Under review as a conference paper at ICLR 2025

AUTOMATED PROOF GENERATION FOR RUST CODE
VIA SELF-EVOLUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Ensuring correctness is crucial for code generation. Formal verification offers a
definitive assurance of correctness, but demands substantial human effort in proof
construction and hence raises a pressing need for automation. The primary obsta-
cle lies in the severe lack of data — there is much less proof than code for LLMs
to train upon. In this paper, we introduce SAFE, a framework that overcomes the
lack of human-written proof to enable automated proof generation of Rust code.
SAFE establishes a self-evolving cycle where data synthesis and fine-tuning col-
laborate to enhance the model capability, leveraging the definitive power of a sym-
bolic verifier in telling correct proof from incorrect ones. SAFE also re-purposes
the large number of synthesized incorrect proofs to train the self-debugging ca-
pability of the fine-tuned models, empowering them to fix incorrect proofs based
on the verifier’s feedback. SAFE demonstrates superior efficiency and precision
compared to GPT-40. Through tens of thousands of synthesized proofs and the
self-debugging mechanism, we improve the capability of open-source models,
initially unacquainted with formal verification, to automatically write proof for
Rust code. This advancement leads to a significant improvement in performance,
achieving a 52.52% accuracy rate in a benchmark crafted by human experts, a
significant leap over GPT-40’s performance of 14.39%.

1 INTRODUCTION

Large Language Models (LLMs) have recently exhibited impressive capabilities in code generation
(Roziere et al., 2023} \Guo et al., [2024; [Lozhkov et al., [2024} |Googlel 2024). However, the correct-
ness of generated code cannot be guaranteed. To prove that a program satisfies the desired properties
under all possible inputs, without running the program, we need formal verification. Unfortunately,
formal verification is difficult to conduct, as one needs to first formally express the desired proper-
ties, often in a special proof-oriented language, and then craft formal proofs, which takes substantial
formal verification expertise (Zhang et al.| 2024)). Therefore, to advance trustable code generation,
automated formal verification, particularly automated proof generation, is in a pressing need.

Two main approaches of proof automation have been explored. The first (Misu et al.| [2024; Sun
et al.| 2024a} Pei et al.| 2023 [Liu et al) 2023} |Chakraborty et al., 2023} [Kamath et al., 2023
Chakraborty et al., 2024; [Yao et al., [2023; |[Yang et al., 2024a) relies on well crafted prompt or
in-context learning on LLMs. To teach LLMs about formal proof, this approach often requires in-
tensive prompt engineering that hard codes proof-writing tips, and/or support from static program
analysis, resulting in a limited generalization ability. The second approach (Polu et al., 2022 |First
et al.||2023;|Azerbayev et al., 2023 |Yang et al.| [2024b) fine-tunes open-source LL.Ms. This approach
has shown to be effective for Lean (Avigad, 2017) (for mathematical proving) and F* (Swamy &
Hrit, [2016)) (a special proof-oriented language), where tens of thousands of human-written Lean and
F* proofs exist. However, how to apply this data-oriented approach to many other verification tools
or proof languages that have much less exiting proof remains as an open question.

In this paper, we tackle this open question for Verus (Lattuada et al., |2023), the state-of-the-art
verification tool for code written in Rust. Verus is a perfect target for us, since (1) it is one of the rare
verification tools that can directly prove the correctness of code written in a popular language (Rust),
which is increasingly popular in production as a safer and better alternative to C/C++ (ONCD, 2024;

Under review as a conference paper at ICLR 2025

Rivera et al., [2021); and (2) due to its short history, there are fewer than 500 Rust files currently
verified by Verus on GitHub, too few for fine-tuning.

The challenge of lacking data for Verus proof generation shows up at several levels. First, lack of
suitable programs to quickly generate proof for. Not all Rust features are supported by Verus yet.
Furthermore, large Rust projects typically require code refactoring to get verified (Zhou et al., 2024;
Sun et al.|, [2024b)), and yet small Rust programs may not have meaningful properties to prove (e.g.,
a hello-world function). Second, lack of Verus specifications. Before proving any Rust function,
Verus needs a formal specification that describes the expected behavior of the function, such as the
pre-condition (Line 7-9) and post-condition (Line 10-13) shown in Listing [I] Not surprisingly,
these specifications do not exist except for in those existing verified Rust files on Github. Third, lack
of Verus proofs. It took many months to write a couple of thousand lines of Verus proofs even for
experts (Zhou et al., 2024} Sun et al.,[2024b). It took more than ten years’ effort to accumulate those
fine-tuning training data for Lean (Yang et al.,|2024b)) and F-Star (Chakraborty et al., 2024)).

In this paper, we propose the Self-evolving Automated prooF gEneration (SAFE) framework that
overcomes the challenge of multi-level data scarcity. First, to quickly obtain a large number of
proof-friendly Rust programs, we leverage GPT-40 to “translate” tens of thousands of small Python
and Rust programs in popular code-synthesis datasets to programs written in Verus-supported Rust
syntax. Any program that cannot be compiled by Verus compiler is dropped.

Second, to obtain formal specifications for these tens of thousands of Rust programs, SAFE uses a
few rounds of self-evolving specification generation. The bootstrapping round prompts GPT-4o to
generate Verus-style specifications based on each Rust function and its associated natural language
doc-string. In every following round, specifications generated in previous iterations are used to train
a new fine-tuned open-source LLM that produces more specifications in generally higher quality for
the next round of finetuning. Keys to the success of this step include (1) using a quantitative metric
(Lahiri, [2024) to differentiate high-quality specifications from low-quality ones, and only use the
former for finetuning; and (2) the observation that we only need reasonably well, instead of perfect,
specifications to enable proof generation in the next step.

Next, to obtain tens of thousands of verified Rust programs, SAFE similarly uses a self-evolving
procedure. Code proof is very difficult to synthesize: even with careful prompt engineering, GPT-40
only managed to synthesize correct proof for < 20% of programs in the dataset with specifications
synthesized above, after a month of non-stop invocation. Fortunately, this is sufficient to bootstrap
SAFE. Through rounds of self-evolving, the quantity and quality of synthesized proof keeps increas-
ing, while the fine-tuned open-source model’s capability of proof synthesis keeps getting augmented.
These models also generate proof much faster than GPT-40. The keys to the success here include (1)
the ability of Verus in authoritatively and quickly telling correct proof from incorrect ones, which
allows SAFE to sift through the huge amount of low-quality data in early rounds without any hu-
man labeling, and (2) the reasonable quality of SAFE-synthesized specifications that allow SAFE to
largely avoid trivial proofs, which have little usage in fine-tuning.

Finally, SAFE re-purposes the huge number of incorrect proofs generated in the previous step to add
self-debugging capability into its models. In each round, whenever a correct proof P, is synthesized
after several attempts, the triplet of an earlier incorrect proof Px, the verification error reported by
Verus on Px, and P,, becomes a training data point, which fine-tunes the model’s capability in
debugging and repairing proof— a great side effect of having incapable models early on.

In our experiments, SAFE leverages DeepSeekCoder (Guo et al., [2024) as the generator, success-
fully synthesizing 19,017 formal specifications and 9,706 verified Rust functions, from a dataset
comprising 45,395 Rust functions sourced from the MBPP (Austin et al., 2021) training split and
the CodeNet (Puri et al., 2021)) training dataset. Note that, the initial Rust dataset contains zero lines
of formal specification or proof. Our evaluation on a human-curated Verus benchmark with human-
written specification, VerusBench, and a synthetic benchmark, CodeNet-Test demonstrate that
SAFE empowers DeepSeekCoder, which is initially unacquainted with Verus, to achieve 43.17%
and 43.83% accuracy on the two benchmarks by direct generation, far surpassing GPT-40’s perfor-
mance of 11.51% and 0.28%. Furthermore, the model’s accuracy reaches 79.14% in VerusBench
and 48.43% in CodeNet-Test once its self-debugging feature is used.

Under review as a conference paper at ICLR 2025

Listing 1: An Example Verus Program (Binary Search).

verus! {
// Performs a binary se e on a sorted vector of 64-bit unsigned integers (u64) to find the
index of a given target value.
fn binary_search(v: &Vec<u64>, k: u64) -> (r: usize)
requires //pre-conditions of this program
forall|i:int, J:int| 0 <= i <= j < v.len() ==> v[i] <= v[j],
exists|i:int| 0 <= i < v.len() && k == v[i],
ensures //post-conditions of this program
0 <= r,
r < v.len(),
k == v[r as int],
{
let mut il: usize = 0;
let mut i12: usize = v.len() - 1;
while il != 1i2
invariant //loop invariants (used for proof)
i2 < v.len(),
exists|i: int| il <= 1i <= i2 && k == v][i],
forall|i: int, j: int| 0 <= i <= j < v.len() ==> v[i] <= v[]],
{
let ix = 11 + (i2 - 1il) / 2;
if v[ix] < k {
il = ix + 1;
} else { i2 = ix; }

This Rust program’s pre-conditions are highlighted in orange background; its post-conditions are

highlighted in green; and its Verus proof annotations (loop invariants) are highlighted in gray.

2 BACKGROUND AND RELATED WORK

2.1 VERUS VERIFICATION TOOL

Verus (Lattuada et all, [2023) statically analyzes every proof target (i.c., a Rust function and its
specification) and any given proof annotations, and forms queries for the underlying SMT-solver
(e.g., Z3 (De Moura & Bjgrner}, [2008)) to solve. By leveraging the type system in Rust and allowing
both specification and proof annotations to write in Rust syntax, Verus has become the state-of-
the-art verification tool for Rust, one of the most popular programming languages
Fulton et al.,[2021)), and has been used to successfully verify large systems (Sun et al.,|[2024b} Zhou
et al., [2024). Unfortunately, since Verus has been developed for only about three years, there are
less than 500 Verus verified Rust files on Github.

Listing [T] shows a Rust function that implements binary search. Its specification includes a pre-
condition enclosed in a requires block and a post-condition enclosed in an ensures block
(Lines 4-10). The pre-condition states the input array is always ordered in an ascending way and
the input value to be searched k exists in the array (forall and exists are Verus quantifiers); the
post-condition requires that the return value r should be a valid index pointing to the input value k.

For simple programs/specifications, Verus can accomplish the formal verification without any extra
annotations (we refer to these cases as trivial proof). Unfortunately, for functions and specifications
that involve loops, collections, and quantifiers, Verus often needs users to provide proof annotations.
The loop invariants specified on Line 16—18 are one type of proof annotations. They specify what
properties are true right before and right after every loop iteration. Verus will prove the correctness
of each loop invariant and then use proved loop invariants to help prove the function specification. If
any loop invariant is incorrect or if needed invariants are missing, the proof will fail. For more com-
plicated tasks, other types of proof annotations like assert and lemma functions may be needed.

