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ABSTRACT

Retrieval-augmented generation (RAG) methods for graph learning enhance the
generalization of Graph Neural Networks (GNNs) by retrieving and integrat-
ing structurally relevant subgraphs, addressing their limitations on unseen or
distribution-shifted graphs. However, current RAG-based methods mainly op-
erate on zero- (nodes) and one-dimensional (edges) elements, failing to capture
higher-dimensional topological structures, such as cycles, that are essential for
identifying critical substructures and modeling complex relational patterns. This
limitation hinders the retrieval of high-dimensional topological characteristics and
weakens reasoning over graphs with complex higher-dimensional interactions. In
this paper, we propose a novel Retrieved Cellular Topologies-Augmented Graph
Learning Framework (ReTAG), that leverages cellular complexes to model and
retrieve multi-dimensional topology-aware subgraphs, termed cellular topologies.
These structures encode multi-dimensional topological interactions across nodes,
edges, and higher-dimensional cells. During inference, ReTAG retrieves cellu-
lar topologies based on their topological and semantic alignment with the input
graph, and integrates them via a multi-dimensional topological message-passing
mechanism that enables effective propagation of topological information across
dimensions. Experiments on node classification, link prediction, and graph clas-
sification show ReTAG outperforms existing methods. The implementation code
is available in the supplementary material.

1 INTRODUCTION

Graph representation learning encodes graph-structured data into low-dimensional embeddings that
capture topological and semantic information, underpinning relational modeling in domains such as
social networks [Matsugu et al.| (2023)); Mane et al.| (2025); [Huang et al.| (2025), biochemistry |Yang
et al.| (2023); | Xu et al.| (2023)), and traffic systems Zhang et al.[(2025)); |[Fang et al.[(2025b). Within
this context, Graph Neural Networks (GNNs) Kipf & Welling| (2016b); Zhang et al.|(2024), leverag-
ing message-passing architectures, have become the dominant approach, enabling more expressive
relational modeling than traditional node embedding methods |Grover & Leskovec| (2016). How-
ever, despite their effectiveness, GNNs often exhibit limited generalization to unseen graphs with
substantially different topologies [Zhao et al.| (2024), a sensitivity that poses significant challenges
for real-world applications where graph structures vary widely.

To overcome this limitation, retrieval-augmented methods for graph learning have recently emerged
as a promising approach [Lewis et al.| (2021); Jiang et al.| (2024), drawing inspiration from retrieval-
augmented generation (RAG) techniques in NLP. RAG methods enhance GNNs by retrieving ex-
ternal subgraphs that are structurally or semantically relevant to the input, and integrating them
into the learning pipeline to provide additional contextual information. Notably, RAGRAPH Jiang
et al.| (2024) have demonstrated enhanced adaptability by incorporating retrieved graph fragments
through message-passing prompt mechanisms. However, existing RAG methods focus mainly on
low-dimensional elements (nodes and edges), overlooking higher-dimensional structures like cycles
that are essential for retrieving meaningful substructures and reasoning over complex relations.

In many real-world graphs (as illustrated in Figll), critical structural information arises not
only from O-dimensional nodes and 1-dimensional edges, but also from high-dimensional
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In this work, we propose a novel Retrieved Cellular Topologies-Augmented Graph Learning Frame-
work (ReTAG) that leverages cellular complexes to model and retrieve multi-dimensional topology-
aware subgraphs, termed cellular topologies. Specifically, ReTAG first lifts input graphs into cellular
complexes to capture high-dimensional topological structures such as cycles, enabling the extrac-
tion of multi-dimensional topology-aware substructures. These substructures are organized into a
knowledge base that encodes rich topological and semantic information beyond traditional nodes
and edges. During inference, ReTAG retrieves cellular topologies that align both topologically and
semantically with the input graph, and integrates them through a multi-dimensional topological
message-passing mechanism designed to propagate topological information effectively across dif-
ferent dimensions. Furthermore, a cellular topological contrastive learning module is introduced
to enhance structural discrimination by enforcing feature consistency within each 2-cell, thereby
capturing topological semantics beyond conventional pairwise interactions. Extensive experiments
demonstrate that ReTAG significantly outperforms existing methods across diverse graph scenarios.

2 RELATED WORKS

Graph representation learning aims to capture structural and semantic information from graph-
structured data. GNNs have become a dominant tool in this area by aggregating information through
message passing |Cai et al.[(2018); |Liu et al.| (2021b)); Bodnar et al.| (2021bid). Despite their success,
GNNss struggle with dynamic or multi-task settings due to rigid architectures and fixed message-
passing schemes that lack task-aware modulation and flexible inference control.

To improve model flexibility and task adaptivity, recent studies have proposed graph prompt learn-
ing, inspired by prompt-based tuning in natural language processing |Wei et al.|(2023)); Zhou et al.
(2023). This paradigm typically involves pre-training GNNs on large-scale graph Hu et al.[(2020);
You et al.|(2020a); |Qiu et al.| (2020); Zhao et al.| (2024); |Yu et al.|(2024) and guiding downstream
task execution through prompt-like structures that inject task-relevant information. For example,
VNT [Tan et al.| (2023)) introduces virtual nodes as soft prompts to encode task-level context and
guide message propagation. GraphPrompt|Liu et al.|(2023b) proposes a task-specific readout mech-
anism that learns to aggregate node representations differently depending on the downstream ob-
jective. GraphPro [Yang et al.| (2024b)) further designs spatial- and temporal-aware gating mecha-
nisms, adapting the prompt to dynamic graph settings like recommender systems. PRODIGY Huang
et al.| (2023b)) constructs a task graph as an explicit prompt structure and learns cross-graph in-
context learning capabilities by interacting it with a data graph via a transformer-based module.
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ProNoG |Yu et al.| (2025a) proposes a novel pre-training and prompt learning framework tailored
for non-homophilic graphs, introducing a conditional network that captures node-specific relational
patterns to enhance downstream task performance. Graph prompt learning typically presumes struc-
tural alignment with pretraining data, hindering generalization to graphs with divergent topologies.

To overcome this limitation, recent work has drawn inspiration from RAG in NLP [Lewis et al.
(2021); [Zhao et al. (2023)), where external information is retrieved and injected into a pre-trained
model to support better generalization. In the context of graph learning, a representative effort is
RAGRAPH |Jiang et al.| (2024), which enhances GNNs through a retrieval-based framework that
leverages a toy-graph library to incorporate structurally or semantically similar graphs via message-
passing prompting, enabling adaptation without retraining. Despite their effectiveness, existing
graph RAG methods primarily rely on low-dimensional structures, overlooking higher-dimensional
topologies crucial for capturing key substructures and complex relations.

Additional related works on topological deep learning are discussed in Appendix

3 PRELIMINARIES

Definition 1. (Cell Complex Hansen & Ghrist| (2019)). A regular cell complex is a topolog-
ical space X decomposed into a collection of disjoint subspaces {z, }acpy, referred to as cells,
satisfying the following conditions:

1. For each point p € X, there exists an open neighborhood intersecting only finitely many cells.

2. For any pair of cells =, x,, the intersection x. N T, is nonempty if and only if =, C T, where
T,, denotes the topological closure of z,.

3. Each cell z,, is homeomorphic to an open ball in R™ for some non-negative integer n.

4. (Regularity) The closure T, of every cell is homeomorphic to a closed ball in R"«, with the
interior mapped homeomorphically onto z,, itself.

