Transformer Copilot: Learning from The Mistake Log
in LLM Fine-tuning

Jiaru Zou', Yikun Ban'f, Zihao Li', Yunzhe Qi'!, Ruizhong Qiu’, Ling Yang?', Jingrui He'f
University of Illinois Urbana-Champaign 2Princeton University
{jiaruz2, yikunb2, jingrui}@illinois.edu, 1ly1988@princeton.edu

() Code: https://github.com/jiaruzouu/TransformerCopilot

Abstract

Large language models are typically adapted to downstream tasks through super-
vised fine-tuning on domain-specific data. While standard fine-tuning focuses on
minimizing generation loss to optimize model parameters, we take a deeper step by
retaining and leveraging the model’s own learning signals, analogous to how human
learners reflect on past mistakes to improve future performance. We first introduce
the concept of Mistake Log to systematically track the model’s learning behavior
and recurring errors throughout fine-tuning. Treating the original transformer-based
model as the Pilot, we correspondingly design a Copilot model to refine the Pilot’s
inference performance via logits rectification. We name the overall Pilot-Copilot
framework the Transformer Copilot, which introduces (i) a novel Copilot model
design, (ii) a joint training paradigm where the Copilot continuously learns from
the evolving Mistake Log alongside the Pilot, and (iii) a fused inference paradigm
where the Copilot rectifies the Pilot’s logits for enhanced generation. We provide
both theoretical and empirical analyses on our new learning framework. Experi-
ments on 12 benchmarks spanning commonsense, arithmetic, and recommendation
tasks demonstrate that Transformer Copilot consistently improves performance by
up to 34.5%, while introducing marginal computational overhead to Pilot models
and exhibiting strong scalability and transferability.

1 Introduction

Transformers, the foundation of modern large language models (LLMs), leverage attention and
feedforward layers to compute logits for sequence generation [77]. Pre-trained on general-domain
corpora, these models capture rich statistical patterns and exhibit strong generation capabilities
[13, 80, 57]. On top of that, supervised fine-tuning (SFT) serves as a critical technique for adapting
pre-trained LLMs to specific domains [40, 65, 80]. While SFT enables significant flexibility and
task-specific optimization, the performance of fine-tuned LLMs during inference often remains
suboptimal, exhibiting misalignment between training and testing stages [47, 79]. This gap arises
from the model’s inability to fully capture task-specific nuances or from overfitting to patterns within
the training data, ultimately degrading its final performance [65, 56, 95, 53]. Without data-side
interventions [52, 54, 27] or receiving external feedback [58, 72, 91], this paper aims to address a
fundamental question: Can we enhance the inference performance by retaining and leveraging the
model’s own learning signals in standard fine-tuning?

To address this question, our core idea draws inspiration from a common strategy by human learners:
maintaining a log to record mistakes during practice, reflecting, and using insights to improve
performance in formal tests. Rather than merely memorizing these mistakes, proficient learners
engage in reflective thinking—analyzing their internal cognitive states at the moment the errors

fCorresponding authors

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

mailto:jiaruz2@illinois.edu
mailto:yikunb2@illinois.edu
mailto:jingrui@illinois.edu
mailto:ly1988@princeton.edu
https://github.com/jiaruzouu/TransformerCopilot

occurred, questioning how and why the mistakes were made. The reflective practice enables learners to
identify recurring error patterns and approach uncertain problems with greater caution and awareness.

Motivated by this human reflection thinking mechanism [31], we propose the concept of Mistake
Log tailored for LLMs’ fine-tuning. At training stages, standard SFT primarily focuses on optimizing
model parameters by minimizing the expected loss over fine-tuning datasets [80, 97]. We take a deeper
step to systematically record the rich intermediate information within the model, including input
data (Question), internal hidden state representations (Rationale), and token-level quantified errors
(Mistakes), as Mistake Log components to track model’s mistakes through its training trajectory.

Next, to fully exploit the Mistake Log, we propose the Transformer Copilot (abbreviated as T-
Copilot), a novel Pilot-Copilot framework that enables error-aware refinement by learning from
model-internal signals [11, 12, 34]. In addition to the original model (referred to as the Pilot), we
introduce a Copilot model that captures and leverages the Pilot’s Mistake Log throughout its learning
trajectory, rectifying the Pilot’s logits to improve final token-by-token generation. Overall, our
learning framework offers advantages from three key perspectives: (i) New Model Architecture
Design: We design the Copilot as a transduction neural network that learns recurring error patterns
from the Mistake Log. A residual flow connection is then established between the Copilot and Pilot
models, allowing the Copilot to assist the Pilot via token-level error correction during generation. (ii)
New Training Paradigm: We redesign the SFT procedure by jointly training the Pilot and Copilot
models in each round, enabling the Copilot to continuously learn from the evolving Mistake Log
and adapt alongside the Pilot model. (iii) New Inference Paradigm: During next-token generation,
we fuse the output logits from the Pilot and Copilot models into a unified probability distribution,
enabling collaborative auto-regressive generation. In this way, T-Copilot fundamentally integrates an
internalized reflection mechanism into standard SFT, enabling an adaptive and error-aware generation.

To demonstrate the efficacy of the T-Copilot, we provide detailed analyses from both theoretical and
empirical perspectives. We incorporate T-Copilot into representative encoder-decoder and decoder-
only Pilot models, and conduct extensive experiments across 12 tasks on commonsense, arithmetic,
and real-world recommendation. T-Copilot improves the performance of Pilot by up to 34.5%
while surpassing strong baselines with significantly fewer parameters. For example, integrating
T-Copilot with Qwen2.5-7B outperforms Qwen2.5-14B using 4B fewer parameters. We further
comprehensively study the efficiency, transferability, and scalability of T-Copilot, showing that
T-Copilot brings marginal computational overhead to Pilot, scales well across different model types
and sizes, and effectively transfers to new Pilot models for inference without additional training costs.

2 Definition of Mistake Log

2.1 Preliminary and Notations

Let £7(-;0F) denote the function computed by a standard Transformer model [77], parameterized
by . In our context, we refer to f¥ as the Pilot model. Suppose there are 7" fine-tuning rounds.

For each round ¢ € [T, given an input sequence X; = (211, ..., &) Where n is the maximum
sequence length, the input is sampled from a data distribution D = Dy y over input-output pairs.
The Pilot model then generates an output sequence Y; = (1, - . ., §+,») in an auto-regressive manner

to approximate the target sequence Y; = (y¢,1,- - ., Yt,n), Where (X;,Y;) ~ D.

During ¢-th fine-tuning round, let X; denote the input representation of X;, defined as either the
encoder output in an encoder-decoder Transformer or the output of the token and positional embedding
layer in a decoder-only Transformer. In the forward pass through the residual stream of the model,
let L be the total number of decoder layers in the Pilot model. For each layer [€ [L¥], we define
hei1(Xe;0F 1) as the (decoder) hidden representations of the i-th token. After the final decoder
layer, the Pilot model outputs logits over the vocabulary V', conditioned on the input X; and shifted
target sequence ¥ ;. The resulting output probabilities for the i-th token are given by:

Dt,s = softmax (fP(Xm Yt,<is 954)) . (D
We denote p, ; the ground-truth distribution over V for the i-th token, which places full probability

mass on the correct token y; ;. The objective of training f*" is to minimize the cross-entropy loss
between the predicted and ground-truth tokens, formulated as:

Lf=—- ZIOgﬁt,i(yt,i | X, yt,<i)- @

i=1

2.2 The Mistake Log

Next, we define the Mistake Log in fine-tuning scenarios. As shown in Figure 1, the Mistake
Log concludes three key components: the input representations (Questions), internal hidden states
representations (Rationales), and the token-level error made by the model (Mistakes).

In each round ¢ € [T, draw the sequence pair (X;,Y;) ~ D. As defined in Section 2.1, we set X;
as the input representation component, as it provides contextual grounding for the Pilot model’s
specific input sequence. Inspired by prior works [25, 20, 14, 45], the intermediate states’ hidden
representations produced by Transformer blocks also encapsulate rich contextual and semantic
information, reflecting the model’s internal rationales. Therefore, we define hy(Xy; 0F) as the
collection of these internal hidden representations for each token in round ¢:

~ ~ n ~ ~ Lt
he(Xe600) = {hea (X600}, with heo(Xs070) = {hein(Xs070))~ G)
1= =
where hm()N(t; OF) captures the i-th token level internal states representation at the point when the
i-th token error occurs. Then, to quantify the token-level error of the Pilot model, we compute the
discrepancy between the predicted distribution p; ; and the ground-truth distribution p; ; for each
token, with the error defined as:

Ce(pe, D) = {Le(prisPrii) by s With £e(pei, Prii) = Pri — Droi-)

Consistent with standard LLM fine-tuning procedures,

. . >) Mistake Lo
where the loss £7 is used to compute gradients and update & €

o T
the Pilot model’s parameters across 71" rounds, we simulta- My ={(*, he, ’1)}:=1\Corr{ecrun_gqvgerzhe
. . . . entiretrainin,
neously collect key intermediate signals described above = --=-oo-cotta s e
into the Mistake Log throughout this process. Formally, _ . Prediot Py e
we define the Mistake Log as: b t RapreseiRation 2
I’,I'
T T (Pilot) Decoder Layer L” Hidden h
v v .nP ~ Representation 2 t
My = (Xu he(X50,_1), & (pnpt))) T h,
t=1 Representations Hidden
h Representation 1
The Mistake Log systematically records contextual inputs, hy

internal representations, and token-level prediction errors
of the Pilot model throughout its entire fine-tuning tra- Figure 1: Illustration of the Mistake
jectory. We next investigate how to leverage the Mistake Log. We use the encoder-decoder ar-
Log during fine-tuning to enhance the Pilot model’s final ~chitecture as an example here.

inference performance.

