
PICore: Physics-Informed Unsupervised Coreset
Selection for Data Efficient Neural Operator Training

Anonymous Author(s)
Affiliation
Address
email

Abstract

Neural operators offer a powerful paradigm for solving partial differential equations1

(PDEs) that cannot be solved analytically by learning mappings between function2

spaces. However, there are two main bottlenecks in training neural operators: they3

require a significant amount of training data to learn these mappings, and this4

data needs to be labeled, which can only be accessed via expensive simulations5

with numerical solvers. To alleviate both of these issues simultaneously, we6

propose PICore, an unsupervised coreset selection framework that identifies the7

most informative training samples without requiring access to ground-truth PDE8

solutions. PICore leverages a physics-informed loss to select unlabeled inputs by9

their potential contribution to operator learning. After selecting a compact subset10

of inputs, only those samples are simulated using numerical solvers to generate11

labels, reducing annotation costs. We then train the neural operator on the reduced12

labeled dataset, significantly decreasing training time as well. Across four diverse13

PDE benchmarks and multiple coreset selection strategies, PICore achieves up to14

78% average increase in training efficiency relative to supervised coreset selection15

methods with minimal changes in accuracy.16

1 Introduction17

Partial differential equations (PDEs) are foundational to modeling complex physical systems across18

science and engineering, from fluid dynamics to quantum mechanics. Most PDEs are non-analytic19

and need to be solved numerically via Finite Difference Methods (FDMs), Finite Element Methods20

(FEMs), and Finite Volume Methods (FVMs) Cyrus et al. [1968], Johnson [1988], Eriksson and21

Johnson [1995], LeVeque [2002]. However, while these approaches yield high accuracy, they are22

computationally expensive because they require a simulation to be run to obtain a solution. This is23

especially true for high-resolution or multi-resolution PDEs, where simulations need to be re-run for24

each resolution.25

Operator learning has emerged as a tool for accelerating PDE solutions by developing data-driven26

approximations using neural networks instead of traditional grid-based discretizations. Neural27

operators [Kovachki et al., 2023] are a family of neural networks that learn mappings between function28

spaces, such as initial conditions to solutions, which allows for resolution-invariant predictions.29

Models such as Fourier Neural Operator (FNO) [Li et al., 2020] and U-Net Neural Operator (UNO)30

[Rahman et al., 2023] have shown state-of-the-art performance on various PDE benchmarks, and the31

ability to generalize to higher-order resolutions with minimal performance drops. Additional work,32

such as Physics Informed Neural Operator (PINO) [Li et al., 2024c] and Markov Neural Operator33

(MNO) [Li et al., 2021b], incorporates additional losses into neural operator training to improve34

performance and increase convergence speed.35

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: AI for
Science. Do not distribute.

Despite these advantages, there are two main data limitations of neural operators. First, they require36

significant amounts of training data to learn these mappings. Since PDE solvers require high-37

resolution data over several time frames for accurate training, such training data can be several38

gigabytes large [Takamoto et al., 2022]. This poses a challenge for training in resource-constrained39

systems where such models would be trained and deployed, such as for weather prediction [Pathak40

et al., 2022, Bonev et al., 2023] and carbon storage [Tang et al., 2024]. Secondly, this training data41

needs to be labeled by including both the initial condition and the ground truth solution. While42

generating initial conditions is cheap, as they can usually be sampled from a prior distribution,43

generating ground truth data requires running the full simulation through numerical solvers.44

Coreset selection [Agarwal et al., 2005, Sener and Savarese, 2017] is a data-efficient training strategy45

that identifies a subset of the original training data that is most informative for model learning. Once46

this subset is identified, training only needs to be done on this subset, significantly reducing training47

time. However, this requires the full labeled training data to select a subset, which does not alleviate48

the cost of collecting labels. On the other hand, active learning [Gu et al., 2021, Cao and Tsang,49

2022] minimizes data annotation costs by only labeling a subset of the training data at each iteration.50

Active learning selects a subset by a proxy metric such as Bayesian [Zhao et al., 2021, Beluch et al.,51

2018] or representation-based methods [Yang and Loog, 2022, Kim and Shin, 2022] at each training52

iteration, and trains only on that subset. While this does decrease labeling costs at each iteration,53

active learning requires a significant portion of the dataset for training, reducing convergence speed54

[Li et al., 2024a]. Thus, we pose the following research question:55

How can we simultaneously reduce training time and labeling ground-truth solutions for Neural56

Operator learning?57

We address this problem using unsupervised coreset selection by identifying the most informative58

training samples based on the physics-informed loss [Li et al., 2024c], a criterion that does not require59

any ground truth labels. By leveraging this loss, we can prioritize samples likely to improve model60

performance without the need for expensive simulations. Ground truth labels are then generated61

only for this selected subset, significantly reducing the overall annotation cost. Finally, we train62

neural operator models on the reduced, high-quality dataset, leading to faster training times without63

compromising accuracy.64

Our contributions are outlined as follows:65

• We propose PICore, a novel unsupervised framework that uniquely integrates physics-66

informed losses with coreset selection. PICore eliminates the need for expensive ground-67

truth simulations during the data selection phase, simultaneously addressing the data annota-68

tion and training bottlenecks in neural operator training.69

• We present the first comprehensive benchmark for coreset selection in the context of70

neural operator learning. Through extensive experiments on four diverse PDE datasets, we71

show that PICore achieves competitive accuracy to supervised methods while dramatically72

improving end-to-end training efficiency by up to 78% relative to supervised coreset selection73

and 5× relative to non-coreset baselines.74

• We demonstrate the modularity and generality of the PICore framework. Our method75

is not tied to a specific architecture or selection algorithm, and we show its effectiveness76

across two different neural operators (FNO and UNO) and five distinct coreset selection77

strategies.78

2 Related Work79

2.1 Neural Operators80

While typical deep neural nets are used to map and model finite-dimensional vector spaces, such as81

text embeddings or images, neural operators map infinite-dimensional vector spaces, such as the space82

of functions [Kovachki et al., 2021]. Neural operators are then widely used to represent differential83

equation solutions due to their ability to have a family of solutions. In the context of solving partial84

differential equations, a neural operator can take a function as an input (e.g. temperature at a point)85

and output a related function (e.g. heat over time at a point).86

2

Among the first modern neural operators, DeepONet [Lu et al., 2021] uses the universal approximation87

theorem for operators with a branch and trunk network to model inputs and outputs. The Fourier88

Neural Operator (FNO) [Li et al., 2020] expands on this by performing kernel operations in Fourier89

space, which results in a more expressive model with better performance on more challenging PDE90

datasets, such as Navier Stokes. U-Net Neural Operator (UNO) [Rahman et al., 2023] expands on91

FNO by using a U-Net based structure to build deeper neural operators, and Convolutional Neural92

Operator (CNO) [Raonic et al., 2023] leverages convolutions to preserve the continuous structure of93

PDEs, even when discretized. Additional work improves training by incorporating additional losses.94

Physics Informed Neural Operator (PINO) [Li et al., 2024c] uses the physics informed loss to anchor95

the output to conform to the PDE dynamics, and Markov Neural Operator (MNO) [Li et al., 2022]96

uses dissipativity regularization to improve accuracy for more chaotic systems.97

2.2 Coreset Selection98

For problems where training is too expensive or slow, coreset selection can accelerate training while99

preserving accuracy. Coreset selection methods can be largely categorized into two types: training-100

free methods that leverage the geometric properties of the data, and training-based methods that101

use model-specific information to score data points. Training-free methods involve random [Guo102

et al., 2022, Gupta et al., 2023] and geometry-informed selection [Welling, 2009, Chen et al., 2012].103

Recent work on training-based methods can be split into three groups: (i) submodular approaches104

to maximize the coverage of the selected dataset [Wei et al., 2015, Mirzasoleiman et al., 2020,105

