© © N O O A W N =

PICore: Physics-Informed Unsupervised Coreset
Selection for Data Efficient Neural Operator Training

Anonymous Author(s)
Affiliation
Address

email

Abstract

Neural operators offer a powerful paradigm for solving partial differential equations
(PDEs) that cannot be solved analytically by learning mappings between function
spaces. However, there are two main bottlenecks in training neural operators: they
require a significant amount of training data to learn these mappings, and this
data needs to be labeled, which can only be accessed via expensive simulations
with numerical solvers. To alleviate both of these issues simultaneously, we
propose PICore, an unsupervised coreset selection framework that identifies the
most informative training samples without requiring access to ground-truth PDE
solutions. PICore leverages a physics-informed loss to select unlabeled inputs by
their potential contribution to operator learning. After selecting a compact subset
of inputs, only those samples are simulated using numerical solvers to generate
labels, reducing annotation costs. We then train the neural operator on the reduced
labeled dataset, significantly decreasing training time as well. Across four diverse
PDE benchmarks and multiple coreset selection strategies, PICore achieves up to
78% average increase in training efficiency relative to supervised coreset selection
methods with minimal changes in accuracy.

1 Introduction

Partial differential equations (PDEs) are foundational to modeling complex physical systems across
science and engineering, from fluid dynamics to quantum mechanics. Most PDEs are non-analytic
and need to be solved numerically via Finite Difference Methods (FDMs), Finite Element Methods
(FEMs), and Finite Volume Methods (FVMs) (Cyrus et al.| [1968]], Johnson| [1988]], [Eriksson and!
Johnson| [[1995]], LeVequel [2002]]. However, while these approaches yield high accuracy, they are
computationally expensive because they require a simulation to be run to obtain a solution. This is
especially true for high-resolution or multi-resolution PDEs, where simulations need to be re-run for
each resolution.

Operator learning has emerged as a tool for accelerating PDE solutions by developing data-driven
approximations using neural networks instead of traditional grid-based discretizations. Neural
operators [Kovachki et al.| 2023 are a family of neural networks that learn mappings between function
spaces, such as initial conditions to solutions, which allows for resolution-invariant predictions.
Models such as Fourier Neural Operator (FNO) [Li et al., 2020] and U-Net Neural Operator (UNO)
[Rahman et al.| 2023]] have shown state-of-the-art performance on various PDE benchmarks, and the
ability to generalize to higher-order resolutions with minimal performance drops. Additional work,
such as Physics Informed Neural Operator (PINO) [Li et al., 2024c]] and Markov Neural Operator
(MNO) [Li et al., 2021b]], incorporates additional losses into neural operator training to improve
performance and increase convergence speed.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Al for
Science. Do not distribute.

36
37
38
39
40
41
42
43
44

45
46
47
48
49
50
51
52
53
54
55

56
57

58
59
60
61
62
63
64

65

66
67
68
69

70
71
72
73
74

75
76
77
78

80

81
82
83
84
85
86

Despite these advantages, there are two main data limitations of neural operators. First, they require
significant amounts of training data to learn these mappings. Since PDE solvers require high-
resolution data over several time frames for accurate training, such training data can be several
gigabytes large [Takamoto et al., 2022]]. This poses a challenge for training in resource-constrained
systems where such models would be trained and deployed, such as for weather prediction [Pathak
et al.} 2022, Bonev et al.,[2023]] and carbon storage [Tang et al.,[2024]]. Secondly, this training data
needs to be labeled by including both the initial condition and the ground truth solution. While
generating initial conditions is cheap, as they can usually be sampled from a prior distribution,
generating ground truth data requires running the full simulation through numerical solvers.

Coreset selection [|[Agarwal et al.| |2005] [Sener and Savaresel [2017] is a data-efficient training strategy
that identifies a subset of the original training data that is most informative for model learning. Once
this subset is identified, training only needs to be done on this subset, significantly reducing training
time. However, this requires the full labeled training data to select a subset, which does not alleviate
the cost of collecting labels. On the other hand, active learning [Gu et al.| [2021] |(Cao and Tsang,
2022] minimizes data annotation costs by only labeling a subset of the training data at each iteration.
Active learning selects a subset by a proxy metric such as Bayesian [Zhao et al.,[2021} Beluch et al.
2018]| or representation-based methods [Yang and Loog} 2022| [Kim and Shin| [2022] at each training
iteration, and trains only on that subset. While this does decrease labeling costs at each iteration,
active learning requires a significant portion of the dataset for training, reducing convergence speed
[Li et al.l 2024a]]. Thus, we pose the following research question:

How can we simultaneously reduce training time and labeling ground-truth solutions for Neural
Operator learning?

We address this problem using unsupervised coreset selection by identifying the most informative
training samples based on the physics-informed loss [Li et al.,[2024c], a criterion that does not require
any ground truth labels. By leveraging this loss, we can prioritize samples likely to improve model
performance without the need for expensive simulations. Ground truth labels are then generated
only for this selected subset, significantly reducing the overall annotation cost. Finally, we train
neural operator models on the reduced, high-quality dataset, leading to faster training times without
compromising accuracy.

Our contributions are outlined as follows:

* We propose PICore, a novel unsupervised framework that uniquely integrates physics-
informed losses with coreset selection. PICore eliminates the need for expensive ground-
truth simulations during the data selection phase, simultaneously addressing the data annota-
tion and training bottlenecks in neural operator training.

* We present the first comprehensive benchmark for coreset selection in the context of
neural operator learning. Through extensive experiments on four diverse PDE datasets, we
show that PICore achieves competitive accuracy to supervised methods while dramatically
improving end-to-end training efficiency by up to 78% relative to supervised coreset selection
and 5 relative to non-coreset baselines.

* We demonstrate the modularity and generality of the PICore framework. Our method
is not tied to a specific architecture or selection algorithm, and we show its effectiveness
across two different neural operators (FNO and UNO) and five distinct coreset selection
strategies.

2 Related Work

2.1 Neural Operators

While typical deep neural nets are used to map and model finite-dimensional vector spaces, such as
text embeddings or images, neural operators map infinite-dimensional vector spaces, such as the space
of functions [Kovachki et al.,|2021]]. Neural operators are then widely used to represent differential
equation solutions due to their ability to have a family of solutions. In the context of solving partial
differential equations, a neural operator can take a function as an input (e.g. temperature at a point)
and output a related function (e.g. heat over time at a point).

87
88
89
90
91
92
93
94
95
96
97

98

99
100
101
102
103
104
105
106
107
108

109

110
111
112
113
114
115
116
117
118
119
120

121

122

123
124

125
126
127

128

129

Among the first modern neural operators, DeepONet [Lu et al.,[2021]] uses the universal approximation
theorem for operators with a branch and trunk network to model inputs and outputs. The Fourier
Neural Operator (FNO) [Li et al.| 2020|] expands on this by performing kernel operations in Fourier
space, which results in a more expressive model with better performance on more challenging PDE
datasets, such as Navier Stokes. U-Net Neural Operator (UNO) [Rahman et al., [2023]] expands on
FNO by using a U-Net based structure to build deeper neural operators, and Convolutional Neural
Operator (CNO) [Raonic et al., 2023]] leverages convolutions to preserve the continuous structure of
PDE:s, even when discretized. Additional work improves training by incorporating additional losses.
Physics Informed Neural Operator (PINO) [Li et al.| [2024c]|| uses the physics informed loss to anchor
the output to conform to the PDE dynamics, and Markov Neural Operator (MNO) [Li et al.; 2022]
uses dissipativity regularization to improve accuracy for more chaotic systems.

2.2 Coreset Selection

For problems where training is too expensive or slow, coreset selection can accelerate training while
preserving accuracy. Coreset selection methods can be largely categorized into two types: training-
free methods that leverage the geometric properties of the data, and training-based methods that
use model-specific information to score data points. Training-free methods involve random [[Guo
et al.| 2022, |Gupta et al., 2023]] and geometry-informed selection [Welling} 2009} (Chen et al.| 2012].
Recent work on training-based methods can be split into three groups: (i) submodular approaches
to maximize the coverage of the selected dataset [Wei et al., |2015| Mirzasoleiman et al., 2020,
Pooladzandi et al., 2022, (ii) gradient-based approaches to exactly find the influence of a data
point [Killamsetty et al.|[2021a} [Paul et al.,[2021]], and (iii) bilevel optimization methods to improve
generalization performance [Killamsetty et al.,|2021clb]].