Motivation for Transformer Copilot. Recall that the goal of SFT is to optimize #© by minimizing
the expected loss E(x, v,)~p [Ef } While this process adjusts model parameters using gradient
descent, it treats each error as a transient signal, consumed and discarded immediately after the
parameter update. As a result, the final model parameters 6 might not retain an explicit memory
of where, how, or why errors occurred during the training trajectory. This oversight leaves valuable
training-time information, which we captured in the Mistake Log, untapped at inference time. To
address this, we propose a new Copilot model to learn from the Mistake Log. Rather than altering the
Pilot’s optimization path, the Copilot operates as an auxiliary module that internalizes the distribution
of past mistakes and corrects the Pilot’s output at inference time. This design enables the Copilot to
assist the Pilot model by reflecting on prior missteps and adaptively revising the predictions.

3 Transformer Copilot

We introduce our proposed framework, Transformer Copilot, which is designed for both encoder-
decoder and decoder-only Transformer architectures. In the following sections, we will elaborate on
the Copilot model design, the training paradigm, and the inference paradigm, respectively.

3.1 The Copilot Model Design

The Copilot model is initialized from the decoder module of the corresponding Pilot model, but with
several new architectural modifications. Consistent with the Pilot model f P we denote the Copilot
model as f©, parameterized by €. The Copilot model is also auto-regressive, generating outputs

1.Model Design 2.Training Paradigm

Jointly Training

Input Pi _) [
ilot Model —> PilotLogits f7 || g i c
Sequence > L \6%, P M, L\ L

3 Mistake Lo, ‘M = (%o o)) —] Pilot Model —— Copilot Model
$ g ¥ — $ _J CotlectaUpdate

each round

@New Input: (X, he)] gf‘}]New Input: (X, he)]
p : 3.Inference Paradigm

Error Sequence

Bt

(shifted right)

Copilot Logits f€ Pilot Model

Copilot Model

Figure 2: Transformer Copilot Framework. The overall framework comprises three key components:
(1) Copilot Model Design, (2) Training Paradigm, and (3) Inference Paradigm.

o [= <
Attention
<

Copilot layers

New

Layer 1 Token

Copilot Model

Layer L¢

Decoding

over the vocabulary V. However, the objective of the Copilot model is to learn from the Mistake
Log M+ and output rectified logits that correct the predictions made by the Pilot model. Below, we
specify the Copilot model design for the encoder-decoder and decoder-only Pilot model separately.

Encoder-Decoder Copilot. As shown in Figure 2.1, the Copilot model receives its inputs from
the Mistake Log, M7 = {(X¢, ht(Xe;0F 1), Le(ps,Pe))}i—,. Specifically, the Copilot is condi-
tioned on the sequence of token-level errors made by the Pilot model, as recorded in M, i.e.
Ui, <i = (P11 —Deas---,Pti—1 — Dri—1)- These discrepancy sequences are provided as labels during
training from M7 and are auto-regressively generated during inference. As positional information is
inherently preserved through the Pilot’s output, we apply a single linear layer to project the token-level
errors from vocabulary space into the Copilot’s hidden dimension. Next, to incorporate additional

information from the Pilot’s input and internal hidden representations ()?t and h; from M), we
propose a modified cross-attention mechanism in each layer of the Copilot, defined as:

New Q = HE , - W9, forl=1,... L°,
New K = Concat(X;, Poolpr (hy(Xs; 05))) - WK,)
New V = Concat(X;, Poolyr (hy(X; 67 1)) - WY,

where Pool; » (-) denotes the mean pooling across L’ layers of the Pilot and Concat(-) indicates
concatenation along the sequence dimension to ensure input dimensional compatibility and com-
putational efficiency; H lc_ ; is the Copilot model’s hidden state from the previous layer (or input

projection layer at | = 1); and W, WX WV are learnable attention weights. We then apply the
standard scaled dot-product attention using the new @), K, and V. This modified attention allows the
Copilot to jointly attend to both the external input context and the internal processing dynamics of
the Pilot. Note that all components retrieved from the Mistake Log can be directly accessed during
the forward pass of the Pilot model, without incurring additional computational overhead. After the
final layer L©, we add a linear projection layer in the Copilot model to map the residual hidden
representation into the vocabulary space, producing rectified logits as the output.

Decoder-only Copilot. We slightly adapt the Copilot model to accommodate the corresponding
decoder-only Transformer [76, 1], while keeping the majority of the model input and design above
unchanged. Specifically, we modify the self-attention mechanism to incorporate the information from
the Mistake Log: In the odd-numbered layers of LC, we retain the standard self-attention to allow
the Copilot model to capture intra-sequence dependencies; In the even-numbered layers, we replace
self-attention with the modified cross-attention mechanism defined in Eq. 6, enabling the Copilot to
attend to the Pilot’s input and internal state representations stored in Mp. This alternating structure is
consistent with the encoder-decoder Copilot to capture its own error-correction dynamics and attend
to informative signals from the Pilot’s behavior. We also explore several alternative designs and
empirically validate the effectiveness of our proposed design against these variants in Appendix F.4.

Learning Objective. Give the sequence pair (X;, Y;), at ¢-th round, the objective of training the
Copilot model f€ at i-th token is defined as:

L8 = D NG = bpraspea)ll?, with £ = (X, hycis br<ii 07 1), @)
=1

1
2

12
13
14
15

16
17

18
19
20
21

Algorithm 1: Transformer Copilot (Training Paradigm)

Input: Pilot model f¥(-;8%), Copilot model f€(-;6°); Learning rates np, nc; T, n
Initialize 65,605, My « 0
fort=1,2,...,Tdo
Draw (X¢,Y:) ~ D

V Pilot - token-level forward pass
fori=1,...,ndo

| Compute py,; via Eq.1
end

V Collect Mistake Log (§2.2)
My < M1 U ()?t, ht()?t; 0F_1), L(pe, Pr))
Compute £{ via Eq.2;
Update 6 « 67, — m»vgf_lcf

/* For brevity, we reuse notation t */

Algorithm 2: Inference Paradigm

Draw (X, he(Xe; 01 1), bi(pe, 1)) ~ My Input: 07)f,% Tuning parameter X
v Copilot - learn from the Mistake Log (§3.1) : forra‘;] ie‘;/ ¢ A;L d())(’ t>
for i =Cl7 oy do . 3 Pr.i + softmax(fF (X, Ge.<i;0%))
‘ 4 fii < (X, he <oy be,<i3 0521) 4 Observe)A(;z,ht7<i from fP
en e} cry pC . pC
Compute Etc via Eq.7;) ij : Jf (ft;\;lg<(“.ftglgT)
c c c 6 Pt,i Pt,i t,i (V1a Bq.
Update Qt < thl — nCthCilﬁt 7 gt,i — Decoding(ﬁt,i)
end s end
return 0% 0S 9 return (J¢,1, ..., Gt,n)

where fg is the Copilot model’s prediction, ¢,(py;, Pr,i) = Pr; — Dr,i is the corresponding label for
the Copilot model, and h; «; is the collection of Pilot’s hidden states for the preceding tokens. We
adopt the RMSE loss to prevent the distribution error from being further diminished by the square
operation, avoiding the over-smoothing effect that squaring may introduce in the gradient signal
during backpropagation. Next, we show how to jointly train the Pilot model f* and the Copilot
model f¢ during fine-tuning, and collaborate on the generation during inference.

3.2 Training Paradigm.

Algorithm 1 outlines the process for jointly training the Pilot and Copilot model. In training round
t € [T, one sequence pair (X, Y;) is drawn from the data distribution D. For each token ¢ € [n],
we first compute the Pilot model’s output distribution p; ; (Line 5-7). We then retrieve information

directly from the forward pass of the Pilot model and update the Mistake log M; by recording X,
h¢, and ¢, for each token (Line 9). Meanwhile, we compute the Pilot model’s cross-entropy loss Lf
and update its parameters (Lines 10-11). Next, we prepare the input for training the Copilot model.
Given all collected previous training rounds’ information, we draw a sample (X, h¢, £;) from the
updated mistake log M, (Line 13). We obtain the Copilot model’s output ftcZ for each token i € [n]

(Line 15-17). Finally, we compute the Copilot model’s RMSE loss £ and update its parameters
(Line 18-19). After T rounds of iterative training, we obtain the final 6% and 65 for the Pilot and
Copilot model, respectively. Note that this fine-tuning process can be readily extended to mini-batch
stochastic gradient descent for scalability.