Pooladzandi et al., 2022], (ii) gradient-based approaches to exactly find the influence of a data106

point [Killamsetty et al., 2021a, Paul et al., 2021], and (iii) bilevel optimization methods to improve107

generalization performance [Killamsetty et al., 2021c,b].108

2.3 Data Efficiency for Neural Operators109

The closest existing work to our own is Chen et al. [2024], which develops an unsupervised pretraining110

strategy that leverages Masked Autoencoders (MAEs) to learn effective unsupervised representations,111

which are then used to fine-tune with a smaller ground-truth dataset. However, this indirectly addresses112

issues with training efficiency and data labeling costs using a two-stage training process, whereas113

PICore directly addresses both problems in a single training cycle. Hemmasian and Farimani [2024]114

avoid running expensive simulations on high-resolution data by pretraining neural operators in low115

dimensions, but this requires a factorized neural operator such as Factorized Fourier Neural Operator116

(FFNO) [Tran et al., 2021]. In contrast, our method is independent of the operator architecture. Li117

et al. [2024b] uses an active learning strategy to reduce labeling costs from running simulations by118

maximizing a utility cost ratio. However, this is specific to FNO and only addresses the cost of data119

annotation and not training efficiency.120

3 Preliminaries121

3.1 Neural Operators for PDE Solution Generation122

Many physical systems can be modeled using partial differential equations (PDEs), which describe123

the evolution of a function u ∈ U over a domain. A general PDE can be expressed as124

F(u, a) = 0, on Ω ⊂ Rd, (1)

where a ∈ A represents input parameters such as boundary conditions, initial conditions, or physical125

coefficients; F : U × A → Z is a differentiable and potentially nonlinear operator; and A,U are126

Banach spaces over the bounded domain Ω.127

For stationary (time-independent) PDEs, the problem takes the form128

F(u, a) = 0, on Ω ⊂ Rd,

u = h, on ∂Ω,
(2)

where h defines the boundary condition on the domain boundary ∂Ω.129

3

For dynamic (time-dependent) PDEs, the input a is restricted to the initial condition u|t=0, and the130

operator F is defined on the spatiotemporal domain Ω× T :131

F(u, a) = 0, on Ω× T ,
u = h, on ∂Ω× T ,
u = a, on Ω× {0},

(3)

where T = (0, T) denotes the time domain. Examples of both stationary and dynamic PDEs are132

provided in Section A.133

Unlike conventional neural networks that learn pointwise mappings, neural operators approximate134

solutions by learning mappings between infinite-dimensional function spaces:135

G : A → U . (4)

In practice, a PDE dataset consists of pairs {(ai, ui)}Ni=1, where each (ai, ui) corresponds to an input-136

output solution of the PDE. The neural operator G is approximated by Gθ through the optimization137

Gθ = argmin
θ∈Θ

1

N

N∑
i=1

∥Gθ(ai)− ui∥2L2(Ω), (5)

where Θ is a finite-dimensional parameter space.138

3.2 Coreset Selection139

Given a dataset D = {(xi, yi)}Ni=1, coreset selection aims to find a subset S ⊆ D such that140

S = argmin
S′⊂D,|S′|=βN

E(xi,yi)∼S′ [L(xi, yi; θS
′
)] (6)

where β is the percentage of the original dataset selected and θS
′

is the model trained on S. However,141

there are O(2N) possible subsets of size βN , so evaluating this objective directly is infeasible for142

large datasets. Instead, some works leverage a submodular function f : 2D → R which ensures the143

diminishing return property144

f(S ∪ {z})− f(S) ≥ f(T ∪ {z})− f(T), ∀S ⊆ T ⊆ D, z /∈ T (7)
This results in a greedy selection procedure, significantly reducing the subset search space. Another145

way to perform coreset selection is to use a scoring function and select the top-k data points. Finally,146

coreset selection can be represented as a bilevel optimization problem, resulting in the following form147

S = argmin
S′⊂D, |S′|=βN

L
(
θ∗(S′)

)
s.t. θ∗(S′) = argmin

θ∈Θ

∑
(xi,yi)∈S′

L(xi, yi; θ) (8)

4 PICore148

Figure 1: Overview of the PICore Framework. Starting with initial conditions and a warm-started
neural operator Gθ, we compute the physics-informed loss LPI(ai; θ) for each condition. A coreset
selection algorithm A picks the most informative samples, assigns weights γj , and simulates them
using a numerical solver. The resulting labeled subset updates Gθ via weighted loss, enabling efficient
training on the most impactful data points.

4

Algorithm 1 PICore: Physics-Informed Coreset Selection for Neural Operators

Require: Unlabeled dataset D = {ai}Ni=1; coreset size k = βN ; learning rate α; operator Gθ;
physics-informed loss LPI(a; θ); coreset selection algorithm Aselect; warmup steps Tw; training
steps T

1: for t = 1 to Tw do
2: for each ai ∈ D do
3: θ ← θ − α∇θLPI(ai; θ)

4: for each ai ∈ D do
5: ℓi ← LPI(ai; θ)

6: S ← Aselect({ℓi}Ni=1, k)
7: Dc ← ∅
8: for each i ∈ S do
9: u†i ← G†(ai) {Run numerical simulation}

10: Dc ← Dc ∪ {(ai, u†i)}
11: for t = 1 to T do
12: for each (ai, u

†
i) ∈ Dc do

13: θ ← θ − α∇θLdata(ai, u
†
i ; θ)

To address both issues of training time and data labeling costs for Neural Operator learning, we149

introduce PICore, an unsupervised coreset selection method that leverages a physics-informed loss to150

bypass the need for labeled training data during coreset selection.151

Instead of using the ground truth PDE solution and supervised losses, the physics-informed loss152

evaluates the degree to which operator approximation Gθ(a) satisfies the governing PDEs defined in153

either the stationary form or the dynamic form. The physics-informed loss penalizes violations of the154

PDE (PDE residual) in the interior of the domain, as well as deviations from the given boundary and155

initial conditions. For neural operators, the physics-informed loss is defined as156

LPI(a; θ) = ∥F(Gθ(a), a)∥2L2(Ω) + λ ∥Gθ(a)− h∥2L2(∂Ω) (9)

for stationary PDEs and157

LPI(a; θ) = ∥F(Gθ(a), a)∥2L2(Ω×T) + λ ∥Gθ(a)− h∥2L2(∂Ω×T) + µ
∥∥Gθ(a)∣∣t=0

− a
∥∥2
L2(Ω)

(10)

for dynamic PDEs.158

Given solely an unlabeled dataset D = {ai}Ni=1 that can be cheaply generated (usually by sampling159

from a prior distribution or sensor readings), PICore selects a coreset of D by solving160

S = argmin
S′⊂D,|S′|=βN

Eai∼S′

[
LPI

(
ai; θ

S′
)]

(11)

using any existing coreset selection algorithm where θS
′

is the operator trained on S′. After selecting161

the coreset S, we simulate the true solutions u†i = G(ai) for each ai ∈ S using a traditional numerical162

solver, which forms the labeled subset Dc = {(ai, u†i)}ai∈S . Finally, we train the neural operator Gθ163

on Dc for T epochs with the standard supervised data loss164

Ldata(ai, u
†
i) = ∥Gθ(ai)− u

†
i∥

2
L2(Ω×T) (12)

Before coreset selection, we warm-start the neural operator with the physics-informed loss over the165

full dataset for a small number of epochs Tw << T . Warm starting is common in prior coreset166

selection methods [Killamsetty et al., 2021a] and is necessary as most coreset selection algorithms167

require gradient information, which is unusable with a randomly initialized model. We provide the168

full algorithm in Algorithm 1.169

5 Experimental Details170

We conduct experiments on four representative PDE benchmarks spanning both stationary and171

time-dependent dynamics widely used in the neural operator literature: the time-dependent 1D172