2.2 PRIOR WORK IN PROOF-BENCHMARK BUILDING AND SELF-EVOLVING FRAMEWORK

There was much effort recently in building dataset of existing human written proofs
et all, 2024} [Zhang et al, 2024}, [Chakraborty et al [2024). Unfortunately, since writing proof takes

Under review as a conference paper at ICLR 2025

expertise beyond normal coding, this dataset building approach is difficult to scale. Recent work has
explored augmenting the Dafny-proof dataset using proofs synthesized by GPT-4 through few-shot
learning and human-written proof examples (Misu et al.,|2024; Sun et al., |2024a). However, due to
the limited proof-generation power of GPT-4, the number of proofs in these dataset are fewer than
200, with many being trivial proofs.

Self-evolving style of learning has been explored in other context: a reinforced self-training frame-
work is proposed in the machine translation task (Gulcehre et al.l 2023)), and the expert iteration
strategy is leveraged for math proving with Lean (Polu et al.,2022). Our work applies self-evolving
and expert iteration to synthesize proof for Rust code. This new task raises different challenges from
prior tasks like writing math proof (Polu et al.,[2022) and hence requires different designs.

One obvious challenge is the data scarcity issue discussed in Section[I} SAFE does not have access
to billions of tokens of manually-written examples (e.g., math proofs) and hence cannot rely on fine-
tuned models for bootstrapping as in prior work; in fact, SAFE does not even have access to a large
quantity of proof problems and hence has to synthesize problems by itself (i.e., Verus-compatible
Rust functions and the associated specifications).

Another major challenge is related to the underlying verification engine. Supported by an interactive
theorem prover, Lean (Avigad, |2017), math-proof synthesis is naturally decomposed to many small
steps or tactics, with clear judgment about what are useful intermediate proofs. In contrast, like
many code-verification tools (Leinol 2010; [Swamy & Hrit, [2016), Verus leverages SMT-solver to
prove the correctness of a function as a whole, while proof annotations are used as hints to the SMT-
solver. It is difficult to decompose Verus-proof synthesis into small steps, and it is difficult to judge
whether incorrect proof annotations are useful. Consequently, step-wise search strategies used in
prior work do not apply here. Instead, whole-proof debugging is crucial for SAFE, as we will see.

We believe SAFE presents a new application of the self-evolving and expert iteration philosophy
to an important and challenging task — code-proof automation. Through its automated mea-
suring and filtering at every step of data synthesis — Verus compiler for program transpilation,
the quantitative specification-quality metric for spec-synthesis, and Verus verification for proof-
synthesis/debugging, SAFE overcomes those unique challenges and allows high-quality training
data to gradually accumulate without manual effort. We will open source our code and benchmarks.

3 APPROACH

As illustrated in Figurem SAFE involves two self-evolving (Tao et al, 2024} |Gulcehre et al., [2023)
procedures. The first procedure synthesizes specifications that are used as inputs to the second
procedure, while the second procedure produces the end-result of SAFE — a fine-tuned LLM that
can automatically synthesize proof for Rust code. As listed in Algorithm [T} both procedures use
GPT-4o to generate the round-0 data spec/proof-datag. In each round r, we use data collected
and filtered from earlier rounds, 0...r — 1, to fine-tune model,. based on its preceding model,_;. At
the end of each round, model, is used to generate the round-r data. High-quality data is preserved
for the next round. Low-quality specifications are discarded; incorrect proofs are re-purposed to
become self-debugging training data for the next round.

3.1 STEP 1: GENERATING VERUS-COMPATIBLE CODE

This step ensures the compatibility of our input Rust programs with Verus, which does not support
all Rust features. For instance, some Rust expressions and standard library functionalities like for,
Iterators, HashMap, and others are not supported or only partially supported by Verus. Thus, it
is necessary to adapt normal Rust code to Verus-compatible one before adding specifications.

To address this compatibility issue, we employ GPT-40 as a code translator, effectively substituting
Verus-incompatible Rust code snippets with Verus-compatible alternatives, such as converting an
iterator-based implemenation into a while-loop based implementation. Specifically, we prompt GPT-
4o with all the unsupported features sourced from Verus official documentation. All the converted
codes that can pass the grammar check of Verus compiler are collected for next steps. This step is
performed only once in our self-evolving framework.

Under review as a conference paper at ICLR 2025

Fine-Tune—l

Test Cases
|£ﬁj_’scm |)

Verus High-Quality

= Specification
<° Generator

Generate

1. Verus-Compatible Code

Generation
pd I H I — l @ Generate o P :
< Verus @J roo!
v : < Self-debug =
v : =/ Veriﬁeré =° Generator
i Verified Proof _
ouput |

: Incorrect Proof)..

Fine-Tune

3. Self-Evolving Proof Synthesis

Figure 1: The SAFE Framework

Algorithm 1: Self-Evolving

Input : modely, an open-source LLM; rust_programs, a set of Rust programs
Output: model,., the self-evolved LLM
1 programs < GPT-4o.translate(rust_programs).compilable(Verus Compiler);
2 Specification Generation:
3 spec-datag < GPT-4o.generate(programs).filter(Tests);
4 for rin[l,... Ry] do

r—1
5 model, < model,_;.fine-tune(|J spec-data;);
i=1
6 spec-data, < model,..generate(programs). filter(Tests);

7 return model,.;

s Auto-Proving:
9 proof-datagy, debug-datag < GPT-4o.generate(programs). filter(Verus Verifier);
w | forrin[l,...Ry]do

r—1
1 model, < model,._;.fine-tune(|J (proof-data; + debug-data;));
i=1
12 proof-data, < model,.generate(programs).filter(Verus Verifier);
13 debug-data, + model,.debug(programs). filter(Verus Verifier);

14 return model,.;

3.2 STEP 2: SELF-EVOLVING SPECIFICATION SYNTHESIS

In this step, LLMs are tasked with generating preconditions and postconditions for a Rust function
based on the function’s implementation and docstring. Different from prior work in spec-generation
(Flanagan & Leino, 2001; Ma et al.| [2024), SAFE needs synthesized specification as input for its
self-evolving proof-synthesis framework, which raises unique requirements on its spec-evaluation
criteria (i.e., which specification to keep or discard) and the mechanism to evaluate the criteria.

In terms of criteria, a perfect specification S should be correct (i.e., any correct implementation
should be accepted by S) and complete (i.e., any incorrect code implementation should be rejected
by S). In SAFE, getting perfect specification is not the goal. SAFE should discard incorrect speci-
fications, which can never be proved and hence will waste training cycles in the next step. However,
SAFE is fine with incomplete specifications, as the usage of spec in SAFE is to stimulate proof
synthesis not to judge code correctness. In fact, SAFE needs incomplete specifications, as complete
specifications are likely too challenging to prove at the early stage of the proof-synthesis model’s
evolution. Of course, specifications that are too incomplete should be discarded, because trivial spec-
ifications can be proved without any proof annotations and hence offer no usage for proof-synthesis
training (e.g., 0 <= r for the binary search function).

Under review as a conference paper at ICLR 2025

In terms of the mechanism to evaluate the above criteria, previous work relies on running many test
cases (Endres et al.|[2024]), formal verifying the consistency between spec and code (Ma et al.,|2024)),
or user inspection (Lahiri et al., 2022)). None of these mechanisms suit SAFE: user inspection or
running many test cases would severely slow down the self-evolving framework; formal verification
also does not work when we do not have a capable model to automatically synthesize proof.

With all these constraints, SAFE chooses to leverage a recently proposed technique (Lahiri, 2024)) to
measure the Correctness and Completeness of specifications. We use Verus to symbolically evaluate
what percentage of test cases T provided by the original dataset can pass a given specification S
(i.e., the Correctness score), and what percentage of test cases T/ mutated from T can be rejected
by S (i.e., the Completeness score). For a given method m(z) : y, with = being the input parameter
and y being the output, we denote the input/output-value pair of any test in a test suite T as (¢, 0)
and generate a corresponding mutated test by changing o into a randomly different value o’. The two
metrics for a specification S are formally defined as following, with S(7, 0) being a boolean value
representing whether the input-output value pair (4, o) satisfies the specification S or not:

Corsetnesss: L0 S:0) and_(1.0) €T

| { (¢,0") | not S(i,0') and (i,o') € T'} |
| T |

We can now set a threshold that fits the need of SAFE: we keep all the specifications with >80%
Correctness score and >60% of Completeness score. This way, SAFE can obtain many imperfect
but useful specifications for its proof synthesis. We do not set the Correctness threshold to be 100%,
because we use GPT to generate test cases when few test cases are provided by the dataset, and
we cannot guarantee perfect correctness of these test cases. Since Verus can symbolically evaluate
S(i,0) in the above formula without checking or running the Rust function, the scoring is fast.

(D

Completenessg:

We keep up to three synthesized specifications for each function, which not only enriches the spec-
training dataset but also increases the chance of synthesizing valid proof later. Our self-evolving
process for specification stops when there is no significant increase in total number of accepted
function—spec pairs, at which time all these pairs move on to become the input for the next step.

3.3 STEP 3: SELF-EVOLVING PROOF SYNTHESIS

Now that we have tens of thousands of function-specification pairs, we can start the self-evolving
procedure of proof synthesis. Comparing with spec-synthesis, deciding whether to accept or reject
a synthesized item is much more straightforward — only proof that Verus can use to verify the
Rust function satisfies its specification is accepted; if any verification errors are raised, the proof is
discarde(ﬂ However, since proof synthesis is much more difficult than specification synthesis, we
need to pay special attention to bootstrap the self-evolving procedure and to keep it moving forward.

For bootstrapping, a simple prompt to GPT-40 would not work, as it is very difficult for GPT-40
to synthesize all the needed loop invariants without any incorrect ones in between, not to mention
more complicated proof annotations like proof blocks and lemma functions. Therefore, we write a
detailed prompt for GPT-40, explaining the principles and tricks of writing Verus proof. By doing
so, we finally manage to make GPT-40 synthesize proof annotations that allow Verus to prove more
than one thousand Rust functions at the cost of one whole month of non-stop GPT-40 invocation.
Fortunately, this is sufficient for bootstrap. For the remainder of the self-evolving procedure, GPT-40
is not used any more. Instead, we use an open-source LLM much smaller than GPT-4o0 to efficiently
synthesize data and improve its capability in a self-evolving manner as in Algorithm[I] Specifically,
we fine-tune our open-source LLM on two tasks, proof generation and self-debugging.