3.3 Inference Paradigm

After learning from the Mistake Log, the Copilot model is deployed alongside the Pilot model to
enhance inference-time generation. To avoid abuse of notation, we reuse the same symbols as in
training. Given a new input sequence X; ~ Dy, t > T, where X, is not part of the training data, ¢
indexes the inference-time inputs and does not correspond to training rounds. As the objective of
the Copilot model is to predict the token-level probability discrepancy p;; — py,;, we directly use
the Copilot model’s output to rectify the Pilot model’s prediction p, ; towards the ground-truth p; ;.
Formally, the rectified predicted distribution is given by:

Dti = Pt + Af,ﬁ, ®)

where A (typically set to 1) is a tunable hyperparameter controlling correction strength. Introducing A
at inference allows for more flexible modulation, and as we later show in Section 4, with a proper A,
the rectified p, ; theoretically provides a closer approximation to the target distribution p; ;. Algorithm
2 outlines the overall inference paradigm. Given X, the Pilot model outputs a predicted distribution
Pr,; at each token generation step ¢ € [n] (Line 3). Subsequently, the Copilot model auto-regressively
computes its output f<; (Line 5). Finally, the rectified f; ; is obtained via Eq.8 and used to generate
the next token via a decoding function (Lines 6-7). The inference process is adaptive and can
optionally terminate upon generation of the [E0S] (end-of-sequence) token.

4 Analyses - Why Learn from the Mistake Log?

To elucidate the roles of the Mistake Log and Copilot model in enhancing the Pilot model’s inference-
time performance, we present both theoretical and empirical analyses in this section.

Theoretical Guarantee. Recall that the Copilot model f ¢ is designed to analyze the Pilot model’s
internal cognitive states Xy, h; via the collected Mistake Log My, and learns to predict errors
measured by the token-level discrepancies ¢;(p: ;,P,;). During inference, we use the rectified

prediction as p;; = Dr,; + A ftcZ In the following analysis, we show that, under mild assumptions,
the adjusted prediction p, ; yields improved inference performance over the original estimate py ;.

Let A", A® denote the distributions over the function classes of #” #¢ induced by the randomness

in the fine-tuning process. Let [k] denote the k-th dimension of a vector in RIV|. Then, we define the
expected error and variance of the Pilot and Copilot model at the k-th output dimension as:

€ = E(x,,vi)~p [(01.ilk] — Egrar [Brilk] | 92.<i])*]
op =E(x,.vi)~p [Vargr o ar [prilk] | §ie,<il],

Ezc =E oP AP [(Pt,i[k] —ﬁt,i[k} —Ego.uac [ft?i[k} | ff?<iD2 \ ?Jt,<i},
(Xt,Yy)~D

oo =E 0P~ AP [VarchAc [ffb[k] | ft?<i} | Z?t,<i}-
(X4, Y1) ~D
Theorem 4.1. For any k € [|V|], suppose that €% > 0 and ec < \/€3 + 0%. Then there exists
Ao > 0 such that for any 0 < A < Ag, the rectified prediction p,; = Py ; + A ft?i vields a strictly

closer approximation to the ground-truth distribution p, ; at dimension k. Specifically, at the i-th
token prediction step for X; ~ Dy, we have:

E gp_aP [(pm‘[k] — pr.ilk])? f5<i,@t,<z‘] <E gr4r [(prilk] = pealk])? | Ge<i] -
€ ~AC (X¢,Y:)~D
(X¢,Ye)~D

Remark 4.2. The assumption ec < \/€% + 02 in Theorem 4.1 allows the Copilot model f¢(-;0)
to have a larger bias than the bias ¢p of the Pilot model f7(-;0F), i.e., €3 < €2 < €% + 5.

Theorem 4.1 suggests that the rectified prediction p; ; after incorporating the Copilot model achieves
strictly lower expected error at k-dimension under mild assumptions and a proper), indicating
the Copilot helps improve the inference performance of the Pilot. The full proof is provided
in Appendix B. In addition, Remark 4.2 implies that the Copilot model can improve inference
performance without needing to match the Pilot’s accuracy in isolation. This insight motivates us to
apply a relatively smaller size of a Copilot to complement the Pilot in our empirical implementation.

350 Commonsense Reasoning

Arithmetic Reasoning
~ & b
~ o | —Tiihe — -

LI A T 250

gt

N
4]
=

N
8
=

<
@ 200
3

o
@ 150

8
3

- 100
= LlaMA-3.2-3B
LLaMA-3.1-8B
. .|

Logits Correction (%)
K 2

) LLaMA-3.2-1B
50

3

0
AQuA SVAMP MAWPS PIQA WinoG SIQA 0.0 0.5 1.0 15 2.0 25 3.0 35 4.0
Tasks

Logits Correction (absolute value)

Figure 3: Logits Correction by Copilot. We visualize the logits correction introduced by a 1B
Copilot model (computed as |Fused logits — Pilot logits|) to highlight the shift by the Copilot’s
rectification. Left: Percentage of logits correction over original Pilot’s output logits range for three
LLaMA-3 Pilot models. Right: Distribution of logits correction magnitudes across reasoning types.

Question: Choose the correct answer to the question: Carson was at a friend's house but suddenly announced they needed to go home. Why did
Carson do this? Answerl: caught a bus; Answer2: called a cab; Answer3: forgot to feed the dog. Answer format: answerl/answer2/answer3.

Pilot Model Only Answer: Pilot + Copilot Answer:
The choice is E‘grggt_:_to feed the dog. 0 The choice is [answeri3
PilotModel ~""--._ Copilot Model =" Pilot+Copilot w0

10 New Fused Logits
= Ground Truth Token
== Probabilties 08

4
Probability
Rectified Logits by T-Copilot

o N
4
°
N
4
e
H
4
e
=

Logits
Probability

New Fused Logits

Carson® _'This' ‘answer' ‘3" “forgot’ "Carson” _'This" "answer” ER
Tokens Tokens

Top-Token Prediction per Layer (Logits Lens) £

"forgot' "Carson’ _“This' ‘answer
Tokens

Top-Token Prediction per Layer (Logits Lens) Top-Token Prediction per Layer (Logits Lens)

is forgot the

Token

& s 5 answer the | answer answer » 8
8 E

3

2

o 2 8 L 16 20 24 2 S i 8 & 18 20 24 2 3 3 s 2 1
Layers Layers Layers

Figure 4: Example of Copilot’s Token-level Rectification on SIQA. The token-level formatting error (‘forgot’)
originates during the Pilot’s mid-way generation and is corrected (‘answer’) by incorporating the Copilot.

Empirical Analysis. Complementing our theoretical analysis, we empirically examine the recti-
fication effectiveness of the Copilot model during inference. We leave the setups in Appendix C.
Figure 3 illustrates the average logits correction induced by the 1B Copilot model across different
Pilot models and reasoning categories. Given that the typical logits range is approximately [—10, 10],
the observed shifts on the logits distribution indicate a clear and consistent adjustment on the final
predictions by the Copilot model.

We further verify that this Copilot’s adjustment indeed steers the token prediction toward the correct
direction: We analyze representative error patterns frequently observed in the Pilot model’s output,
particularly factual and formatting mistakes. Figure 4 shows a detailed example of token-level logits
rectification on Pilot model LLaMA-3.2-3B by the 1B Copilot, visualized using the layer-wise Logits
Lens [8]. At mid-inference, the Pilot does not follow the correct answer format and makes mistakes
(the correct token ‘answer’ has a high but suboptimal logit). The Copilot rectifies the prediction by
decreasing the logit of the incorrect token ‘forgot’ and amplifying that of the correct token, thereby
correcting the token prediction error. We leave analyses on other error patterns in Appendix C.

S Empirical Evaluations

Tasks and Datasets. To comprehensively evaluate T-Copilot, we utilize a broad suite of reasoning
and generation tasks: (i) Commonsense reasoning: PIQA [10], HellaSwag [93], WinoGrande [68],
BoolQ [18], SIQA [70], and OpenbookQA (OBQA) [55]. (ii) Arithmetic reasoning: AQuA [48],
GSMEK [19], MAWPS [42], and SVAMP [60]. and (iii) Downstream Recommendation: Beauty [30]
and LastFM [67]. Detailed dataset descriptions are provided in Appendix D.

Implementation Details. For T-Copilot, we construct the Copilot model using the same type
of decoder architecture as the Pilot model to ensure consistency. We use the AdamW optimizer
and Cosine learning rate scheduler for both Pilot and Copilot models. We modify the generate
in HuggingFace Transformers [22] to perform token-level logits fusion and rectified next-token
generation during inference. All experiments are conducted on NVIDIA A100 GPUs. We leave all
hyperparameter setups and training/inference details in Appendix E.1.

Models and Baselines. We incorporate T-Copilot with varying backbone Pilot models. For encoder-
decoder Pilots, we utilize T5 [65] and FLAN-TS [17] across small/base/large variants. For decoder-
only Pilots, we employ multiple models from LLaMA-3 [21] and Qwen2.5 [90] families. We denote
T-Copilot-small/base/0.5B/1B/3B as the Copilot model on different scales. Detailed model configu-
ration and implementation details are provided in Appendix E.2. We compare against three baseline
types: (i) Pilot-only models as described above. (ii) Frontier LLMs with comparable and larger pa-
rameters, including LLaMA-3.1-8B [21], Gemma-2-9B [75], and Qwen2.5-14B. (iii) Layer/Adapter
expansion methods, including MoE models [71] (Mistral-7B, Ministral-8B), LLaMA/Mistral-Pro-8B
[84], Mergekit-9B [26], and TIES [89]. Detailed baseline descriptions are provided in Appendix E.3.