5

Advection and Burger Equations, the stationary 2D Darcy Flow Equation, and the 2D time-dependent173

Navier-Stokes Incompressible Equation. Additional information on the datasets can be found in174

Section A. We use the Fourier Neural Operator (FNO) [Li et al., 2020] and U-Net Neural Operator175

[Rahman et al., 2023] as the base models for all experiments due to their implementation simplicity176

and performance. However, PICore can work out of the box with any neural operator. We also use 5177

coreset selection algorithms in our experiments: CRAIG [Mirzasoleiman et al., 2020], GradMatch178

[Killamsetty et al., 2021a], AdaCore [Pooladzandi et al., 2022], EL2N [Paul et al., 2021] and graNd179

[Paul et al., 2021]. CRAIG, AdaCore, and GradMatch are submodular methods that try to match the180

gradient sum of the coreset to the gradient sum of the entire dataset. GraNd and EL2N are score181

based methods that use the gradient or the loss. Additional information on these coreset selection182

algorithms can be found in Section B. We use coreset selection percentages of 20%, 30%, 40%, 60%,183

and 80%.184

We report the results of each experiment with the normalized root mean square error loss (NRMSE):185

∥Gθ(ai)− u†i∥2L2(Ω×T)

∥u†i∥2L2(Ω×T)

used in Takamoto et al. [2022]. We use this as a normalized version of the data loss because the value186

of the u†i at each spatiotemporal point is very small, resulting in small MSE values and potential187

gradient vanishing during training. We also use the uniform spatiotemporal discretization at an input188

resolution of 64 for Ω. Since FNO and UNO are resolution invariant, we also evaluate at higher189

resolutions for zero-shot super resolution in Section ??. For all experiments we use λ = 1 and µ = 1,190

but this is relatively arbitrary, we did not conduct any hyperparameter tuning.191

We use Tw = 25 warmup epochs and reset the neural operator to its initialization to ensure fair192

comparisons between supervised and physics-informed coreset selection. Then, we train neural193

operators for T = 500 epochs and report the average NRMSE over 5 seeds on a held-out test194

set at the input resolution. All experiments were run on a single RTX A4000 GPU. We calculate195

the acceleration as the total time taken for supervised coreset selection / PICore (including data196

generation, warm starting, and training time) divided by the total time for the non-coreset baseline.197

6 Results198

We report the core findings for PICore and supervised coreset selection across the four representative199

PDE datasets in Tables 1, 2, 3, and 4. We also compare PICore to random subset selection and an active200

learning baseline based on uncertainty. Since most active learning baselines are for classification201

problems, we extend loss-as-uncertainty methods in [Liu and Li, 2023] to neural operators. In202

addition to the average test NRMSE over the best coreset selection algorithm for each method, we203

show the decrease in full training time (including data annotation costs through simulation) relative204

to the non-coreset selection baseline. Our results demonstrate that PICore consistently achieves205

competitive test performance compared to supervised coreset selection while providing substantial206

computational efficiency gains, primarily by reducing expensive data annotation (simulation) costs207

during the coreset selection phase.

Table 1: Advection NRMSE at resolution 64
Operator Method 20.0% 30.0% 40.0% 60.0% 80.0% 100.0%

FNO

Random 3.39± 0.07× 10−2 2.89± 0.03× 10−2 2.68± 0.02× 10−2 2.47± 0.03× 10−2 2.37± 0.04× 10−2 2.22± 0.05× 10−2

(5.10×) (3.32×) (2.56×) (1.72×) (1.28×) (1.00×)
Active Learning 8.32± 0.58× 10−2 6.29± 0.40× 10−2 4.78± 0.27× 10−2 3.51± 0.16× 10−2 2.96± 0.07× 10−2 2.22± 0.05× 10−2

(5.04×) (3.28×) (2.52×) (1.69×) (1.26×) (1.00×)
Supervised (graNd) 3.42± 0.12× 10−2 2.96± 0.09× 10−2 2.64± 0.03× 10−2 2.42± 0.03× 10−2 2.25± 0.02× 10−2 2.22± 0.05× 10−2

(4.70×) (3.15×) (2.45×) (1.66×) (1.26×) (1.00×)
PICore (graNd) 3.46± 0.13× 10−2 3.04± 0.15× 10−2 2.69± 0.05× 10−2 2.40± 0.04× 10−2 2.25± 0.04× 10−2 2.22± 0.05× 10−2

(5.06×) (3.27×) (2.54×) (1.68×) (1.26×) (1.00×)

UNO

Random 1.59± 0.02× 10−1 1.50± 0.01× 10−1 1.44± 0.007× 10−1 1.42± 0.12× 10−1 1.32± 0.12× 10−1 7.27± 0.28× 10−2

(5.08×) (3.35×) (2.55×) (1.70×) (1.28×) (1.00×)
Active Learning 1.96± 0.04× 10−1 1.59± 0.05× 10−1 9.20± 0.73× 10−2 7.49± 0.47× 10−2 6.83± 0.05× 10−2 7.27± 0.28× 10−2

(5.05×) (3.32×) (2.52×) (1.68×) (1.26×) (1.00×)
Supervised (gradmatch) 1.55± 0.02× 10−1 1.48± 0.01× 10−1 1.42± 0.02× 10−1 1.17± 0.14× 10−1 8.69± 1.23× 10−2 7.27± 0.28× 10−2

(4.84×) (3.23×) (2.47×) (1.67×) (1.25×) (1.00×)
PICore (gradmatch) 1.55± 0.01× 10−1 1.47± 0.01× 10−1 1.43± 0.008× 10−1 1.26± 0.09× 10−1 9.06± 1.07× 10−2 7.27± 0.28× 10−2

(5.07×) (3.34×) (2.53×) (1.69×) (1.26×) (1.00×)

208

6

Table 2: Burgers NRMSE at resolution 64
Operator Method 20.0% 30.0% 40.0% 60.0% 80.0% 100.0%

FNO

Random 1.85± 0.09× 10−2 1.18± 0.06× 10−2 8.23± 0.21× 10−3 5.82± 0.21× 10−3 4.75± 0.13× 10−3 3.95± 0.10× 10−3

(5.07×) (3.31×) (2.56×) (1.72×) (1.28×) (1.00×)
Active Learning 8.76± 2.52× 10−2 4.57± 0.95× 10−2 3.30± 0.57× 10−2 2.06± 0.07× 10−2 1.37± 0.18× 10−2 3.95± 0.10× 10−3

(5.03×) (3.25×) (2.52×) (1.68×) (1.26×) (1.00×)
Supervised (gradmatch) 1.71± 0.16× 10−2 1.12± 0.09× 10−2 7.68± 0.29× 10−3 5.24± 0.14× 10−3 4.13± 0.08× 10−3 3.95± 0.10× 10−3

(3.28×) (2.52×) (2.11×) (1.55×) (1.22×) (1.00×)
PICore (el2n) 1.81± 0.08× 10−2 1.12± 0.07× 10−2 8.07± 0.33× 10−3 5.49± 0.08× 10−3 4.07± 0.10× 10−3 3.95± 0.10× 10−3

(5.05×) (3.30×) (2.53×) (1.68×) (1.26×) (1.00×)

UNO

Random 2.92± 0.05× 10−2 2.55± 0.05× 10−2 2.25± 0.05× 10−2 1.83± 0.03× 10−2 1.58± 0.01× 10−2 1.49± 0.04× 10−2

(4.99×) (3.34×) (2.55×) (1.70×) (1.27×) (1.00×)
Active Learning 5.42± 0.41× 10−2 4.12± 0.11× 10−2 3.62± 0.20× 10−2 3.03± 0.23× 10−2 2.51± 0.13× 10−2 1.49± 0.04× 10−2