2.3 Data Efficiency for Neural Operators

The closest existing work to our own is|Chen et al.|[2024]], which develops an unsupervised pretraining
strategy that leverages Masked Autoencoders (MAEs) to learn effective unsupervised representations,
which are then used to fine-tune with a smaller ground-truth dataset. However, this indirectly addresses
issues with training efficiency and data labeling costs using a two-stage training process, whereas
PICore directly addresses both problems in a single training cycle. Hemmasian and Farimani|[2024]]
avoid running expensive simulations on high-resolution data by pretraining neural operators in low
dimensions, but this requires a factorized neural operator such as Factorized Fourier Neural Operator
(FFNO) [Tran et al., 2021]]. In contrast, our method is independent of the operator architecture. |Li
et al.[[2024b] uses an active learning strategy to reduce labeling costs from running simulations by
maximizing a utility cost ratio. However, this is specific to FNO and only addresses the cost of data
annotation and not training efficiency.

3 Preliminaries

3.1 Neural Operators for PDE Solution Generation

Many physical systems can be modeled using partial differential equations (PDEs), which describe
the evolution of a function © € U over a domain. A general PDE can be expressed as

F(u,a) =0, onQ cCRY, (D

where a € A represents input parameters such as boundary conditions, initial conditions, or physical
coefficients; F : U x A — Z is a differentiable and potentially nonlinear operator; and A, are
Banach spaces over the bounded domain 2.

For stationary (time-independent) PDEs, the problem takes the form

F(u,a) =0, onQCRY

2
u=~h, ondf, @

where h defines the boundary condition on the domain boundary 0f2.

130
131

132
133

134
135

136
137

138

139

140

141
142
143
144

145
146
147

148

For dynamic (time-dependent) PDEs, the input a is restricted to the initial condition w|;—¢, and the
operator F is defined on the spatiotemporal domain 2 x 7

Flu,a) =0, onQxT,

u=n~h, ondQxT, 3)

u=a, on®x {0},
where 7 = (0,T) denotes the time domain. Examples of both stationary and dynamic PDEs are
provided in Section[A]
Unlike conventional neural networks that learn pointwise mappings, neural operators approximate
solutions by learning mappings between infinite-dimensional function spaces:

G- A—=U. 4)

In practice, a PDE dataset consists of pairs {(a;, u;)}2_;, where each (a;, u;) corresponds to an input-
output solution of the PDE. The neural operator G is approximated by Gy through the optimization

N
1
Gy = argmin — Go(a;) — uil|7) (5)
a7 3 1) = wilfco
where © is a finite-dimensional parameter space.

3.2 Coreset Selection
Given a dataset D = {(x;,y;)}¥,, coreset selection aims to find a subset S C D such that
S= argmin Eg, ,)~s [E(xi,yi;esl)} 6)
5'CD,|S'|=8N
where 3 is the percentage of the original dataset selected and §° " is the model trained on S. However,
there are O(2"V) possible subsets of size 3N, so evaluating this objective directly is infeasible for
large datasets. Instead, some works leverage a submodular function f : 2° — R which ensures the
diminishing return property
FSU{zh) = £(5) 2 f(TUfz}) - f(T), VSCTCD,z¢T @
This results in a greedy selection procedure, significantly reducing the subset search space. Another
way to perform coreset selection is to use a scoring function and select the top-k data points. Finally,
coreset selection can be represented as a bilevel optimization problem, resulting in the following form
S= argmin £6°(S")) st 6°(S)=argmin Z L(z;,y:;0) 8)
§'CD, |S7|=hN o (z4,y:)€S’

4 PlICore

-Lpr(ar;0)

Numerical
Simulation

-Lpi(az;0)

I - @ -
11 I R
O

o
o
l . I -Lpr(an;6) 0.451

Figure 1: Overview of the PICore Framework. Starting with initial conditions and a warm-started
neural operator Gy, we compute the physics-informed loss £ p;(a;; #) for each condition. A coreset
selection algorithm A picks the most informative samples, assigns weights -y;, and simulates them
using a numerical solver. The resulting labeled subset updates Gy via weighted loss, enabling efficient
training on the most impactful data points.

Y es 1y Laaralau))
Z/ES 14

149
150
151

152
153
154
155
156

157

158

159
160

161
162

163
164

165

167

168
169

170

171
172

Algorithm 1 PICore: Physics-Informed Coreset Selection for Neural Operators

Require: Unlabeled dataset D = {ai}f\il; coreset size k = [N learning rate «; operator Gy;
physics-informed loss £ py(a; 6); coreset selection algorithm Ageje; warmup steps Ty, ; training
steps T’
fort =1to T, do

for each a; € D do

0« 60— QVQEPI(QZ‘; 9)

for each a; € D do

Ui < Lpr(as;0)
S+ Aselect({ei}g\ila k)
D, +
for eachi € S do

u! « G'(a;) {Run numerical simulation}
10: Do < DU {(a;,ul)}

11: fort =1to T do
12: for each (a;, uj) € D.do
13: 0+ 0 — aVoLyua(a;, uI; 0)

Wy ih 2R

To address both issues of training time and data labeling costs for Neural Operator learning, we
introduce PICore, an unsupervised coreset selection method that leverages a physics-informed loss to
bypass the need for labeled training data during coreset selection.

Instead of using the ground truth PDE solution and supervised losses, the physics-informed loss
evaluates the degree to which operator approximation Gy (a) satisfies the governing PDEs defined in
either the stationary form or the dynamic form. The physics-informed loss penalizes violations of the
PDE (PDE residual) in the interior of the domain, as well as deviations from the given boundary and
initial conditions. For neural operators, the physics-informed loss is defined as

Lpr(a;0) = ||]-'(Qg(a)7a)||iz(9) + A[Go(a) - hHi?(E)Q) ©
for stationary PDEs and
2
Lp1(a:0) = [F(Go(a),)32 + A 1Go(0) = W32 o + i]|G0(@)],_o — a3y (10)
for dynamic PDEs.

Given solely an unlabeled dataset D = {a;}¥; that can be cheaply generated (usually by sampling
from a prior distribution or sensor readings), PICore selects a coreset of D by solving

S= argmin E, g {Lﬁp; (ai;ﬂs/)] (1D
S'CD,|S'|=8N

using any existing coreset selection algorithm where 6 "is the operator trained on S’. After selecting

the coreset S, we simulate the true solutions u:r = G(a;) for each a; € S using a traditional numerical

solver, which forms the labeled subset D, = {(a;, uj)}a cs. Finally, we train the neural operator Gy
on D, for T epochs with the standard supervised data loss

Laaalaisu]) = [Go(a:) = ul[72(xr) (12)

Before coreset selection, we warm-start the neural operator with the physics-informed loss over the
full dataset for a small number of epochs T, << T . Warm starting is common in prior coreset
selection methods [Killamsetty et al.,[2021a] and is necessary as most coreset selection algorithms
require gradient information, which is unusable with a randomly initialized model. We provide the
full algorithm in Algorithm [T}

5 Experimental Details

We conduct experiments on four representative PDE benchmarks spanning both stationary and
time-dependent dynamics widely used in the neural operator literature: the time-dependent 1D

173
174
175
176
177
178
179
180
181
182
183
184

185

186
187
188
189
190
191

192
193
194
195
196
197

198

199

201
202
203
204
205
206
207

208

Advection and Burger Equations, the stationary 2D Darcy Flow Equation, and the 2D time-dependent
Navier-Stokes Incompressible Equation. Additional information on the datasets can be found in
Section @ We use the Fourier Neural Operator (FNO) [Li et al., [2020] and U-Net Neural Operator
[Rahman et al.,|2023] as the base models for all experiments due to their implementation simplicity
and performance. However, PICore can work out of the box with any neural operator. We also use 5
coreset selection algorithms in our experiments: CRAIG [Mirzasoleiman et al., |2020]], GradMatch
[Killamsetty et al.,[2021a], AdaCore [Pooladzandi et al.| [2022], EL2N [Paul et al.||2021]] and graNd
[Paul et al}2021]]. CRAIG, AdaCore, and GradMatch are submodular methods that try to match the
gradient sum of the coreset to the gradient sum of the entire dataset. GraNd and EL2N are score
based methods that use the gradient or the loss. Additional information on these coreset selection
algorithms can be found in Section We use coreset selection percentages of 20%, 30%, 40%, 60%,
and 80%.