5.1 Incorporating T-Copilot into Pilot Models Yields Better Performance

Effectiveness of Copilot in Enhancing Pilot. Table 1 presents the performance gains of incorporating
T-Copilot into the Pilot models across different model scales and types. T-Copilot consistently

Table 1: Experiment results (%) of incorporating T-Copilot on encoder-decoder/decoder-only back-
bone models. Results are averaged over 3 independent runs. We report the relative improvement on
the backbone Pilot models. T-Copilot boosts existing LLMs on ten reasoning tasks by 2.0%-34.5%.

Commonsense Reasoning (Acc. 1) Arithmetic Reasoning (Acc. 1)

Type ‘ Model ‘

Impr. Impr.
‘ PIQA WinoG. HellaS. BoolQ SIQA OBQA Avg. AQuA GSM8K MAWPS SVAMP Avg.
FLAN-TS5-small 603 521 31,6 579 478 292 465 19.6 5.6 14.7 53 11.3
+T-Copilot-small | 63.1 544 349 617 527 329 500 175% 2438 7.4 20.6 8.0 152 134.5%
Ts FLAN-TS5-base 654 54.6 36.8 61.1 486 29.6 494 22.8 72 27.1 6.3 159
+T-Copilot-base | 67.3 56.2 397 625 543 347 525 163% 244 9.3 32.4 103 19.1 120.1%
FLAN-T5-large 705 604 495 622 58.1 317 554 232 9.9 36.7 9.7 19.9
+T-Copilot-small | 722 61.9 513 632 598 326 568 125% 247 11.3 372 116 212 16.5%
+T-Copilot-base | 72.8 63.6 523 637 608 342 579 145% 25.1 11.6 39.8 13.8 22,6 113.6%
LLaMA-3.2-1B 775 711 61.8 639 719 668 688 25.6 273 77.1 473 443
+ T-Copilot-1B 802 73.7 633 655 749 689 7.1 133% 283 322 81.5 51,6 484 19.3%
LLaMA LLaMA-3.2-3B 833 79.6 894 691 774 756 79.1 33.1 553 86.1 642 59.7
4 +T-Copilot-1B 84.1 82.6 91.1 703 786 772 80.7 12.0% 36.6 582 89.1 68.7 632 159%
+ T-Copilot-3B 856 837 913 728 792 813 823 14.0% 40.1 63.1 91.2 714 665 111.4%
LLaMA-3.1-8B 854 843 909 69.6 799 826 821 37.3 63.5 89.1 73.6 659
+T-Copilot-1B 862 86.8 935 718 827 832 840 123% 389 66.1 90.8 754 678 129%
Qwen2.5-3B 83.6 715 898 634 776 846 794 559 71.4 89.6 81.5 746
+ T-Copilot-0.5B | 85.4 79.1 913 668 781 86.0 8l.1 1721% 573 74.2 91.8 828 765 125%
Qwen +T-Copilot-3B 87.8 81.7 940 687 799 894 83.6 153% 594 76.8 92.6 835 781 14.7%
Qwen2.5-7B 872 821 914 712 793 89.1 834 61.0 753 91.2 848 78.1
+ T-Copilot-0.5B | 89.3 853 935 736 800 921 856 12.6% 614 8.2 93.0 865 798 122%
+T-Copilot-3B 925 872 953 748 843 949 882 158% 642 79.7 94.8 88.1 81.7 14.6%

Table 2: Performance comparison (%) with baselines under matched parameter scales. Results are
averaged over 3 runs. Adding T-Copilot consistently surpasses baselines of equal or even larger size.

Model Params Commonsense Reasoning (Acc. 1) Arithmetic Reasoning (Acc. 1)
PIQA WinoG. HellaS. BoolQ SIQA OBQA Avg. AQuA GSM8K MAWPS SVAMP Avg.
LLaMA-3.1-8B 8B 854 843 909 69.6 799 826 82.1 373 63.5 89.1 736 659
LLaMA-3.2-3B + T-Copilot-3B 6B (-2B) 85.6 83.7 913 728 792 813 823 40.1 63.1 91.2 714 66.5
Qwen2.5-7B 7B 872 821 914 712 793 89.1 834 61.0 75.3 91.2 848 78.1
Qwen2.5-3B + T-Copilot-3B 6B (-1B) 87.8 81.7 940 687 799 894 83.6 594 76.8 92.6 835 781
Qwen2.5-14B 14B 91.8 85.6 943 752 845 931 874 635 79.5 92.4 87.9 80.8

Qwen2.5-7B + T-Copilot-3B 10B (-4B) 925 872 953 748 843 949 882 0642 79.7 94.8 838.1 817

Comparison with Layer/Adapter Expansion Baselines

Mistral-Pro-8B 8B 83.1 819 86.1 708 76.1 80.6 79.8 355 54.4 88.2 68.5 61.7
LLaMA-Pro-8B 8B 884 814 869 739 761 778 808 382 57.2 925 63.5 629
Ministral-8B 8B 857 84.1 913 703 7715 813 817 374 62.9 90.2 732 659
LLaMA-3.2-3B + T-Copilot-3B 6B (-2B) 85.6 83.7 913 728 792 813 823 40.1 63.1 91.2 714 66.5
MergeKit-9B 9B 86.1 84.7 91.1 71.1 793 802 82.1 37.0 65.2 90.3 752 66.9
LLaMA-3.1-8B + T-Copilot-1B 9B 862 86.8 935 71.8 827 832 84.0 389 66.1 90.8 754 678

improves performance across all TS5, LLaMA, and Qwen models on 10 commonsense and arithmetic
reasoning tasks. In particular, a lightweight Copilot (e.g., T-Copilot-small) can deliver meaningful
improvements (6.5% on arithmetic) when paired with a much larger Pilot model (e.g., FLAN-TS5-
large). Moreover, scaling up the Copilot model leads to additional improvement, underscoring its
effectiveness in rectifying the Pilot model’s predictions during inference.

Comparison with Size-Matched Baselines. As shown in Table 2, we first compare our method
against stronger models with larger parameters under the same model backbones. While LLaMA-3.2-
3B initially lags significantly behind LLaMA-3.1-8B, incorporating T-Copilot-3B enables the model
to outperform LLaMA-3.1-8B, despite using 2B fewer total parameters. Similarly, for the Qwen2.5
series, incorporating T-Copilot-3B enables the smaller Qwen2.5-7B to surpass Qwen2.5-14B with
4B fewer parameters. To provide a broader perspective, we also compare with strong baselines from
different methods and model types. For instance, although LLaMA-3.2-3B originally trails behind
models like Ministral-8B and LLaMA-Pro-8B, incorporating T-Copilot-3B enables it to outperform
the strongest baseline under the 8B scale, Ministral-8B, while maintaining a 2B parameter advantage.
Due to page limits, full comparison results are provided in Appendix F.1.

Downstream Tasks. Additional evaluation of T-Copilot and baseline comparisons on downstream
recommendation tasks is provided in Appendix F.2.

® LlLaMA-3.2-1B+T-Copilot-1B B LLaMA-3.1-8B+T-Copilot-1B € LLaMA-Pro-8B MergeKit-9B
LLaMA-3.2-3B+T-Copilot-1B ® LlaMA-3.2-3B ® LLaMA-3.1-8B

+ T-Copilot-1B

Time

o @ — LLaMA-3.2-1B+T-Copilot-1B +4.7%

3 : 3
v ® ~ < =
5 45 ‘ . : c 9 Bl +7o%
N S
40 2
H 4 " ':', 85 P — LLaMA-3.2-3B+T-Copilot-1B o
M= 35 h c LLaMA-3.2-3B " 1.0%
£ » g i % £ + T-Copilot-18 1
= e g
0 ® v >
W 25 H k
g o g7 LLaMA-3.1-88+T-Copilot-18 | 330
o 20 4 5 65 LLaMA-3.1-88 — 3¢ /
X 2] L
2 5 ‘ £ 60 LLaMA-Pro-88 8| 165%
y MergeKit-98 — 8
PIQA WinoG. Hellas. BoolQ SIQA 0BQA Models M52 15 WaMA32 35 MA3 190 [aMAPOS MergeKicsd
(a) (b) (c)

Figure 5: Efficiency Analysis on T-Copilot during fine-tuning and inference. (a) Inference model
throughput. (b) Fine-tuning running speeds. (¢) Overall training and inference time overhead.

Table 3: T-Copilot Transferability Results. We report the performance of T-Copilot paired with
new Pilot models across four reasoning tasks. The results demonstrate that the Copilot model remains
effective for the new Pilot models without being jointly trained.

T-Copilot-1B HellaSwag BoolQ GSM8K SVAMP Overall Impr.
with new LLaMA-3.2-1B 63.1 65.2 32.2 51.4 16.1%
with new LLaMA-3.3-3B 91.4 70.2 58.8 68.5 14.2%
with new LLaMA-3.1-8B 93.1 71.7 66.0 75.8 12.4%

5.2 Efficiency, Transferability, and Scalability

Efficiency. To thoroughly evaluate T-Copilot’s running efficiency, we compare against Pilot and
baseline models with the same LLLaMA-3 backbone architecture under similar parameter scales. As
shown in Figure 5, T-Copilot maintains comparable inference throughput (Figure 5 (a)) and training
speed (Figure 5 (b)) to its corresponding Pilot models, while incurring only a 4% marginal average
increase in time overhead (Figure 5 (c)). In contrast, other baselines such as LLaMA-Pro-8B and
MergeKit-9B suffer from significantly higher latency and computational costs relative to their base
model LLaMA-3.1-8B. We provide a more detailed inference latency report in Appendix F.3 (Table
15) and discuss the architectural advantage of our model design in Appendix A.1.