(5.01×) (3.30×) (2.51×) (1.68×) (1.26×) (1.00×)
Supervised (gradmatch) 2.93± 0.10× 10−2 2.42± 0.06× 10−2 2.08± 0.05× 10−2 1.73± 0.03× 10−2 1.54± 0.02× 10−2 1.49± 0.04× 10−2

(3.77×) (2.77×) (2.23×) (1.59×) (1.23×) (1.00×)
PICore (graNd) 2.84± 0.05× 10−2 2.36± 0.05× 10−2 2.06± 0.04× 10−2 1.72± 0.05× 10−2 1.57± 0.03× 10−2 1.49± 0.04× 10−2

(5.05×) (3.33×) (2.52×) (1.69×) (1.26×) (1.00×)

Table 3: Darcy NRMSE at resolution 64
Operator Method 20.0% 30.0% 40.0% 60.0% 80.0% 100.0%

FNO

Random 1.34± 0.03× 10−1 1.15± 0.01× 10−1 9.99± 0.11× 10−2 7.94± 0.04× 10−2 7.07± 0.16× 10−2 6.18± 0.09× 10−2

(5.00×) (3.36×) (2.53×) (1.69×) (1.27×) (1.00×)
Active Learning 2.01± 0.16× 10−1 1.58± 0.08× 10−1 1.25± 0.06× 10−1 8.94± 0.33× 10−2 7.19± 0.25× 10−2 6.18± 0.09× 10−2

(4.99×) (3.31×) (2.50×) (1.66×) (1.25×) (1.00×)
Supervised (el2n) 1.26± 0.01× 10−1 1.07± 0.007× 10−1 9.43± 0.09× 10−2 7.83± 0.18× 10−2 6.59± 0.09× 10−2 6.18± 0.09× 10−2

(1.98×) (1.76×) (1.59×) (1.33×) (1.14×) (1.00×)
PICore (el2n) 1.25± 0.02× 10−1 1.12± 0.02× 10−1 9.44± 0.12× 10−2 7.77± 0.18× 10−2 6.84± 0.18× 10−2 6.18± 0.09× 10−2

(5.00×) (3.32×) (2.50×) (1.67×) (1.25×) (1.00×)

UNO

Random 1.45± 0.02× 10−1 1.22± 0.03× 10−1 1.10± 0.02× 10−1 9.23± 0.22× 10−2 8.78± 0.30× 10−2 7.57± 0.13× 10−2

(5.03×) (3.37×) (2.53×) (1.69×) (1.27×) (1.00×)
Active Learning 1.87± 0.14× 10−1 1.54± 0.08× 10−1 1.27± 0.06× 10−1 1.02± 0.03× 10−1 8.63± 0.19× 10−2 7.57± 0.13× 10−2

(5.04×) (3.35×) (2.52×) (1.68×) (1.26×) (1.00×)
Supervised (gradmatch) 1.28± 0.03× 10−1 1.14± 0.01× 10−1 9.84± 0.16× 10−2 8.60± 0.11× 10−2 7.70± 0.10× 10−2 7.57± 0.13× 10−2

(2.23×) (1.93×) (1.71×) (1.38×) (1.16×) (1.00×)
PICore (graNd) 1.28± 0.03× 10−1 1.12± 0.01× 10−1 9.67± 0.16× 10−2 8.42± 0.14× 10−2 7.61± 0.11× 10−2 7.57± 0.13× 10−2

(5.01×) (3.33×) (2.50×) (1.67×) (1.25×) (1.00×)

PICore significantly improves training efficiency through reduced simulation costs. Across four209

representative PDE datasets—Advection, Burgers, Darcy, and Navier-Stokes Incompressible—PICore210

consistently reduces the total training time by cutting down expensive simulation-based annotation.211

These efficiency gains become especially significant as the complexity of the PDE increases: Across212

the four datasets, PICore achieves average training time reductions of 0.9%, 9.8%, 30.1%, and213

78.0% compared to supervised coreset selection, calculated by averaging the relative acceleration214

improvements at each selection percentage (20%, 30%, 40%, 60%, and 80%). For example, at a 20%215

coreset size, PICore achieves a 5.01× speedup on Darcy Flow (vs. 2.24× for supervised methods)216

and a 5.00× speedup on Navier-Stokes (vs. 1.14×) using UNO.217

As shown in Tables 5, 6, 7, and 8, the relative contributions of training and data generation speedups218

vary by dataset difficulty. For simpler datasets such as Advection and Burgers, efficiency gains219

are driven primarily by reductions in training time. For example, Advection achieves a 79.7%220

improvement in training time but only a 1.47% improvement in data generation time at the 20%221

coreset level. In contrast, for more challenging datasets, the impact of training time reductions222

diminishes, while reductions in data generation time play a more significant role in overall efficiency223

gains. These results show that PICore scales well to high-dimensional scientific problems where data224

annotation costs dominate training.225

PICore matches supervised coreset methods in test accuracy at reduced data budgets. Despite226

significant efficiency gains, PICore remains competitive with supervised baselines in test NRMSE.227

At a 20% coreset size, it achieves 3.46× 10−2 for Advection (FNO) and 2.84× 10−2 for Burgers228

(UNO), close to the supervised values of 3.42 × 10−2 and 2.93 × 10−2. This trend holds across229

coreset sizes, with many cases showing PICore outperforming supervised selection. Not all selection230

algorithms perform equally well, however, CRAIG and AdaCore often yield higher NRMSE due231

to convexity assumptions and Hessian approximations. Thus, we find that results typically favor232

GradMatch, GraNd, or EL2N for both PICore and supervised selection.233

Coreset Selection methods outperform Random and Active Learning baselines on most datasets.234

Random subset selection consistently underperforms relative to both PICore and subset selection,235

and this difference increases as we increase the complexity of the dataset and decrease the selection236

percentage. For example, random selection has an nRMSE of 2.74 × 10−1 on the Navier Stokes237

7

Table 4: Navier Stokes Incompressible NRMSE at resolution 64
Operator Method 20.0% 30.0% 40.0% 60.0% 80.0% 100.0%

FNO

Random 2.74± 0.45× 10−1 5.59± 0.80× 10−2 1.33± 0.03× 10−2 9.06± 0.24× 10−3 6.87± 0.13× 10−3 5.66± 0.11× 10−3

(5.00×) (3.34×) (2.50×) (1.67×) (1.25×) (1.00×)
Active Learning 9.32± 6.96× 10−2 2.16± 0.66× 10−2 1.27± 0.03× 10−2 7.86± 0.14× 10−3 6.24± 0.21× 10−3 5.66± 0.11× 10−3

(5.00×) (3.33×) (2.50×) (1.67×) (1.25×) (1.00×)
Supervised (el2n) 9.57± 3.87× 10−2 1.75± 0.07× 10−2 1.18± 0.04× 10−2 7.94± 0.18× 10−3 6.28± 0.16× 10−3 5.66± 0.11× 10−3

(1.05×) (1.05×) (1.04×) (1.03×) (1.01×) (1.00×)
PICore (graNd) 1.12± 0.45× 10−1 1.81± 0.12× 10−2 1.23± 0.05× 10−2 8.00± 0.23× 10−3 6.34± 0.14× 10−3 5.66± 0.11× 10−3

(5.00×) (3.33×) (2.50×) (1.67×) (1.25×) (1.00×)

UNO

Random 2.72± 0.04× 10−2 2.24± 0.02× 10−2 1.95± 0.01× 10−2 1.61± 0.006× 10−2 1.38± 0.004× 10−2 1.24± 0.004× 10−2

(5.02×) (3.34×) (2.51×) (1.67×) (1.25×) (1.00×)
Active Learning 2.91± 0.05× 10−2 2.36± 0.03× 10−2 2.06± 0.02× 10−2 1.61± 0.01× 10−2 1.40± 0.009× 10−2 1.24± 0.004× 10−2