We report the results of each experiment with the normalized root mean square error loss (NRMSE):

1Go(a:) _UIH%%QXT)

HU;LH%?(QxT)

used in Takamoto et al.|[2022]. We use this as a normalized version of the data loss because the value
of the uj at each spatiotemporal point is very small, resulting in small MSE values and potential
gradient vanishing during training. We also use the uniform spatiotemporal discretization at an input
resolution of 64 for 2. Since FNO and UNO are resolution invariant, we also evaluate at higher
resolutions for zero-shot super resolution in Section ??. For all experiments we use A = 1 and p = 1,
but this is relatively arbitrary, we did not conduct any hyperparameter tuning.

We use T, = 25 warmup epochs and reset the neural operator to its initialization to ensure fair
comparisons between supervised and physics-informed coreset selection. Then, we train neural
operators for 7' = 500 epochs and report the average NRMSE over 5 seeds on a held-out test
set at the input resolution. All experiments were run on a single RTX A4000 GPU. We calculate
the acceleration as the total time taken for supervised coreset selection / PICore (including data
generation, warm starting, and training time) divided by the total time for the non-coreset baseline.

6 Results

We report the core findings for PICore and supervised coreset selection across the four representative
PDE datasets in Tables|[I] 2 3] and[d} We also compare PICore to random subset selection and an active
learning baseline based on uncertainty. Since most active learning baselines are for classification
problems, we extend loss-as-uncertainty methods in [Liu and Lil 2023]] to neural operators. In
addition to the average test NRMSE over the best coreset selection algorithm for each method, we
show the decrease in full training time (including data annotation costs through simulation) relative
to the non-coreset selection baseline. Our results demonstrate that PICore consistently achieves
competitive test performance compared to supervised coreset selection while providing substantial
computational efficiency gains, primarily by reducing expensive data annotation (simulation) costs
during the coreset selection phase.

Table 1: Advection NRMSE at resolution 64

Operator ~ Method 20.0% 30.0% 40.0% 60.0% 80.0% 100.0%
Random 339+0.07x 1072 2.89+£0.03x 1072 2.68+0.02x 1072 247+£0.03x 1072 2.374£0.04 x 1072 2.22+0.05 x 1072
FNO (5.10x) (3.32x (2.56x (1.72x) (1.28x (1.00x
Active Learning 8324058 x 1072 6.20+0.40 x 1072 4784027 x 1072 3.51£0.16 x 1072 2.96 £ 0.07 x 102 2.22 £ 0.05 x 1072
(5.04%) (3.28x) (2.52%) (1.69x) (1.26x) (1.00x)
Supervised (graNd) 3.42+0.12x 1072 2.96+0.09 x 1072 2.64+0.03 x 1072 2.4240.03 x 1072 2.25+0.02 x 1072 2.22+£0.05 x 102
(4.70%) (3.15x) (2.45%) (1.66x) (1.26x) (1.00x)
PICore (graNd) 3.46+£0.13x 1072 3.04£0.15x 1072 2.69£0.05x 1072 2.40£0.04 x 1072 225£0.04 x 1072 2.22+0.05 x 1072
(5.06x) (3.27x) (2.54x) (1.68x) (1.26x) (1.00x)
Random 159+0.02x 1071 1.50+0.01 x 107" 1.44 +0.007 x 107" 1.424+0.12x 107" 1.324+0.12x 107" 7.274+0.28 x 1072
UNO (5.08x) (3.35%) (2.55x) (1.70%) (1.28%) (1.00x)
Active Learning 1.96£0.04 x 1071 1.59+£0.05 x 107" 9.20£0.73 x 1072 7.49+0.47 x 1072 6.83£0.05 x 1072 7.27+0.28 x 1072

(5.05%) (3.32x) (2.52x) (1.68x) (1.26x) (1.00x)
Supervised (gradmatch) 155 £0.02 x 107! 148 £0.01 x 107* 1.42£0.02x 107! 117+0.14 x 107* 8.69+£1.23 x 1072 7.27£0.28 x 1072

(4.84x) (3.23x) (2.47x) (1.67x) (1.25x) (1.00x)
PICore (gradmatch) 1554+ 0.01 x 1071 147+0.01 x 1071 1.43+0.008 x 1071 1.26+0.09 x 101 9.06 + 1.07 x 1072 7.27+£0.28 x 10~2
(5.07x) (3.34x) (2.53x) (1.69x) (1.26x) (1.00x)

209
210
211
212
213
214
215
216
217

218
219
220
221
222
223
224
225

226
227
228
229
230
231
232
233

234

236
237

Table 2: Burgers NRMSE at resolution 64

Operator Method 20.0% 30.0% 40.0% 60.0% 80.0% 100.0%
Random 1.85+0.09 x 1072 1.18 £0.06 x 1072 8.23+£0.21 x 1072 5.82+£0.21 x 107% 4.75+£0.13 x 107° 3.95+£0.10 x 10~°
FNO (5.07x) (3.31x) (2.56%) (1.72x) (1.28x) (1.00x)
Active Learning 8.76 £2.52 x 1072 4.57£0.95 x 1072 3.30£0.57 x 1072 2.06 £0.07 x 1072 1.37£0.18 x 1072 3.95£0.10 x 1072
(5.03x (3.25x) (2.52x) (1.68x) (1.26x) (1.00x
Supervised (gradmatch) 171+ 0.16 x 1072 1.124+0.09 x 1072 7.68 +0.29 x 103 5.24+0.14 x 107 4.13+0.08 x 107> 3.95+0.10 x 103
(3.28x) (2.52x) (2.11%) (1.55%) (1.22x) (1.00x)
PICore (el2n) 1.81+0.08x 1072 1.1240.07x 1072 8.07+0.33 x 1072 5.49+0.08 x 1073 4.07+0.10x 107® 3.95+0.10 x 1072
(5.05%) (3.30%) (2.53%) (1.68%) (1.26x) (1.00x)
Random 2.92+0.05x 1072 2.55£0.05 x 1072 2.25£0.05 x 1072 1.83£0.03 x 1072 1.58 £0.01 x 1072 1.49 £0.04 x 102
UNO (4.99x) (3.34x) (2.55%) (1.70x) (1.27x) (1.00x)
Active Learning 5424041 x 1072 4.124+0.11 x 1072 3.62+£0.20 x 1072 3.034£0.23 x 1072 2.51+£0.13 x 1072 1.49+0.04 x 1072
(5.01x) (3.30x) (2.51x) (1.68x) (1.26x (1.00x)
Supervised (gradmatch) 2.93 +0.10 x 1072 2.4240.06 x 1072 2.08+0.05 x 107 1.73+0.03 x 1072 1.544+0.02 x 1072 1.49+0.04 x 1072
(3.77x) (2.77x) (2.23%) (1.59%) (1.23%) (1.00x)
PICore (graNd) 2.84+0.05x 1072 236+0.05x 1072 2.06+0.04 x 1072 1.72£0.05 x 1072 1.57+0.03x 1072 1.49£0.04 x 1072
(5.05%) (3.33%) (2.52x%) (1.69%) (1.26x) (1.00x)

Table 3: Darcy NRMSE at resolution 64

Operator Method 20.0% 30.0% 40.0% 60.0% 80.0% 100.0%
Random 1.34£0.03 x 1071 1.154£0.01 x 1071 9.99+£0.11 x 1072 7.94£0.04 x 1072 7.07£0.16 x 1072 6.18 £0.09 x 102

FNO (5.00%) (3.36%) (2.53x%) (1.69x) (1.27x) (1.00x)
Active Learning 2.01+0.16 x 107" 1.584+0.08 x 1071 1.25+£0.06 x 107" 8.94+0.33 x 1072 7.19+0.25 x 1072 6.18 £ 0.09 x 1072

(4.99%) (3.31x) (2.50%) (1.66) (1.25%) (1.00x)
Supervised (el2n) 1.26£0.01 x 107! 1.07 £0.007 x 107! 9.43+£0.09 x 1072 7.83+0.18 x 1072 659 £0.09 x 1072 6.18 £0.09 x 102