Transferability. In the T-Copilot learning framework, the Copilot model is fine-tuned alongside
but separately from the Pilot model. Since the same type of models generally have similar learning
trajectories under identical training settings, we further investigate if the Copilot model can leverage
the mistake log of one Pilot model and still be effective on another Pilot model of the similar type.

We conduct controlled experiments on LLaMA-3 series models in which we directly apply a finetuned
1B Copilot model to new Pilot models during inference. The new Pilot model shares the same
architecture as the original one but is trained independently. Note that the Copilot model does not
"see" or "learn" any information from the new Pilot model, as they are not jointly trained during
finetuning. In Table 3, transferring the Copilot model leads to a slight £0.2% performance difference
compared to applying the Copilot to the initial Pilot models (jointly training together). We hypothesize
that the minor discrepancy is due to the hardware inference differences between the original and new
Pilot models. Nonetheless, the transferred Copilot model still delivers substantial performance gains
for the new Pilot and consistently outperforms competing baselines. These results demonstrate that
T-Copilot’s error-correction capabilities are not tightly coupled to a specific Pilot model and can be
effectively transferred without additional rounds of fine-tuning.

Scalability. Figure 6 illustrates the relationship between accuracy and model parameter size for
T-Copilot. Overall, incorporating the Copilot model consistently demonstrates improved performance
as model size increases. We analyze the relationship between performance accuracy (A) and model
parameter size (V) in billions. The derived equations for our method are as follows: for Flan-T5
backbones: A ~ 8.74 -1log;,(N) +40.17; For LLaMA-3 backbones: A ~ 29.58 - log;, (V) + 50.20,
and for Qwen2.5 backbones: A ~ 12.40 - log;,(N) 4 71.80.

43 80 90

70

80 1

Performance (%)

Performance (%)
Performance (%)

--++ T-Copilot --- T-Copilot

T-Copilot
Flan-T5 LLaMA-3

Qwen2.5

25 70

T T T T T T T T T T T T T
200 400 600 800 1 2 3 4 5 6 7 8 9

h 4 6 8 10 12 14
Parameter Size (M) Parameter Size (B)

Parameter Size (B)

Figure 6: Inference Scaling Laws for T-Copilot. We evaluate the average accuracy of T-Copilot and
backbone frontier LLMs across all reasoning tasks at varying model scales. The results are shown for
three architectures: FLAN-TS5 (left), LLaMA-3 (middle), and Qwen2.5 (right).

Ablation Studies. Detailed ablation studies on T-Copilot, including model design choices, input
insertion patterns, and the effect of the hyperparameter), are presented in Appendix F.4.

6 Related Works

LLMs Supervised Fine-tuning. Supervised fine-tuning (SFT) serves as the standard post-training
method for specializing pre-trained LLMs to downstream tasks [80, 69, 94]. It enables models to
incorporate task-specific knowledge and improves their performance in domain-relevant settings
[94, 59, 96]. While effective, SFT often suffers from misalignment between training-time objectives
and inference-time behavior [56, 79], leading to suboptimal generalization. Recent work has explored
parameter-efficient tuning methods [32, 46], alongside advanced adaptation strategies [74, 49, 85]
that improve learning effectiveness and efficiency. These methods primarily focus on model capacity
and optimization rather than leveraging learning dynamics. Building upon prior SFT methods, our
approach is compatible with existing fine-tuning frameworks and further improves by incorporating
model-internal signals into the fine-tuning process. By adaptively learning from mistake patterns
observed during fine-tuning, T-Copilot enables error-aware prediction and helps reduce the gap
between training and inference performance.

Self-refinement in Language Models. Recent research has explored various self-refinement
techniques in LLMs to generate high-quality outputs. Models either iteratively prompt themselves
with updated responses [52, 27, 72] or optimize their behavior using external human or synthetic
feedback [58, 91, 54, 99]. Orthogonal to external supervision such as additional prompting, multi-
stage feedback, or explicit reward optimization, our work focuses on capturing model-internal signals
during fine-tuning to achieve token-level rectification, without modifying the training objective or
data distribution. We leave the additional related work and discussions in the Appendix G.

7 Conclusion

In this paper, we introduce Transformer Copilot, a novel learning framework that enhances
Transformer-based Pilot models by integrating an auxiliary Copilot model during fine-tuning. By
capturing the Pilot model’s learning signals in a Mistake Log during fine-tuning, the Copilot model
learns to rectify the Pilot’s logits at inference time, enabling error-aware predictions. We provide
both theoretical and empirical evidence that our method improves the Pilot model’s inference pre-
dictions. Experiments on 12 benchmarks demonstrate the effectiveness, efficiency, scalability, and
transferability of Transformer Copilot. Discussions on limitations are provided in Appendix H.

Acknowledgment

We would like to thank the anonymous reviewers and AC for their constructive feedback during the
review process. We also thank Sirui Chen, Tianxin Wei, Zhining Liu, Xiao Lin and other members
from UIUC iDEA-iSAIL Lab for their constructive feedback on this work. This work is supported by
National Science Foundation under Award No. 1IS-2117902, and Agriculture and Food Research
Initiative (AFRI) grant no. 2020-67021-32799/project accession no.1024178 from the USDA National
Institute of Food and Agriculture. The views and conclusions are those of the authors and should not
be interpreted as representing the official policies of the funding agencies or the government.

10

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

[15]

[16]

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

Rami Al-Rfou, Dokook Choe, Noah Constant, Mandy Guo, and Llion Jones. Character-level
language modeling with deeper self-attention. In Proceedings of the AAAI conference on
artificial intelligence, volume 33, pages 3159-3166, 2019.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra
Cojocaru, Mérouane Debbah, Etienne Goffinet, Daniel Hesslow, Julien Launay, Quentin
Malartic, et al. The falcon series of open language models. arXiv preprint arXiv:2311.16867,
2023.

Jimmy Lei Ba. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

Yikun Ban, Ishika Agarwal, Ziwei Wu, Yada Zhu, Kommy Weldemariam, Hanghang Tong,
and Jingrui He. Neural active learning beyond bandits. arXiv preprint arXiv:2404.12522,
2024.

Yikun Ban, Yuchen Yan, Arindam Banerjee, and Jingrui He. Ee-net: Exploitation-exploration
neural networks in contextual bandits. arXiv preprint arXiv:2110.03177, 2021.

Yikun Ban, Jiaru Zou, Zihao Li, Yunzhe Qi, Dongqi Fu, Jian Kang, Hanghang Tong, and
Jingrui He. Pagerank bandits for link prediction. In A. Globerson, L. Mackey, D. Belgrave,
A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, Advances in Neural Information
Processing Systems, volume 37, pages 21342-21376. Curran Associates, Inc., 2024.

Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev McKinney,
Stella Biderman, and Jacob Steinhardt. Eliciting latent predictions from transformers with the
tuned lens. arXiv preprint arXiv:2303.08112, 2023.

Candice Bentéjac, Anna Csorgd, and Gonzalo Martinez-Mufloz. A comparative analysis of
gradient boosting algorithms. Artificial Intelligence Review, 54:1937-1967, 2021.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piga: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 7432-7439, 2020.

Evelyn M Boyd and Ann W Fales. Reflective learning: Key to learning from experience.
Journal of humanistic psychology, 23(2):99-117, 1983.

Anne Brockbank, Ian McGill, and Nic Beech. Reflective learning in practice. In Reflective
learning in practice, pages 18-28. Routledge, 2017.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language
models are few-shot learners. Advances in neural information processing systems, 33:1877—
1901, 2020.

Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering latent knowledge in
language models without supervision. arXiv preprint arXiv:2212.03827, 2022.

Jianpeng Cheng. Long short-term memory-networks for machine reading. arXiv preprint
arXiv:1601.06733, 2016.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1—
113, 2023.

11

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan
Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned
language models. Journal of Machine Learning Research, 25(70):1-53, 2024.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and
Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions.
arXiv preprint arXiv:1905.10044, 2019.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge
neurons in pretrained transformers. arXiv preprint arXiv:2104.08696, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Hugging Face. Transformers documentation. https://huggingface.co/docs/
transformers/main/en/index, 2024.

Markus Freitag and Yaser Al-Onaizan. Beam search strategies for neural machine translation.
arXiv preprint arXiv:1702.01806, 2017.

Yoav Freund, Robert Schapire, and Naoki Abe. A short introduction to boosting. Journal-
Japanese Society For Artificial Intelligence, 14(771-780):1612, 1999.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers
are key-value memories. arXiv preprint arXiv:2012.14913, 2020.

Charles Goddard, Shamane Siriwardhana, Malikeh Ehghaghi, Luke Meyers, Vlad Karpukhin,
Brian Benedict, Mark McQuade, and Jacob Solawetz. Arcee’s mergekit: A toolkit for merging
large language models. arXiv preprint arXiv:2403.13257, 2024.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts,
Abhishek Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced
self-training (rest) for language modeling. arXiv preprint arXiv:2308.08998, 2023.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient
fine-tuning for large models: A comprehensive survey. arXiv preprint arXiv:2403.14608,
2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770-778, 2016.

