove any redundant information. Text: {text}
If this is not possible because the text is just a fragment of a sentence, return "Abstain". If the text
already claims a lack of knowledge about the topic, return "Abstain". Only return the cleaned up
text. Do not include any other text:

The prompt for pairwise self-verification of partial solutions with the same LMM is given on the
next page:
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Guided Self-Verification: Pairwise self-verification prompt
You will be given a problem and 2 partial solutions. Your task is to use comparison as an EFFI-
CIENCY TOOL to quickly identify potential errors. You will be given guidelines to follow, and
you will be penalized if you do not follow them.
Problem: {problem}
Partial Solution 1: {partial_solution_1} Partial Solution 2: {partial_solution_2}
- CRITICAL GUIDELINES:

* DO NOT penalize a solution for being incomplete or having missing steps
* DO NOT make a comparison of which solution is better
* DO NOT consider steps incorrect just because they differ between solutions
* DO NOT prematurely evaluate based on final answers or future steps
* DO NOT expect both solutions to be at the same stage of completion
* DO NOT consider a step incorrect just because it lacks sufficient detail or justification

- KEY EFFICIENCY PRINCIPLE:
* Use agreement between solutions as evidence of correctness
* Use disagreement as a signal to investigate more deeply
* Only label a step as an error if it contains a specific mathematical mistake
* Incompleteness is not a mathematical error.

- EFFICIENT VERIFICATION APPROACH:
- 1. QUICK COMPARISON (Use this to focus your attention):

* Immediately identify where the solutions differ in approach or results
* Use these differences as “error hotspots” to prioritize your verification
* When solutions agree, you can generally assume that part is correct
* When solutions disagree, investigate those specific points deeply

- 2. TARGETED VERIFICATION (Only where needed):
* Most important: Do not consider any incomplete steps as errors
* Focus your mathematical verification on the “hotspots” identified above
* Check mathematical validity only at points of difference or uncertainty
* Avoid line-by-line checking of steps where solutions agree
* For each potential error spot, verify if the mathematical reasoning is valid
* If an intermediate step is later corrected, do not penalize the solution for having the incorrect

intermediate step
- After your targeted verification, propose a score tuple (score_1, score_2):

* Score (1,1) if both partial solutions are valid
* Score (1,0) if only the first solution is valid
* Score (0,1) if only the second solution is valid
* Score (0,0) if both solutions are invalid

- In case you score a solution as 0, you must give an explanation for each check below:
* If you score a solution as 0, you MUST identify the specific mathematical error.
* You must also double check the problem statement. Reconsider your score and determine if

you have misinterpreted the problem statement.
* You must also check whether you have penalized a solution for being incomplete or having

missing steps.
- Before outputting your final score, you must answer these questions:

* STOP! Did you give a score of 0 to a solution that was incomplete?
* STOP! Did you penalize a solution for being incomplete or having missing steps?
* STOP! Did you make a comparison of which solution is better?
* STOP! Did you consider steps incorrect just because they differ between solutions?
* STOP! Did you prematurely evaluate based on final answers?
* STOP! Did you consider a step incorrect just because it lacks sufficient detail or justification?

Now give your final score: Final score:
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The prompt for synthesizing a final response from the pruned candidate response set using the same
LMM is given below:

Final synthesis prompt for guided self-verification
Solve the following math problem with mathematical precision and clarity.
Problem: {problem}
Below are potential solution approaches with sections marked as uncertain (between
*START_UNCERTAIN_REGION* and *END_UNCERTAIN_REGION*). These sections may contain
conceptual or computational errors.
There are also sections marked as *START_POSSIBLE_ERROR* and *END_POSSIBLE_ERROR*. A
verification step indicated that these steps are highly likely to contain errors.
Potential Approaches: {masked_candidate_responses}

- Your task:
1. Analyze all potential approaches critically, identifying their mathematical strengths

and weaknesses If the approaches contain different answers, think carefully about
why they are different, and use this to identify potential errors.