Task #1: Proof generation. The synthesized proofs and specifications are directly used for training
this task. Taking a code snippet with specifications as input S, the LLM M is tasked with generating
a proof Y (consists of tokens vy, ..., yn) that can make the code proved by Verus. We train this
task with a sequence-to-sequence objective where:

N
Lgen () = — Z log Py (y: ‘ S, Yi<i) 2
=0
'If a Rust function is in fact buggy or a synthesized specification is incorrect, no proof will be accepted.

Under review as a conference paper at ICLR 2025

Task #2: Self-debugging. The self-debugging task is trained on the data pair of an incorrect proof
and its revision. “Thanks to” the incapability of LLMs in proof generation, a huge number of
incorrect proofs are generated during data synthesis. For every Verus program (together with its
specification) for which a perfect proof Y, = (yo,...,yn) is eventually synthesized in a round,
we denote those incorrect proofs generated before Y, as [Y1,...,Y,,]. For every incorrect proof
Yx € [Y1,...,Y,], atriplet {Yx, Errory,, Y, } is added to our self-debugging training dataset,
where Errory, represents the verification errors Verus reported about Yy . The objective of self-
debugging task is:

N
Lpepug(l) = — Zlog Py(yi | Yx,Erroryy, Yi<i) 3)

i=0
It is important to train the model to “debug” an imperfect proof. In many cases, the proof anno-
tations generated by the model only contain small errors or miss one line of annotation. Without
the capability of self-debugging, the model would start from scratch and fail to synthesize a per-
fect proof even after many attempts. In SAFE, we joint training the proof generation task and the
self-debugging task, which empowers the LLM to both generate proof from scratch and repair an
existing proof based on verification error messages for a Rust function and its specification.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

4.1.1 DATASET

As an early exploration of automated formal verification, in this paper, we focus solely on the Rust
code of algorithm types at the function level, as our source of data. We employ the MBPP dataset
(Austin et al.,2021)) (only training split for data synthesis) and the CodeNet dataset (Puri et al., 2021
as our data sources. These two datasets contain small programs written in different programming
languages, each of which is an intended solution to a coding problem described in natural language
and is associated with three test cases on average. We translate the Python programs in MBPP and
extract the Rust programs in CodeNet. In total, we collect 45,395 Rust single-function programs.
Of these, 21,398 have been successfully transformed into Rust code that is compatible with Verus
by GPT-40. We conduct the specification synthesis first, after two rounds of self-evolution, we
obtain 19,017 high-quality specifications. Then we run three rounds of self-evolving proof synthesis,
ending with 9,706 verified programs, and 10,486 self-debugging data pairs. To the best of our
knowledge, this represents the most extensive synthetic dataset created for Verus code to date.

4.1.2 BENCHMARK AND METRICS

We assess the model’s proficiency in generating proofs in two benchmarks, the human-written
benchmark VerusBench and the synthetic benchmark CodeNet-Test. VerusBench is a human-
written benchmark dataset with human-written Rust code and corresponding Verus specifications.
It contains 139 code files in total. 23 of them are algorithmic programs from Verus tutorials. 38 of
them come from the dataset of SV-COMP-2021 (Beyer, [2021)) (in short, SV) — a contest focused
on program verification for C and Java languages; we utilize 38 Verus-translated tasks provided
by (Yao et al., [2023)). The remaining 78 tasks come from MBPP-DFY-153 (Misu et al.} 2024), a
Dafny version of the MBPP test set. We have translated 78 of them that are compatible with Verus.
CodeNet-Test is an expansive benchmark, 10x larger than VerusBench, crafted by LLM and en-
compassing 1,435 diverse tasks. Given the substantial human effort required to write Verus code and
specifications, it’s impractical to create a large test suite by human. To comprehensively measure the
model capability of generating proofs, we split a subset of CodeNet for testing, ensuring it was not
utilized in our data synthesis process. We leverage our specification generator to craft specifications
for this subset and apply the same scoring mechanism to preserve reasonably well specifications.

We measure the capability of proof generation by Accuracy @K. Specifically, we use any model
under evaluation to sample K proofs during proof generation. For Accuracy@1, we use greedy
decoding, which only generate 1 output, and for Accuracy @10, we sample 10 outputs with a tem-
perature of 0.7. Then, for each task in our benchmark set, Accuracy @K equals one if at least one
proofs/debugged proofs is verified by Verus. Note that, when the self-debugging feature of SAFE

Under review as a conference paper at ICLR 2025

Table 1: Accuracy of SAFE and baselines. Prompt is GPT-40 with a long prompt that is used
to bootstrap SAFE; SAFE is LLaMa3.1 or DeepSeekCoder with three rounds of finetuning and a
simple prompt. For SAFE+, Accuracy @2 means getting one initial proof sample and one debugging
sample; Accuracy @100 means getting 10 initial proofs and then 10 x 10 debugging samples.

GPT-40 LLaMa3.1 DeepSeekCoder
Benchmark Accuracy
Raw Prompt Raw SAFE SAFE+ Raw SAFE SAFE+

@1 1151 25.90 3.60 46.04 - 9.35 4317 -
VerusBench @2 14.39 30.93 576 4820 52,52 1079 46.76 49.64

@10 2446 41.01 11.51 53.96 - 17.27 53.96 -

@100 43.88 46.76 28.78 55.40 64.03 3237 59.71 70.50
CodeNet-Test @1 0.28 2.86 0.00 44.32 - 021 43.83 -

@2 0.70 3.41 0.03 4534 48.50 055 4474 4843

is used (i.e., SAFE+), the proof generation includes two rounds: at the first round, K initial proofs
are sampled; at the second round, if none of the initial proofs are correct, K proofs are generated by
self-debugging each initial proof, resulting in K * K debugged proofs.

4.2 EVALUATION RESULTS
4.2.1 MAIN RESULTS

In Table I} we compare the accuracy of SAFE with our baseline approaches. Due to the inherent
complexity of this task, there is no pre-existing fine-tuned model to serve as a baseline. We employ
GPT-40, DeepSeekCoder-33B-Instruct model (Guo et al.l |[2024) and Llama3.1-8B-Instruct model
(Dubey et al., |2024) with basic prompts same as what we use for the fine-tuned models as our
baselines. To offer some advantages to the baselines, we also feed four examples for in-context
learning in these baselines, which we do not use for SAFE fine-tuned models.

We can see that SAFE achieves substantially higher accuracy compared to baseline approaches in
both datasets and metrics. In VerusBench benchmark, even without self-debugging, SAFE achieves
an Accuracy @1 of 46.04% and an Accuracy @10 of 53.96% while the best of ‘Raw’ results come
from GPT-40 with 11.51% in Accuracy@1 and 24.46% in Accuracy@10. With the long and
carefully designed prompt, which was used to bootstrap SAFE proof synthesis, GPT-40 is reasonably
effective for VerusBench. For the CodeNet-Test benchmark, we find the performance of baselines
and prompt-based GPT-40, denoted as Prompt, drops significantly — by more than 10X comparing
with VerusBench, while SAFE doesn’t suffer as much. It is important to note that CodeNet-Test is
significantly larger and exhibits a distinct data distribution compared to VerusBench, the former is
derived from competitive programming, whereas the latter encompasses common algorithms. The
results indict the prompt-based method has limited generalizability in automated proof generation,
while SAFE no longer needs complicated prompts during inference. We further report paired t-
test (Hsu & Lachenbruch| [2014) results for Table[I]in Table[5]in Appendix.

Table([T)also shows the efficacy of self-debugging (i.e., SAFE+). For example, after one initial proof
is sampled, applying self-debugging on this proof to produce the second sample (Accuracy @2 for
SAFE+) consistently outperforms simply producing a second sample of proof without debugging
(Accuracy@2 for SAFE) for both LLLaMa and DeepSeekCoder on both VerusBench and CodeNet-
Test, as shown in Table [T} SAFE+ with DeepSeekCoder achieves the best performance of 70.50%
in Table [T|when 10x 10 debugged proofs are produced for 10 initial proofs for each proof task.

Overall, by leveraging our self-evolving framework, SAFE can substantially improve the capability
of open-source model and effectively generate proofs for Verus programs.

4.2.2 BENEFITS FROM SELF-EVOLVING

In Table 2] we use the performance on VerusBench to show how our self-evolving framework
improves the capability of models. In this set of experiments, we use DeepSeekCoder-33B-
Instruct for data synthesis and fine-tuning; Round 1, 2, 3 represent three models fine tuned from
DeepSeekCoder-33B-Instruct. Table [2]illustrates that for every subset of VerusBench, the best Ac-
curacy@1 and Accuracy @ 10 scores are achieved at the last two rounds of model evolution, which

Under review as a conference paper at ICLR 2025

Table 2: Accuracy of SAFE models produced by each round (measured on VerusBench)

Self- Metric Proof Generation Self-Debugging (K + K * K)
Evolving SV MBPP Tutorial Total | SV MBPP Tutorial Total
GPT4o Accuracy@l 39.47 19.23 26.09 2590 - - - -
Accuracy@10 60.53 33.33 3478 41.01 - - - -
Round 1 Accuracy@1 55.26 2949 4.35 32.37 | 57.89 30.77 4.35 33.81
Accuracy@10 81.58 30.77 13.04 41.73 | 81.58 30.77 13.04 4173
Round 2 Accuracy @1 73.68 29.49 34.78 4245 | 84.21 38.46 39.13 51.08
Accuracy@10 89.47 30.77 4783 49.64 | 92.10 56.41 5217 6547
Round 3 Accuracy@1 7895 30.77 26.09 43.17 | 81.58 41.03 26.09 49.64
Accuracy@10 92.11 35.90 52.17 53.96 | 97.37 58.97 6522 70.50

indicts the effectiveness of self-evolution. Besides, the round 1 model with a simple prompt al-
ready outperforms GPT-40 with a much more sophisticated prompt for all but the “Tutorial” subset.
Round 3 model outperforms Round 2 model in terms of Accuracy @ 10 for all subsets of tasks, with
or without self-debugging. Meanwhile, the improvement from Round 2 to Round 3 is much smaller
than the improvement from GPT-40 to Round 1, and from Round 1 to Round 2, which justifies our
decision of stopping the self-evolution after three rounds. We further report paired t-test results for
Table 2]in Table[6]in Appendix.

Finally, the Round 3 model greatly outperforms GPT-40 for all three sub-sets of VerusBench, even
though GPT-40 uses a much more sophisticated prompt: GPT-40 was most effective for the SV sub-
set with a 39.47% Accuracy @ 1, while Round 3 model improves that metric to 78.95% (81.58% with
self-debugging); GPT-40 was the least effective for the MBPP subset with a 19.23% Accuracy@1,
which is improved by Round 3 model to 30.77% (41.03% with self-debugging). This trend bolds
well for SAFE to work with different datasets and different bootstrapping methods in the future.