Ruining He and Julian McAuley. Ups and downs: Modeling the visual evolution of fashion
trends with one-class collaborative filtering. In proceedings of the 25th international conference
on world wide web, pages 507-517, 2016.

Mandy Hommel, Béirbel Fiirstenau, and Regina H Mulder. Reflection at work—a concep-
tual model and the meaning of its components in the domain of vet teachers. Frontiers in
Psychology, 13:923888, 2023.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

Zhiqgiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu,
Soujanya Poria, and Roy Ka-Wei Lee. Lim-adapters: An adapter family for parameter-efficient
fine-tuning of large language models. arXiv preprint arXiv:2304.01933, 2023.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and
Jiawei Han. Large language models can self-improve. arXiv preprint arXiv:2210.11610, 2022.

12

https://huggingface.co/docs/transformers/main/en/index
https://huggingface.co/docs/transformers/main/en/index

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

(51]

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv
preprint arXiv:2410.21276, 2024.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31,

2018.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In 2018
IEEE international conference on data mining (ICDM), pages 197-206. IEEE, 2018.

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient
low-rank hypercomplex adapter layers. Advances in Neural Information Processing Systems,
34:1022-1035, 2021.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of naacL-HLT,
volume 1, page 2. Minneapolis, Minnesota, 2019.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa.
Large language models are zero-shot reasoners. Advances in neural information processing
systems, 35:22199-22213, 2022.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi.
Mawps: A math word problem repository. In Proceedings of the 2016 conference of the

north american chapter of the association for computational linguistics: human language
technologies, pages 1152-1157, 2016.

Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge.
In Thirteenth international conference on the principles of knowledge representation and
reasoning, 2012.

Mike Lewis. Bart: Denoising sequence-to-sequence pre-training for natural language genera-
tion, translation, and comprehension. arXiv preprint arXiv:1910.13461, 2019.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-
time intervention: Eliciting truthful answers from a language model. Advances in Neural
Information Processing Systems, 36, 2024.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
arXiv preprint arXiv:2101.00190, 2021.

Yanhong Li, Chenghao Yang, and Allyson Ettinger. When hindsight is not 20/20: Testing
limits on reflective thinking in large language models. arXiv preprint arXiv:2404.09129, 2024.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by ratio-
nale generation: Learning to solve and explain algebraic word problems. arXiv preprint
arXiv:1705.04146, 2017.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang,
Kwang-Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation.
arXiv preprint arXiv:2402.09353, 2024.

Yiheng Liu, Tianle Han, Siyuan Ma, Jiayue Zhang, Yuanyuan Yang, Jiaming Tian, Hao He,
Antong Li, Mengshen He, Zhengliang Liu, et al. Summary of chatgpt-related research and
perspective towards the future of large language models. Meta-Radiology, page 100017, 2023.

Kai Lv, Yuqing Yang, Tengxiao Liu, Qinghui Gao, Qipeng Guo, and Xipeng Qiu. Full
parameter fine-tuning for large language models with limited resources. arXiv preprint
arXiv:2306.09782, 2023.

13

(52]

[53

—_

[54

[}

[55]

[56]

[57

—

(58]

[59]

[60

—_

[61]

[62]
[63]

[64]

[65

—_

[66]

[67]

[68]

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534—46594,
2023.

R Thomas McCoy, Ellie Pavlick, and Tal Linzen. Right for the wrong reasons: Diagnosing
syntactic heuristics in natural language inference. arXiv preprint arXiv:1902.01007, 2019.

Ning Miao, Yee Whye Teh, and Tom Rainforth. Selfcheck: Using llms to zero-shot check their
own step-by-step reasoning. arXiv preprint arXiv:2308.00436, 2023.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning
work? arXiv preprint arXiv:2202.12837, 2022.

Yuhong Mo, Hao Qin, Yushan Dong, Ziyi Zhu, and Zhenglin Li. Large language model (1lm)
ai text generation detection based on transformer deep learning algorithm. arXiv preprint
arXiv:2405.06652, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models
to follow instructions with human feedback. Advances in neural information processing
systems, 35:27730-27744, 2022.

Venkatesh Balavadhani Parthasarathy, Ahtsham Zafar, Aafaq Khan, and Arsalan Shahid. The
ultimate guide to fine-tuning llms from basics to breakthroughs: An exhaustive review of
technologies, research, best practices, applied research challenges and opportunities. arXiv
preprint arXiv:2408.13296, 2024.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple
math word problems? arXiv preprint arXiv:2103.07191, 2021.

Yunzhe Qi, Yikun Ban, and Jingrui He. Graph neural bandits. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pages 1920-1931, 2023.

Alec Radford. Improving language understanding by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song,
John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language
models: Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446,
2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of machine learning research, 21(140):1-67, 2020.

Raquel B Robinson, Karin Johansson, James Collin Fey, Elena Marquez Segura, Jon Back,
Annika Waern, Sarah Lynne Bowman, and Katherine Isbister. Edu-larp@ chi. In Extended
Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems, pages 1-5,
2023.

Benedek Rozemberczki and Rik Sarkar. Characteristic functions on graphs: Birds of a feather,
from statistical descriptors to parametric models. In Proceedings of the 29th ACM international
conference on information & knowledge management, pages 1325-1334, 2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99-106,
2021.

14

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

(80]

[81]

[82]

[83]

[84]

[85]

Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika, Zaid Alyafeai,
Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. Multitask prompted
training enables zero-shot task generalization. arXiv preprint arXiv:2110.08207, 2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa:
Commonsense reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts
layer. arXiv preprint arXiv:1701.06538, 2017.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Re-
flexion: Language agents with verbal reinforcement learning. Advances in Neural Information
Processing Systems, 36:8634-8652, 2023.

Reece Shuttleworth, Jacob Andreas, Antonio Torralba, and Pratyusha Sharma. Lora vs full
fine-tuning: An illusion of equivalence. arXiv preprint arXiv:2410.21228, 2024.

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Lst: Ladder side-tuning for parameter and
memory efficient transfer learning. Advances in Neural Information Processing Systems,
35:12991-13005, 2022.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin,
Surya Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé,
et al. Gemma 2: Improving open language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems,
2017.

Thomas Wang, Adam Roberts, Daniel Hesslow, Teven Le Scao, Hyung Won Chung, 1z Beltagy,
Julien Launay, and Colin Raffel. What language model architecture and pretraining objective
works best for zero-shot generalization? In International Conference on Machine Learning,
pages 22964-22984. PMLR, 2022.

Yihan Wang, Andrew Bai, Nanyun Peng, and Cho-Jui Hsieh. On the loss of context-awareness
in general instruction fine-tuning. arXiv preprint arXiv:2411.02688, 2024.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv
preprint arXiv:2109.01652, 2021.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large
language models. arXiv preprint arXiv:2206.07682, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824-24837, 2022.

Tongyu Wen, Chenglong Wang, Xiyuan Yang, Haoyu Tang, Yueqi Xie, Lingjuan Lyu, Zhicheng
Dou, and Fangzhao Wu. Defending against indirect prompt injection by instruction detection,
2025.

Chengyue Wu, Yukang Gan, Yixiao Ge, Zeyu Lu, Jiahao Wang, Ye Feng, Ping Luo, and Ying
Shan. Llama pro: Progressive llama with block expansion. arXiv preprint arXiv:2401.02415,
2024.

Zhengxuan Wu, Aryaman Arora, Zheng Wang, Atticus Geiger, Dan Jurafsky, Christopher D
Manning, and Christopher Potts. Reft: Representation finetuning for language models. arXiv
preprint arXiv:2404.03592, 2024.

15

[86]

[87]

[88]

[89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui Tao, and Fu Lee Wang. Parameter-efficient
fine-tuning methods for pretrained language models: A critical review and assessment. arXiv
preprint arXiv:2312.12148, 2023.

Pan Xu, Zheng Wen, Handong Zhao, and Quanquan Gu. Neural contextual bandits with deep
representation and shallow exploration. arXiv preprint arXiv:2012.01780, 2020.

Shuyuan Xu, Wenyue Hua, and Yongfeng Zhang. Openp5: An open-source platform
for developing, training, and evaluating 1lm-based recommender systems. arXiv preprint
arXiv:2306.11134, 2023.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging:
Resolving interference when merging models. Advances in Neural Information Processing
Systems, 36, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115,2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In International Conference
on Learning Representations (ICLR), 2023.

Zhaochen Yu, Ling Yang, Jiaru Zou, Shuicheng Yan, and Mengdi Wang. Demystifying
reinforcement learning in agentic reasoning, 2025.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li,
Runyi Hu, Tianwei Zhang, Fei Wu, et al. Instruction tuning for large language models: A
survey. arXiv preprint arXiv:2308.10792, 2023.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use:
Improving few-shot performance of language models. In International conference on machine
learning, pages 12697-12706. PMLR, 2021.

Jiawei Zheng, Hanghai Hong, Feiyan Liu, Xiaoli Wang, Jingsong Su, Yonggui Liang, and
Shikai Wu. Fine-tuning large language models for domain-specific machine translation. arXiv
preprint arXiv:2402.15061, 2024.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma,
Avia Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. Advances in Neural
Information Processing Systems, 36:55006-55021, 2023.

Jiaru Zou, Soumya Roy, Vinay Kumar Verma, Ziyi Wang, David Wipf, Pan Lu, Sumit Negi,
James Zou, and Jingrui He. Tattoo: Tool-grounded thinking prm for test-time scaling in tabular
reasoning. arXiv preprint arXiv:2510.06217, 2025.