Definition 2. A cellular lifting map is a function f : G — X from the space of graphs G to
the space of regular cell complexes X, satisfying that two graphs G1,G2 € G are isomorphic if
and only if their corresponding cell complexes f(G1) and f(G3) are isomorphic. Intuitively, a cell
complex is built hierarchically by first considering 0-cells (vertices), then attaching 1-cells (edges)
via their endpoints, and further incorporating higher-dimensional cells—such as 2-cells—by gluing
disks along cycles.

Definition 3. (Retrieved Cellular Topologies-Augmented Graph Learning). Given a graph G, a
cellular lifting map f : G — X is conducted from the space of graphs to the space of regular
cell complexes. To construct a cell complex knowledge base X = {X,}, we extract localized
subcomplexes from the evolving complex X centered around a master O-cell 20, , defined as the 0-
cell with the highest degree in the complex. Each subcomplex includes the set k-hop y o), x 1) (23,)
of 0- and 1-cells reachable within & hops from x¥ , as well as all 2-cells 22 € X () such that there
exists acell 2! € k-hop (o), x ) (29,) with 2! < 2%, meaning 2" is a face of 2. To enable retrieval,
each cell complex X, is indexed by a composite key that includes: the timestamp 7, the master
0-cell embedding h?,, and a two-dimensional topological characteristic h2 obtained by pooling over
all 2-cells within X,,. Retrieval is performed via similarity over keys to obtain values such as task-
specific output vectors {0; € R | z; € X, } and cell complex embeddings {h; € R | z; € X, }.

Given a graph G, we first split it into training and testing subsets, G = Giyain U Giest, and lift them
into a regular cell complex X = Xy ain U Xiest Viaamap f : G — X. Each unit (e.g., a O-cell x?,
1-cell :v}j, or complex X ) has label y; if and only if it resides in Xy;4i,. The goal is to predict Vs
by retrieving relevant cell complexes and propagating structure-aware representations.

4 THE RETAG FRAMEWORK

In this section, we present the architecture of ReTAG (illustrated in Figure[2)), a retrieval-augmented
graph learning framework built upon multi-dimensional cellular topologies. ReTAG is composed
of three key components: a Cellular Representation and Knowledge Extraction module that lifts
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Figure 2: The overview of Retrieval Cellular Topologies-Augmented Graph Learning Framework.

input graphs into cellular complexes and constructs a cell complex knowledge base; a Retrieval-
Augmented Graph Inference module that retrieves semantically and topologically aligned subcom-
plexes to guide graph learning; and a Cellular Topological Contrastive Learning module that regu-
larizes learning and enhances generalization through topology-aware objectives.

4.1 CELLULAR REPRESENTATION AND KNOWLEDGE EXTRACTION

Fundamental Cycle-Guided Complex Lifting. We construct a 2-dimensional regular cell com-
plex from the task graph G = (V, E, T') by first treating it as a 1-dimensional Cell complex, where:
Each vertex v € V is a 0-cell, forming the 0-skeleton X (°); Each edge (u,v) € E is a 1-cell attached
to the 0-skeleton, yielding the 1-skeleton:

XD =xOy{e| (u,v) € E}. (1)

To identify higher-dimensional structures, we first fix a spanning tree 7 C G. Since 7 is con-
tractible, we can collapse it to a single point via the quotient map:

v:G— G/T, )
which collapses the entire subtree 7 to a single point. Here, G/7T denotes the quotient space ob-
tained by identifying all vertices and edges of 7 to a single point.

Under this contraction, each edge ¢ = (u,v) € E\ T corresponds to a fundamental cycle formed by
adding e to the collapsed tree point, as the non-tree edges become loops attached to that point. The
preimage ! (e) recovers the unique cycle c, in the original graph, consisting of e together with the
tree path in 7. For each such cycle, we attach a 2-cell by choosing an attaching map:

e 0D* =2 §1 — ¢, c XM, 3)
and extending it via a characteristic map

¢6:D2—>X7 ¢6|8D2:(p€7
where the attaching map ¢,, glues the boundary of the 2-cell D? onto the 1-skeleton X (V), 22 =
®.(D?) defines the 2-cell corresponding to edge e.

Formally, the collection of these 2-cells constitutes

X ={22~D?|e=(uv) € E\T}, 4)
where each disk D? is attached along its boundary D? = S via the loop ¢, ¢ X1,
Proposition 1. (Proof in Appendix ) G/T is homotopy-equivalent to G, and v induces an
isomorphism on the first homology group H1(G;Z).

Proposition 2. (Proofin Appendix ) Each non-tree edge e € E\T induces a unique fundamen-
tal cycle in G, which becomes a nontrivial loop in G/T. The collection of these loops forms a basis
of the first homology group H1(G;7Z), capturing all independent cycles and providing a concise
topological summary of the graph.
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Multi-dimensional Topological Message Passing (MTMP). We design a two-stage message
passing mechanism leveraging the hierarchical structure of the cell complex. The first stage prop-
agates information along the 1-skeleton via alternating message exchanges between nodes (0-cells)
and edges (1-cells) over L hops. The second stage allows cells of all dimensions to propagate and ag-
gregate high-dimensional information via their attached higher-dimensional cells (2-cells), enabling
rich topological context exchange across different cell dimensions.

To model these interactions, we define three message passing operations over each cell complex z,
corresponding to its faces, cofaces, and adjacent complexes:

m ! (z) = AGGye 7o) (MF (B, RL)),
mgt (z) = AGGyec(r) (Me (RL,RL)), )
mi (2) = AGGyen, (o) (My (R, Ry, hLy,))

where [ indicates the iteration step, F(x) = {y | y < z} and C(x) = {z | < z} denote the sets
of faces and cofaces of complex z, respectively, with < representing the face relation (i.e., y < x
means y is a face of x). The set N;(z) contains complexes adjacent to x via a shared coface.

We incorporate the above message types into a two-stage message propagation scheme: The first
stage enables a topological expansion over 1-skeleton between 0-cell and 1-cell complexes. The
representation is updated as:

h', = UPDATE (h%, m/(z), m: (), (6)
where the first-stage message passing iterates up to L hops.

The second stage integrates the three message types, allowing cells of all dimensions to propagate
and aggregate high-dimensional information through their attached 2-cells, thereby enriching the
representation as:

RU+1) — UPDATE (h£7 mk(z), m& (), mf“(x)) . ()

Cell Complex Knowledge Base Construction. Finally, we construct the cell complex knowledge
base X = {X,}. To mitigate the dominance of high-degree 0-cells (i.e., nodes) and better capture
long-tail topological patterns, we adopt an inverse importance sampling strategy for selecting seed
0-cell complexes. The importance score of each 0-cell complex z is defined as a convex combination
of its PageRank score PR(x) and its degree deg(z) using the formula I(z) = a- PR(z) 4+ (1 — ) -
deg(z), where « € [0, 1] balances the relative weight between centrality and connectivity. Sampling
probabilities are computed by normalized inverse importance:

1/(I(xz;) +¢€)

p(zi) = ; ®)
Y1/ U(g) +e)
where € > 0 is a small constant ensuring numerical stability.
Each local cell complex X, is defined as the k-hop neighborhood around the master O-cell 20, i.e.,

the 0-cell with the highest degree in the complex. It comprises all O-cells and 1-cells reachable within
k hops from 2 , along with all 2-cells having at least one 1-cell face within this neighborhood.
To enhance structural diversity while preserving higher-dimensional topology, we apply topology-
aware augmentations—such as node dropout, edge rewiring, and Gaussian perturbation—under the
constraint that no 2-cell is disrupted. These augmentations generate multiple structurally consistent
instances of the local complex, facilitating robust learning of topological representations.