4.2.3 IMPROVEMENT OF SELF-DEBUGGING

Table[T]demonstrates that SAFE+, which allows LLMs to do self-debugging, substantially improves
the accuracy compared to direct generation, indicting the effectiveness of the self-debugging mech-
anism. As we show in Listing 2 of the Appendix, Verus provides error messages for any incorrect
proof about which proof annotation, which part of the specification, or which implicit proof target
(e.g., no overflow for every arithmetic expression) cannot be verified, which can help repair the
proof for experienced human users and well trained models.

Decoding Strategies for Self-Debugging. From Table [l we can see the enhancements of self-
debugging become more significant with the increase in the number of sampled outputs. To further
evaluate how decoding strategies affect the performance of self-debugging in VerusBench, we con-
duct four settings by combining greedy and sampling decoding during the generation and debugging
phases, and run two more self-debugging rounds with greedy decoding. Figure 2] shows that more
rounds of self-debugging hardly improve the accuracy, with the improvement less than 1%. Besides,
sampling decoding strategy is more useful for generation phase rather than for the self-debugging
process. Notably, the “sampling+greedy” (generate multiple proofs and for each incorrect proof
generate one debugged proof) strategy outperforms the “greedy+sampling” (generate one proof and
generate multiple debugged proofs) setting. Existing work (Chen et al., 2023} |Olausson et al.| [2023))
has shown similar results.

4.2.4 IMPACT OF SPECIFICATION QUALITY

As mentioned in Section we only keep specifications with high Correctness scores and rea-
sonably high Completeness scores. To investigate the impact of this design decision, we zoom into
the last round of proof-synthesis model fine-tuning to see how the quality of proof-synthesis model
can be affected by the quality of specification dataset. Specifically, the current Round-3 SAFE
model is obtained by fine-tuning the Round-2 SAFE model using correct proof synthesized by the
bootstrapping model, the Round-1 model, and the Round-2 model based on the specifications S
selected by SAFE, denoted as Po[S] U P1[S] U P2[S] (P;[S] denotes all the correct proofs syn-

Under review as a conference paper at ICLR 2025

0.625 0.70
0.600 ——— 0.651
e ————— Y ———
-
0.575 - R
§ //’ E‘ 0.601 A m e ——
-
505501 L7 § _e” 4
§ L e ————— -k £ 0.55 -
05251 S #
-’
s -k
0.5001 s 0.501 o —————
PR =k Greedy+Greedy - k- Greedy+Greedy
7 Greedy+Sampling g + Greedy+Sampling
04759 PAd =k~ Sampling+Greedy 0.45 -~ == Sampling+Greedy
w - sampling+Sampling w 4 Sampling+Sampling
0 3 0 3

1 2
Round of self-debugging
(a) LLaMa

1 2
Round of self-debugging
(b) DeepSeekCoder

Figure 2: SAFE’s accuracy with different self-debugging, sampling decoding strategy

Table 3: Accuracy drop of proof synthesis w/ training-specification quality drop (on VerusBench)

Model Metric Proof Generation Self-Debugging (K + K * K)
(Spec-Quality) SV MBPP Tutorial Total \ SV MBPP Tutorial Total
SAFE Accuracy@1 78.95 30.77 26.09 43.17 | 81.58 41.03 26.09 49.64
Accuracy@10 92.11 35.90 52.17 53.96 | 97.37 58.97 65.22 70.50
Low-Qualit Accuracy@1 0.00 29.49 4.35 17.27 | 0.00 43.59 21.74 28.06
y Accuracy@10 5.26 32.05 21.74 23.02 | 15.79 50.00 47.83 40.29
Mix-Qualit Accuracy@1 36.84 30.77 17.39 30.22 | 42.11 43.59 21.74 39.57
y Accuracy@10 65.79 32.05 30.43 41.01 | 71.05 51.28 52.17 56.83

thesized in round ¢ based on specification set S). In our two alternative settings, we go back to
the set of all specifications synthesized during the spec-synthesis self-evolving procedure and ran-
domly sample a set of specifications S* that have the same size as .S; naturally S* contains many
low-quality specifications that do not pass our Correctness and Completeness threshold. In our
alternative setting of ‘Mix-Quality’, we obtain a model by fine-tuning the Round-2 SAFE model
using Po[S] U P1[S] U P3[S%]; in our alternative setting of ‘Low-Quality’, we obtain a model by
fine-tuning the original DeepSeekCoder using P2[S+| alone.

From the results in Table [3] we can see that high-quality specifications contribute substantially to
the end-to-end effectiveness of SAFE. If the model is trained without any high quality data (‘Low-
Quality’), the accuracy drops for all three subsets of VerusBench and even drops to 0% Accuracy @ 1
and 5.26% Accuracy @ 10 for SV. Probably because more debugging data is created in this setting,
the self-debugging feature helps more for this setting, but the overall accuracy still lags way behind
the default SAFE Round-3 model. When low quality data is mixed with high quality ones, the
performance still drops as shown in the ‘Mixed-Quality’ row in the table. In Appendix, we further
report paired t-test results for Table[3]in Table[7] and provide an example Rust program (Listing
whose low quality specification led to an extremely simple proof — this simple proof probably
offered no benefit for proof-synthesis fine-tuning. In conclusion, specification selection matters to
the fine-tuning and the evolution of proof-synthesis models.

5 CONCLUSION

In this paper, we propose SAFE, a novel self-evolving framework to advance automated proof gen-
eration for Rust. SAFE alleviates the severe data scarcity challenge by coupling data synthesis
and model fine-tuning in a self-evolving manner, demonstrating superior efficiency and precision
compared to relying solely on GPT-40. Through ten of thousands of synthesized proofs and the
self-debugging mechanism, we improve the capability of open-source models to automatically write
proof for Rust code. Our evaluation shows that SAFE has a significant improvement over GPT-4o.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Jeremy Avigad. The lean theorem prover. Microsoft Research, Carnegie Mellon University, 2017.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Al-
bert Q Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model
for mathematics. arXiv preprint arXiv:2310.10631, 2023.

Dirk Beyer. Software verification: 10th comparative evaluation (sv-comp 2021). In Tools
and Algorithms for the Construction and Analysis of Systems: 27th International Confer-
ence, TACAS 2021, Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 — April 1, 2021,
Proceedings, Part II, pp. 401-422, Berlin, Heidelberg, 2021. Springer-Verlag. ISBN 978-3-
030-72012-4. doi: 10.1007/978-3-030-72013-1.24. URL https://doi.org/10.1007/
978-3-030-72013-1_24,

Saikat Chakraborty, Shuvendu K Labhiri, Sarah Fakhoury, Madanlal Musuvathi, Akash Lal, Aseem
Rastogi, Aditya Senthilnathan, Rahul Sharma, and Nikhil Swamy. Ranking llm-generated loop
invariants for program verification. arXiv preprint arXiv:2310.09342, 2023.

Saikat Chakraborty, Gabriel Ebner, Siddharth Bhat, Sarah Fakhoury, Sakina Fatima, Shuvendu
Lahiri, and Nikhil Swamy. Towards neural synthesis for smt-assisted proof-oriented program-
ming. arXiv preprint arXiv:2405.01787, 2024.

Xinyun Chen, Maxwell Lin, Nathanael Schirli, and Denny Zhou. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128, 2023.

Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient smt solver. In International conference
on Tools and Algorithms for the Construction and Analysis of Systems, pp. 337-340. Springer,
2008.

Verus Doc. Verus tutorial and reference. In https://verus-lang.github.io/verus/guide/reference-
reveal-hide.html, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Madeline Endres, Sarah Fakhoury, Saikat Chakraborty, and Shuvendu K Lahiri. Can large language
models transform natural language intent into formal method postconditions? Proceedings of the
ACM on Software Engineering, 1(FSE):1889-1912, 2024.

Emily First, Markus N Rabe, Talia Ringer, and Yuriy Brun. Baldur: Whole-proof generation and
repair with large language models. In Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 1229—
1241, 2023.

Cormac Flanagan and K Rustan M Leino. Houdini, an annotation assistant for esc/java. In Interna-
tional Symposium of Formal Methods Europe, pp. 500-517. Springer, 2001.

Kelsey R Fulton, Anna Chan, Daniel Votipka, Michael Hicks, and Michelle L Mazurek. Benefits
and drawbacks of adopting a secure programming language: Rust as a case study. In Seventeenth
Symposium on Usable Privacy and Security (SOUPS 2021), pp. 597-616, 2021.

Google. Codegemma: Open code models based on gemma. 2024. URL https://storage.
googleapis.com/deepmind-media/gemma/codegemma_report .pdfl

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced self-training
(rest) for language modeling. arXiv preprint arXiv:2308.08998, 2023.

11

https://doi.org/10.1007/978-3-030-72013-1_24
https://doi.org/10.1007/978-3-030-72013-1_24
https://storage.googleapis.com/deepmind-media/gemma/codegemma_report.pdf
https://storage.googleapis.com/deepmind-media/gemma/codegemma_report.pdf

Under review as a conference paper at ICLR 2025

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming—the
rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Henry Hsu and Peter A Lachenbruch. Paired t test. Wiley StatsRef: statistics reference online, 2014.
O JE and T CT. Why scientists are turning to rust. Nature, 588:185, 2020.

Adharsh Kamath, Aditya Senthilnathan, Saikat Chakraborty, Pantazis Deligiannis, Shuvendu K
Lahiri, Akash Lal, Aseem Rastogi, Subhajit Roy, and Rahul Sharma. Finding inductive loop
invariants using large language models. arXiv preprint arXiv:2311.07948, 2023.

Shuvendu K Lahiri. Evaluating llm-driven user-intent formalization for verification-aware lan-
guages. arXiv preprint arXiv:2406.09757, 2024.

Shuvendu K Lahiri, Sarah Fakhoury, Aaditya Naik, Georgios Sakkas, Saikat Chakraborty, Madanlal
Musuvathi, Piali Choudhury, Curtis von Veh, Jeevana Priya Inala, Chenglong Wang, et al. Inter-
active code generation via test-driven user-intent formalization. arXiv preprint arXiv:2208.05950,
2022.

Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias Brun, Isitha Subasinghe, Yi Zhou, Jon
Howell, Bryan Parno, and Chris Hawblitzel. Verus: Verifying rust programs using linear ghost
types. Proceedings of the ACM on Programming Languages, 7T(OOPSLA1):286-315, 2023.

K Rustan M Leino. Dafny: An automatic program verifier for functional correctness. In Interna-
tional conference on logic for programming artificial intelligence and reasoning, pp. 348-370.
Springer, 2010.

Chang Liu, Xiwei Wu, Yuan Feng, Qinxiang Cao, and Junchi Yan. Towards general loop invari-
ant generation via coordinating symbolic execution and large language models. arXiv preprint
arXiv:2311.10483, 2023.