Jiaru Zou, Ling Yang, Jingwen Gu, Jiahao Qiu, Ke Shen, Jingrui He, and Mengdi Wang.
Reasonflux-prm: Trajectory-aware prms for long chain-of-thought reasoning in llms. arXiv
preprint arXiv:2506.18896, 2025.

Jiaru Zou, Mengyu Zhou, Tao Li, Shi Han, and Dongmei Zhang. Promptintern: Saving
inference costs by internalizing recurrent prompt during large language model fine-tuning.
arXiv preprint arXiv:2407.02211, 2024.

16

Appendix

Table of Contents

A Additional Details on Transformer Copilot

A.1 Architectural Advantages of T-Copilot

A.2 Decoder-only Copilot Details
A.3 Bufferofthe Mistake Log
A.4 Conceptual Rationale on T-Copilot’s Learning Objective

B Proof of Theorem 4.1
C Additional Empirical Analysis

D Datasets

D.1 Commonsense Reasoning

D.2 Arithmetic Reasoning o

D.3 Downstream tasks: Recommendation

D.4 Fine-tuning Dataset Template

E Experiment Setups

E.1 Hpyperparameters and Training/Inference Details

E.2 T-Copilot Configurations and Implementations
E3 BaselineDetails

F Additional Experiments

F.1 Full Table Report on Baseline Comparison

F.2 Downstream Recommendation Evaluation

F.3 Efficiency Analysis on Transformer Copilot

F4 Ablations and Analyses on Transformer Copilot

G Additional Related Works

H Broader impact and Limitation

17

18
18
18
18
18

19

21

21
21
22
22
23

24
24
27
28

29
29
29
30
31

33

34

A Additional Details on Transformer Copilot

A.1 Architectural Advantages of T-Copilot.

In Section 3.1, we introduce the Copilot model inherited from the standard decoder module in a
Transformer [77]. However, our model design exhibits several key advantages compared to the
standard decoder module: Specifically, our Copilot model (i) eliminates the need for positional
embeddings to preprocess input sequences, (ii) does not require a softmax layer to normalize high-
dimensional logits distributions, and (iii) avoids waiting for the computation of key-value (KV)
pairs from the previous layer. These architectural design choices distinguish our method from layer
adaptation methods [26, 84] that modify internal Transformer layers, which inherently introduce
additional computational overhead. As a result, our method minimizes the gap in efficiency between
our framework and vanilla models.

A.2 Decoder-only Copilot Details

The decoder-only copilot model f¢ inherits its structure from the pilot model and processes three
inputs from the Mistake Log: the token-level discrepancy sequence ¢, the embedded input sequence

)~(+, and the pilot model’s hidden states h;. Note that, different from the encoder-decoder Pilot model,
X, here is derived from the input sequence X; after the positional embedding layer.

In the Decoder-only Copilot model, as stated in Section 3.1, the alternating attention mechanisms
effectively mirror the encoder-decoder structure, enabling the decoder-only Copilot to leverage
information inside the Mistake Log corrected from the Pilot model. The loss function (RMSE) and
target values ¢4 (p; ;, Pt ;) for the Decoder-only Copilot model remain identical to those used for the
encoder-decoder Copilot version. The fine-tuning and inference paradigm are also the same as the
encoder-decoder Copilot model, as stated in Algorithm 1 and 2.

A.3 Buffer of the Mistake Log

As described in Section 3, we maintain a Mistake Log to record the Pilot model’s internal learning
signals, which serve as training data for the Copilot model. To store this information efficiently with
minimal GPU and CPU memory overhead, we detach all relevant outputs from the Pilot’s forward
pass and store them in a CPU-resident buffer. By default, we use a fixed-size buffer that retains
the most recent 128 training rounds. The buffer is updated at each training step, and all Copilot
training samples are drawn exclusively from it. This design keeps the additional memory footprint
lightweight, typically under 500MB of the CPU memory and less than 200MB of the GPU memory.

A.4 Conceptual Rationale on T-Copilot’s Learning Objective

We elaborate here on the motivation for adopting the RMSE loss in training T-Copilot. Recall that
the objective of the Copilot is to predict the distribution discrepancy, defined as

Le(Dt,is Pr,i) = Pri — Pt

in our formulation. Note that ¢;(p;;,p:;) is not a valid probability distribution, since
Zi Ly(pri, Pr,i) # 1. Therefore, it is natural to formulate this task as a regression problem,
for which the RMSE loss is commonly adopted.

In contrast, common language modeling objectives such as Cross-Entropy (CE) and KL Divergence
are designed for distribution fitting and are not directly applicable in this setting, unless we
manipulate ¢;(py;, pr,;) with a softmax function to resemble a valid distribution. In that case,
however, the loss would no longer optimize the original discrepancy (i.e., p;; — Pt,q), leading to
potential information loss. In Appendix F.4, we further emprically validate the effectiveness of the
RMSE loss for T-Copilot training.

18

B Proof of Theorem 4.1

Given the model parameters 7 and 6, we denote the Pilot model as f¥(-;67) and the Copilot

model as f€(-;6¢). Let X; ~ Dy represent the input sequence at inference step ¢, and X, be the
input representation of the X;; Y; be the corresponding ground-truth answer for the input sequence
X;. For the t-th token prediction during inference, recall that:

Pri =P (Yei | XeoUt.<i)
Pr.i = softmax(f7 (X, Gr,<i:07)),

IS = FE(Xis he <y fo,<i:09).

Let AP A® denote the distributions over the function classes of 7, ¢, induced by the randomness
in the fine-tuning process. Let [k] denote the k-th dimension of a vector in RIV|. Then, we define the
expected error and variance of the Pilot and Copilot model at the k-th output dimension as:

b = E(x, vi)~p [(pt,i[k'] — Egrar[prilk] | gt7<i])2} < 00,
U?D =Ex, v,)~D [VaTHPNAP [Pe,i[k] | Qt,<i]] < 00,

~ 2 .
e i =E g _yr [(peilk] = Prilk] — Egcac[fR] | f<i])” | G,<i] < oo,
(X+,Yy)~D

0?) =E gy [VarchAc [ffi[k] \ ft?<i] | Zﬁt,<z‘] <X
(X¢,Yy)~D

where we assume f¥ and f© have the bounded error and variance at k-th dimension. Here, p; ; [k]
denotes the ground-truth probability assigned to the token at dimension k € [|V|] of the vocabulary,
for the -th token prediction step within input sequence X;. Then, we have the following theorem,
which corresponds to Theorem 4.1 in the main body.

Theorem B.1 (Restate). Given AY, A€, the Pilot model (0%, the Copilot model fc(-; 96),
and a data distribution D. For any k € [|V|], suppose the Pilot model is imperfect, i.e., €3 > 0, and
the Copilot model’s error satisfies ec < \/€% + o%. Then there exists a constant \o > 0 such that
Sforany 0 < X\ < Ao, the rectified prediction p;; = D + A ftCZ yields a strictly closer approximation
to the ground-truth distribution py ; at dimension k. Specifically, at the i-th token prediction step for
X ~ Dy, we have:

ff<n?}t,<i] <E ,p_,P [(ptz[k] —ﬁt,i[k’])Q ’Qt,@'] .

E gpoar [(pm[k] —ﬁt,i[k])z
(Xt,Yt)~D

0¢ ~AC
(Xt,Ye)~D

Proof. For brevity, we omit the explicit expectation condition over the Pilot model’s previously
generated tokens ¢ «;, the Copilot model’s preceding outputs ftc <> and the dimension index [£] in
the following proof.

Firstly, by the law of total expectation w.r.t.(X,, Y;) and the bias-variance decomposition w.r.t. py ;,
Eorar (i — ﬁt,z‘)Q}
(X+,Y:)~D
=Ex, v)~pEor~ar[(pri — ﬁt,z‘)z]]
=Ex, v,)~p|(pt;i — Bgrar[brs])® + Varge o ar [Prq]]
=Ex, v,)~p|(pri — Egrar[pri])’] + E(x, vi)~n[Varer « ar [ri]]

2 2
=€p t+0p.