(1.98x) (1.76x) (1.59x) (1.33x) (1.14x) (1.00x)
PICore (el2n) 125+£0.02x 1071 1.1240.02x 107! 9.44+0.12x 1072 777 £0.18 x 1072 6.84 +0.18 x 1072 6.18 £0.09 x 102

(5.00%) (3.32x) (2.50x) (1.67x) (1.25%) (1.00x)
Random 145+0.02x 1070 1.2240.03x 1071 1.104£0.02x 1071 9.234+0.22x 1072 878 +0.30 x 1072 7.57+0.13 x 1072

UNO (5.03%) (3.37x) (2.53%) (1.69x) (1.27x) (1.00x)
Active Learning 1.87£0.14 x 1071 1.54+£0.08 x 1071 1.27£0.06 x 107! 1.024£0.03 x 107} 8.63+£0.19 x 1072 7.57£0.13 x 1072

(5.04x) (3.35x) (2.52x) (1.68x) (1.26x) (1.00x)
Supervised (gradmatch) 128 £0.03 x 107! 1.14+£0.01 x 107' 9.84£0.16 x 1072 8.60+0.11 x 1072 7.70+£0.10 x 1072 7.57 £0.13 x 102

(2.23x (1.93x (1.71x) (1.38x (1.16x) (1.00x)
PICore (graNd) 1.28+0.03x 107! 1.12+0.01 x 107! 9.67+0.16 x 1072 842+0.14x 1072 7.61+0.11 x 1072 7.57+0.13 x 1072

(5.01x) (3.33%x) (2.50%) (1.67x) (1.25%) (1.00x)

PICore significantly improves training efficiency through reduced simulation costs. Across four
representative PDE datasets—Advection, Burgers, Darcy, and Navier-Stokes Incompressible—PICore
consistently reduces the total training time by cutting down expensive simulation-based annotation.
These efficiency gains become especially significant as the complexity of the PDE increases: Across
the four datasets, PICore achieves average training time reductions of 0.9%, 9.8%, 30.1%, and
78.0% compared to supervised coreset selection, calculated by averaging the relative acceleration
improvements at each selection percentage (20%, 30%, 40%, 60%, and 80%). For example, at a 20%
coreset size, PICore achieves a 5.01 x speedup on Darcy Flow (vs. 2.24 x for supervised methods)
and a 5.00x speedup on Navier-Stokes (vs. 1.14x) using UNO.

As shown in Tables 5 [6][7} and 8] the relative contributions of training and data generation speedups
vary by dataset difficulty. For simpler datasets such as Advection and Burgers, efficiency gains
are driven primarily by reductions in training time. For example, Advection achieves a 79.7%
improvement in training time but only a 1.47% improvement in data generation time at the 20%
coreset level. In contrast, for more challenging datasets, the impact of training time reductions
diminishes, while reductions in data generation time play a more significant role in overall efficiency
gains. These results show that PICore scales well to high-dimensional scientific problems where data
annotation costs dominate training.

PICore matches supervised coreset methods in test accuracy at reduced data budgets. Despite
significant efficiency gains, PICore remains competitive with supervised baselines in test NRMSE.
At a 20% coreset size, it achieves 3.46 x 10~2 for Advection (FNO) and 2.84 x 10~2 for Burgers
(UNO), close to the supervised values of 3.42 x 1072 and 2.93 x 1072, This trend holds across
coreset sizes, with many cases showing PICore outperforming supervised selection. Not all selection
algorithms perform equally well, however, CRAIG and AdaCore often yield higher NRMSE due
to convexity assumptions and Hessian approximations. Thus, we find that results typically favor
GradMatch, GraNd, or EL2N for both PICore and supervised selection.

Coreset Selection methods outperform Random and Active Learning baselines on most datasets.
Random subset selection consistently underperforms relative to both PICore and subset selection,
and this difference increases as we increase the complexity of the dataset and decrease the selection
percentage. For example, random selection has an nRMSE of 2.74 x 10~! on the Navier Stokes

238
239
240
241
242
243
244

245
246
247
248
249
250
251
252

254

256
257
258
259
260
261
262

263

264
265
266
267
268
269
270
271
272

Table 4: Navier Stokes Incompressible NRMSE at resolution 64

Operator Method 20.0% 30.0% 40.0% 60.0% 80.0% 100.0%
Random 2744045 x 1071 5594080 x 1072 1.33£0.03x 1072 9.06+0.24 x 107 6.87+£0.13x 1073 5.66 +0.11 x 103
ENO (5.00x) (3.34x) (2.50%) (L67x) (1.25%) (L.00x)
Active Learning 9.324+6.96x 1072 2.16+0.66 x 1072 1.27+0.03x 1072 7.86+0.14x 107% 6.24+£0.21 x 107 5.66+0.11 x 1073

(5.00%) (3.33%) (2.50) (1.67x) (1.25x) (1.00x)
Supervised (el2n) 9.57 +3.87 x 1072 1.75+0.07 x 1072 1.18+0.04 x 1072 7.94+0.18 x 10 6.28+0.16 x 10~% 5.66 £ 0.11 x 1073

(1.05%) (1.05%) (1.04%) (1.03x) (1.01x) (1.00x)
PICore (graNd) 1.12+£045 x 107" 1.81+£0.12x 1072 1.23+0.05x 1072 8.00£0.23 x 107> 6.34£0.14 x 1073 5.66 £ 0.11 x 1073

(5.00%) (3.33%) (2.50) (1.67x) (1.25%) (1.00x)
Random 2724004 x 1072 2.2440.02x 1072 1.954+0.01 x 1072 1.61£0.006 x 1072 1.38£0.004 x 1072 1.24 +0.004 x 1072

UNO (5.02) (3.34x) (2.51%) (1.67x) (1.25x) (1.00x)
Active Learning 2.9140.05x 1072 2.36+£0.03x 1072 2.06+0.02x 1072 1.61+0.01 x 1072 1.40 £ 0.009 x 1072 1.24 4 0.004 x 1072

(5.00%) (3.33%) (2.50) (1.67x) (1.25x) (1.00x)
Supervised (el2n) 2.604+0.02x1072 2.194+0.02x 1072 1.93+0.01 x 1072 1.57+0.009 x 1072 138 £0.010 x 1072 1.24 4 0.004 x 102

(1.14x) (1.12x) (1.10x) (1.07x) (1.03x) (1.00x)
PICore (gradmatch) 2.59 £ 0.03 x 1072 2.20+0.009 x 1072 1.92+0.009 x 1072 1.60 +0.005 x 1072 1.40 £ 0.007 x 1072 1.24 +0.004 x 1072

(5.00%) (3.33%) (2.50) (1.67x) (1.25x) (1.00x)

Incompressible dataset at a 20% coreset selection percentage, where as PICore has an nRMSE of
1.12 x 10~2 and Supervised Coreset Selection has an nRMSE of 9.57 x 10~2. This shows that
using PDE specific information (either supervised loss or the physics informed loss) is necessary to
achieve a more accurate solution with less data. Interestingly, we see that active learning outperforms
the PICore on the Advection dataset with UNO on medium coreset selection percentages (40-60%)
and on the Navier Stokes Incompressible dataset with FNO. However, it is much worse on all other
dataset and model combinations by a considerable margin.

There is a tradeoff between efficiency and absolute test accuracy. While PICore offers strong
performance and efficiency, one tradeoff is that the absolute test accuracy relative to training on
100% of the data is lower. For example, on the Advection dataset with FNO, the 100% training
baseline yields an NRMSE of 2.13 x 1072, while PICore at 20% yields 3.77 x 10~2. However, this
is an inherent tradeoff for all coreset selection algorithms, as the selected coreset simply contains
less information for training. Additionally, this is not specific to PICore, as similar reductions in
accuracy hold for supervised coreset selection. In practice, one may want to select a higher selection
percentage, such as 40%, which would yield higher accuracy (2.69 x 10~2) while still maintaining a
competitive efficiency gain (2.54 x).

7 Limitations and Future Work

One limitation of PICore is its reliance on existing coreset selection algorithms. Methods like CRAIG
and AdaCore, designed for convex losses and image classification, may perform suboptimally on
complex, non-convex PDE datasets, especially at low selection ratios. For instance, using Hutchinson
Hessian approximations on the last layer in AdaCore often yields poorer accuracies. Thus, we
recommend that practitioners use GradMatch, EL2N, or GraNd with PICore, since they make fewer
data and model assumptions. Future work could develop coreset algorithms tailored for neural
operators and extend PICore to multi-resolution or irregular geometries to improve generalization
while preserving efficiency.