Chloe Loughridge, Qinyi Sun, Seth Ahrenbach, Federico Cassano, Chuyue Sun, Ying Sheng, Anish
Mudide, Md Rakib Hossain Misu, Nada Amin, and Max Tegmark. Dafnybench: A benchmark
for formal software verification. arXiv preprint arXiv:2406.08467, 2024.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173, 2024.

Lezhi Ma, Shangqing Liu, Yi Li, Xiaofei Xie, and Lei Bu. Specgen: Automated generation of formal
program specifications via large language models. arXiv preprint arXiv:2401.08807, 2024.

Md Rakib Hossain Misu, Cristina V Lopes, Iris Ma, and James Noble. Towards ai-assisted synthesis
of verified dafny methods. Proceedings of the ACM on Software Engineering, 1(FSE):812-835,
2024.

Theo X Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-
Lezama. Is self-repair a silver bullet for code generation? In The Tielfth International Conference
on Learning Representations, 2023.

ONCD. Back to the building blocks: A path toward secure and measurable software. pp.
19,2024. URL https://www.whitehouse.gov/wp—content/uploads/2024/02/
Final-ONCD-Technical—-Report.pdf.

Kexin Pei, David Bieber, Kensen Shi, Charles Sutton, and Pengcheng Yin. Can large language
models reason about program invariants? In International Conference on Machine Learning, pp.
27496-27520. PMLR, 2023.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya

Sutskever. Formal mathematics statement curriculum learning. arXiv preprint arXiv:2202.01344,
2022.

12

https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf

Under review as a conference paper at ICLR 2025

Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi, Vladimir Zolotov,
Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, et al. Codenet: A large-scale ai for
code dataset for learning a diversity of coding tasks. arXiv preprint arXiv:2105.12655, 2021.

Elijah Rivera, Samuel Mergendahl, Howard Shrobe, Hamed Okhravi, and Nathan Burow. Keeping
safe rust safe with galeed. In Proceedings of the 37th Annual Computer Security Applications
Conference, pp. 824-836, 2021.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Chuyue Sun, Ying Sheng, Oded Padon, and Clark Barrett. Clover: Closed-loop verifiable code
generation. In International Symposium on Al Verification, pp. 134—155. Springer, 2024a.

Xudong Sun, Wenjie Ma, Jiawei Tyler Gu, Zicheng Ma, Tej Chajed, Jon Howell, Andrea Lattuada,
Oded Padon, Lalith Suresh, Adriana Szekeres, et al. Anvil: Verifying liveness of cluster manage-

ment controllers. In 18th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 24), pp. 649-666, 2024b.

Nikhil Swamy and Citélin Hrit. cu, chantal keller, aseem rastogi, antoine delignat-lavaud, simon
forest, karthikeyan bhargavan, cédric fournet, pierre-yves strub, markulf kohlweiss, jean-karim
zinzindohoue, and santiago zanella-béguelin. dependent types and multi-monadic effects in f*. In
Proceedings of the 43rd Annual ACM SIGPLANSIGACT Symposium on Principles of Program-
ming Languages, pp. 256-270, 2016.

Zhengwei Tao, Ting-En Lin, Xiancai Chen, Hangyu Li, Yuchuan Wu, Yongbin Li, Zhi Jin, Fei
Huang, Dacheng Tao, and Jingren Zhou. A survey on self-evolution of large language models.
arXiv preprint arXiv:2404.14387, 2024.

Chenyuan Yang, Xuheng Li, Md Rakib Hossain Misu, Jianan Yao, Weidong Cui, Yeyun Gong,
Chris Hawblitzel, Shuvendu Lahiri, Jacob R Lorch, Shuai Lu, et al. Autoverus: Automated proof
generation for rust code. arXiv preprint arXiv:2409.13082, 2024a.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan J Prenger, and Animashree Anandkumar. Leandojo: Theorem proving with retrieval-
augmented language models. Advances in Neural Information Processing Systems, 36, 2024b.

Jianan Yao, Ziqiao Zhou, Weiteng Chen, and Weidong Cui. Leveraging large language models for
automated proof synthesis in rust. arXiv preprint arXiv:2311.03739, 2023.

Lichen Zhang, Shuai Lu, and Nan Duan. Selene: Pioneering automated proof in software veri-
fication. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
17761789, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.acl-long.98. URL https://aclanthology.org/2024.acl-long.
98.

Zigiao Zhou, Weiteng Chen, Sishuai Gong, Chris Hawblitzel, Weidong Cui, et al. {VeriSMo}:
A verified security module for confidential {VMs}. In I8th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 24), pp. 599-614, 2024.

13

https://aclanthology.org/2024.acl-long.98
https://aclanthology.org/2024.acl-long.98

Under review as a conference paper at ICLR 2025

APPENDIX

A~ Verus Examples|

|A.1 Imperfect Proof Example|

|A.2° More Complicated Proof Annotations|

|C Implementation Details|

|IC.1 Specification Filtering|.
|IC.2 Statistics of Synthesized Datal.

|IC.3 Tramning Hyperparameters|

D Discussi [Timitation

ID.1 Scaling to Real-World Large Software Projects|
ID.2 " Fine-Grained Self-Debugging|

[EAdditional Experiments|

[F_Case Studies|

IF.1 ~ SAFE’s Advantages Compared to GPT-40

[E.2 The Effectiveness of Our Self-Debugging Mechanism|

IE.3 An Ineffective Example] o o000

IE.4 An Example Proof with a Low-Quality Specification|

14

15
15
17

17

17
17
19
20

20
20
20

20
20
21
21
22

L T R S

Under review as a conference paper at ICLR 2025

A VERUS EXAMPLES

Listing 2: An imperfect proof of binary search with its error message recieved from Verus.

use vstd::prelude::x*;
fn main() {}
verus! {
// Performs a binary search on a sorted vector of 64-bit unsigned integers (u64) to find the
index of a given target value.
fn binary_search(v: &Vec<u64>, k: u64) -> (r: usize)
requires //pre-conditions of this program
forall|i:int, j:int| 0 <= i <= j < v.len() ==> v[i] <= vIjl, |
exists|i:int| 0 <= 1 < v.len() && k == v[i], I
ensures //post-conditions of this program
0 <= |
r < v.len(),
k == v[r as int],
{
let mut il: usize = 0;
let mut i2: usize = v.len() - 1;
while il != i2
invariant //loop invariants (used for proof)
i2 < v.len(),
// exists|i: int]| il <= i <= i2 && k == v[i],
forall|i: int, j: int| 0 <= i <= j < v.len() ==> v[i] <= vI[]], I

let ix = 11 + (i2 - 1il) / 2;
if v[ix] < k {

il = ix + 1;
} else {
i2 = ix;

}
}

Error messages from Verus:
error: postcondition not satisfied

13 | k == v[r as int],
| e failed this postcondition

14 | / |
15 | | let mut il: usize = 0;
16 | | let mut i2: usize = v.len() - 1;
17 | | while il != i2
ooo |
30 | | i1
31 | |

|

| at the end of the function body

error: possible arithmetic underflow/overflow
|

23 | let ix = il + (i2 - i1) / 2;
| ARaesasAsnshananas

error: possible arithmetic underflow/overflow
|

23 | let ix = 11 + (i2 - 1i1) / 2;
T L

error: aborting due to 3 previous errors

verification results:: 0 verified, 2 errors

A.1 IMPERFECT PROOF EXAMPLE

An imperfect proof annotation of binary search is shown in Listing 2} Compared with the correct
version in Listing|[T] this imperfect proof lacks a crucial loop invariant in Line 20. According to the
error messages following the code, we can see, a postcondition cannot be proved without this loop
invariant. Furthermore, the absence of this invariant causes Verus failing to prove the absence of
arithmetic underflow/overflows. Specifically, this loop invariant states that value k exists in v[il

15

O 01NN AW —

Under review as a conference paper at ICLR 2025

Listing 3: The proof code of fibonacci.

use vstd::prelude::x*;
fn main() {}

verus! {

spec fn fibo(n: int) -> nat
decreases n

{
if n <=0 { 0 } else if n == {1}
else { fibo(n - 2) + fibo(n - 1) }

}

spec fn fibo_fits_i32(n: int) -> bool {
fibo(n) < 0x8000_0000
}

proof fn fibo_-is.monotonic(i: int, j: 1int)
requires
T <=3,
ENSures
fibo (i) <= fibo(j),
_ decreases j - i
T OTIf1<=0(4
1/ I
else if 1 < j {
fibo_ismonotonic (i, 3j-1);
assert (fibo (j) == fibo (j-1)+fibo (j-2));
1]
fn fibonacci (n: usize) —-> (ret: Vec<i32>)
requires
fibo_fits-i32(n as int),
n >= 2,
ensures

forall |i: int| 2 <= i < n ==> #[trigger] ret@[i] == fibo (i),

ret@.len() == n,

let mut fib = Vec::new();
fib.push(0);

fib.push(1l);

let mut 1 = 2;

while i < n
invariant
forall |k: int| 0 <= k < i ==> #[trigger] fib@[k] == fibo (k),
fibo_fits-i32(n as int),
2 <=1,
fib@.len() == i,
i <= n,

proof{
fibo_is.monotonic (i as int, n as int);

|
i
|
H i
‘
I
i
B

/|
let next_fib = fib[i - 1] + fib[i - 2];

fib.push (next_£fib);

i+=1;

i2]. Without this loop invariant, Verus cannot reason about the comparison between v [ix]
and k on line 24, and hence cannot reason about how the values of 11 and i2 would change in this
loop. This then leads to Verus’ failure in reasoning about the bound of i2 - i1 on line 23 (and
hence the arithmetic underflow/overflow error), and the final value of i1 on line 30 (and hence the
postcondition not satisfied error).

16

Under review as a conference paper at ICLR 2025

A.2 MORE COMPLICATED PROOF ANNOTATIONS

Listing [3] shows much more complicated proof annotations for a Rust function that computes the
fibonacci sequence. The proof for this code includes not only loop invariants which were introduced
in Listing m but also a proof function (Line 16-29 in the listing), a proof block (Line 53-55),
and assert statements (Line 27) that are used to provide hints to the underlying theorem prover.
This example comes from the Verus paper (Lattuada et al., [2023)), with more detailed explanation
available in that paper.

B PRrROMPTS

Listing 4: SAFE’s prompt for proof generation.