2. Using the sections with special markers, identify potential errors.
3. Develop a rigorous, step-by-step solution based on sound mathematical principles
4. For uncertain regions:

* Verify each step using algebraic or numerical validation
* If correct, incorporate these steps with appropriate justification
* If incorrect, provide clear corrections with mathematical reasoning for your

changes
5. Follow a comparative approach, using the differences between approaches to identify

potential errors.
6. Do not blindly follow the approaches, but rather use them to identify potential errors.

- Guidelines for your solution:
* Begin with a strategic overview of your chosen approach
* Present each mathematical step with clear notation and justification
* Pay special attention to areas that were previously marked uncertain

Conclude your solution with: Therefore, the final answer is: $\boxed{{answer}}$. Solution:
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G Experiment Prompts and Details

G.1 Factuality and Refusal-based Experiments

Generation hyperparameters. We first generate five samples per test example that our method
will synthesize for the factuality and refusal-based tasks. For the factuality tasks, we use the same
prompts as [8] while for the refusal-based tasks, we use the same prompts as [55]. Table 4 gives our
hyperparameters.

QWEN 2.5 72B QWEN 2.5 7B
LLAMA 3.3 70B LLAMA 3.1 8B
OLMO 2 32B OLMO 2 7B

Quantization 8-bit n/a
Temperature 0.9 0.9
samples_per_prompt 5 5
max_new_tokens 500 500
Random seed 42 42

Table 4: Hyperparameters for response generation
for factuality and refusal experiments.

Runtime and infrastructure. For CONGRS
construction and decoding, experiments using
a single model’s responses took on average:
33 seconds per entity (55 minutes total for
100 prompts) for Biographies, 38 seconds per
entity (63 minutes total for 100 prompts) for
PopQA, 31 seconds per prompt (129 minutes to-
tal for 250 prompts) for Scientific Attributions,
3 seconds per prompt (13 minutes total for 250
prompts) for False Presuppositions, 28 seconds
per prompt (116 minutes total for 250 prompts) for Historical Events. We used a cluster compute
node with 5 NVIDIA RTX A6000 GPUs and a Macbook Pro with an Apple M1 Pro with 16 GB of
RAM for analysis.

Methods. We compare consensus the following methods and baselines:
• Consensus decoding with CONGRS: We apply consensus decoding with selection thresholds of
τ = 0.3, 0.5. We use gpt-4.1-mini as the secondary LM. We also perform additional analyses
for biography-based tasks with different selection thresholds in Appendix J.

• Minimum Bayes Risk Decoding [5]: performs pairwise comparisons among responses to choose
the response with lowest expected risk. We use BERTScore [56] as the risk function.

• LM consensus: We prompt an LM to synthesize a consensus response, with an option to abstain
if there is too much variation. Exact prompts are below This method is similar to Universal
Self-Consistency [6], except that we synthesize a new response instead of selecting one response.
For the LM Consensus baseline, we use gpt-4o-mini for generating the consensus generation with
an added option to abstain. We use the following prompt:
LM consensus baseline prompt
You are given 5 texts. Your task is to form/generate a consensus/agreement text using the given
texts. Consensus or agreement would mean producing a new text that uses the given 5 texts to
find a coherent text that includes words and information that is consistent across all the given
texts. Text 1: text[0] Text 2: text[1] Text 3: text[2] Text 4: text[3] Text 5: text[4]
Here are some important guidelines:

- If the texts differ at a certain point/word, the consensus text should select the most
frequent word from among the given texts at the point of difference.

- If the texts differ at a certain point/word and there is no most frequent word, the
consensus text should select the word that is most similar to the other words in the text.

- Abstain if the texts are too different and no consensus can be reached.
Strictly follow the guidelines above, especially regarding abstaining if the texts are too different.
Return your generation in the following format. Do not include any other text:
consensus text: [your consensus text here]

• Greedy decoding: We generate a single greedy response using a temperature of zero and the
following hyperparameters: do_sample: False, max_new_tokens: 500.