For each local complex X, the key is defined as k;, = [75, h?,, h2], where 7, is the current time step,
hY, denotes the embedding of the master O-cell, and h?2 is a pooled two-dimensional topological

feature summarizing all 2-cells within X,. The corresponding value is v, = {[o;, h;] | x; € X},
containing the output vectors o; and embeddings h; of the constituent cell complexes.

4.2 RETRIEVAL-AUGMENTED GRAPH INFERENCE WITH TOPOLOGICAL COMPLEXES

Cell Complex Retrieval Process. Given a query graph G,, we first apply the lifting map f :
G — X and employ the Multi-dimensional Topological Message Passing framework to obtain its
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cell complex representations. The query key is defined as k, = [7,, h?, hg], where 7, denotes the
time step, hQ is the embedding of the central O-cell, and h3 represents a pooled two-dimensional
topological feature summarizing all 2-cells within the query complex X,. The topK cell complexes
Xiopk are selected based on a similarity score computed as a weighted combination of the factors:

S(kQ7 kb) =wX [ST(TQ7 Tb)’ So(h(c), h?n)v 52(’137 hg)]Tv 9

where w = [w;, Wy, 3] denotes a set of hyperparameter weights, S, (7,, 1) = e~ "7l captures
temporal similarity with a decay rate 7, and both Sy(-,-) and Sa(-,-) compute cosine similarity
between the corresponding features.

Cellular Knowledge Injection Propagation. Within each retrieved cell complex X, € Xropk,
we perform intra-complex aggregation to propagate information from the constituent cells to the
master O-cell using the proposed Multi-dimensional Topological Message Passing (MTMP) module.
Specifically, both the task-specific output vectors o; and hidden embeddings h; of the constituent
cells z; € X, are aggregated and transmitted to the master 0-cell 22, :

20, = MTMP ({z; | z; € X,}), (10)

where z; € {0;,h;} andz", € {0, h?, }. For parameter-free settings, such propagation can be pre-
computed and cached during knowledge base construction to improve efficiency during inference.

Then we perform inter-complex aggregation, where the retrieved master O-cells 2, from the selected
cell complexes X, € Xrpk act as knowledge anchors to enhance the query center O-cell 2% in X, -
The MTMP module is reused to inject knowledge from each 20, into 20. Although the retrieval
and connection occur at the O-cell level, the injected information is further propagated to higher-
dimensional cells through multi-level message passing over the entire cell complex. Formally, for
each query center cell:

h =MTMP ({h; | z; € X, U{z2}}) . (an
0. = MTMP ({0} | 2} € {z2,}}), (12)
where h = [{h°}, {h'}, {h?}] concludes embedding of various dimensional cell complexes.

Finally, at the data fusion layer, the aggregated hidden state h? of the center O-cell ¥ and hz the
pooling of 2 cell complexes is passed through a multi-layer perceptron MLP(-), yielding a structure-
aware output. This output is then combined with the task-specific output o., which has already
integrated multi-dimensional signals through the retrieval-enhanced process. The final prediction is
computed as:

0c =70c + (1 — 7)MLP([h¢, h)), (13)
where v € [0, 1] is a reweighting hyperparameter. The resulting representation 6. serves as the input
to downstream node-, edge-, or graph-level tasks, typically evaluated via a task-specific similarity
function.

4.3 CELLULAR TOPOLOGICAL CONTRASTIVE LEARNING (CTCL)

We propose Cellular Topological Contrastive Learning (CTCL) to encode high-dimensional
structural semantics within each 2-cell 27 € X (2) by enforcing feature consistency among its con-
stituent O-cells. Formally, let X]EO) denote the set of 0-cells forming 7. For each 2-cell, we inde-
pendently sample two subsets of 0-cells, )E,gol) and 221202) , using degree-based importance sampling.
The embeddings of these subsets are aggregated to produce two representations per 2-cell:
~ 1
hiw=-—=g- Y. hew+a-N(0,1), k=1,... N;vel2, (14)
R e
| kol poep©
kv
where ho is the embedding of O-cell z°, o controls the magnitude of Gaussian perturbation, and
N = |X®@)] is the number of 2-cells. We adopt an InfoNCE loss to enforce consistency between
these two views: N ~ ~
exp (sim(hy,1, hi2)/7)

LereL = —— ) log =
N ; Dotk €XP (sim(hy,1, hj2)/T)

; 5)
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where sim(-, -) denotes the cosine similarity and 7 is a temperature parameter. The overall training
objective combines standard classification with topological contrastive regularization:

c

Ecls = _Zyc 10%5%7 (16)
c=1

Lol = Leis + A - Leter, 17

where y. and y. denote the ground-truth label and predicted probability for class c, respectively, and
A balances supervised learning and topological contrastive regularization.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate our framework on three tasks: node classification, graph classification,
and link prediction. Node classification is performed on PROTEINS and ENZYMES [Morris et al.
(2020), graph classification on ENZYMES, PROTEINS, COX2, and BZR Moirris et al.| (2020); Rossi
& Ahmed, (2015¢), and link prediction on two dynamic recommendation datasets: KOUBEI [Zhu
et al.[(2021) and AMAZON [He & McAuley| (2016). See Appendix [E.T] Table 5 for details.

Comparison Methods. To verify the effectiveness of ReTAG, we conduct comprehensive exper-
iments across various graph learning tasks. For dynamic graphs, we include comparisons with
GraphCL-based Methods: LightGCN (He et al,, [2020c), SGL (Wu et al., [2021b), MixGCF (Liu
et al., 2021a)), SimGCL (Yu et al. |2021), Prompt-based: GraphPro (Liu et al. [2023c), Graph-
Pro+PRODIGY (Feng et al., 2023), and Retrieval-Augmented: RAGraph (Jiang et al) [2024).
For static graphs, we compare ReTAG with representative models, including GNN Baselines:
GCN (Kipf & Welling, 2017a)), GraphSAGE (Hamilton et al.l 2017b), GAT (Velickovi¢ et al.,
2018)), GIN (Xu et al., 2019b)), Retrieval-Augmented Variants: RAGraph (Jiang et al., 2024), Prompt-
based Variants: GraphPrompt (Xie et al., [2022), GraphPrompt+PRODIGY (Feng et al.l 2023), and
ProNoG (Yu et al., 2025a)).

Settings and Evaluation. We adopt a training—resource split: training is on labeled data, and re-
trieval is from a disjoint resource set. For static graphs, we use a 50%:30% node split [Liu et al.
(2023c); for dynamic graphs, snapshots are chronologically split for time-aware retrieval [Huang
et al.| (2024). Retrieval-based methods (e.g., PRODIGY, RAGraph) retrieve only from the resource
set to prevent information leakage, while other baselines are fine-tuned on the merged graph. We
report accuracy for classification and Recall@20/nDCG@20 for link prediction. All experiments
use PyTorch with an NVIDIA A100 GPU (40GB). We use Adam (Ir=1e-3, batch size=16). For clas-
sification, the hidden dimension is set to 256, and the first stage of MTMP employs a single layer
(L = 2). Cell complexes are built via k-hop neighborhoods, with k selected by validation (typically
2 or 3). CTCL applies a 2 dimensional contrastive loss with weight A € [0.1,0.4]. In the link
prediction task, the first stage of MTMP adopts a 3-layer architecture (L = 3) with 64-dimensional
embeddings, and the model is trained end-to-end using contrastive and retrieval modules.