(5.00×) (3.33×) (2.50×) (1.67×) (1.25×) (1.00×)
Supervised (el2n) 2.60± 0.02× 10−2 2.19± 0.02× 10−2 1.93± 0.01× 10−2 1.57± 0.009× 10−2 1.38± 0.010× 10−2 1.24± 0.004× 10−2

(1.14×) (1.12×) (1.10×) (1.07×) (1.03×) (1.00×)
PICore (gradmatch) 2.59± 0.03× 10−2 2.20± 0.009× 10−2 1.92± 0.009× 10−2 1.60± 0.005× 10−2 1.40± 0.007× 10−2 1.24± 0.004× 10−2

(5.00×) (3.33×) (2.50×) (1.67×) (1.25×) (1.00×)

Incompressible dataset at a 20% coreset selection percentage, where as PICore has an nRMSE of238

1.12 × 10−2 and Supervised Coreset Selection has an nRMSE of 9.57 × 10−2. This shows that239

using PDE specific information (either supervised loss or the physics informed loss) is necessary to240

achieve a more accurate solution with less data. Interestingly, we see that active learning outperforms241

the PICore on the Advection dataset with UNO on medium coreset selection percentages (40-60%)242

and on the Navier Stokes Incompressible dataset with FNO. However, it is much worse on all other243

dataset and model combinations by a considerable margin.244

There is a tradeoff between efficiency and absolute test accuracy. While PICore offers strong245

performance and efficiency, one tradeoff is that the absolute test accuracy relative to training on246

100% of the data is lower. For example, on the Advection dataset with FNO, the 100% training247

baseline yields an NRMSE of 2.13× 10−2, while PICore at 20% yields 3.77× 10−2. However, this248

is an inherent tradeoff for all coreset selection algorithms, as the selected coreset simply contains249

less information for training. Additionally, this is not specific to PICore, as similar reductions in250

accuracy hold for supervised coreset selection. In practice, one may want to select a higher selection251

percentage, such as 40%, which would yield higher accuracy (2.69× 10−2) while still maintaining a252

competitive efficiency gain (2.54×).253

7 Limitations and Future Work254

One limitation of PICore is its reliance on existing coreset selection algorithms. Methods like CRAIG255

and AdaCore, designed for convex losses and image classification, may perform suboptimally on256

complex, non-convex PDE datasets, especially at low selection ratios. For instance, using Hutchinson257

Hessian approximations on the last layer in AdaCore often yields poorer accuracies. Thus, we258

recommend that practitioners use GradMatch, EL2N, or GraNd with PICore, since they make fewer259

data and model assumptions. Future work could develop coreset algorithms tailored for neural260

operators and extend PICore to multi-resolution or irregular geometries to improve generalization261

while preserving efficiency.262

8 Conclusion263

In this work, we introduced PICore, a physics-informed unsupervised coreset selection framework264

designed to enhance the data efficiency of neural operator training. By leveraging the physics-265

informed loss to identify the most informative samples without requiring labeled data, PICore266

significantly reduces both the computational cost of numerical simulations and the time required for267

training. Our experiments across four PDE benchmarks demonstrate that PICore achieves competitive268

accuracy while reducing training costs by up to 78% compared to supervised coreset selection269

methods. Although PICore inherits some limitations from existing selection methods, we believe270

its ability to reduce labeling costs and accelerate training makes it a promising tool for large-scale271

scientific machine learning.272

8

References273

Pankaj K Agarwal, Sariel Har-Peled, Kasturi R Varadarajan, et al. Geometric approximation via274

coresets. Combinatorial and computational geometry, 52(1):1–30, 2005.275

William H. Beluch, Tim Genewein, Andreas Nurnberger, and Jan M. Kohler. The power of ensembles276

for active learning in image classification. In 2018 IEEE/CVF Conference on Computer Vision and277

Pattern Recognition, pages 9368–9377, 2018. doi: 10.1109/CVPR.2018.00976.278

Boris Bonev, Thorsten Kurth, Christian Hundt, Jaideep Pathak, Maximilian Baust, Karthik Kashinath,279

and Anima Anandkumar. Spherical fourier neural operators: Learning stable dynamics on the280

sphere. In International conference on machine learning, pages 2806–2823. PMLR, 2023.281

Xiaofeng Cao and Ivor W. Tsang. Shattering distribution for active learning. IEEE Transactions282

on Neural Networks and Learning Systems, 33(1):215–228, 2022. doi: 10.1109/TNNLS.2020.283

3027605.284

Wuyang Chen, Jialin Song, Pu Ren, Shashank Subramanian, Dmitriy Morozov, and Michael W285

Mahoney. Data-efficient operator learning via unsupervised pretraining and in-context learning.286

Advances in Neural Information Processing Systems, 37:6213–6245, 2024.287

Yutian Chen, Max Welling, and Alex Smola. Super-samples from kernel herding. arXiv preprint288

arXiv:1203.3472, 2012.289

N.J. Cyrus, R.E. Fulton, United States. National Aeronautics, Space Administration, and Langley Re-290

search Center. Accuracy Study of Finite Difference Methods. NASA technical note. National291

Aeronautics and Space Administration, 1968. URL https://books.google.com/books?id=292

zMSFxfAasQMC.293

Kenneth Eriksson and Claes Johnson. Adaptive finite element methods for parabolic problems294

iv: Nonlinear problems. SIAM Journal on Numerical Analysis, 32(6):1729–1749, 1995. doi:295

10.1137/0732078. URL https://doi.org/10.1137/0732078.296

Bin Gu, Zhou Zhai, Cheng Deng, and Heng Huang. Efficient active learning by querying discrimina-297

tive and representative samples and fully exploiting unlabeled data. IEEE Transactions on Neural298

Networks and Learning Systems, 32(9):4111–4122, 2021. doi: 10.1109/TNNLS.2020.3016928.299

Chengcheng Guo, Bo Zhao, and Yanbing Bai. Deepcore: A comprehensive library for coreset selec-300

tion in deep learning. In International Conference on Database and Expert Systems Applications,301

pages 181–195. Springer, 2022.302

Animesh Gupta, Irtiza Hasan, Dilip K Prasad, and Deepak K Gupta. Data-efficient training of cnns303

and transformers with coresets: A stability perspective. arXiv preprint arXiv:2303.02095, 2023.304

Daniel Haimovich, Dima Karamshuk, Fridolin Linder, Niek Tax, and Milan Vojnovic. On the conver-305

gence of loss and uncertainty-based active learning algorithms. Advances in Neural Information306

Processing Systems, 37:122770–122810, 2024.307

AmirPouya Hemmasian and Amir Barati Farimani. Pretraining a neural operator in lower dimensions.308

arXiv preprint arXiv:2407.17616, 2024.309

Claes Johnson. Numerical solution of partial differential equations by the finite element method.310

Cambridge University Press, Cambridge, England, January 1988.311

Krishnateja Killamsetty, Sivasubramanian Durga, Ganesh Ramakrishnan, Abir De, and Rishabh Iyer.312

Grad-match: Gradient matching based data subset selection for efficient deep model training. In313

International Conference on Machine Learning, pages 5464–5474. PMLR, 2021a.314

Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and Rishabh Iyer. Glister:315

Generalization based data subset selection for efficient and robust learning. In Proceedings of the316

AAAI Conference on Artificial Intelligence, volume 35, pages 8110–8118, 2021b.317

Krishnateja Killamsetty, Xujiang Zhao, Feng Chen, and Rishabh Iyer. Retrieve: Coreset selection for318

efficient and robust semi-supervised learning. Advances in neural information processing systems,319

34:14488–14501, 2021c.320

9

https://books.google.com/books?id=zMSFxfAasQMC
https://books.google.com/books?id=zMSFxfAasQMC
https://books.google.com/books?id=zMSFxfAasQMC
https://doi.org/10.1137/0732078