• Shortest response: We prompt an LM to select the shortest response from the candidate set of
multiple responses based on number of words in the response. It has been observed that correct
responses are often shorter than incorrect responses for some tasks [26, 57]. We hypothesize
that shorter responses may contain fewer hallucinations. We use gpt-4o-mini with the following
prompt:
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Shortest response baseline prompt
You are given 5 texts. Text 1: text[0] Text 2: text[1] Text 3: text[2] Text 4: text[3] Text 5: text[4]
Your task is to output the shortest text amongst the given texts in terms of total words in a text.
Compare the texts and select the one that is the shortest. If there are multiple texts with the same
length, select the first one.
Strictly follow the guidelines above.
Return your generation in the following format. Do not include any other text:
shortest text: [your shortest text here]

• Reasoning model response: We use QWQ-32B [25], a state-of-the-art reasoning model with
thinking and reflection capabilities. We generate only one response, since we are using QWQ-32B
to compare our method against serial inference-time scaling as opposed to parallel. Due to
this, we use a larger context window of 4096 tokens. Note that this method does not utilize the
original set of model responses. We use the following standard hyperparameters for QwQ 32B:
quantization: 4-bit, temperature: 0.6, top_k: 40, top_p: 0.95, do_sample: True, random seed: 42,
samples_per_prompt: 1, max_new_tokens: 4096.

• Atomic self-consistency [18]: ASC first clusters all sentences in all responses with hierarchical
clustering. It then discards any cluster with fewer than Θ responses. Θ is a hyperparameter
similar to τ in consensus decoding: Θ = 2 corresponds to τ = 0.3, and Θ = 3 corresponds to
τ = 0.5. Finally, a secondary LM is given a list of the longest sentences from each remaining
cluster and prompted to produce a synthesized response. We use the settings from Thirukovalluru
et al. [18]: sup-simcse-bert-base-uncased is the sentence embedding model, and d = 0.15
for agglomerative clustering. For fair comparison, we use gpt-4.1-mini as the secondary LM
and the same prompt as consensus decoding to produce the synthesized response.

Evaluation. We use FActScore to decompose the factuality task baseline responses into atomic
units for verification against the Wikipedia database. In addition to FActScore, we also compute the
number of supported, unsupported, and total facts for the response.

For the refusal-based tasks, we use the HALoGEN code for evaluation of response ratio and hal-
lucination scores of the baseline responses. We use gpt-4.1-mini as an additional LM judge for
assessing abstention in a given response with the following prompt:

Abstention prompt
You are given a prompt and its response . Your task is to judge whether the response to the prompt
is an abstention from answering or not? Just answer with ’yes’ or ’no’. ’yes’ if it is an abstention,
’no’ if it is not an abstention and it seems like an answer.
prompt: prompt, response: response
Return your generation in the following format. Do not include any other text:
abstention: [your judgment here]

G.2 Reasoning Experiments

For both MATH and AIME, we use the following configuration for both models: quantization: 8-bit,
temperature: 0.9, random seed: 42, samples_per_prompt: 5

For MATH, we use max_new_tokens = 1024, whereas for the more difficult AIME dataset, we use
max_new_tokens = 8192.

For both MATH and AIME, we use the following prompt to generate samples:
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Prompt for generating samples for MATH and AIME
Solve the following math problem efficiently and clearly:

- For simple problems (2 steps or fewer): Provide a concise solution with minimal explana-
tion.

- For complex problems (3 steps or more): Use this step-by-step format:
## Step 1: [Concise description] [Brief explanation and calculations]
## Step 2: [Concise description] [Brief explanation and calculations]
...

Regardless of the approach, always conclude with:
Therefore, the final answer is: $\boxed{{answer}}$. I hope it is correct.
Where {answer} is just the final number or expression that solves the problem.
Problem: {problem}

We evaluate the following methods:
• Guided Self-Verification with CONGRS: We apply guided self-verification with pruning threshold

of κ = 0.7.
• Self-consistency [4]: We take a majority vote of the final answer over all m responses.
• Self-verification [30, 22, 29]: We ask the same LM to score all m responses based on correctness

and select the best scoring response. For fairness, the verification prompt is kept the same as our
guided self-verification method.