5.2 CELLULAR COMPLEX-AUGMENTED GRAPH RESULTS

Overall Performance. The experimental results of our model and baselines on node and graph

classification for static graphs and on link prediction for dynamic graphs are summarized in Table/I]

and Table 2] Based on the comparison with existing baselines, we draw the following observations:

* Our proposed ReTAG achieves the best performance. ReTAG significantly outperforms all
baselines on both static and dynamic graphs. On static datasets, ReTAG achieves a relative im-
provement of 2.3%-3.7% in node classification accuracy and 1.9%-4.4% in graph classification
accuracy over state-of-the-art methods, consistently achieving the highest performance across all
tasks. On dynamic benchmarks, ReTAG achieves relative gains of 2.7%—6.7% in Recall@20 and
2.3%-6.2% in nDCG @20 over strong baselines such as RAGraph/FT. These gains can be attributed
to ReTAG’s ability to incorporate high-dimensional topological knowledge via cell complex lifting
and retrieve structured support from external graphs. Its MTMP module enables hierarchical prop-
agation across complex structures, while the CTCL loss regularizes representations by enforcing
2-cell consistency, jointly enhancing expressiveness and generalizability across tasks.
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Table 1: Accuracy evaluation on node and graph classification. All tabular results (%) are reported
as meanzstd across five runs. The best results are bolded and the runner-ups are underlined.

Methods Node Classification Graph Classification

PROTEINS (5-shot) ENZYMES (5-shot) PROTEINS (5-shot) COX2 (5-shot) BZR (5-shot) ENZYMES (5-shot)
GNN Baselines
GCN 46.63+03.04 52.80+12.89 54.80+06.64 67.87+£03.39  58.76+05.08 22.67+05.20
GraphSAGE 48.87+02.64 48.75+01.59 54.68+09.34 67.02+05.42  58.27+04.79 21.17+05.49
GAT 48.13+£07.90 47.75£01.23 55.82+07.31 64.89+03.23 57.04+06.70 20.67+03.27
GIN 49.61+01.58 48.82+01.58 56.17+08.58 62.77+02.85 56.54+04.20 21.10+02.53
GraphPrompt+ Variants
Vanilla/NF 44.88+13.17 48.81+01.88 56.68+03.63 53.04+04.13 68.77+03.44 36.50+03.31
Vanilla/FT 48.99+01.88 51.99+01.36 57.04+03.88 64.04+08.20  69.01+02.21 40.00+04.36
PRODIGY/NF 47.32+08.12 43.80£14.03 53.48+06.72 53.97+10.34  67.184+08.93 22.12+13.84
PRODIGY/FT 53.26+06.42 57.98+12.37 57.14+10.34 65.31+04.28 68.08+06.68 25.94+05.12
ProNoG 52.89+11.76 76.48+18.23 61.63+08.01 58.03+14.28 62.26+12.27 37.91+05.64
Retrieval-Augmented Variants
RAGraph/NF 56.12+04.11 75.92+01.72 58.48+03.93 55.32+04.15 77.53+05.26 38.17+03.39
RAGraph/FT 58.74+00.87 75.74+£01.92 62.33+02.52 76.60+£02.30  76.79+05.02 47.71+06.88
ReTAG(Ours) 60.91+01.79 78.26+01.57 64.30£02.21 78.09+02.57  79.01+03.49 49.83+04.72

Table 2: Performance evaluation (%) on link prediction.

Methods KOUBEI AMAZON
Recall@20  nDCG@20 Recall@20  nDCG@20

GraphCL

LightGCN 30.21£06.45 22.24+05.83 15.07+£06.48 06.53102.66
SGL 32.61£04.27 22.36+04.82 15.78+07.12 07.901+02.49
MixGCF 32.06£04.20 22.49406.91 15.24408.98 07.401+03.44
SimGCL 33.07£05.28 23.084+05.55 16.10+07.91 07.58403.51
GraphPro+

Vanilla/NF 21.31£04.59 15.31£03.11 12.56+07.45 06.31403.92
Vanilla/FT 33.96+£04.13 24.66+02.78 18.14+07.55 08.731+03.74

PRODIGY/NF  21.661+03.21 14.824£03.92 11.88402.61 05.84+01.84
PRODIGY/FT 33.461+04.70 23.284£03.40 16.72404.28 08.09+02.66

Retrieval-Augmented Variants
RAGRAPH/NF 22.86403.44 16.68402.48 13.78+£05.54 06.52+£02.69
RAGRAPH/FT 34.27403.93 24.824+02.69 18.32+07.45 09.09+03.89

ReTAG (Ours) 35.214+03.21 25.39+02.23 19.54+08.04 09.651-04.06

* Retrieval-augmented topology reasoning is crucial for generalized graph learning. From Ta-
ble|l]and Table 2] we observe that retrieval-augmented baselines (e.g., RAGraph/FT) consistently
outperform standard GNNs and prompt-based variants, demonstrating that incorporating external
knowledge via retrieval is vital for generalization. However, these baselines often rely on shal-
low node- or edge-level similarity, limiting their ability to capture complex structural semantics.
ReTAG addresses this limitation by lifting graphs into higher-dimensional cell complexes and con-
ducting retrieval based on both semantic and topological alignment. This enables the model to
obtain more informative and transferable support subgraphs. With MTMP injection and CTCL
regularization, ReTAG better integrates retrieved knowledge, yielding superior performance on
various graph tasks.

Hyper-parameter Study. We study the sensitivity of ReTAG to two key hyper-parameters: the
number of hops (k) used to construct cell complexes, and the cellular topological contrastive learn-
ing (CTCL) loss weight. The k-hop value determines the receptive field of each complex, affecting
the amount of structural context for retrieval and reasoning. The contrastive loss weight controls
the strength of 2-cell topological regularization during training. We vary k from 1 to 4, and the
loss weight from O to 0.5 to assess their respective impacts. Figure [3| shows the effect of differ-
ent k-hop values on classification accuracy. As k increases, the volume of retrieved knowledge
expands accordingly. While larger k introduces noisy or redundant substructures that hinder per-
formance, excessively small £ may miss crucial topological patterns needed for effective retrieval.
Figure [] illustrates the impact of varying the CTCL loss weight. Insufficient weight underutilizes
the discriminative 2-dimensional information, while too large a weight overly constrains learning,
interfering with the main optimization objective and degrading downstream performance. These
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Figure 3: Accuracy with varying k-hop size. Figure 4: Accuracy with varying CTCL weight.

trends highlight the importance of balancing topological regularization with task-specific learning

in ReTAG.

Ablation Study. We evaluate

three ablated variants of ReTAG: Taple 3: Ablation study on COX2 and PROTEINS datasets.

removing the Fundamental Cycle-

Guided Complex Lifting (FCL),

. .. Model Variant COX2 (%) PROTEINS (%)
which eliminates 2-cell construc-
tion and reduces the model to an w/o FCL 76.05+02.89 62.33+02.52
edge-based graph; discarding the w/o MTMP 76.21+£01.97 62.45+03.19
Multi-dimensional Topological w/o CTCL 76.94+01.83 63.21+£04.79
Message Passing (MTMP), which Full Model (ReTAG)  78.09+02.57  64.304+02.21

disables hierarchical propagation
across cell dimensions; and remov-
ing the Cellular Topological Contrastive Learning (CTCL), which drops contrastive regularization
over 2-cell representations. As shown in Table [3} we observe that:

* The performance drops when removing FCL, as eliminating 2-cells via fundamental cycles reduces
the model to a purely edge-based graph. This shows that high-dimensional cycles are crucial for
capturing richer structural context and stronger structural reasoning.