8 Conclusion

In this work, we introduced PICore, a physics-informed unsupervised coreset selection framework
designed to enhance the data efficiency of neural operator training. By leveraging the physics-
informed loss to identify the most informative samples without requiring labeled data, PICore
significantly reduces both the computational cost of numerical simulations and the time required for
training. Our experiments across four PDE benchmarks demonstrate that PICore achieves competitive
accuracy while reducing training costs by up to 78% compared to supervised coreset selection
methods. Although PICore inherits some limitations from existing selection methods, we believe
its ability to reduce labeling costs and accelerate training makes it a promising tool for large-scale
scientific machine learning.

273

274
275

276
277
278

279
280
281

282
283
284

285
286
287

289

290
291
292

294
295
296

297
298
299

300
301
302

303

305
306
307

308
309

310
311

312
313
314

315
316
317

318
319
320

References

Pankaj K Agarwal, Sariel Har-Peled, Kasturi R Varadarajan, et al. Geometric approximation via
coresets. Combinatorial and computational geometry, 52(1):1-30, 2005.

William H. Beluch, Tim Genewein, Andreas Nurnberger, and Jan M. Kohler. The power of ensembles
for active learning in image classification. In 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 9368-9377, 2018. doi: 10.1109/CVPR.2018.00976.

Boris Bonev, Thorsten Kurth, Christian Hundt, Jaideep Pathak, Maximilian Baust, Karthik Kashinath,
and Anima Anandkumar. Spherical fourier neural operators: Learning stable dynamics on the
sphere. In International conference on machine learning, pages 2806-2823. PMLR, 2023.

Xiaofeng Cao and Ivor W. Tsang. Shattering distribution for active learning. IEEE Transactions
on Neural Networks and Learning Systems, 33(1):215-228, 2022. doi: 10.1109/TNNLS.2020.
3027605.

Wuyang Chen, Jialin Song, Pu Ren, Shashank Subramanian, Dmitriy Morozov, and Michael W
Mahoney. Data-efficient operator learning via unsupervised pretraining and in-context learning.
Advances in Neural Information Processing Systems, 37:6213-6245, 2024.

Yutian Chen, Max Welling, and Alex Smola. Super-samples from kernel herding. arXiv preprint
arXiv:1203.3472, 2012.

N.J. Cyrus, R.E. Fulton, United States. National Aeronautics, Space Administration, and Langley Re-
search Center. Accuracy Study of Finite Difference Methods. NASA technical note. National
Aeronautics and Space Administration, 1968. URL https://books.google.com/books?id=
zMSFxfAasQMC.

Kenneth Eriksson and Claes Johnson. Adaptive finite element methods for parabolic problems
iv: Nonlinear problems. SIAM Journal on Numerical Analysis, 32(6):1729—-1749, 1995. doi:
10.1137/0732078. URL https://doi.org/10.1137/0732078.

Bin Gu, Zhou Zhai, Cheng Deng, and Heng Huang. Efficient active learning by querying discrimina-
tive and representative samples and fully exploiting unlabeled data. IEEE Transactions on Neural
Networks and Learning Systems, 32(9):4111-4122, 2021. doi: 10.1109/TNNLS.2020.3016928.

Chengcheng Guo, Bo Zhao, and Yanbing Bai. Deepcore: A comprehensive library for coreset selec-
tion in deep learning. In International Conference on Database and Expert Systems Applications,
pages 181-195. Springer, 2022.

Animesh Gupta, Irtiza Hasan, Dilip K Prasad, and Deepak K Gupta. Data-efficient training of cnns
and transformers with coresets: A stability perspective. arXiv preprint arXiv:2303.02095, 2023.

Daniel Haimovich, Dima Karamshuk, Fridolin Linder, Niek Tax, and Milan Vojnovic. On the conver-
gence of loss and uncertainty-based active learning algorithms. Advances in Neural Information
Processing Systems, 37:122770-122810, 2024.

AmirPouya Hemmasian and Amir Barati Farimani. Pretraining a neural operator in lower dimensions.
arXiv preprint arXiv:2407.17616, 2024.

Claes Johnson. Numerical solution of partial differential equations by the finite element method.
Cambridge University Press, Cambridge, England, January 1988.

Krishnateja Killamsetty, Sivasubramanian Durga, Ganesh Ramakrishnan, Abir De, and Rishabh Iyer.
Grad-match: Gradient matching based data subset selection for efficient deep model training. In
International Conference on Machine Learning, pages 5464-5474. PMLR, 2021a.

Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and Rishabh Iyer. Glister:
Generalization based data subset selection for efficient and robust learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pages 8110-8118, 2021b.

Krishnateja Killamsetty, Xujiang Zhao, Feng Chen, and Rishabh Iyer. Retrieve: Coreset selection for
efficient and robust semi-supervised learning. Advances in neural information processing systems,
34:14488-14501, 2021c.

https://books.google.com/books?id=zMSFxfAasQMC
https://books.google.com/books?id=zMSFxfAasQMC
https://books.google.com/books?id=zMSFxfAasQMC
https://doi.org/10.1137/0732078

321
322
323

324
325
326

327
328
329

330

332
333
334

335
336
337

338
339
340

341
342
343

344
345
346

347
348
349
350
351

352
353
354

355
356

357
358
359
360

361

363

364
365
366
367
368

Yeachan Kim and Bonggun Shin. In defense of core-set: A density-aware core-set selection for active
learning. In Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data
mining, pages 804-812, 2022.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces with
applications to pdes. Journal of Machine Learning Research, 24(89):1-97, 2023.

Nikola B. Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
Andrew M. Stuart, and Anima Anandkumar. Neural operator: Learning maps between function
spaces, 2021. URL https://arxiv.org/abs/2108.08481.

Randall J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied
Mathematics. Cambridge University Press, 2002.

Dongyuan Li, Zhen Wang, Yankai Chen, Renhe Jiang, Weiping Ding, and Manabu Okumura. A
survey on deep active learning: Recent advances and new frontiers. IEEE Transactions on Neural
Networks and Learning Systems, 2024a.

Shibo Li, Xin Yu, Wei Xing, Robert Kirby, Akil Narayan, and Shandian Zhe. Multi-resolution active
learning of fourier neural operators. In International Conference on Artificial Intelligence and
Statistics, pages 2440-2448. PMLR, 2024b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
arXiv preprint arXiv:2010.08895, 2020.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations,
2021a. URL https://arxiv.org/abs/2010.08895.

Zongyi Li, Miguel Liu-Schiaffini, Nikola Kovachki, Burigede Liu, Kamyar Azizzadenesheli, Kaushik
Bhattacharya, Andrew Stuart, and Anima Anandkumar. Learning dissipative dynamics in chaotic
systems. arXiv preprint arXiv:2106.06898, 2021b.

Zongyi Li, Miguel Liu-Schiaffini, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede
Liu, Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Learning chaotic dynamics
in dissipative systems. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho,
editors, Advances in Neural Information Processing Systems, 2022. URL https://openreview!
net/forum?id=1C36tFZn7sR.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. ACM/JMS Journal of Data Science, 1(3):1-27, 2024c.

Shang Liu and Xiaocheng Li. Understanding uncertainty sampling. arXiv preprint arXiv:2307.02719,
2023.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218-229, March 2021. ISSN 2522-5839. doi: 10.1038/
s42256-021-00302-5. URL http://dx.doi.org/10.1038/s42256-021-00302-5.

Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of
machine learning models. In International Conference on Machine Learning, pages 6950—-6960.
PMLR, 2020.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, Pedram
Hassanzadeh, Karthik Kashinath, and Animashree Anandkumar. Fourcastnet: A global data-
driven high-resolution weather model using adaptive fourier neural operators. arXiv preprint
arXiv:2202.11214,2022.