• Pass@m: We measure whether at least one of the m responses contains a correct answer. This
represents an upper bound for methods that aggregate over responses.

Runtime. For CONGRS construction and guided self-verification, experiments using a single
model’s responses took on average: 150 seconds per question (21 hours total) for MATH and 360
seconds per question (3 hours total) for AIME.

H Additional Results

Table 5: Consensus decoding with τ = 0.3 uses
82% fewer tokens from secondary LMs compared
to UAD [8] without sacrificing performance when
synthesizing across m=5 responses from QWEN
2.5 72B.
Method FActScore #T #F RR Mean # Tokens Used

UAD 0.59 27.32 20.84 0.96 76,220.48
CONGRS 0.62 19.00 8.63 0.96 13,391.88

Table 6: Mean FActScore of original responses
for entities that consensus decoding abstains on,
compared to FActScore on all entities. Consen-
sus decoding abstains on responses that are highly
likely to contain hallucinations.

τ Model FActScore
Abstained Entities

FActScore
All entities

0.3 QWEN 2.5 72B 0.31 0.68
QWEN 2.5 7B 0.34 0.68

0.5 QWEN 2.5 72B 0.20 0.64
QWEN 2.5 7B 0.28 0.64

Table 5 gives our full results for comparing con-
sensus decoding to UAD [8]. Table 6 shows that
when consensus decoding does abstain, it does
so for entities where the original responses have
low FActScore on average.

We also evaluate consensus decoding with CON-
GRS on long-form PopQA, as in Jiang et al.
[8] (Tables 8, 9). We also benchmark our ap-
proaches using three smaller models: QWEN
2.5 7B, LLAMA 3.1 8B, and OLMO 2 7B (Ta-
bles 7, 9, 11).

Figure 2 in the main paper shows that consen-
sus decoding at various selection thresholds τ
achieves a better tradeoff between FActScore
and the number of true claims provided. It ac-
counts for methods’ different response ratios us-
ing the approach as Jiang et al. [8]: if a method
abstains for an entity, then that entity gets a
FActScore of 1 and a number of supported facts
of 0.
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Table 7: Results for biography generation for smaller models: FActScore, numbers of supported (#T)
and unsupported (#F) facts, and response ratio (R, how often the model doesn’t abstain).

QWEN 2.5 7B LLAMA 3.1 8B OLMO 2 7B

Method FActScore #T #F R FActScore #T #F R FActScore #T #F R

Greedy 0.68 18.40 8.27 0.98 0.85 15.24 2.28 0.72 0.60 22.71 14.03 1.00
Mean of m 0.56 16.02 11.69 0.99 0.78 19.96 4.77 0.76 0.59 24.23 14.56 0.99
Shortest 0.57 15.81 11.13 0.99 0.81 20.21 4.10 0.71 0.58 22.35 13.80 0.98
LM Consensus 0.58 18.43 13.03 1.00 0.67 19.64 7.00 0.64 0.64 24.69 13.33 1.00
MBR 0.56 15.76 11.35 1.00 0.81 20.60 4.24 0.75 0.60 22.08 13.42 1.00
QWQ 32B 0.55 19.26 14.05 0.98 0.55 19.26 14.05 0.98 0.55 19.26 14.05 0.98

CONGRS (τ=0.3) 0.64 16.75 6.21 0.87 0.80 21.26 3.86 0.74 0.78 26.29 4.86 0.70
CONGRS (τ=0.5) 0.76 11.71 2.68 0.75 0.85 20.32 1.78 0.41 0.85 19.46 2.52 0.61

Table 8: Results for larger models on PopQA. We report FActScore [23], number of supported (#T)
and unsupported (#F) facts, and response ratio (R, how often the model responds and doesn’t abstain).
Like in Table 7, consensus decoding with τ = 0.3 consistently improves FActScore by decreasing
the number of unsupported facts.