Instruction: "You are an experienced formal language programmer. You are very familiar with
Verus, which is a tool for verifying the correctness of code written in Rust. Your mission is
to write proof code, including loop invariants and assertions to the given Rust code, so that

Verus can verify the give function behaves exact what is described in the specifications.
Return the verified code in ‘‘‘rust‘‘‘ code block. Here is the given rust code."
Input: "‘‘‘rust {The Input Rust Program} ‘‘‘"

Listing 5: SAFE’s prompt for self-debugging.

instruction = "You are an experienced formal language programmer. You are very familiar with

Verus, which is a tool for verifying the correctness of code written in Rust. Your mission is
to write correct proof code, including loop invariants and assertions to the given Rust code,
so that Verus can verify the give function behaves exact what is described in the
specifications, which is ‘requires' and ‘ensures‘'. The given verus code cannot be verified,
there exists errors in the proof code. Please help debug the given code according to the error
messages. Return the verified code in ‘‘‘rust‘'‘‘' code block."

input = "The given rust is:\n ‘‘‘rust {The Incorrect Rust

Program}''', and the error messages are:\n {‘‘'‘' {The Error Messages}‘‘‘}.\n"

C IMPLEMENTATION DETAILS

C.1 SPECIFICATION FILTERING

The example below shows two types of imperfect specification. The spec in the left column is
correct but incomplete for the binary search function, as an incorrect implementation that always
returns 0 would be accepted by this spec; the spec in the right column below is incorrect, as a
correct implementation may fail this spec when the input array has multiple elements matching the
search key.

#A correct, but incomplete specification. #An incorrect specification.
0 <= r, r >0 ==>%k >v[r - 1],

r < v.len(), r < v.len() -1 ==>%k < v[r + 1],

Listing[7shows an example of how we leverage test cases and Verus’ symbolic reasoning capability
to quickly score and filter specifications. For each function with a synthesized specification (i.e.,
Line 6-8 in Listing[7] in order to know whether this specification is consistent with a test case ¢, we
do the following: 1) we replace the function body with Verus’ assume statements. Each assume
tells Verus about the value of one input or output variable (these values come from the test case
t); 2) when an input/output variable is a container, several assert statements are inserted to make
sure the underlying theorem prover can correctly reason about the value of every element in the
container; 3) Verus is invoked to prove this function. If the specification is consistent with this test
case, verus verification would succeed; otherwise, verus verification would fail.

17

(SR SRS S) —_

[=2)

43
44

Under review as a conference paper at ICLR 2025

Listing 6: GPT-40’s prompt for proof generation.

system = "You are an experienced formal language programmer. You are very familiar with Verus,
which is a tool for verifying the correctness of code written in Rust."

instruction = """

Your missions are to

1. Add loop invariants to the given Rust code, if there are loops in the code, so that Verus
can verify the give function behaves exact what is described in the specifications

2. Add the proof blocks that could help Verus to prove the following code snippet. You need to
analyze which locations in the code need to be proved and add the proof blocks to help Verus

to prove the correctness of the code. You can insert multiple proof blocks in the code as long
as they are necessary to prove the correctness of the code. You can also include new ghost

variables that could help you to prove the correctness of the code.

The proof block looks like this:
proof {

// your proof code here

// assert(...)

// LEMMA_FUNCTION(...)

70 oo
} // Added by AI

Vo

Step 1: Add Loop Invariants

Please follow these steps in adding loop invariants for every loop:

1. You should identify every variable that is read in the loop (e.g., x[k], y), particularly
for array elements like x[k], and add an invariant about the initial value for EACH such
variable and array;

2. You should identify every variable that is written (e.g., y = ..., x.set(..,..)) in every
loop, and add an invariant about the value of that variable. Even if an invariant is already
specified earlier in the program, please do repeat it in every loop suitable.

3. You can leverage the spec functions and proof functions in the invariant.

Step 2: Constant propagation refinement

If an upper bound or a lower bound about a constant function parameter (e.g., X < ..., X >
.) is provided in the function pre-condition (i.e., in the ‘requires’ code block at the
beginning of the function),
please copy that (e.g., X < 10, X > 5) as a loop invariant to every loop in the function.
Even if an invariant is already specified earlier in the program, please do repeat it in every
loop suitable.

Step 3: Array length refinement

For every loop in the function, please identify every array that is read (e.g., x[k]) or
written (e.g., x.set(..,..)) in it, and then add a loop invariant that specifies the length of
the array (i.e., x.len() == ...).

Step 4: Quantifier range refinement

Please take the following steps to check every loop invariant that involves an array (e.g., x[
k]) in the given Rust code:

If this array x[k] has been modified in this loop through x.set (), leave this invariant as it
is, do NOT make any changes, and move on to the next invariant.

Otherwise, when there is no x.set() in the loop, please make sure that the invariant covers
every element in the array and hence has the form like ‘forall |k:int| 0<= k < x.len() ==>

whatever-property’. When you make this change, please use a comment to explain why you believe
the related array is never changed in the loop. Do NOT make any other changes to the code or
the loop invariant!

Step 5: Conditional loop invariant refinement

Your mission is to refine some loop invariants in the given Rust code only if the loop has
special handling for the first iteration. This is what you should do: if an existing loop
invariant P holds for all iterations of the loop except for the first iteration (e.g., some
variable updates may only (not) occur during the first loop iteration), please leave P as it
is and add another loop invariant conditioned on the loop index (e.g., index > 0 ==> P),
following the example below.

Do not change P or any other loop invariants in any other way.
wnn

As mentioned in the paper, to evaluate the completeness of a specification, we mutate existing test
cases to see if incorrect test cases can be rejected by a specification. In this example, we mutate
the output in the ground truth by adding a new value 15 into result vector. In this case, Verus will

18

Under review as a conference paper at ICLR 2025

report that the post-condition on Line 7 fails because 15 does not exist in vector a. If a synthesized
specification does not contain something like Line 7, this mutated test case will likely point out the
incomppleteness of that specification.

In our experiments, we take 5 ground truth test cases and 20 mutated wrong test cases on average
for scoring. We filter out all the specifications that have a score lower than 0.8 in correctness or 0.6
in incompleteness. To avoid too many specifications preserved for single program, we allow at most
three specifications to be preserved for a single function.

Listing 7: An example used for scoring and filtering based on test cases.

use vstd::prelude::x*;
fn main() {}
verus! {

pub fn SharedElements(a: Vec<i32>, b: Vec<i32>, result: Vec<i32>)
ensures

forall |k:int| 0 <= k < result.len() ==> (#[trigger] al@.contains(result[k]) && #[
trigger] b@.contains(result[k])),
forall |kl:int,k2:int| 0 <= k1l < k2 < result.len() ==> result[kl] != result[k2]
{

assume (a@ ="= seq![11, 12, 14, 131);

assume (b@ ="= seq![17, 15, 14, 13]);

assume (result@ ="= seq![14, 13]);

assert (a[0] == 11);

assert (a[l] == 12);

assert (a[2] == 14);

assert (a[3] == 13);

assert (b[0] == 17);

assert (b[1] == 15);

assert (b[2] == 14);

assert (b[3] == 13);

assert (result[0] == 14);

assert (result[l] == 13);

C.2 STATISTICS OF SYNTHESIZED DATA

As explained earlier in the paper, we obtained 45,495 Rust single-function programs from MBPP
training set and CodeNet dataset. After translating them into Verus-compatiable Rust programs,
we have 21,398 programs left for specification synthesis. The statistics of all synthesized data in
different round of our self-evolution process in shown in Table[d Note that, at the very beginning,
we put aside a random subset of CodeNet Rust programs aside to use for the evaluation of SAFE.
Those programs do not participate in the fine-tuning and are not included in the numbers shown in
Table [

In round 0, we employ GPT-4o to synthesize specification, retaining only the verified Rust functions
along with their specifications. This process was time-consuming, taking an entire month to syn-
thesize 3,673 verified programs. Even with our designed prompts, GPT-40 needs to sample 20-30
times for a single program on average. We then use the synthesized specifications to bootstrap the
self-evolving specification synthesis process, which is conducted over two rounds. In each round,
we leverage the fine-tuned model to generate specifications for all 21k Verus programs and select
the high quality ones for further fine-tuning. At the end, we use the selected 19,017 specifications
as inputs for the proof synthesis procedure. The numbers of verified programs and debugging fine-
tuning triplets are also shown in Table] As we can see, as many as 9,706 verified programs and
10,486 debugging data are produced after Round-2 model and are used to fine-tune the Round-3
model, the final proof-synthesis model.

19

Under review as a conference paper at ICLR 2025

Table 4: Statistics of synthesized data

Verus programs All specs Selected specs Verified programs Debugging data

Seed 21,398 - - - -
Round-0 - - 3,673 3,673 0
Round-1 - 102,549 16,530 8,368 9,910
Round-2 - 117,759 19,017 9,706 10,486

C.3 TRAINING HYPERPARAMETERS

Bootstrapped by 3,673 verified programs synthesized by GPT-40, we employ the DeepSeekCoder
model (Guo et al.,[2024) as the generator in the self-evolution procedure. We run the self-evolving
specification generation and auto-proving process multiple rounds. For specification generation, we
run two rounds. Proof generation is three. At each round of fine-tuning, we combine the verified
programs and self-debugging data pairs together as training data, and train DeepSeekCoder 5 epochs,
using a batch size of 128 and a learning rate of 1 x 1075,

D DISCUSSION AND LIMITATION

D.1 SCALING TO REAL-WORLD LARGE SOFTWARE PROJECTS

In this paper, we have focused on generating proofs for small programs mainly because there are
too few existing large Verus projects for us to fine-tune LLMs. Consequently, just like many code-
synthesis projects that start from small programs, we also focus on small programs as a starting point
for Verus proof-synthesis.

Since every function is the unit for Verus verification, we believe the LLM fine-tuned by SAFE on
functions in small programs would continue to be useful for functions in large projects. Of course,
if we apply SAFE to synthesize proof for large Rust projects, we expect a key challenge in how to
resolve code dependencies across functions. Specifically, a function may call another executable
function or specification function, and the callee function may exist in a different file and/or belong
to a different class. How to resolve all the code dependency and provide LLM with all the needed
information may require support that goes beyond machine learning.

D.2 FINE-GRAINED SELF-DEBUGGING

Figure [2] illustrates that increasing the number of self-debugging rounds hardly improves proof-
synthesis accuracy. This situation might be changed if we change the formation of our self-
debugging training data. Currently, the training data for self-debugging includes many pairs of
incorrect proof Yy and a corresponding correct proof Y,,. Sometimes, the incorrect proof may con-
tain many mistakes, causing many different verification errors. If future research can break-down
the difference between Yy and Y, figuring out which edit in Y, is used to fix which verification
error in Y, the resulting data can probably train a model that is better at fixing deeply flawed proof
through multiple rounds of debugging.