10

https://arxiv.org/abs/2108.08481
https://arxiv.org/abs/2010.08895
https://openreview.net/forum?id=1C36tFZn7sR
https://openreview.net/forum?id=1C36tFZn7sR
https://openreview.net/forum?id=1C36tFZn7sR
http://dx.doi.org/10.1038/s42256-021-00302-5

369
370
371
372
373

374
375
376

377
378
379

380
381
382
383

384
385

386
387
388
389

390
391

392
393

395
396
397
398

399
400
401
402

403
404
405

406
407

408
409
410
411
412
413

Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding
important examples early in training. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, volume 34,
pages 20596-20607. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/
paper_files/paper/2021/file/ac56f8fe9eea3e4a365f29f0f1957c55-Paper. pdf.

Omead Pooladzandi, David Davini, and Baharan Mirzasoleiman. Adaptive second order coresets
for data-efficient machine learning. In International Conference on Machine Learning, pages
17848-17869. PMLR, 2022.

Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-NO: U-shaped neural
operators. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL https:
//openreview.net/forum?id=j30QF9coJd.

Bogdan Raonic, Roberto Molinaro, Tim De Ryck, Tobias Rohner, Francesca Bartolucci, Rima
Alaifari, Siddhartha Mishra, and Emmanuel de Bézenac. Convolutional neural operators for
robust and accurate learning of pdes. Advances in Neural Information Processing Systems, 36:
77187-77200, 2023.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. arXiv preprint arXiv:1708.00489, 2017.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Dan MacKinlay, Francesco Alesiani, Dirk
Pfliiger, and Mathias Niepert. PDEBench: An Extensive Benchmark for Scientific Machine
Learning. In 36th Conference on Neural Information Processing Systems (NeurlPS 2022) Track on
Datasets and Benchmarks, 2022. URL https://arxiv.org/abs/2210.07182.

Hewei Tang, Qingkai Kong, and Joseph P Morris. Multi-fidelity fourier neural operator for fast
modeling of large-scale geological carbon storage. Journal of Hydrology, 629:130641, 2024.

Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural
operators. arXiv preprint arXiv:2111.13802, 2021.

Kai Wei, Rishabh Iyer, and Jeff Bilmes. Submodularity in data subset selection and active learning.
In Francis Bach and David Blei, editors, Proceedings of the 32nd International Conference on
Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages 1954—1963,
Lille, France, 07-09 Jul 2015. PMLR. URL https://proceedings.mlr.press/v37/weilb,
html.

Max Welling. Herding dynamical weights to learn. In Proceedings of the 26th Annual International
Conference on Machine Learning, ICML ’09, page 1121-1128, New York, NY, USA, 2009.
Association for Computing Machinery. ISBN 9781605585161. doi: 10.1145/1553374.1553517.
URL https://doi.org/10.1145/15653374.1553517.

Yazhou Yang and Marco Loog. To actively initialize active learning. Pattern Recognition, 131:
108836, 2022. ISSN 0031-3203. doi: https://doi.org/10.1016/j.patcog.2022.108836. URL https:
//www.sciencedirect.com/science/article/pii/S003132032200317X.

Zhewei Yao, Peng Xu, Farbod Roosta-Khorasani, and Michael W. Mahoney. Inexact non-convex
newton-type methods, 2018. URL https://arxiv.org/abs/1802.06925.

Guang Zhao, Edward Dougherty, Byung-Jun Yoon, Francis Alexander, and Xiaoning Qian. Ef-
ficient active learning for gaussian process classification by error reduction. In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances
in Neural Information Processing Systems, volume 34, pages 9734-9746. Curran Associates,
Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/
50d2e70cdf7dd05be85e1b8df3f8ced4-Paper . pdf.

11

https://proceedings.neurips.cc/paper_files/paper/2021/file/ac56f8fe9eea3e4a365f29f0f1957c55-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/ac56f8fe9eea3e4a365f29f0f1957c55-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/ac56f8fe9eea3e4a365f29f0f1957c55-Paper.pdf
https://openreview.net/forum?id=j3oQF9coJd
https://openreview.net/forum?id=j3oQF9coJd
https://openreview.net/forum?id=j3oQF9coJd
https://arxiv.org/abs/2210.07182
https://proceedings.mlr.press/v37/wei15.html
https://proceedings.mlr.press/v37/wei15.html
https://proceedings.mlr.press/v37/wei15.html
https://doi.org/10.1145/1553374.1553517
https://www.sciencedirect.com/science/article/pii/S003132032200317X
https://www.sciencedirect.com/science/article/pii/S003132032200317X
https://www.sciencedirect.com/science/article/pii/S003132032200317X
https://arxiv.org/abs/1802.06925
https://proceedings.neurips.cc/paper_files/paper/2021/file/50d2e70cdf7dd05be85e1b8df3f8ced4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/50d2e70cdf7dd05be85e1b8df3f8ced4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/50d2e70cdf7dd05be85e1b8df3f8ced4-Paper.pdf

414

415
416
417
418
419
420
421
422

423
424

425
426
427
428
429

430

431
432

433

434
435
436
437

438

439
440

441

442

443
444
445

446

447
448

A PDE Datasets

For our experiments, we use several differential equation training sets to evaluate our algorithm.
Each of these is used at an input grid resolution of 64. For the Advection, Burgers, and Darcy Flow
equations, we generate datasets using code provided by [Takamoto et al.|[2022]. For the Navier-Stokes
Incompressible equation dataset, we generate data from [Li et al.|[2020]. Each dataset has 1000
generated trajectories, with 900 that can be used for training (varying based on the coreset selection
percentage) and 100 for testing, which is comparable to existing neural operator literature [Li et al.
2021al 2024¢]]. We generate 20 timesteps forward for Advection and Burgers, and only 10 timesteps
for the Navier Stokes Incompressible dataset due to GPU memory limits.

One challenge with using the physics-informed loss is computing the PDE residual F(Gy(a), a).
The residual requires computing derivatives of the neural operator with respect to the dimensional

parameters, such as gi%? Li et al.|[2024c] uses a function-wise differentiation method via Fourier
differentiation to compute these values exactly, but this does not extend to a general class of neural
operators. We also tried auto-differentiation methods, but these were highly computationally expen-
sive, increasing the coreset selection time. Thus, we settled on simply using finite difference methods,

which are efficient with linear time complexity in the input resolution.

A.1 Advection

We construct our dataset by numerically solving the linear advection equation on the periodic domain
(0,1):
Opu(t,x) + BOzu(t,z) =0, te€(0,2], z€(0,1), (13)

The initial condition is defined as a superposition of sinusoidal modes,

N
up(z) = ZAi sin(ki:c + (i)i), k; = 227%,

i=1

(14)

where each n; is drawn uniformly from the range of integers from 1 to 8, N is the number of waves,
and the amplitudes A; € [0, 1] and phases ¢; € (0, 27) are chosen at random. After assembly of
uo(z), we apply with 10% probability each a pointwise absolute-value operation or multiplication by
a smooth window function.

A.2 Burger’s Equation

We are interested in the one-dimensional viscous Burgers equation on the unit interval with periodic
boundary conditions:

dult,z) + 0, (L u(t,2)) = Z dppult,z), € (0,1), t € (0,2], (15)
0
subject to the initial condition
w(0,2) = uo(x), =z € (0,1). (16)
Here v > 0 is a constant diffusion coefficient. We use the nondimensional Reynolds number
R — 7TU,L’
v

where v, is a characteristic velocity scale. In analogy with the Navier—Stokes equations, R > 1
indicates a regime dominated by nonlinear steepening and potential shock formation, whereas R < 1
corresponds to diffusion-dominated smooth dynamics.

A.3 Darcy Flow

We obtain the steady-state solution of Darcy’s equation on the unit square by evolving a time-
dependent problem until convergence. The target elliptic problem is

-V- (a(x) Vu(m)) = f(x), x € (0,1)2 (17)
u(z) =0, x € 0(0,1)2, (18)

12

449
450

451

452
453

454

455

456

457
458
459
460

461

462
463

464

465

467
468
469
470
471
472

473

474
475
476
477
478

479

480
481
482

484
485

where a(x) is the spatially varying coefficient and f(x) = S is a constant forcing that scales the
solution amplitude.

Rather than solving equation[T7} we integrate the parabolic problem
du(z,t) — V- (alz) Vu(z,t)) =B, z€(0,1)% ¢t >0, (19)

with an appropriate random-field initial condition and homogeneous Dirichlet boundary data. We use
the strong form V - (aVu) — f for the residual as in|Li et al.|[2024c].