Method QWEN 2.5 72B LLAMA 3.3 70B OLMO 2 32B

FActScore #T #F R FActScore #T #F R FActScore #T #F R

Greedy 0.68 18.24 8.08 1.00 0.62 15.54 8.24 0.84 0.74 22.96 7.47 0.99
Mean of m 0.69 18.94 8.04 0.97 0.62 15.83 8.50 0.81 0.75 24.11 7.77 0.99
Shortest 0.71 18.96 7.18 0.96 0.64 14.51 7.04 0.71 0.76 23.87 7.21 0.97
LM Consensus 0.72 21.40 8.10 0.99 0.68 19.08 8.31 0.88 0.78 25.14 7.03 1.00
MBR 0.72 19.49 7.24 0.97 0.65 16.01 7.87 0.83 0.77 25.03 7.06 0.98
QWQ 32B 0.57 22.37 15.81 0.97 0.57 22.37 15.81 0.97 0.57 22.37 15.81 0.97

CONGRS (τ=0.3) 0.74 19.06 5.79 0.97 0.76 16.80 4.51 0.69 0.79 23.63 5.24 0.88
CONGRS (τ=0.5) 0.79 14.67 3.68 0.88 0.81 11.48 2.55 0.58 0.85 16.28 2.34 0.76

Table 9: Results for smaller models on PopQA. We report FActScore [23], number of supported
(#T) and unsupported (#F) facts, and response ratio (R, how often the model responds and doesn’t
abstain) for smaller models. Like in Table 7, consensus decoding with τ = 0.3 consistently improves
FActScore by decreasing the number of unsupported facts.

Method QWEN 2.5 7B LLAMA 3.1 8B OLMO 2 7B

FActScore #T #F R FActScore #T #F R FActScore #T #F R

Greedy 0.55 15.11 11.74 0.99 0.66 16.06 7.92 0.86 0.60 19.76 12.59 0.98
Mean of m 0.52 14.33 12.69 0.99 0.65 16.11 8.27 0.82 0.59 20.36 13.82 0.98
Shortest 0.56 14.86 11.87 0.99 0.65 15.93 7.60 0.73 0.58 19.67 13.93 0.97
LM Consensus 0.61 17.67 10.97 0.96 0.72 20.25 7.77 0.87 0.70 23.47 9.84 0.99
MBR 0.51 13.91 12.47 0.96 0.69 17.06 7.19 0.83 0.62 20.33 12.30 0.98
QWQ 32B 0.57 22.37 15.81 0.97 0.57 22.37 15.81 0.97 0.57 22.37 15.81 0.97

CONGRS (τ=0.3) 0.66 11.33 4.78 0.83 0.74 13.11 4.04 0.71 0.75 18.18 4.86 0.83
CONGRS (τ=0.5) 0.76 7.74 2.12 0.73 0.82 10.83 2.47 0.60 0.86 10.09 1.85 0.54
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I Consensus Decoding Improves Abstention Ability

Table 10: Performance on the False Presup-
positions and Scientific Attribution tasks from
HALoGEN. R: Response Ratio, H: Hallucination
Score. Lower is better. Consensus decoding with
CONGRS consistently achieves low R and low H.

False Presuppositions Scientific Attribution
QWEN 2.5 72B LLAMA 3.3 70B QWEN 2.5 72B LLAMA 3.3 70B

Method R↓ H↓ R↓ H↓ R↓ H↓ R↓ H↓
Greedy 0.22 0.16 0.66 0.49 0.78 0.67 0.32 0.30
Mean of m 0.25 0.17 0.62 0.46 0.76 0.66 0.28 0.26
Shortest 0.16 0.11 0.68 0.49 0.61 0.55 0.16 0.16
LM Consensus 0.33 0.23 0.70 0.51 0.33 0.29 0.29 0.26
MBR 0.22 0.15 0.62 0.45 0.75 0.66 0.24 0.22
QWQ 32B 0.04 0.01 0.04 0.01 0.83 0.74 0.83 0.74

CONGRS (τ=0.3) 0.14 0.09 0.33 0.21 0.19 0.16 0.16 0.15
CONGRS (τ=0.5) 0.11 0.07 0.27 0.17 0.11 0.08 0.08 0.07

We evaluate consensus decoding on 250 in-
stances from each of the three abstention-based
task in the HALoGEN benchmark [55]: False
Presuppositions, Scientific Attribution, and His-
torical Events. The HALoGEN metrics are
Response Ratio, which measures how often a
model responds to the initial prompt, and a Hal-
lucination Score. Lower is better for both. We
use the same models and baselines as for biog-
raphy generation.