* The model’s performance suffers when MTMP is discarded. Without hierarchical propagation,
information exchange is confined to the 1-skeleton, preventing nodes and edges from exploiting
higher-dimensional cycles. This shows that MTMP is essential for integrating multi-dimensional
context and capturing topological dependencies.

* The performance of the model drops when removing CTCL. Without contrastive regularization
over 2-cell representations, the model fails to enforce consistency among high-dimensional struc-
tures, leading to less discriminative embeddings. This shows that CTCL is essential for improving
robustness and generalization in capturing cellular topology.

6 CONCLUSION

In this work, we explore the role of higher-dimensional topological structures in retrieval-augmented
graph learning. We propose a novel framework, namely Retrieved Cellular Topologies-Augmented
Graph Learning (ReTAG), which lifts input graphs into cellular complexes and constructs a knowl-
edge base of multi-dimensional topology-aware subgraphs, termed cellular topologies. During in-
ference, ReTAG retrieves structurally aligned cellular topologies and incorporates them via a multi-
dimensional message-passing mechanism that captures complex topological dependencies beyond
conventional pairwise relations. Furthermore, a cellular topological contrastive learning module is
introduced to reinforce high-dimensional structural semantics by aligning features within individ-
ual topological cells. Extensive experiments across multiple graph tasks demonstrate that ReTAG
outperforms state-of-the-art methods.
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A  NOTIONS

The notations in this paper are summarized in Table

Table 4: Notations Tables in ReTAG.

Notation Definition

g Graph space, consisting of graphs with nodes and edges.

X Regular cell complex space, consisting of a collection of cells.

X©O/xM/x®@  0-, 1-, and 2-skeletons of X.

To A cell in the cell complex X.

To Topological closure of cell z,,.

z! < a? Cell 2! is a face of 22 (i.e., z* C 2?).

X ={z.} Set of cells in X, indexed by «.

f:g6—-X Cellular lifting map that maps graphs in G to regular cell complexes in X.

I(x) Importance score of a 0-cell complex x.

p(x;) Probability of sampling 0-cell complex ;.

€ Small constant used to ensure numerical stability in sampling probabilities.

X, Local cell complex constructed from the k-hop neighborhood around the mas-
ter O-cell 22,.

kp Key for cell complex X, .

kq Query key.

Sr(7q, ™) Temporal similarity score between the query and base cells based on the time
difference.

w Weight vector for combining temporal, O-cell, and 2-cell similarities.

w1, Wy, W3 Hyperparameter weights for temporal, O-cell, and 2-cell similarity contribu-
tions.

0; Task-specific output vector for the ¢-th cell in the complex X,.

h; Embedding of the i-th cell in the complex X, .

hY, Embedding of the master O-cell in the complex X,.

h? Embedding of the center 0-cell in the query complex X,.

hg Pooled two-dimensional topological feature for the query complex X,.

h? Pooled two-dimensional topological feature for the base complex X,,.

LcreL Cellular Topological Contrastive Learning (CTCL) loss.

ﬁ;w Representation of 2-cell 2% for the v-th view, aggregated from O-cell subsets.

Les Standard classification loss for supervised learning.

Liotal Total loss function combining classification and CTCL losses.

A Regularization hyperparameter controlling the weight of the CTCL loss.

B MORE MOTIVATION DETAILS

In this section, we provide more in-depth motivation for the proposed approach and elaborate on
the challenges addressed by our method. We focus on how retrieval-augmented learning and higher-
dimensional topological representations can help overcome some key limitations in traditional graph

learning techniques.

B.1 LIMITATIONS OF TRADITIONAL GRAPH LEARNING MODELS

Graph neural networks (GNNs) have made significant progress in learning graph representa-
tionsKipf & Welling (2017a);|Hamilton et al.|(2017c));|Velickovi€ et al.|(2018)), but they still face lim-
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itations in capturing the complex and rich topological structure present in many real-world graphs.
Existing methods predominantly rely on node-level and edge-level information for learning graph
embeddings. However, these models often struggle to capture higher-dimension dependencies such
as cycles, motifs, and other complex topological patternsBenson et al| (2016)). This is especially
problematic when dealing with tasks that require a deeper understanding of graph structure, such as
graph retrieval and node classification in graphs with intricate structures.

While recent advancements in retrieval-augmented models (RAG) have shown promise in addressing
these limitations, they primarily focus on leveraging node-level features and semantic retrieval. The
rich topological semantics inherent in graphs are often underutilized, limiting the potential of these
methods.

B.2 WHY TOPOLOGICAL REPRESENTATIONS MATTER?

We argue that topological structures such as cycles, 2-cells, and higher-dimensional features play
a critical role in enhancing graph learningHensel et al.| (2021). Traditional graph representations,
such as node embeddings or edge features, often overlook these higher-dimensional interactions,
which are essential in many applications like social network analysis, molecular graph modeling,
and knowledge graph explorationGilmer et al.[(2017a)). By lifting graphs into higher-dimensional
cellular complexes, our method captures the intricate dependencies between nodes and edges that
are often missed by conventional approaches.

In this work, we introduce ReTAG, a method that integrates both semantic and topological alignment
to capture complex structural semantics within graphs. This enables the model to learn richer, more
informative representations of graphs by considering both the node embeddings and the higher-
dimensional topological interactions between nodes, edges, and other graph components.

B.3 ADDRESSING THE LONG-TAIL KNOWLEDGE CHALLENGE

A distinctive challenge in graph learning is the long-tail distribution of knowledge. Unlike tabular
or text data, graphs naturally follow a power-law degree distribution: a small number of high-degree
hubs dominate the connectivity, while the vast majority of nodes have very low degree(Barabasi
& Albert, 1999 Newman, 2003). In retrieval-augmented settings, this imbalance is amplified—
hub nodes, encoding frequent or common knowledge, are repeatedly retrieved and overrepresented,
whereas long-tail nodes remain underutilized(Lewis et al., 2020; Borgeaud et al., [2022). This bias
hinders the model’s ability to capture rare but critical patterns.

The consequences of neglecting the long-tail are significant. In scientific knowledge graphs, rare
compounds or niche experimental findings often drive new discoveries. In recommendation systems,
cold-start users and infrequent items typically reside in the long-tail, and failure to model them
exacerbates personalization gaps(Park & Tuzhilin, [2008} |Celmal 2010). In graph classification, rare
motifs (e.g., higher-dimension cycles) may carry essential discriminative signals. Thus, effectively
incorporating long-tail knowledge is crucial for robust generalization.

To address this, we propose an inverse importance sampling strategy that rebalances the node
distribution. Specifically, we define a node importance score I(z) that combines centrality and
degree, and assign sampling probability inversely proportional to it:

FTn (18)

where I(x) denotes a node importance score defined in the main text, « controls the balance, and €
is a small constant for stability.