A.4 Navier-Stoker Equation
We consider the vorticity formulation on the periodic domain (0, 1):
dwtu-Vw=vAw+f, V-u=0, w0 ~N(0, 732 (—A + 49[)_2'5)7

with forcing
flx) =01 [sin 27t(x1 + x2) + cos 2m(xy + x2)]

The solution is obtained on a 256 x 256 grid via a Fourier pseudospectral scheme: first, we solve
A1y = —w in Fourier space to recover the stream function ¢ and velocity u, then compute the
nonlinear advection term u - Vw in physical space with a 2/3-dealiasing filter, and finally advance in
time using Crank—Nicolson for diffusion coupled with an explicit update for the nonlinear term.

B Coreset Selection Algorithms

In this section, we provide an overview of the coreset selection algorithms used. All implementations
are our own, but are based on|Guo et al.|[2022].

Adacore

AdaCore augments CRAIG with second—order curvature so that difficult, high-influence samples are
favoured even when first—order gradients look similar. In practice we estimate only the diagonal
of the Hessian with 10 Hutchinson probes per mini-batch, then pre-condition the last-layer gradient
V/; by element-wise division. Similarities are computed on these pre-conditioned vectors and the
same stochastic-greedy routine as CRAIG is applied. The extra cost is the time to compute the
approximation by deriving multiplications of the Hessian and arbitrary vectors via the Hessian-Free
method [Yao et al.,2018], the time of Hutchinson’s method to find the diagonal, and the time to apply
the diagonal to the gradients of the last layer.

EL2N

Our EL2N (Error L2-Norm) coreset selection method follows from the premise that samples that are
most worthwhile for the model have the highest losses. EL2N conducts a full training pass, where for
each minibatch z;, we calculate the loss without reduction for each individual sample, and calculate
the norm for x;’s loss vector. At the end of the epoch, we take the top k£ minibatches by loss norm
and return them with equal weight.

CRAIG

CRAIG (Coresets for Accelerating Incremental Gradient-descent) selects a weighted subset of size
k whose gradients cover (i.e. represent) all per-example gradients. Let g; = Vjl;(0) € R? be the
gradient for example ¢. CRAIG finds a near optimal solution to the following problem.

A* = argmin 5], Z min max ||gn, — gml|
ACV nevaS (4

so every g; is “covered” by its most similar selected gradient. CRAIG selects the smallest subset S

such that every example gradient is close (in L) to at least one gradient in S. We approximate the
coverage objective with the stochastic-greedy algorithm applied to the pairwise Euclidean similarity

13

486
487

488
489
490

491

492
493
494

495

497
498

499
500

501

503
504
505

506

507

508

509
510

matrix of last-layer gradients. Greedy (or stochastic-greedy) selection gives a (1—1/e)-approximation
in finite similarity evaluations. After .S is chosen, CRAIG sets integer weights

v = |{z : arg max S, :j}|7 jes,
mesS
so the weighted coreset gradient) jes V39 closely matches the full gradient > i, g; at each

optimisation step. In practice the method is applied to last-layer gradients to reduce dimensionality
without degrading the approximation quality.

GradMatch

Let the last-layer per-example gradients be concatenated as A = [g; g2 - - . g] € R?*™ and define the
full-batch gradient b = % >, 9i- GRADMATCH casts coreset selection as the sparse approximation
problem.

min [|[Az —b|3 st |z)o <k, x> 0.
CL‘GRTL

OMP builds the weight vector x greedily. Starting with residual » = b and empty support S: (i)
choose the column j* = arg max;g¢s AjTr; (ii) add j* to S; (iii) refit the coefficients by non-negative
least squares g = arg ming>o || Asz —b||3+A||z||3; (iv) update r = b— Agxs. The loop terminates
after k selections, giving a coreset S = supp(x) with weights v; = z;.

During training we replace the full loss by the weighted loss > jes il / > jes V5> ensuring the
mini-batch gradient of the coreset closely follows the full-batch gradient throughout optimisation.

GraNd
GralNd is similar to EL2N, but simply orders samples by the norm of their individual gradients and
keeps the top k. We piggy-back on the same per-sample gradient collection already needed for

CRAIG/GradMatch, but stop after the first backward call. We can rapidly sort these norms on the
CPU, and use the selected indices for our coreset.

C Additional Results

C.1 Component-wise PICore Acceleration

Coreset % FNO UNO Coreset % FNO UNO

Train Data Warm-up Train Data Warm-up Train Data ~ Warm-up Train Data ~ Warm-up
20.0% +79.7% +14% -09% +80.4% +08% -4.5% 20.0% +703% +10.7% -08% +744% +6.6% -4.5%
30.0% +69.7% +12% -14% +70.7% +0.7% -4.5% 30.0% +61.5% +9.4% -1.3% +654% +58% -4.5%
40.0% +61.3% +1.1% -1.8% +61.7% +0.6% -4.5% 40.0% +54.0% +8.1% -1.6% +57.1% +5.0% -4.5%
60.0% +42.8% +0.7% -2.8% +432% +04% -45% 60.0% +377% +5.4% 24% +399% +33% -45%
80.0% +242% +04% -37% +242% +02% -4.5% 80.0% +21.4% +2.7% 33% +223% +17% -45%

Table 5: Advection PICore component speedup. Table 6: Burgers PICore component speedup.

Coreset % FNO UNO
Coreset % - FNO - UNO Train Data Warm-up Train Data ‘Warm-up
Train _ Daa Warmup Train Daw Warm-up 20.0% +52% +749% 01% +127% +67.5% -0.8%
20.0% +50.2% +30.4% -0.6% +559% +24.8% -3.3% 30.0% +4.5% +65.5% -0.1% +112% +59.0% -0.8%
30.0% +44.2% +26.6% -0.9% +49.2% +21.7% -3.3% 40.0% +39% +56.2% -0.1% +97% +50.6% -0.8%
40.0% +384% +22.8% -1.2% +42.7% +18.6% -3.3% 60.0% +27% +37.4% 02% +6.7% +33.7% -0.8%
60.0% +26.7% +15.2% -1.8% +29.7% +12.4% -3.3% 80.0% +15% +18.7% -02% +37% +16.9% -0.8%
80.0% +149% +7.6% -2.4% +16.5% +6.2% -3.3% -
- Table 8: Navier Stokes PICore component
Table 7: Darcy PICore component speedup.
speedup.

C.2 Comparison between Supervised Coreset Selection and PICore

To better understand the differences between supervised coreset selection and PICore, we analyze how
well each method covers the input space by computing the average distance from coreset points to

14

511
512
513
514
515
516
517
518
519

521
522
523
524
525
526
527
528

530
531
532
533
534
535
536

537
538
539
540
541

542

544
545

their centroid, which serves as a proxy for spread or diversity. We compute this distance with respect
to the || - || L2() norm, where the centroid is the average data point element-wise and the average
distance is the average norm between the centroid and the selected data points in the coreset. As shown
in Figure 2] this distance is nearly identical across datasets and neural operators (FNO and UNO),
with overlapping standard error bars with differences decreasing as the PDE complexity increases
(Advection to Navier Stokes). This suggests that PICore selects coresets that are as well-distributed
as those from supervised methods, despite not using labeled data. The comparable coverage indicates
that differences in downstream performance likely arise from the type of points selected rather than
their spatial distribution.

(a) Advection (b) Burgers

]

(c) Darcy (d) Navier Stokes

Figure 2: Average centroid distances across datasets for FNO and UNO.

C.3 Unsupervised Coreset Selection

We compare PICore to three unsupervised coreset selection methods: k-means clustering, cosine
similarity, and Herding 2012]. For k-means clustering we use k = SN clusters, and
choose the data points closest to those clusters. For cosine similarity, we evaluate the cosine similarity
between all pairs of points, and perform greedy selection to choose the coreset. We report direct
comparison of the test NRMSE for both methods in Figures [3} @ [5] and[6]in Section ??. The results
show that PICore consistently matches or outperforms the unsupervised baselines across all tested
coreset sizes (20% to 80%) and neural operator architectures (FNO and UNO). For instance, on the
Advection dataset at 20% coreset size, PICore with the EL2N algorithm achieves a test NRMSE
of 3.29 x 1072, outperforming cosine similarity 3.39 x 102 and herding 3.46 x 10~2. Similar
patterns are observed on the other datasets, indicating that PICore’s selection strategy generalizes well
across both time-dependent and stationary PDEs compared to other unsupervised coreset selection
strategies. We also note that these trends hold across neural operator architectures, with PICore
outperforming unsupervised methods with both FNO and UNO architectures. While FNO does
consistently outperform UNO across datasets (except Navier Stokes Incompressible), this is due to
the architecture differences and not due to PICore (as shown by the increase in NRMSE for UNO on
the non-coreset baseline).