Yeachan Kim and Bonggun Shin. In defense of core-set: A density-aware core-set selection for active321

learning. In Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data322

mining, pages 804–812, 2022.323

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew324

Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces with325

applications to pdes. Journal of Machine Learning Research, 24(89):1–97, 2023.326

Nikola B. Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya,327

Andrew M. Stuart, and Anima Anandkumar. Neural operator: Learning maps between function328

spaces, 2021. URL https://arxiv.org/abs/2108.08481.329

Randall J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied330

Mathematics. Cambridge University Press, 2002.331

Dongyuan Li, Zhen Wang, Yankai Chen, Renhe Jiang, Weiping Ding, and Manabu Okumura. A332

survey on deep active learning: Recent advances and new frontiers. IEEE Transactions on Neural333

Networks and Learning Systems, 2024a.334

Shibo Li, Xin Yu, Wei Xing, Robert Kirby, Akil Narayan, and Shandian Zhe. Multi-resolution active335

learning of fourier neural operators. In International Conference on Artificial Intelligence and336

Statistics, pages 2440–2448. PMLR, 2024b.337

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew338

Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.339

arXiv preprint arXiv:2010.08895, 2020.340

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew341

Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations,342

2021a. URL https://arxiv.org/abs/2010.08895.343

Zongyi Li, Miguel Liu-Schiaffini, Nikola Kovachki, Burigede Liu, Kamyar Azizzadenesheli, Kaushik344

Bhattacharya, Andrew Stuart, and Anima Anandkumar. Learning dissipative dynamics in chaotic345

systems. arXiv preprint arXiv:2106.06898, 2021b.346

Zongyi Li, Miguel Liu-Schiaffini, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede347

Liu, Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Learning chaotic dynamics348

in dissipative systems. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho,349

editors, Advances in Neural Information Processing Systems, 2022. URL https://openreview.350

net/forum?id=1C36tFZn7sR.351

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar352

Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial353

differential equations. ACM/JMS Journal of Data Science, 1(3):1–27, 2024c.354

Shang Liu and Xiaocheng Li. Understanding uncertainty sampling. arXiv preprint arXiv:2307.02719,355

2023.356

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning357

nonlinear operators via deeponet based on the universal approximation theorem of operators.358

Nature Machine Intelligence, 3(3):218–229, March 2021. ISSN 2522-5839. doi: 10.1038/359

s42256-021-00302-5. URL http://dx.doi.org/10.1038/s42256-021-00302-5.360

Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of361

machine learning models. In International Conference on Machine Learning, pages 6950–6960.362

PMLR, 2020.363

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,364

Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, Pedram365

Hassanzadeh, Karthik Kashinath, and Animashree Anandkumar. Fourcastnet: A global data-366

driven high-resolution weather model using adaptive fourier neural operators. arXiv preprint367

arXiv:2202.11214, 2022.368

10

https://arxiv.org/abs/2108.08481
https://arxiv.org/abs/2010.08895
https://openreview.net/forum?id=1C36tFZn7sR
https://openreview.net/forum?id=1C36tFZn7sR
https://openreview.net/forum?id=1C36tFZn7sR
http://dx.doi.org/10.1038/s42256-021-00302-5

Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding369

important examples early in training. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and370

J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, volume 34,371

pages 20596–20607. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/372

paper_files/paper/2021/file/ac56f8fe9eea3e4a365f29f0f1957c55-Paper.pdf.373

Omead Pooladzandi, David Davini, and Baharan Mirzasoleiman. Adaptive second order coresets374

for data-efficient machine learning. In International Conference on Machine Learning, pages375

17848–17869. PMLR, 2022.376

Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-NO: U-shaped neural377

operators. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL https:378

//openreview.net/forum?id=j3oQF9coJd.379

Bogdan Raonic, Roberto Molinaro, Tim De Ryck, Tobias Rohner, Francesca Bartolucci, Rima380

Alaifari, Siddhartha Mishra, and Emmanuel de Bézenac. Convolutional neural operators for381

robust and accurate learning of pdes. Advances in Neural Information Processing Systems, 36:382

77187–77200, 2023.383

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set384

approach. arXiv preprint arXiv:1708.00489, 2017.385

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Dan MacKinlay, Francesco Alesiani, Dirk386

Pflüger, and Mathias Niepert. PDEBench: An Extensive Benchmark for Scientific Machine387

Learning. In 36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on388

Datasets and Benchmarks, 2022. URL https://arxiv.org/abs/2210.07182.389

Hewei Tang, Qingkai Kong, and Joseph P Morris. Multi-fidelity fourier neural operator for fast390

modeling of large-scale geological carbon storage. Journal of Hydrology, 629:130641, 2024.391

Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural392

operators. arXiv preprint arXiv:2111.13802, 2021.393

Kai Wei, Rishabh Iyer, and Jeff Bilmes. Submodularity in data subset selection and active learning.394

In Francis Bach and David Blei, editors, Proceedings of the 32nd International Conference on395

Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages 1954–1963,396

Lille, France, 07–09 Jul 2015. PMLR. URL https://proceedings.mlr.press/v37/wei15.397

html.398

Max Welling. Herding dynamical weights to learn. In Proceedings of the 26th Annual International399

Conference on Machine Learning, ICML ’09, page 1121–1128, New York, NY, USA, 2009.400

Association for Computing Machinery. ISBN 9781605585161. doi: 10.1145/1553374.1553517.401

URL https://doi.org/10.1145/1553374.1553517.402

Yazhou Yang and Marco Loog. To actively initialize active learning. Pattern Recognition, 131:403

108836, 2022. ISSN 0031-3203. doi: https://doi.org/10.1016/j.patcog.2022.108836. URL https:404

//www.sciencedirect.com/science/article/pii/S003132032200317X.405

Zhewei Yao, Peng Xu, Farbod Roosta-Khorasani, and Michael W. Mahoney. Inexact non-convex406

newton-type methods, 2018. URL https://arxiv.org/abs/1802.06925.407

Guang Zhao, Edward Dougherty, Byung-Jun Yoon, Francis Alexander, and Xiaoning Qian. Ef-408

ficient active learning for gaussian process classification by error reduction. In M. Ran-409

zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances410

in Neural Information Processing Systems, volume 34, pages 9734–9746. Curran Associates,411

Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/412

50d2e70cdf7dd05be85e1b8df3f8ced4-Paper.pdf.413

11

https://proceedings.neurips.cc/paper_files/paper/2021/file/ac56f8fe9eea3e4a365f29f0f1957c55-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/ac56f8fe9eea3e4a365f29f0f1957c55-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/ac56f8fe9eea3e4a365f29f0f1957c55-Paper.pdf
https://openreview.net/forum?id=j3oQF9coJd
https://openreview.net/forum?id=j3oQF9coJd
https://openreview.net/forum?id=j3oQF9coJd
https://arxiv.org/abs/2210.07182
https://proceedings.mlr.press/v37/wei15.html
https://proceedings.mlr.press/v37/wei15.html
https://proceedings.mlr.press/v37/wei15.html
https://doi.org/10.1145/1553374.1553517
https://www.sciencedirect.com/science/article/pii/S003132032200317X
https://www.sciencedirect.com/science/article/pii/S003132032200317X
https://www.sciencedirect.com/science/article/pii/S003132032200317X
https://arxiv.org/abs/1802.06925
https://proceedings.neurips.cc/paper_files/paper/2021/file/50d2e70cdf7dd05be85e1b8df3f8ced4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/50d2e70cdf7dd05be85e1b8df3f8ced4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/50d2e70cdf7dd05be85e1b8df3f8ced4-Paper.pdf

A PDE Datasets414

For our experiments, we use several differential equation training sets to evaluate our algorithm.415

Each of these is used at an input grid resolution of 64. For the Advection, Burgers, and Darcy Flow416

equations, we generate datasets using code provided by Takamoto et al. [2022]. For the Navier-Stokes417