This reweighting reduces the dominance of hubs while amplifying the contribution of long-tail
nodes. The trade-off parameter « ensures that global connectivity patterns remain preserved. As
a result, the model learns to integrate both common and rare knowledge, achieving better general-
ization across diverse graph tasks, including cold-start recommendation and few-shot classification.
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B.4 THE ROLE OF MULTI-DIMENSIONAL TOPOLOGICAL MESSAGE PASSING (MTMP)

A key innovation in our method is the use of Multi-Dimensional Topological Message Pass-
ing (MTMP), which extends traditional message-passing schemes to higher-dimensional structures.
While conventional GNNs propagate information between neighboring nodes(Gilmer et al.,[2017bj
Kipf & Welling} 2017b), MTMP allows information to flow across different topological dimensions
such as cycles, motifs, and higher-dimension subgraphs(Benson et al., 2016; Bodnar et al., [2021a)).
This enables the model to learn more complex dependencies and capture the structural semantics
that are essential for tasks like graph retrieval, classification, and link prediction.

MTMP is designed to operate over cellular complexes(Bodnar et al., |2021c}; [Hensel et al., [2021)),
which include not just nodes and edges, but also higher-dimensional features (2-cells, 3-cells, etc.).
By using MTMP, we can propagate information across these higher-dimensional entities, allowing
the model to understand the graph in a richer, more comprehensive way.

B.5 CONTRASTIVE LEARNING FOR STRUCTURAL CONSISTENCY

To further enhance the learned representations, we introduce Contrastive Topological Contrastive
Learning (CTCL) |You et al.| (2020b). The goal of CTCL is to enforce consistency in the learned
embeddings of topologically similar structures. For example, if two nodes or subgraphs exhibit
similar topological properties, their embeddings should be close in the learned representation space
Chen et al.[(2020). To achieve this, we adopt an InfoNCE-style objective|van den Oord et al.[(2018),
which encourages embeddings of positive pairs (topologically consistent structures) to be similar
while pushing apart negative pairs. This regularization mechanism improves the model’s ability to
generalize across graph structures with varying topologies.

B.6 COMPARISON WITH EXISTING METHODS

Graph Neural Networks (GNNs) have garnered significant attention in both academic and industry
communities for their robust capability to model complex, real-world data in various domains such
as societal networks, biochemistry, and traffic systems Fang et al.|(2025a} [2023)); |Gao et al.| (2023));
Li et al.| (2022). By utilizing a message-passing mechanism, GNNs have gone beyond traditional
node embedding approaches, enabling the capture of intricate relationships within graph-structured
data. Despite their success, GNNs face significant challenges when generalizing across different
graph modalities, domains, and tasks. This lack of generalization remains a major research frontier,
especially when the graph structures differ substantially across scenarios |Asai et al.| (2023} [2024));
Izacard et al.l

While GNNs are capable of handling node-level features and local graph relationships, they often
struggle with graphs that exhibit complex topological diversity or when graph structures vary sig-
nificantly from the training data. This limits their ability to generalize effectively, particularly when
tasked with complex graph patterns or when encountering graphs with unseen structures.

RAGraph improves upon this by integrating retrieval-augmented learning Jiang et al. (2024). It
enhances generalization by retrieving semantically similar subgraphs from external sources and
incorporating them into the learning process. However, RAGraph still focuses primarily on low-
dimensional structures (nodes and edges), and while it introduces a retrieval mechanism to augment
the model’s contextual knowledge, it still lacks the ability to capture the more intricate, higher-
dimensional topological features that are essential for tasks involving complex relational patterns.
This is especially problematic when graphs involve structures like cycles or multi-dimensional topo-
logical motifs that are critical for accurate inference and prediction.

ReTAG, in contrast, builds on the retrieval-augmented approach but introduces topological align-
ment alongside semantic alignment. By utilizing cellular complexes |Hajij et al.|(2020), ReTAG cap-
tures richer topological features, such as cycles and loops, which are critical for reasoning over com-
plex graph structures. Additionally, ReTAG combines retrieval with generation-augmented learning,
allowing it to retrieve and generate relevant subgraphs during inference. This combination improves
its generalization to unseen graphs and dynamic graph structures, making ReTAG more flexible and
effective for tasks that require handling complex graph topologies.
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In summary, while RAGraph and traditional GNNs improve graph learning by integrating retrieval
mechanisms, ReTAG distinguishes itself by incorporating topological reasoning and generation-
augmented learning, allowing it to better handle high-dimensional graph structures and enhance its
performance on tasks requiring complex topological reasoning.

C ADDITIONAL RELATED WORK

Topological Deep Learning. Topological deep learning (TDL) builds upon early advances in
Topological Signal Processing (TSP)|Barbarossa & Sardellitti|(2020); Schaub et al.|(2021)); Rodden-
berry et al.| (2022); [Sardellitti et al.[ (2021}, which highlighted the importance of modeling higher-
order relations beyond pairwise connections. This line of work has motivated the generalization of
classical graph-theoretic tools to richer topological domains, such as simplicial complexes (SCs)
and cell complexes (CWs). In particular, extensions of the Weisfeiler—Lehman test to SCs and CWs
Bodnar et al.|(2021dib) have laid the theoretical foundations for higher-order message passing. Sub-
sequently, a variety of neural architectures have been proposed, including convolutional designs
for SCs and CWs [Ebli et al.[ (2020); [Yang et al.[ (2022); |Hajij et al.| (2020); [Yang & Isufi| (2023));
Roddenberry et al.| (2021); Hajij et al.| (2022)) and attentional formulations |Goh et al.; |Giusti et al.
(2023). To unify these efforts, the combinatorial complex (CC) framework Hajij et al.| (2023)) was
introduced, providing a general message-passing paradigm that encompasses SCs, CWs, and hyper-
graphs. Parallel to these developments, Sheaf Neural Networks (SNNs) [Hansen & Ghrist (2019);
Hansen & Gebhart| (2020); [Bodnar et al.| (2022)); [Battiloro et al.| (20235 [2024); Barbero et al.| (2022)
have demonstrated the effectiveness of sheaf-based modeling in handling heterophily and capturing
localized topological constraints.

While these works substantially extend graph representation learning to higher-dimensional do-
mains, they largely remain confined to direct message passing within predefined complexes. Such
approaches often exhibit limited generalization to unseen graphs with substantially different topolo-
gies, a limitation that poses significant challenges for real-world applications where structural vari-
ability is the norm. In contrast, our work goes beyond intra-complex learning by retrieving and
integrating multi-dimensional cellular topologies from external corpora, enabling topology-aware
retrieval and multi-level reasoning that enhance adaptability across diverse graph scenarios.

D PROOFS

D.1 PROOFS REGARDING PROPOSITION[]]

Proof. Contractibility of the spanning tree. A spanning tree 7 is connected and acyclic, hence it
is contractible. In topological terms, a contractible subspace can be continuously shrunk to a point
within itself.

Collapsing a contractible subspace. Consider the quotient map v : G — G/T that identifies all
points of T to a single vertex vy. Collapsing a contractible subspace is a deformation retraction up
to homotopy: there exists a continuous map r : G — G/T and a homotopy H : G x [0,1] — G
such that H(z,0) = 2 and H(z,1) = r(z) for all z € G, with r o y ~ id /7. Therefore, G and
G /T are homotopy-equivalent.

Induced isomorphism on first homology. Homotopy-equivalent spaces have isomorphic homology
groups. Hence the induced map .. : H1(G;Z) — H1(G/T;Z) is an isomorphism.