E ADDITIONAL EXPERIMENTS

E.1 STATISTICS OF VERUSBENCH

Figure [3]illustrates the token number distributions of specifications and proofs in VerusBench. For
preconditions, in Figure 3] we show that SV’s average token number is substantially larger than
that of MBPP and Tutorial. In contrast, SV’s average token number is substantially smaller than the
rest two as shown in Figure |3'_Bl Such statistics can, to some extent, reflect the difficulty of three
components in VerusBench, i.e., SV is relatively easiler than the rest two. When comparing the
human-written proof annotations for MBPP and Tutorial programs in VerusBench, Figure [3c|shows
that the average token number of proof annotations in MBPP is larger than that of Tutorial, although
there are some outliers.

20

Under review as a conference paper at ICLR 2025

s
N

The Token Number of Proofs

>
[

N *

The Token Number of Pre-Conditions
The Token Number of Post-Condition:

A

sv MBPP Tutorial Total sv MBPP Tutorial Total sv MBPP Tutorial Total

(a) The token number’s distribution (b) The token number’s distribution (c) The token number’s distribution
of preconditions of postconditions of ground-truth proofs

Figure 3: The statistics of specifications and proofs in VerusBench

E.2 DISTRIBUTION OF SPECIFICATION METRICS

Figure] shows the distribution of the correctness-score and the completeness-score of all the spec-
ifications synthesized during the self-evolving process of SAFE. As we can see, during the self-
evolving process, many trivially correct specifications were generated (i.e., 1.0 correctness score but
< 0.6 completeness score) — the clusters at the top of the figure and not overlapping with the gray
rectangle. These specifications tend to lead to trivial proofs and hence are filtered out. There is also
a big cluster of incorrect specifications that have incorrectly rejected all test cases at the bottom-right
corner of the figure (i.e., 0 correctness score but 1.0 completeness score). There is no way Verus can
prove the Rust function satisfies these specifications, no matter what proof annotations are used, so
it is good that SAFE filters all of them out.

E.3 RESULTS OF STATISTICAL SIGNIFICANCE TESTING

SAFE Compared to Raw Models. Table [5]shows the p-values between SAFE under various set-
tings and its base models. We highlight p-values that are larger than 0.05 in italics. From this table,
we can observe that the p-values of all fine-tuned models (LLaMa and DeepSeekCoder) are less than
5E-7, indicating the significant improvement of SAFE.

Table 5: The p-values of SAFE’s accuracy compared to raw models, non-significant data (p > 0.05)
points are pointed out in Italics

GPT-40 LLaMa3.1-8B-Instruct DeepSeekCoder-33B-Instruct

Benchmark Accuracy
SAFE SAFE SAFE+ SAFE SAFE+
Accuracy @1 2.01E-03 4.68E-11 3.88E-14 2.34E-09 6.33E-13
VerusBench Accuracy@10 4.69E-03 5.39E-07 5.23E-12 5.39E-07 1.53E-15
Accuracy @100 - 8.67E-31 9.25E-45 2.45E-34 5.15E-64
CodeNet Test Accuracy@1 0.08 2.26E-122 1.07E-24 1.54E-142 1.51E-215

Comparison between Various Rounds of Self-Evolving. Table [6] shows the p-values of SAFE’s
accuracy between various rounds of self-evolving. We highlight p-values that are larger than 0.05 in
italics. When compared to round 1, round 2 and round 3 show significant improvement in Accuracy,
especially after self-debugging. Additionally, we also show that there is insignificant improvement
between round 2 and round 3 except the accuracy in Tutorial after self-debugging. Thus, three
rounds of self-evolution is sufficient for our approach.

Comparison between SAFE’s Accuracy with Low/High Quality Specifications. Table [7| shows
the p-values of SAFE’s accuracy between round 3 and low quality ones. We highlight p-values that
are larger than 0.05 in italics. We show that in most scenarios (except Accuracy@1 in round 2 +
low quality specifications), low quality specifications might leads to a significant decrease in terms
of SAFE’s end-to-end effectiveness.

21

Under review as a conference paper at ICLR 2025

P

081 ® o o o © o o .

& 0.6 1 e o o e o o ® o o o O O o o e o o

(]

=

9] [0 Selected Area .

£

o

(@) 0.4 o o *« o o ® e o o 0 o o o o o0 o o
0.21 e o o e o o o o o o o o o o o
0.01 . . . ® soce o . o 0oce o . . .

0.0 0.2 0.4 0.6 0.8

Completeness

1.0

F 30000

25000

- 20000

15000

10000

Number of Specifications

5000

Figure 4: The correctness and completeness distribution of SAFE synthesized specifications.
The coordinate of the center of every circle indicates the Completeness-score (x-axis) and the
Correctness-score (y-axis) of the corresponding cluster of specifications; the size and color of each
circle reflects the number of specifications that are in one cluster. The gray rectangle highlights the
range of accepted scores: all the spec-clusters that overlap with the gray rectangle are considered
good enough and hence kept by SAFE.

Table 6: The p-values of SAFE’s accuracy between various rounds of self-evolving, non-significant
data (p > 0.05) points are pointed out in Italics

Paired T-Test Mot Proof Generation Self-Debugging
Rounds etric
SV MBPP Tutorial Total SV MBPP Tutorial Total
Round 1 & 2 Accuracy @1 1.09E-03 1.00 4.40E-11 0.06 6.66E-07 0.17 2.74E-13 2.30E-03
Accuracy@10 0.06 1.00 9.14E-11 0.15 7.97E-03 1.00E-05 5.24E-13 3.60E-05
Round 1 & 3 Accuracy @1 2.19E-05 0.79 3.04E-07 0.06 1.36E-05 0.06 3.04E-07 4.98E-03
Accuracy@10 7.97E-03 0.37 5.24E-13 4.12E-02 1.67E-05 1.70E-06 1.17E-21 9.11E-07
Round 2 & 3 Accuracy @1 0.33 0.79 0.12 1.00 0.53 0.63 2.10E-02 0.81
Accuracy @10 041 0.37 0.47 0.55 0.06 0.72 2.86E-02 0.44

E.4 SELF-EVOLUTION WITH SMALL BACKBONE MODELS

To evaluate the effectiveness of our self-evolution framework on LLMs with a smaller number of
parameters, we conducted additional experiments using DeepSeekCoder-1.3B (DSCoder-1.3B) as
the backbone model. In this experiment, we follow the same experimental settings described in
Section[#.1] bootstrapping DSCoder-1.3B with GPT-40’s predictions.

22

Under review as a conference paper at ICLR 2025

Table 7: The p-values of SAFE’s accuracy with low quality specifications, compared to round 3 with
high quality ones, non-significant data (p > 0.05) points are pointed out in Italics

Data Source Metric Proof Generation Self-Debugging
NY% MBPP Tutorial Total NY% MBPP Tutorial Total
Low-Qualit Accuracy@1 5.15E-64 0.79 3.04E-07 3.22E-06 3.62E-71 0.72 0.40 1.98E-04
¥ Accuracy@10 4.04E-87 0.53 9.39E-08 5.38E-08 8.66E-71 0.15 3.26E-03 4.79E-07
. . Accuracy @1 1.94E-13 1.00 8.07E-02 245E-02 1.71E-12 072 0.40 0.07
Mix-Quality

Accuracy@10 2.78E-08 0.53 2.27E-04 3.05E-02 5.34E-10 0.23 2.86E-2 2.51E-02

Table 8: Each Round’s Accuracy with DeepSeekCoder-1.3B as the Backbone Model

Proof Generation Self Debugging (k + k * k)
Metric Accuracy@1 Accuracy@10 \ Accuracy@1 Accuracy@10
Raw 1.44 6.47 - -
Round 1 12.95 24.46 12.95 24.46
Round 2 19.42 26.69 24.46 52.52
Round 3 21.58 40.29 27.34 57.55

After the same rounds of self-evolving specification generation and proof generation, the results on
VerusBench are listed in Table[8] The results indicate that our self-evolution framework effectively
improves the accuracy even with a smaller backbone model of 1.3 billion parameters.

F CASE STUDIES

F.1 SAFE’S ADVANTAGES COMPARED TO GPT-40

To demonstrate the effectiveness of SAFE, we show an example proof generated by GPT-40 without
our prompts and SAFE in Listing[8|and Listing[9] respectively.

In Listing [8] GPT-4o introduces four loop invariants, specifying that (1) the index variable i does
not exceed the length of input array x1en; (2) the length of the input array remains during the loop;
(3) the values of the first i elements are equal to their original values plus 4; (4) the values of the rest
elements are equal to their original values. However, GPT-40 neglects to include proofs to address
the potential arithmetic underflow/overflow, thus leading to the errors reported in Lines 30-64.

In contrast, SAFE addresses this error and successfully generates a correct proof for this program.
Listing[9]shows a correct proof generated by SAFE (DeepSeekCoder). Compared to GPT-40’s proof,
it adds another loop invariant in Line 19 pointing out that the original values of the input array are
less than or equal to 0x7FFFFFFB, thus addressing the arithmetic underflow/overflow error.
SAFE’s effectiveness mainly credits to our self-evolution framework.

F.2 THE EFFECTIVENESS OF OUR SELF-DEBUGGING MECHANISM

In Listing [T0] and Listing [TT} we demonstrate the effectiveness of our self-debugging mechanism
during proof synthesis with another example. This example program checks whether a given ar-
ray is sorted by checking whether there exists a pair of adjacent elements where arr [index] >
arr[index + 1].

Listing [T0]shows the initial proof generated by SAFE, which includes loop invariants: (1) the index
does not exceed the length of the given array; (2) all elements before the current index satisfy the
‘‘sorted’’ property. However, during each iteration of this loop, this program checks the current
element against the next one and terminates the loop when index equals arr.len() - 2. Asa
result, the loop invariants fail to account for the last element, leading to the error described in Lines
29-41.