Incompressible equation dataset, we generate data from Li et al. [2020]. Each dataset has 1000418

generated trajectories, with 900 that can be used for training (varying based on the coreset selection419

percentage) and 100 for testing, which is comparable to existing neural operator literature [Li et al.,420

2021a, 2024c]. We generate 20 timesteps forward for Advection and Burgers, and only 10 timesteps421

for the Navier Stokes Incompressible dataset due to GPU memory limits.422

One challenge with using the physics-informed loss is computing the PDE residual F(Gθ(a), a).423

The residual requires computing derivatives of the neural operator with respect to the dimensional424

parameters, such as ∂2Gθ

∂x∂t . Li et al. [2024c] uses a function-wise differentiation method via Fourier425

differentiation to compute these values exactly, but this does not extend to a general class of neural426

operators. We also tried auto-differentiation methods, but these were highly computationally expen-427

sive, increasing the coreset selection time. Thus, we settled on simply using finite difference methods,428

which are efficient with linear time complexity in the input resolution.429

A.1 Advection430

We construct our dataset by numerically solving the linear advection equation on the periodic domain431

(0, 1):432

∂tu(t, x) + β ∂xu(t, x) = 0, t ∈ (0, 2], x ∈ (0, 1), (13)
The initial condition is defined as a superposition of sinusoidal modes,433

u0(x) =

N∑
i=1

Ai sin
(
kix+ ϕi

)
, ki =

2πni
Lx

, (14)

where each ni is drawn uniformly from the range of integers from 1 to 8, N is the number of waves,434

and the amplitudes Ai ∈ [0, 1] and phases ϕi ∈ (0, 2π) are chosen at random. After assembly of435

u0(x), we apply with 10% probability each a pointwise absolute-value operation or multiplication by436

a smooth window function.437

A.2 Burger’s Equation438

We are interested in the one-dimensional viscous Burgers equation on the unit interval with periodic439

boundary conditions:440

∂tu(t, x) + ∂x
(
1
2 u

2(t, x)
)
=
ν

π
∂xxu(t, x), x ∈ (0, 1), t ∈ (0, 2], (15)

subject to the initial condition441

u(0, x) = u0(x), x ∈ (0, 1). (16)

Here ν > 0 is a constant diffusion coefficient. We use the nondimensional Reynolds number442

R =
π uL
ν

,

where uL is a characteristic velocity scale. In analogy with the Navier–Stokes equations, R > 1443

indicates a regime dominated by nonlinear steepening and potential shock formation, whereas R < 1444

corresponds to diffusion-dominated smooth dynamics.445

A.3 Darcy Flow446

We obtain the steady-state solution of Darcy’s equation on the unit square by evolving a time-447

dependent problem until convergence. The target elliptic problem is448

−∇·
(
a(x)∇u(x)

)
= f(x), x ∈ (0, 1)2, (17)

u(x) = 0, x ∈ ∂(0, 1)2, (18)

12

where a(x) is the spatially varying coefficient and f(x) ≡ β is a constant forcing that scales the449

solution amplitude.450

Rather than solving equation 17, we integrate the parabolic problem451

∂tu(x, t)−∇·
(
a(x)∇u(x, t)

)
= β, x ∈ (0, 1)2, t > 0, (19)

with an appropriate random-field initial condition and homogeneous Dirichlet boundary data. We use452

the strong form ∇ · (a∇u)− f for the residual as in Li et al. [2024c].453

A.4 Navier-Stoker Equation454

We consider the vorticity formulation on the periodic domain (0, 1)2:455

∂tω + u · ∇ω = ν∆ω + f, ∇· u = 0, ω(x, 0) ∼ N
(
0, 73/2(−∆+ 49I)−2.5

)
,

with forcing456

f(x) = 0.1
[
sin 2π(x1 + x2) + cos 2π(x1 + x2)

]
.

The solution is obtained on a 256 × 256 grid via a Fourier pseudospectral scheme: first, we solve457

∆ψ = −ω in Fourier space to recover the stream function ψ and velocity u, then compute the458

nonlinear advection term u · ∇ω in physical space with a 2/3-dealiasing filter, and finally advance in459

time using Crank–Nicolson for diffusion coupled with an explicit update for the nonlinear term.460

B Coreset Selection Algorithms461

In this section, we provide an overview of the coreset selection algorithms used. All implementations462

are our own, but are based on Guo et al. [2022].463

Adacore464

AdaCore augments CRAIG with second–order curvature so that difficult, high–influence samples are465

favoured even when first–order gradients look similar. In practice we estimate only the diagonal466

of the Hessian with 10 Hutchinson probes per mini-batch, then pre-condition the last-layer gradient467

∇ℓi by element-wise division. Similarities are computed on these pre-conditioned vectors and the468

same stochastic-greedy routine as CRAIG is applied. The extra cost is the time to compute the469

approximation by deriving multiplications of the Hessian and arbitrary vectors via the Hessian-Free470

method [Yao et al., 2018], the time of Hutchinson’s method to find the diagonal, and the time to apply471

the diagonal to the gradients of the last layer.472

EL2N473

Our EL2N (Error L2-Norm) coreset selection method follows from the premise that samples that are474

most worthwhile for the model have the highest losses. EL2N conducts a full training pass, where for475

each minibatch xi, we calculate the loss without reduction for each individual sample, and calculate476

the norm for xi’s loss vector. At the end of the epoch, we take the top k minibatches by loss norm477

and return them with equal weight.478

CRAIG479

CRAIG (Coresets for Accelerating Incremental Gradient-descent) selects a weighted subset of size480

k whose gradients cover (i.e. represent) all per-example gradients. Let gi = ∇θℓi(θ) ∈ Rd be the481

gradient for example i. CRAIG finds a near optimal solution to the following problem.482

A∗ = argmin
A⊂V

|S|,
∑
n∈V

min
m∈S

max
θ
||gn − gm||

so every gi is “covered” by its most similar selected gradient. CRAIG selects the smallest subset S483

such that every example gradient is close (in L2) to at least one gradient in S. We approximate the484

coverage objective with the stochastic-greedy algorithm applied to the pairwise Euclidean similarity485

13

matrix of last-layer gradients. Greedy (or stochastic-greedy) selection gives a (1−1/e)-approximation486

in finite similarity evaluations. After S is chosen, CRAIG sets integer weights487

γj =
∣∣{ i : argmax

m∈S
sim = j}

∣∣, j ∈ S,

so the weighted coreset gradient
∑

j∈S γjgj closely matches the full gradient
∑n

i=1 gi at each488

optimisation step. In practice the method is applied to last-layer gradients to reduce dimensionality489

without degrading the approximation quality.490

GradMatch491

Let the last–layer per-example gradients be concatenated asA = [g1 g2 . . . gn] ∈ Rd×n and define the492

full-batch gradient b = 1
n

∑n
i=1 gi. GRADMATCH casts coreset selection as the sparse approximation493

problem.494

min
x∈Rn

∥Ax− b∥22 s.t. ∥x∥0 ≤ k, x ≥ 0.

OMP builds the weight vector x greedily. Starting with residual r = b and empty support S: (i)495

choose the column j⋆ = argmaxj /∈S A
⊤
j r; (ii) add j⋆ to S; (iii) refit the coefficients by non-negative496

least squares xS = argminx≥0 ∥ASx−b∥22+λ∥x∥22; (iv) update r = b−ASxS . The loop terminates497

after k selections, giving a coreset S = supp(x) with weights γj = xj .498

During training we replace the full loss by the weighted loss
∑

j∈S γjℓj
/∑

j∈S γj , ensuring the499

mini-batch gradient of the coreset closely follows the full-batch gradient throughout optimisation.500

GraNd501

GraNd is similar to EL2N, but simply orders samples by the norm of their individual gradients and502

keeps the top k. We piggy-back on the same per-sample gradient collection already needed for503

CRAIG/GradMatch, but stop after the first backward call. We can rapidly sort these norms on the504

CPU, and use the selected indices for our coreset.505

C Additional Results506

C.1 Component-wise PICore Acceleration507

Coreset % FNO UNO

Train Data Warm-up Train Data Warm-up

20.0% +79.7% +1.4% -0.9% +80.4% +0.8% -4.5%
30.0% +69.7% +1.2% -1.4% +70.7% +0.7% -4.5%
40.0% +61.3% +1.1% -1.8% +61.7% +0.6% -4.5%
60.0% +42.8% +0.7% -2.8% +43.2% +0.4% -4.5%
80.0% +24.2% +0.4% -3.7% +24.2% +0.2% -4.5%

Table 5: Advection PICore component speedup.