Intuition in graph terms. The spanning tree 7 contains no cycles, so collapsing it does not remove
or merge any cycles in G. Each fundamental cycle in G (formed by a non-tree edge and the unique
tree path connecting its endpoints) is preserved in G/7T as a loop based at the collapsed tree vertex.
Therefore, the first homology group H;(G) — which measures independent cycles — remains
unchanged. O

D.2 PROOFS REGARDING PROPOSITION[2]

Proof. Let G = (V, E) be a finite connected graph and 7 C G a spanning tree.
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Existence and uniqueness of fundamental cycles. For each non-tree edge ¢ = (u,v) € E\T, there
exists a unique simple path Pr(u,v) in 7 connecting u and v, by acyclicity of 7. Concatenating e
with Pr(u, v) defines a unique simple cycle

Ce = eU Pr(u,v) C G.

Under the quotient map v : G — G/7T that collapses 7 to a point, the tree-path Py (u, v) is mapped
to that point, so C, becomes a nontrivial loop in G/7T .

Spanning and independence in homology. The cyclomatic number of G is 81 (G) = |E|—|V|+1,
which equals the number of non-tree edges. Thus there are exactly 51 (G) fundamental cycles.

Any cycle in G can be expressed as a linear combination of these fundamental cycles: traversing a
cycle, each time a non-tree edge e is encountered, the corresponding C. can be used to eliminate
segments along 7.

These cycles are independent in H; (G), because under v, each fundamental cycle maps to a distinct
loop in G/7T, and loops around different edges of a wedge of circles are linearly independent in
homology.

Hence the set
{[Cc] e € ENT}
forms a basis of Hy(G).

Topological summary. Different choices of spanning tree yield different sets of fundamental cycles
as edge sets, but the corresponding homology classes always span H;(G). Therefore, these loops
capture all independent cyclic dependencies of G, providing a concise topological summary suitable
for lifting G into a higher-dimensional cell complex. O

E MORE EXPERIMENT DETAILS

E.1 DATASETS STATISTICS

E.1.1 STATIC DATASETS

¢ PROTEINS Borgwardt et al.| (2005): This dataset consists of protein graphs, where each node
represents a secondary structure and each edge represents a relationship between amino acids or
3D space. The dataset contains 1,113 graphs with an average of 39.06 nodes and 72.82 edges per
graph, with a density of 4.8e-2. This dataset is used for both node and graph classification tasks.

* COX2Rossi & Ahmed (2015b): A molecular structure dataset of 467 cyclooxygenase-2 inhibitors.
Each node represents an atom, and each edge signifies a chemical bond (single, double, triple, or
aromatic). The dataset is used for graph classification tasks, with each graph having an average of
41.22 nodes and 43.45 edges, and a density of 2.6e-2.

« ENZYMES [Wang et al.|(2022): A dataset of 600 enzymes, labeled into 6 categories according to
their top-level enzyme classification. It contains 600 graphs with an average of 32.63 nodes and
62.14 edges, with a density of 5.9e-2. This dataset is used for both node and graph classification
tasks.

* BZRRossi & Ahmed|(2015a): A dataset consisting of 405 ligands for the benzodiazepine receptor.
The graphs represent each ligand, categorized into two groups. Each graph has an average of 35.75
nodes and 38.36 edges, with a density of 3.0e-2. This dataset is used for graph classification tasks.

E.1.2 DYNAMIC DATASETS

We also use three publicly available datasets for dynamic recommendation (link prediction) tasks:

* TAOBAO : A dataset capturing implicit feedback data from Taobao.com, collected over 10 days. It
is used for edge classification tasks, containing 204,168 nodes and 8,795,404 edges, with a density
of 8.6e-4.

* KOUBEI : A dataset from Koubei, capturing 9 weeks of user interactions with nearby stores. It
contains 221,366 nodes and 3,986,609 edges, with a density of 3.3e-4, used for edge classification
tasks.
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Table 5: Statistics of the experimental datasets.

Statistics Dynamic Graphs Static Graphs

KOUBEI AMAZON PROTEINS COX2 ENZYMES BZR
Nodes / Graph 221,366 238,735 39.06 41.22 32.63 35.75
Edges / Graph 3,986,609 876,237 72.82 43.45 62.14 38.36
Density 3.3e-4 6.2e-5 4.8e-2 2.6e-2 5.9e-2 3.0e-2
Graphs 1 1 1,113 467 600 405
Graph Classes - - 2 2 6 2
Node Features - - 3 1 18 3
Task Edge Edge Node,Graph Graph Node,Graph Graph

* AMAZON : A dataset of product reviews from Amazon, spanning 13 weeks. It contains 238,735
nodes and 876,237 edges, with a density of 6.2e-5, used for edge classification tasks.

These datasets’ detailed statistics are summarized in Table [5] The "Task” column provides infor-
mation about the type of downstream task conducted on each dataset: ”Node” denotes node clas-
sification tasks, “Graph” signifies graph classification tasks, and “Edge” indicates tasks related to
link prediction. The "Type” column indicates whether the dataset is dynamic or static. For dynamic
datasets, the ”Snapshot Granularity” denotes the time granularity for each dataset. In our experimen-
tal setup, dynamic graphs are partitioned according to snapshots, while static graphs are partitioned
either by node or by the entire graph.

E.2 EVALUATION METRICS

E.2.1 NODE AND GRAPH CLASSIFICATION EVALUATION

For node and graph classification, we use prediction accuracy to measure the model performance.

E.2.2 LINK PREDICTION EVALUATION

For link prediction, we evaluate the recall and ranking quality of the recommendation effects fol-
lowing previous studies [Yu et al.| (2022a); He et al.| (2020b). We use Recall@k and NDCG@k as
evaluation metrics. Note that this task is a binary task. We denote the top-k largest value as rel;;,
where j € [1, k] for node v;.

Recall@k Recall@k measures the ratio of true positive links contained in the top k predicted links
for each node. It is computed as:

1 n k
R = — i  :
ecall @k = — ZZrelU I(Afi:] >0), (19)
=1 j=1
where rel;; = 1 if the j-th predicted link for node v; exists, otherwise 0. I(-) is the indicator

function, and if A[i :] > 0, then I(A[i :] > 0) = 1.

NDCG @k (Normalized Discounted Cumulative Gain) NDCG@k is computed by normalizing
DCG @k (Discounted Cumulative Gain), which accounts for the position of correctly predicted links.
DCG@k is defined as:

n k
1 rel;;
DCG@k = — —Y 20
n ;1 jzzl log,(j + 1) 20
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E.3 BASELINE DETAILS

In this section, we present the details of baselines.

Table 6: Baseline Code URLSs of Github Repository

Baseline Type Code Repo URL

GCN Static https://github.com/tkipf/gcn

GraphSAGE Static https://github.com/williamleif/GraphSAGE
GAT Static https://github.com/PetarV-/GAT

GIN Static https://github.com/weihua9l16/powerful-gnns
LightGCN Dynamic https://github.com/kuandeng/LightGCN

SGL Dynamic https://github.com/wujcan/SGL-Torch
MixGCF Dynamic https://github.com/Wu-Xi/SimGCL-MixGCF
SimGCL Dynamic https://github.com/Wu-Xi/SimGCL-MixGCF
GraphPro Dynamic, Static https://github.com/HKUDS/GraphPro
GraphPrompt Dynamic, Static https://github.com/Starlien95/GraphPrompt
PRODIGY Dynamic, Static https://github.com/snap-stanford/prodigy
RAGraph Dynamic, Static https://github.com/Artessay/RAGraph
ProNoG Dynamic, Static https://github.com/Jaygagaga/ProNoG

GCN Kipf & Welling (2016a) : GCN is an end-to-end learning framework for graph-structured
data. It utilizes neighborhood aggregation to integrate structural information, which is particularly
effective in node classification and graph classification tasks.