SAFE successfully fixes this error via self-debugging. The error message clearly indicates that the
loop invariant forall |i: int, J: dint| 0 <= i < j < index cannot be verified. Using

23

Nl BN e Y R R S N

Under review as a conference paper at ICLR 2025

Listing 8: An incorrect proof of my fun2 generated by GPT-4o.

use vstd::prelude::x*;
fn main() {}
verus! {
pub fn myfun2 (x: &mut Vec<i32>)
requires
forall |k:int| 0 <= k < old(x).len() ==> old(x) [k] <= Ox7FFF_FFFB,
ensures
x@.len() == old(x)Q@.len(),
forall |k:int| 0 <= k < x.len() ==> #[trigger] xQ@[k] == old(x)@[k] + 4,
{
let mut i: usize = 0;
let xlen: usize = x.len();
while i < xlen
invariant
0 <= 1 <= xlen,
x@.len() == old(x)Q@.len(),
forall |k:int| 0 <= k < i1 ==> #[trigger] xQ@[k] == old(x)Q@[k] + 4, I
forall |k:int| i <= k < xlen ==> x@[k] == old(x)@[k],

x.set (i, x[i] + 4);
i=1i+1;

note: while loop: not all errors may have been reported; rerun with a higher value for —-

multiple-errors to find other potential errors in this function
-—> /playground/src/main.rs:14:5
|

14 | / while i < xlen
15 | | invariant
16 | | 0 <= 1 <= xlen,
17 1 1 x@.len() == old(x)@.len(),
000 |
22 | | i=1i+1;
23 | | }
|

note: recommendation not met
--> /playground/src/main.rs:18:39
|

18 | forall |k:int| 0 <= k < i ==> #[trigger] xQ@[k] == old(x)@[k] + 4,
O
|
::: /playground/verus/source/vstd/seq.rs:62:18
|
62 | 0 <= 1 < self.len(),

| - recommendation not met

error: precondition not satisfied
--> /playground/src/main.rs:21:9
I

21 | x.set (i, x[1] + 4);
| Arnrannmassnasasann
I
::: /playground/verus/source/vstd/pervasive.rs:378:13
I
378 | i < old(self).len(),

error: aborting due to 3 previous errors

this feedback from Verus, SAFE modifies the boundary condition in that loop invariant, i.e., the
ranges of the variable i and j in that invariant. The adjusted invariant forall |i: int, j:
int| 0 <= i < j < index + 1 allows Verus to successfully finish the proof.

24

[cBEN e Y R N S

Under review as a conference paper at ICLR 2025

Listing 9: The correct proof of my fun2 generated by SAFE.

use vstd::prelude::x*;

fn main() {}

verus! {

pub fn myfun2 (x: &mut Vec<i32>)

requires

forall |k:int| 0 <= k < old(x).len() ==> old(x) [k] <= Ox7FFF_FFFB,
ensures

xQ@.len() == old(x)@.len(),

forall |k:int| 0 <= k < x.len() ==> #[trigger] x@[k] == old(x)Q@[k] + 4,
{

let mut i: usize = 0;

let xlen: usize = x.len();
while (i < xlen)

invariant
0 <= 1 <= xlen,
x@.len() == old(x)@Q@.len(),
forall |k:int| 0 <= k < i ==> #[trigger] xQ@[k] == old(x)@[k] + 4,
forall |k:int| i <= k < xlen ==> x@[k] == old(x)@[k],

forall |k:int| 0 <= k < xlen ==> o0ld(x) [k] <= Ox7FFF_FFFB,

x.set (i, x[1i] + 4);
i=1+1;

verification results:: 2 verified, 0 errors

F.3 AN INEFFECTIVE EXAMPLE

We reported that SAFE failed to generate correct proof for 20.86% of the programs in VerusBench,
even after sampling 100 proofs and 100 debugged proofs for each incorrect proof (i.e., Accu-
racy@100). In Listing [12] and Listing [T3] we analyze an example where SAFE fails to generate
a correct proof. This program removes odd numbers from a given array by scanning the input array
arr and appending the even numbers to a new array, even_list.

Listing [T2] shows that SAFE successfully generates the main structure of the proof, verifying that
the elements in even_list correspond to the even elements in the first index elements of arr.
However, Verus reports errors indicating that the loop invariants are not satisfied both before and
after the loop (Lines 34-44 in Listing [T2). Even under the Accuracy@100 setting, where 100 *
100 debugged proofs are generated, SAFE encounters similar errors, and fails to generate a correct
proof.

The root cause of this error is that proving this program needs to add assert statements and leverage
the reveal feature of Verus 2024). We suspect the reveal feature was never synthesized in
any finetuning dataset, so the final SAFE model also lacks sufficient domain knowledge to prove this
program. This limitation can be substantially mitigated by incorporating a larger and more diverse
training set during the initial round of self-evolution.

F.4 AN EXAMPLE PROOF WITH A LOW-QUALITY SPECIFICATION

In Section[d.2.4] we demonstrate that the quality of specifications contribute substantially to the end-
to-end effectiveness of SAFE. Listing[T4]presents an example proof with a low-quality specification.
This program computes the greatest common divisor of two integer number using the Euclidean Al-
gorithm. However, this specification merely requires that the result be greater than zero, * ‘result
> 0’ ', without ensuring that the result should be divisors of both inputs a and b.

Programs with such low-quality specifications might lead to extremely simple proofs, which are
very different from proofs in more realistic tasks. For example, the proof annotations synthesized
in Lines 16-17 simply copy the function pre-condition — a > 0 and b >= 0. For more realistic
tasks, proofs can rarely get done this way. Consequently, putting many proofs with this quality
(i.e., all resulted from low-quality specifications) into the fine-tuning dataset does not help model’s
evolution.

25

0N B W —

Under review as a conference paper at ICLR 2025

Listing 10: An incorrect proof of is_sorted generated by SAFE before self-debugging.

use vstd::prelude::x*;

fn main() {}

verus! {

fn is_sorted(arr: &Vec<i32>) -> (is_sorted: bool)
requires

arr.len() > 0,

ensures

is_sorted == (foralll|i: int, Jj:

int| 0 <= i < j < arr.len() ==> (arr[i] <= arr[]jl)), I

let mut index = 0;
while index < arr.len() - 1

}

invariant
index < arr.len(),

forall |i: int, j: dint| 0 <= i < j < index ==>

(arr[i] <= arr([jl),

if arr[index] > arr[index + 1] {
return false;
}

index += 1;

true

}
Yy /7

verus!

Error messages from Verus:
error: postcondition not satisfied
--> /playground/src/main.rs:10:1

|
|
|
10 |
|
|
|
22 |

23 |
|

error:

int|

0 <= i < j < arr.len()

is_sorted == (forallli: int, Jj:
/A
| let mut index = 0;
| while index < arr.len() - 1
| invariant
|
| true
|
|

at the end of the function body

--> /playground/src/main.rs:15:13

|
15 |

invariant not satisfied at end of loop body

==> (arr[i] <= arr([j])),
failed this postcondition

forall|i: int, Jj: int| 0 <= i < j < index ==> (arr([i] <= arr[j]l),

error: aborting due to 2 previous errors

Standard Output
verification results:: 0 verified, 2 err

ors

26

0N AW —

O 0NN RN —

Under review as a conference paper at ICLR 2025

Listing 11: The correct proof of is_sorted fixed by SAFE after self-debugging.

use vstd::prelude::x*;

fn main() {}
verus! {
fn is_sorted(arr: &Vec<i32>) -> (is_sorted: bool)
requires
arr.len() > 0,
ensures
is_sorted == (forall|i: int, j: int| 0 <= 1 < j < arr.len() ==> (arr[i] <= arr[jl)),
{
let mut index = 0;
while index < arr.len() - 1
invariant
0 <= index <= arr.len() - 1,
arr.len() > 0,
forall|i: int, j: int| 0 <= i < Jj < index + 1 ==> (arr[i] <= arr([jl),

if arr[index] > arr[index + 1] {
return false;
}
index += 1;
}

true

} // verus!

0 errors

2 verified,

verification results::

Listing 12: An incorrect proof of remove_odds before and after self-debugging.

use vstd::prelude::x*;

fn main() {}
verus! {
fn remove_odds (arr: &Vec<u32>) -> (even_list: Vec<u32>)
ensures
even_list@== arr@.filter (|x u32| x % 2 == 0),

let mut even_list: Vec<u32> = Vec::new();
let input_len = arr.len();

let mut index = 0;
while index < arr.len()
invariant

0 <= index <= input._len,

// The following is the changed loop invariants before self-debugging.

- even_list@== arr@.filter(|x: u32| x % 2) .take (index) .collect (),
// The following is the changed loop invariants after self-debugging.
+ even_list@== arr@.filter(|x: wu32| x % 2) .take (index as int)
+ filter(|x: u32| x % 2

{

if (arr[index] % 2 == 0) {
even_list.push(arr[index]);
}
index += 1;

}

even_list

}

} // verus!

invariant not satisfied at end of loop body
-—> /playground/src/main.rs:19:13

|
19 | even_list@ == arr@.take(index as int).filter(|x
|
error: invariant not satisfied before loop
--> /playground/src/main.rs:19:13
even_list@ == arr@.take(index as int).filter(|x

The changed loop invariants before and after self-debugging are marked in - red and + green.

27

O 0 J WA W —

O 0NN W=

Under review as a conference paper at ICLR 2025

Listing 13: The ground truth proof of remove_odds.

use vstd::prelude::x*;

fn main() {}

verus! {

fn remove_odds (arr: &Vec<u32>) —-> (even_list: Vec<u32>)
ensures

o

even_list@== arr@.filter(|x: u32| x % 2 == 0),

let input_len = arr.len();

assert (arr@.take (0int) .filter(Ix: u32| x % 2 == 0) == Seq::<u32>::empty());
let mut index = 0;
while index < arr.len()
invariant
0 <= index <= arr.len(),
even_list@== arr@.take(index as int).filter(|x: u32| x % 2 == 0),

{
let mut even_list: Vec<u32> = Vec::new(); I

°

if (arr[index] % 2 == 0) {
even_list.push(arr[index]);
}
assert (arr@.take((index + 1) as int) .drop.-last () == arr@.take(index as int));
reveal (Seq::filter);
index += 1;

}
assert (arr@== arr@.take (input_len as int));
even_list

}

} // verus!

verification results:: 2 verified, 0 errors

Listing 14: An example proof of gcd with a low quality specification.

use vstd::prelude::x*;
fn main() {}

verus! {
fn gcd(a: u32, b: u32) -> (result: u32)

requires
a >0,
b >= 0,
ensures

result > 0,

let mut a = a;

let mut b = b;

while b != 0
invariant

verification results:: 2 verified, 0 errors

28

	Introduction
	Background and Related Work
	Verus verification tool
	Prior work in proof-benchmark building and self-evolving framework

	Approach
	Step 1: Generating Verus-compatible Code
	Step 2: Self-evolving Specification Synthesis
	Step 3: Self-evolving Proof Synthesis

	Experiments
	Experimental Setup
	Dataset
	Benchmark and Metrics

	Evaluation Results
	Main Results
	Benefits from Self-Evolving
	Improvement of Self-debugging
	Impact of Specification Quality

	Conclusion
	Verus Examples
	Imperfect Proof Example
	More Complicated Proof Annotations

	Prompts
	Implementation Details
	Specification Filtering
	Statistics of Synthesized Data
	Training Hyperparameters

	Discussion and Limitation
	Scaling to Real-World Large Software Projects
	Fine-Grained Self-Debugging

	Additional Experiments
	Statistics of VerusBench
	Distribution of Specification Metrics
	Results of Statistical Significance Testing
	Self-Evolution with Small Backbone Models

	Case Studies
	SAFE's Advantages Compared to GPT-4o
	The Effectiveness of Our Self-Debugging Mechanism
	An Ineffective Example
	An Example Proof with a Low-Quality Specification