Coreset % FNO UNO

Train Data Warm-up Train Data Warm-up

20.0% +70.3% +10.7% -0.8% +74.4% +6.6% -4.5%
30.0% +61.5% +9.4% -1.3% +65.4% +5.8% -4.5%
40.0% +54.0% +8.1% -1.6% +57.1% +5.0% -4.5%
60.0% +37.7% +5.4% -2.4% +39.9% +3.3% -4.5%
80.0% +21.4% +2.7% -3.3% +22.3% +1.7% -4.5%

Table 6: Burgers PICore component speedup.

Coreset % FNO UNO

Train Data Warm-up Train Data Warm-up

20.0% +50.2% +30.4% -0.6% +55.9% +24.8% -3.3%
30.0% +44.2% +26.6% -0.9% +49.2% +21.7% -3.3%
40.0% +38.4% +22.8% -1.2% +42.7% +18.6% -3.3%
60.0% +26.7% +15.2% -1.8% +29.7% +12.4% -3.3%
80.0% +14.9% +7.6% -2.4% +16.5% +6.2% -3.3%

Table 7: Darcy PICore component speedup.

Coreset % FNO UNO

Train Data Warm-up Train Data Warm-up

20.0% +5.2% +74.9% -0.1% +12.7% +67.5% -0.8%
30.0% +4.5% +65.5% -0.1% +11.2% +59.0% -0.8%
40.0% +3.9% +56.2% -0.1% +9.7% +50.6% -0.8%
60.0% +2.7% +37.4% -0.2% +6.7% +33.7% -0.8%
80.0% +1.5% +18.7% -0.2% +3.7% +16.9% -0.8%

Table 8: Navier Stokes PICore component
speedup.

C.2 Comparison between Supervised Coreset Selection and PICore508

To better understand the differences between supervised coreset selection and PICore, we analyze how509

well each method covers the input space by computing the average distance from coreset points to510

14

their centroid, which serves as a proxy for spread or diversity. We compute this distance with respect511

to the ∥ · ∥L2(Ω) norm, where the centroid is the average data point element-wise and the average512

distance is the average norm between the centroid and the selected data points in the coreset. As shown513

in Figure 2, this distance is nearly identical across datasets and neural operators (FNO and UNO),514

with overlapping standard error bars with differences decreasing as the PDE complexity increases515

(Advection to Navier Stokes). This suggests that PICore selects coresets that are as well-distributed516

as those from supervised methods, despite not using labeled data. The comparable coverage indicates517

that differences in downstream performance likely arise from the type of points selected rather than518

their spatial distribution.519

(a) Advection (b) Burgers

(c) Darcy (d) Navier Stokes

Figure 2: Average centroid distances across datasets for FNO and UNO.

C.3 Unsupervised Coreset Selection520

We compare PICore to three unsupervised coreset selection methods: k-means clustering, cosine521

similarity, and Herding [Chen et al., 2012]. For k-means clustering we use k = βN clusters, and522

choose the data points closest to those clusters. For cosine similarity, we evaluate the cosine similarity523

between all pairs of points, and perform greedy selection to choose the coreset. We report direct524

comparison of the test NRMSE for both methods in Figures 3, 4, 5, and 6 in Section ??. The results525

show that PICore consistently matches or outperforms the unsupervised baselines across all tested526

coreset sizes (20% to 80%) and neural operator architectures (FNO and UNO). For instance, on the527

Advection dataset at 20% coreset size, PICore with the EL2N algorithm achieves a test NRMSE528

of 3.29 × 10−2, outperforming cosine similarity 3.39 × 10−2 and herding 3.46 × 10−2. Similar529

patterns are observed on the other datasets, indicating that PICore’s selection strategy generalizes well530

across both time-dependent and stationary PDEs compared to other unsupervised coreset selection531

strategies. We also note that these trends hold across neural operator architectures, with PICore532

outperforming unsupervised methods with both FNO and UNO architectures. While FNO does533

consistently outperform UNO across datasets (except Navier Stokes Incompressible), this is due to534

the architecture differences and not due to PICore (as shown by the increase in NRMSE for UNO on535

the non-coreset baseline).536

These results highlight the advantage of incorporating PDE-specific information into the subset537

selection process. While clustering and similarity-based approaches may cover the input space evenly538

or preserve diversity, they do not necessarily target the data points where the model struggles. In539

contrast, PICore explicitly focuses on where the model’s performance is likely to decrease by using540

the PDE’s residual, resulting in improved predictive accuracy under minimal training data.541

C.4 Convergence of Coreset Selection vs Active Learning542

A key distinction between coreset selection and active learning lies in their approach to data selection,543

which in turn affects their convergence speed. This iterative nature can be suboptimal, as it can544

lead to selecting redundant data points [Li et al., 2024a]. While some works have shown superior545

15

Figure 3: Test NRMSE on the Advection dataset at resolution 64 across varying coreset percentages
(20%–100%) between unsupervised and PICore-based coreset selection methods using both FNO
and UNO architectures.

Figure 4: Test NRMSE on the Burgers dataset at resolution 64 across varying coreset percentages
(20%–100%) between unsupervised and PICore-based coreset selection methods using both FNO
and UNO architectures.

Figure 5: Test NRMSE on the Darcy dataset at resolution 64 across varying coreset percentages
(20%–100%) between unsupervised and PICore-based coreset selection methods using both FNO
and UNO architectures.

16

Figure 6: Test NRMSE on the Navier Stokes Incompressible dataset at resolution 64 across varying
coreset percentages (20%–100%) between unsupervised and PICore-based coreset selection methods
using both FNO and UNO architectures.

convergence of active learning methods [Haimovich et al., 2024], these are under specific optimizer546

settings and in easier image classification domains.547

Our empirical results largely validate this viewpoint, demonstrating that PICore’s single-shot selection548

generally leads to better subset selection that converges faster than active learning baselines. Figures549

7 and 8 show the training loss convergence of PICore’s coreset selection methods compared to the550

active learning baseline. For both FNO and UNO, the active learning method converges much slower551

by 2-3×. The difference in loss convergence decreases for more complex datasets such as Navier552

Stokes, but this is due to learning a larger FNO-3D / UNO-3D model than due to the subset selection553

method itself.554

Figure 7: Training loss convergence of coreset selection methods in comparison to active learning
using FNO at a 20% selection ratio.

Figure 8: Training loss convergence of coreset selection methods in comparison to active learning
using UNO at a 20% selection ratio.

17

	Introduction
	Related Work
	Neural Operators
	Coreset Selection
	Data Efficiency for Neural Operators

	Preliminaries
	Neural Operators for PDE Solution Generation
	Coreset Selection

	PICore
	Experimental Details
	Results
	Limitations and Future Work
	Conclusion
	PDE Datasets
	Advection
	Burger's Equation
	Darcy Flow
	Navier-Stoker Equation

	Coreset Selection Algorithms
	Additional Results
	Component-wise PICore Acceleration
	Comparison between Supervised Coreset Selection and PICore
	Unsupervised Coreset Selection
	Convergence of Coreset Selection vs Active Learning