GraphSAGE Hamilton et al.| (2017a) : GraphSAGE is a general and inductive framework that
leverages node feature information (e.g., text attributes) to efficiently generate node embeddings for
previously unseen data.

GAT |Velickovic et al. (2018) : GAT is a spatial domain method, which aggregates information
through the attention-learned edge weights.

GIN Xu et al.| (2019a) : GIN utilizes a multi-layer perceptron to sum the results of GNN and
learns a parameter to control the residual connection.

LightGCN He et al.| (2020a) : LightGCN learns user and item embeddings by linearly propagat-
ing them on the user-item interaction graph, and uses the weighted sum of the embeddings learned
at all layers as the final embedding.

SGL Wu et al.| (2021a) : SGL supplements the classical supervised task of recommendation
with an auxiliary self-supervised task, which reinforces node representation learning via self-
discrimination.

MixGCF |Huang et al.| (2021) : MixGCF generates synthetic negatives by aggregating embed-
dings from different layers of raw negatives’ neighborhoods to perform collaborative filtering.

SimGCL [Yu et al. (2022b) : SimGCL applies unsupervised contrastive learning to enhance rep-
resentation learning, making it suitable for link prediction tasks. It is applied to dynamic graphs to
test its adaptability and performance.

GraphPro Yang et al|(2024a) : GraphPro extends GraphPrompt by introducing spatial and tem-
poral prompts tailored for dynamic graph learning, enhancing the ability to capture both structural
and temporal relationships within graph data.

23


https://github.com/tkipf/gcn
https://github.com/williamleif/GraphSAGE
https://github.com/PetarV-/GAT
https://github.com/weihua916/powerful-gnns
https://github.com/kuandeng/LightGCN
https://github.com/wujcan/SGL-Torch
https://github.com/Wu-Xi/SimGCL-MixGCF
https://github.com/Wu-Xi/SimGCL-MixGCF
https://github.com/HKUDS/GraphPro
https://github.com/Starlien95/GraphPrompt
https://github.com/snap-stanford/prodigy
https://github.com/Artessay/RAGraph
https://github.com/Jaygagaga/ProNoG

Under review as a conference paper at ICLR 2026

GraphPrompt Liu et al. (2023a) : GraphPrompt integrates pre-training and downstream tasks
using a unified template approach and employs task-specific prompts to enhance sub-task learning,
applicable to both dynamic and static graph contexts.

PRODIGY Huang et al.|(2023a) : PRODIGY focuses on facilitating downstream tasks through
in-context examples and learning from the X — Y paradigm. It is implemented to enhance learning
in both dynamic and static graphs by leveraging contextual learning strategies.

RAGraph Jiang et al.|(2024) : RAGraph is a general retrieval-augmented graph learning frame-
work that integrates external graph knowledge into pre-trained GNNs. It builds a key-value toy
graph library, retrieves similar toy graphs via multi-dimensional similarity, injects knowledge into
query graphs through intra/inter-propagation, and supports multi-graph tasks (node classification,
link prediction, etc.) on static/dynamic graphs with high performance even without fine-tuning.

ProNoG |Yu et al.| (2025b) : ProNoG is a pre-training and prompt learning framework for non-
homophilic graphs. It uses non-homophily tasks (e.g., GraphCL) for pre-training to learn univer-
sal graph properties, and designs a condition-net for downstream adaptation. The condition-net
generates node-specific prompts by reading multi-hop neighborhood features (weighted by node
similarity) and conditioning on node non-homophilic patterns, then adjusts node embeddings via
element-wise product for fine-grained node/graph classification, especially in few-shot scenarios.

E.4 FURTHER STUDY

We further evaluate the few-shot performance of ReTAG against baselines (RAGraph, Vanilla, GAT,
GIN, GCN, GraphSAGE) on four datasets (PROTEINS, BZR, ENZYMES, C0OX2), as shown in
Figure [5] Accuracy increases consistently as the number of shots grows from 1 to 5, confirming
that additional supervision benefits few-shot adaptation. More importantly, ReTAG consistently
outperforms all baselines across datasets and shot settings.

On PROTEINS, ReTAG improves over RAGraph by an average of +5.0pp, with a maximum margin
of +8.9pp at 2-shot. On BZR, it achieves +3.6pp on average, maintaining superiority at all shots.
On ENZYMES, ReTAG secures an average gain of +3.6pp, demonstrating robustness under low-
accuracy regimes. On COX2, it yields a stable +2.5pp improvement on average, peaking at +4.5pp
at 3-shot. Overall, ReTAG delivers consistent gains of roughly +2—6pp over the best baseline across
datasets and shot scenarios.

These improvements stem from retrieval-augmented topology reasoning: lifting graphs into higher-
dimensional cell complexes enables retrieval based on both semantic and topological alignment,
while MTMP and CTCL further enhance representation robustness. Consequently, ReTAG achieves
both higher accuracy and more stable performance than competing methods in few-shot settings.
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We acknowledge the use of large language models (LLMs) as general-purpose assistive tools.
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and validated by the authors. The LLM did not generate novel research contributions nor play the
role of a scientific collaborator.
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proposed methodology is intended to advance representation learning and retrieval in cell com-
plexes, without foreseeable risks of misuse. To ensure fairness, we mitigate bias in node sampling
via inverse importance strategies. No conflicts of interest or external sponsorship influenced the
research. For reproducibility, all datasets are publicly accessible, preprocessing steps are described
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Figure 5: Few-shot accuracy comparison of ReTAG against baseline methods (RAGraph, vanilla,
GAT, GIN, GCN, GraphSAGE) across four datasets (PROTEINS, BZR, ENZYMES, COX2). Re-
sults under 1-5 shots settings highlight the superior performance of ReTAG in few-shot learning

scenarios.

in the supplementary material, and a self-contained code package is provided as part of the submis-

sion.

25



	Introduction
	Related Works
	Preliminaries
	The ReTAG Framework
	Cellular Representation and Knowledge Extraction
	Retrieval-Augmented Graph Inference with Topological Complexes
	Cellular Topological Contrastive Learning (CTCL)

	Experiments
	Experimental Setup
	Cellular Complex-Augmented Graph Results

	Conclusion
	Notions
	More Motivation Details
	Limitations of Traditional Graph Learning Models
	Why Topological Representations Matter?
	Addressing the Long-Tail Knowledge Challenge
	The Role of Multi-Dimensional Topological Message Passing (MTMP)
	Contrastive Learning for Structural Consistency
	Comparison with Existing Methods

	Additional Related Work
	Proofs
	Proofs regarding Proposition 1
	Proofs regarding Proposition 2

	More Experiment Details
	Datasets Statistics
	Static Datasets
	Dynamic Datasets

	Evaluation Metrics
	Node and Graph Classification Evaluation
	Link Prediction Evaluation

	Baseline Details
	Further Study

	Statement on LLM Usage
	Statement on Ethic and Reproducibility 