Tables 10, 11, and 12 show that consensus de-
coding with CONGRS consistently reduces both
Response Ratio and Hallucination Score com-
pared to baselines. QWQ 32B is a strong base-
line for False Presuppositions, but confidently produces hallucinated references for Scientific Attribu-
tion even after extended reflection.

Table 11: Performance on the False Presuppositions and Scientific Attribution tasks from
HALoGEN when synthesizing responses from small model sizes. We report Response Ratio (R↓)
and Hallucination Score (H↓), both lower is better. Consensus decoding with CONGRS consistently
achieves low Response Ratio and Hallucination Score.

False Presuppositions Scientific Attribution
QWEN 2.5 7B LLAMA 3.1 8B OLMO 2 7B QWEN 2.5 7B LLAMA 3.1 8B OLMO 2 7B

Method R↓ H↓ R↓ H↓ R↓ H↓ R↓ H↓ R↓ H↓ R↓ H↓
Greedy 0.40 0.28 0.60 0.45 0.51 0.41 0.56 0.49 0.42 0.33 0.89 0.81
Mean of m 0.41 0.30 0.61 0.47 0.51 0.42 0.67 0.62 0.49 0.43 0.88 0.82
Shortest 0.36 0.25 0.50 0.34 0.54 0.46 0.49 0.45 0.29 0.25 0.77 0.71
LM Consensus 0.48 0.36 0.69 0.55 0.76 0.63 0.05 0.04 0.15 0.13 0.05 0.04
MBR 0.39 0.28 0.58 0.43 0.48 0.39 0.65 0.61 0.46 0.39 0.91 0.84
QWQ 32B 0.04 0.01 0.04 0.01 0.04 0.01 0.83 0.74 0.83 0.74 0.83 0.74

CONGRS (τ=0.3) 0.10 0.06 0.09 0.05 0.13 0.10 0.07 0.06 0.30 0.26 0.15 0.13
CONGRS (τ=0.5) 0.08 0.06 0.07 0.04 0.11 0.08 0.02 0.02 0.18 0.16 0.09 0.08

Table 12: Performance on the Historical Events task from HALoGEN [55]. We report Response
Ratio (R↓) and Hallucination Score (H↓), both lower is better. Consensus decoding with CONGRS
consistently achieves low Response Ratio and Hallucination Score for the OLMo model family.

Method QWEN 2.5 72B QWEN 2.5 7B LLAMA 3.3 70B LLAMA 3.1 8B OLMO 2 32B OLMO 2 7B

R↓ H↓ R↓ H↓ R↓ H↓ R↓ H↓ R↓ H↓ R↓ H↓

Greedy 0.008 0.008 0.064 0.064 0 0 0 0 0.280 0.280 0.004 0.004
Mean of m 0.008 0.008 0.056 0.056 0.0008 0.0008 0.0032 0.0032 0.252 0.252 0.0064 0.0064
Shortest 0.008 0.008 0.024 0.024 0 0 0 0 0.148 0.148 0.004 0.004
LM Consensus 0.012 0.012 0.056 0.056 0.004 0.004 0 0 0.312 0.312 0.004 0.004
MBR 0.008 0.008 0.040 0.040 0.004 0.004 0 0 0.200 0.200 0.004 0.004
QWQ 32B 0.232 0.232 0.232 0.232 0.232 0.232 0.232 0.232 0.232 0.232 0.232 0.232

CONGRS (τ=0.3) 0.008 0.008 0.028 0.028 0.004 0.004 0.016 0.016 0.096 0.096 0 0
CONGRS (τ=0.5) 0.008 0.008 0.012 0.012 0 0 0.008 0.008 0.060 0.060 0 0

J Ablation Experiments

J.1 Temperature

For a set of 25 randomly sampled entities for the biography generation setting with QWEN 2.5 72B,
we generate responses with different temperatures. CONGRS are effective at synthesizing information
across responses even when the responses were generated with various temperatures.