These results highlight the advantage of incorporating PDE-specific information into the subset
selection process. While clustering and similarity-based approaches may cover the input space evenly
or preserve diversity, they do not necessarily target the data points where the model struggles. In
contrast, PICore explicitly focuses on where the model’s performance is likely to decrease by using
the PDE’s residual, resulting in improved predictive accuracy under minimal training data.

C.4 Convergence of Coreset Selection vs Active Learning

A key distinction between coreset selection and active learning lies in their approach to data selection,
which in turn affects their convergence speed. This iterative nature can be suboptimal, as it can
lead to selecting redundant data points [Li et al.,|2024al]. While some works have shown superior

15

N0 -20%

- 30 o- o6 o- 0%
0036 TR
0.065 0.030
0.060 0045 0036 0.025
002 0.040 0034 0.028 o
gooo .
Zooss 0035 om0 ooz o023
soi0 . 1
el s L 1 g L 1o ot 1 T oo o
oo oo
KL TR g - I
;2 PP P . > 5 > > n > 2
FAS PSP SIS FPFCS SSS PP SSF PSS E SIS PSP
wo-20% wwo-30% wo- 1% wo-60% wwo-60%
. o7 0w -
026 018 016
017 oxe 015 014
o
oz 016 015 014 012
§ o
2020 015 0.10
o o
o1 0 011 0.08
ool g 1k o 2w o o0 o
e NN T HRER .. 009
PSS P F AP PP PP s # R S PSP ¢ F PSS
& & & & & & K o & @ & &
e @ Pl “ m Unsupervised i ‘pcore @ i SIS F

Figure 3: Test NRMSE on the Advection dataset at resolution 64 across varying coreset percentages

(20%—-100%) between unsupervised and PICore-based coreset selection methods using both FNO
and UNO architectures.

FNO - 20%

N0 -30%

FNO-a0%

FNO - 60%

o s
00325 [EETE son sors 000550 {E= T
o050 soos ooos2s
00275 0025 o016 0.00500-
, 00250 0014 0008 000475
4 ooz
Zooms o oo oootso
ooz ocotzs
oairs o R wel 1] 1
0.0150- 0.010 & ! I T b -k 0.00375
Ty - R ina
ocasso
& & S RO & S & & o & o S R s £ g S & 5
r ¥ p E B F
& ST R LSS EF S LSS EFS TS P R
wwo-20% ovo-30% wo- 0% o-0% wwo-80%
o0 00350 0024 00180
0,050 0.040 00325 0.0175
o voss ooz oorro
% 0.0275. 0020 00165
£
g 0030 00250 00160
ooss
o018 00155
s T bool ol g i 1L 1] I
ol 1L I S I " !
oae
w EEEETTE] o (AN NEE w LN |
oo
S FLL S P & S S F S F LSS S A PSSP S S E S
& rd & o o &L A e & & &S
“ ¢ f ¢ o W Unsupervised W PICore M f aﬁ "& v ¢ o‘r‘\ f

Figure 4: Test NRMSE on the Burgers dataset at resolution 64 across varying coreset percentages

(20%-100%) between unsupervised and PICore-based coreset selection methods using both FNO
and UNO architectures.

N0 -20%

FNO-30%

PO - a0%

FNO - 60%

Fro- 0%
0120 {BestHerding) 0074
a1s o1 ooss
018 0115 0072
oom
o110
B oo
goxe 0105
Zo1s 012 0078 0.068
o l I 0100 l 0076 0066
wilg g BEl wrl g g I
gl B Ll ool f K ..
O s & s © & & F R & &P P & 5 s & S s © &
& FSS TS LSS ES T & FF T & FSS TS LSS ST
wo-20% w030 o 4o o 6o o -sox
o. 0.105 {EetCrang)
013 0.0850
018 s 0200 0.0825
012
. o1 o0ss oom00
f 013 on 200 oars
014 012 00750
ooss
by oo p gl e] bl oans
Il il (NN
010 009
¢ o A ¢ o ¢ & n & ¢ S # ,» A ¢ ,A ¢ &
R R R VR PV R C R VAR EE

Figure 5: Test NRMSE on the Darcy dataset at resolution 64 across varying coreset percentages

(20%-100%) between unsupervised and PICore-based coreset selection methods using both FNO
and UNO architectures.

16

554

N0 -20% N0 - 30% FNO - a0% FNO - 60% FNO - 80%

0200 00105 o007
03
017 o018 0.0100 00072
030 0.0070
0150 0016 0.0095
w 0z 0125 . 0.0068
Zo20 0.0065
H o oo 00085 00064
a1 0.075
010 0.050 0012 0.0080 Q006
00060
o0s oos 1 00075
| B 'y T oo 00058
£ S © P S S & 50 © &S & © PSS & gt S0 R £ R
& FF &S FSS TS & S P & F T
o 20% U0 - 30% o a0 No- 0% o - 60%
0on = ()
0.0400- 0026 00155
oosrs 003 001
0024 00150
o030
; 00 o
¢
goo 0026 0022 00145
0.0300 0.027
002
o140 1 1 |
o0ms o0
' P i T 1l oo i L1 i -z i P-4 P Io-g| oo % & 11
00250
oo13s
AR PPN . s PN A TP - PN »
P AV A g A PPV R &S T AV A
o - 4 W Unsupervised W PICore o o

Figure 6: Test NRMSE on the Navier Stokes Incompressible dataset at resolution 64 across varying
coreset percentages (20%—100%) between unsupervised and PICore-based coreset selection methods
using both FNO and UNO architectures.

convergence of active learning methods [Haimovich et al.|[2024], these are under specific optimizer
settings and in easier image classification domains.

Our empirical results largely validate this viewpoint, demonstrating that PICore’s single-shot selection
generally leads to better subset selection that converges faster than active learning baselines. Figures
[7land [8]show the training loss convergence of PICore’s coreset selection methods compared to the
active learning baseline. For both FNO and UNO, the active learning method converges much slower
by 2-3x. The difference in loss convergence decreases for more complex datasets such as Navier
Stokes, but this is due to learning a larger FNO-3D / UNO-3D model than due to the subset selection
method itself.

Advection Burgers Darcy Navier Stokes

Training Loss
Training Loss

Training Loss
Training Loss

0 400 500 0 00 2 0 400 500 0 100 2 0 400 500 0 100 2

0 300 00 300
Epoch Epoch

—— CRAIG —— GradMatch ~—— AdaCore —— EL2N —— GraNd —— Active Learning

Figure 7: Training loss convergence of coreset selection methods in comparison to active learning
using FNO at a 20% selection ratio.

Advection Burgers Darcy Navier Stokes

1.00 100 1.00 100
k! k| 8 3
° o ° °
2 2 2 2
£ € € €010
= i 010 = &

010
0.10
o 100 200 300 400 500 o 00 200 300 400 500 o 00 200 300 400 500 0 00 200 300 400 500
Epoch Epoch Epoch Epoch
— CRAIG —— GradMatch ~—— AdaCore —— EL2N —— GraNd —— Active Learning

Figure 8: Training loss convergence of coreset selection methods in comparison to active learning
using UNO at a 20% selection ratio.

17

	Introduction
	Related Work
	Neural Operators
	Coreset Selection
	Data Efficiency for Neural Operators

	Preliminaries
	Neural Operators for PDE Solution Generation
	Coreset Selection

	PICore
	Experimental Details
	Results
	Limitations and Future Work
	Conclusion
	PDE Datasets
	Advection
	Burger's Equation
	Darcy Flow
	Navier-Stoker Equation

	Coreset Selection Algorithms
	Additional Results
	Component-wise PICore Acceleration
	Comparison between Supervised Coreset Selection and PICore
	Unsupervised Coreset Selection
	Convergence of Coreset Selection vs Active Learning