24



Table 13: Ablation results for Qwen 2.5 72B Inst at different temperatures and CONGRS thresholds τ
= 0.3, 0.5. We report FActScore, number of supported (#T) and unsupported facts (#F), and response
ratio (R) averaged across the 25 sampled entities.

Temperature Threshold τ FActScore #T #F R
0.1 CONGRS (0.3) 0.61 17.83 10.25 0.96

CONGRS (0.5) 0.64 16.04 7.29 0.96

0.3 CONGRS (0.3) 0.62 18.83 10.83 0.96
CONGRS (0.5) 0.68 14.65 5.13 0.92

0.5 CONGRS (0.3) 0.64 19.50 9.67 0.96
CONGRS (0.5) 0.66 15.09 5.35 0.92

0.7 CONGRS (0.3) 0.67 19.22 7.35 0.92
CONGRS (0.5) 0.71 17.41 4.55 0.88

J.2 Number of responses

We generate m = 10 responses per entity, for a set of 25 randomly sampled entities for the biography
generation setting with QWEN 2.5 72B; with temperatures 0.7 and 0.9. We report results for our
consensus decoding method with different threshold τ values. CONGRS are effective at synthesizing
information across 10 responses.

Table 14: Ablation results for Qwen 2.5 72B Inst (m = 10) at different temperatures and CONGRS
thresholds τ . We report FActScore, number of supported (#T) and unsupported facts (#F), and
response ratio (R) averaged across the 25 sampled entities.

Temperature Threshold τ FActScore #T #F R

0.9

CONGRS (0.1) 0.47 20.80 30.36 1.00
CONGRS (0.2) 0.49 16.72 14.52 1.00
CONGRS (0.3) 0.67 13.86 4.81 0.84
CONGRS (0.4) 0.75 11.90 2.90 0.84
CONGRS (0.5) 0.79 11.85 2.20 0.80
CONGRS (0.7) 0.81 9.58 1.74 0.76

0.7

CONGRS (0.1) 0.59 25.44 22.44 1.00
CONGRS (0.2) 0.59 21.56 12.56 1.00
CONGRS (0.3) 0.67 20.41 7.68 0.88
CONGRS (0.4) 0.70 18.45 5.23 0.88
CONGRS (0.5) 0.74 16.45 4.05 0.88
CONGRS (0.7) 0.78 13.70 2.30 0.80
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J.3 Selection Threshold
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Figure 6: Different selection thresholds for Consensus
Decoding are better for different kinds of entities. Gen-
erated biographies for very frequent entities are often
very factual and benefit from a permissive, low value
of τ . On the other hand, generated biographies for very
rare entities benefit from a high value of τ , which only
aggregates spans of text that occur in the vast majority
of responses.

Selection threshold τ trades off informa-
tiveness and factuality. The frequency
of each entity in pre-training data varies
across our sets of entities. As a result, the
factuality of the models’ original responses
varies as well. In the case of rare entities,
variation between model responses can be
indicative of hallucinations. However, for
very common entities, variation may not be
a result of hallucinations. In general, the
threshold τ that we choose when perform-
ing consensus decoding controls whether
the final result is more of an intersection
between the original set of responses or
whether it is a union of the responses.

To study this trade-off between informa-
tiveness and factuality, we first estimate the
frequency of each entity. Since we do not have access to each model’s pretraining data, we use
the monthly page views of each entity’s Wikipedia page as a proxy measure of its frequency, as
in Min et al. [23]. We then partition the entities into 5 equal-sized bins and perform consensus
decoding with thresholds of τ = 0.1, 0.3, 0.5, 0.7. We then analyze FActScores and the number of
supported/unsupported claims for entities in each bin in Figure 6.

For very frequent entities, we see that all thresholds result in high FActScores. Moreover, even using
the most permissive threshold τ = 0.1 results in a negligible increase in the number of unsupported
claims, while greatly increasing the number of supported claims.
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