19

Secondly, by the law of total expectation w.r.t. (X, Y;) and p ; and the bias-variance decomposition
W.LL. f,g-,
- c
Bor ar [(pri — P — £3)°]
90 NAC
(Xt ,Yt)"’D

=Eyr_4r [Egcac|(pei — Pri — fgi)2]]
(X3.¥1)~D

= EGPNAP [(pt,i — ﬁt,i — EQC,\,AC [ftg])2 + VarchAc [fg;]]
(X¢,Yy)~D

=]EGPNAP [(pt,i - ﬁt,i —Egcac [ffi])z} + EQPNAP [VarchAc {ffi]]
(X¢,Yy)~D (X¢,Yy)~D

= e% + aé.
Thirdly, by the law of total expectation w.r.t. (X3, Y;) and p; ; and the Cauchy—Schwarz inequality,
Epr o [(Pti — Dr,i)(Dei — Pri — ffi)]

¢~ AC
(Xt,Y:)~D
=Eyr_ar [Egconcl(pri— bri)(pei — Pri — FO)]
(Xr,,Yt)ND
=Epr4r [(pri — Pri) (Pri — Pri — Bge waclfEi])]
(X¢,Yy)~D
< \/EGPNAP (i = Dei)?] - Bgroar (i — Dri — Bgenac[f5])?]
(Xt7Yt)~D XhYt)ND

,/ep—l—ap C_GC\/EP+UP

Together, as longas 0 < A < 1,
Egr ar [(pri — Bri — M) = Egr oar [(pri — Dra)’]

CAC (Xt,Ys)~D
(XuYt)"‘D
=Egrar [((1=N(pei = Pra) + Apri — bri — SN2 — Ellpri — pri)?]
C C
(x)~D
= (1= N’Egrpr [(pri — Pei)’] + NEgr _up [(pri — Pri — [5)7]
¢ ~AC ¢ ~AC
(X¢,Y2)~D (X¢,Yy)~D
+2(1 -)\))\EQPNAP [(pt,i - f)t,i)(pt,i — Pti — ff,l-)] —Egp P [(pt,i - ﬁt,i)2]
0C~AC (X¢,Yy)~D
(X:,Yy)~D
= (1 -)‘)QIE@PNAP [(pt,i - f’t,i)z] +)‘ZEQPNAP [(pt,i - ﬁt,i - ftc;)Q]
(X¢,Yy)~D 9C ~AC
(X¢,Yy)~D
+2(1 = MAEgr ur [(Pri — D) (e — Prii — F)] — Boroar [(Pri — Pr)’]
9C ~AC (X+¢,Y:)~D
(X¢,Y;)~D
= (1 =N =DEgr_yr [(pri — Pei)’] + NEgryr [(pri — Pri — 57
(X¢,Yy)~D 0°~AC
(X¢,Yy)~D
+2(1 = NAEyr _ur [(pri — Br.i) (Dri — Pri — £3)]
0° ~AC
(X:,Yy)~D

< (1= A2~ 1)(+02) + N2 + 03) +2(1 - N[+ 0%
(3 + 02 —ce) + o)A 2/d + o2 (/R + 02— c)),

which is strictly smaller than O as long as
2\t + 03 (Vep +0p —€c)
=)\0 . O]

(\/6?34-0'123 —ec)2 +U%

O</\<min{1,

20

C Additional Empirical Analysis

Question: Zach wants to ride the Ferris wheel , the roller coaster, and the log ride . The Ferris
wheel costs 2 tickets , the roller coaster costs 7 tickets, and the log ride costs 1 ticket . Zach has 1

ticket . How many more tickets should Zach buy ?

Pilot Model Only Answer

To find out how many tickets Zach needs to buy, we need to add up the
cost of each ride and subtract the number of tickets Zach already has. -
The Ferris wheel costs 2 tickets. - The roller coaster costs 7 tickets. - The

Pilot Model with T-Copilot Answer

To find out how many tickets Zach needs to buy, we need to add up the
cost of each ride and subtract the number of tickets Zach already has. -
The Ferris wheel costs 2 tickets. - The roller coaster costs 7 tickets. - The

log ride costs 1 ticket. Adding these up, we get: 2 + 7 + 1 = 10. So, Zach

log ride costs 1 ticket. Adding these up, we get: 2 + 7+ 1 =10. So, Zach
needs to buy 10 -1 tickets. Therefore, Zach should buy 10 tickets. 9

needs tobuy 10-1 =19 itickets. Therefore, Zach should buy 9 tickets.

e P2 CIC
e - o H -~ O
-7 S< 1
- ~eo !
-7 AR 1
Rad Pilot Model S ! -
10 T-Copilot w0
Logits 4 8
= Ground Trth Token 5
6 abities 08 2 08
8 g e
g 2 5
> £
. ez % 5. 2
£ 3 g o 01 o2 H 3
B / a8 o f o5 | m)E a7 043
= / ° K| z 2 °
/ = 0z 8 -2 3 2 0z
o A g 2.8 z 0 7
24 19 8 22 / 2.4
2 a0 e 00 =4 -2 CE= - - - 0.0
7 o S e w . . .
2 “10° "9 “ten® & Tokens 2 "10° k3 ten* R
Tokens Tokens

Pilot Model Top-Token Predictions per Layer (Logit Lens View) T-Copilot Model Top-Token Predictions per Layer (Logit Lens View) Pilot with T-Copilot Top-Token Preidctions per Layer (Logit Lens View)

= = \n 9 9 9 9 9

8

Probability

.8
2

12 16 3 3 & 12 16 20 24 28
Layers Layers Layers

Figure 7: Example of Copilot’s Token-level Rectification on MAWPS.

Setups. In our empirical analysis, we choose LLaMA-3.2-3B as the Pilot model and T-Copilot-1B
as the Copilot model. The Copilot model’s implementation details are the same as stated in Appendix
E.2. We evaluate on two reasoning tasks, including SIQA [70] and MAWPS [42]. The dataset details
are provided later in Appendix D.

Example of Copilot’s Token-level Rectification. Figure 7 demonstrates another representative
example of Copilot’s token-level rectification on the factual error made by the Pilot model. The token
“10" is originally predicted wrong during the Pilot model mid-generation and is later corrected (token
“9") through the Copilot model’s logits rectification. To visualize the process, we present three plots
showing the top-5 tokens’ output logits and probabilities in the current token prediction. Note that
the Copilot not only increases the logits value on the groundtruth token but also decreases the logits
value on the original Pilot model’s falsely predicted token. We further apply the Logit Lens [8], a
standard interpretability tool, to project hidden state embeddings from each intermediate layer onto
the vocabulary space to show how the Copilot adjusts the Pilot model’s predictions on each state.

D Datasets

D.1 Commonsense Reasoning

For the commonsense reasoning tasks, we choose six open-ended multiple-choice QA tasks. The
detailed description for each dataset is listed below:

* PIQA [10]: A dataset for physical commonsense reasoning, requiring models to choose the more
plausible solution for everyday tasks.

* WinoGrande (WinoG.) [68]: A large-scale dataset for commonsense pronoun resolution, extend-
ing the Winograd Schema Challenge [43] with diverse and harder examples.

* HellaSwag (HellaS.) [93]: A benchmark testing commonsense reasoning in story completion by
selecting the most plausible next sentence among adversarial choices.

* BoolQ [18]: A question-answering dataset where models answer yes/no questions based on a given
passage, requiring deep reading comprehension.

» SIQA [70]: A dataset for reasoning about social and emotional situations by selecting the most
appropriate response to everyday scenarios.

* Openbook QA (OBQA) [55]: A dataset that tests knowledge-based question answering by
requiring models to combine common knowledge with reasoning over multiple facts.

21

In our commonsense reasoning experiments, we follow the experimental setup from [33] and fine-tune
both our models and baseline models on the combined training dataset, Commonsense 170K, which
is constructed by sampling and integrating the training sets of the aforementioned commonsense
reasoning datasets. Each dataset’s individual test set is used for evaluation. Both fine-tuning and
testing data instances utilize zero-shot input prompts.

D.2 Arithmetic Reasoning

For arithmetic reasoning tasks, we evaluate our method on four open-ended math problem-solving
datasets spanning multiple mathematical domains. The detailed description of each dataset is provided
below:

AQuA [48]: A dataset of algebraic and arithmetic word problems presented in a multiple-choice
format, requiring logical reasoning and numerical computation.

* GSMBSK [19]: A dataset of grade-school-level math word problems designed to evaluate step-by-
step reasoning and arithmetic skills.

* MAWPS [42]: A dataset aggregating math word problems from various sources, focusing on
problem diversity and automatic equation generation.

* SWAMP [60]: A dataset that introduces systematic variations of simple arithmetic word problems
to assess model robustness against linguistic perturbations

In our arithmetic reasoning experiments, we follow the experimental setup from [33] and fine-tune
both our models and baseline model on the combined training dataset, Math10K. We also adopt the
data preprocessing setup in [85] to avoid any potential training data leakage. Each aforementioned
dataset’s individual test set is used for evaluation. Note that, unlike commonsense reasoning, fine-
tuning for arithmetic reasoning involves labels with zero-shot Chain-of-Thought (CoT) [41] prompts.
Consequently, the training cutoff length is longer due to the increased token count and additional
information contained in the prompts.

D.3 Downstream tasks: Recommendation

For downstream application experiments, we utilize two sequential recommendation datasets, as
LLM-based recommendation is a widely adopted task to evaluate language models’ generation and
decision-making capabilities. The detailed description for each dataset is listed below:

* Beauty [30]: The Beauty dataset comprises user-item interaction data from the Amazon beauty
product category. It includes 22,363 users and 12,101 items, with a total of 198,502 interactions.
The dataset has a sparsity level of 99.93%.

e LastFM [67]: The LastFM dataset contains 1,090 users and 3,646 items, with 52,551 interactions
in total. The sparsity of the dataset is 98.68%.

In our experiments, we use the training and testing datasets from [88]. To ensure a fair comparison,
we assign random numeric IDs to items and evaluate our method and baselines on sequential
recommendation tasks.

Metrics. For evaluation, we employ two commonly used metrics Hit@ K and NDCG@ K metrics
with K € {5,10,20,100}. We define each metric in detail below:

» Hit Rate measures the proportion of users for whom at least one relevant item appears within the
top K recommendations.

1

HAOK = —
Ul

> I(Rel(u) N RE #0))

uelU

where U is the set of users, RX is the top-K recommended items for user u, Rel(u) is the set of
relevant items for user u, and I(-) is the indicator function which equals 1 if the condition is true,
and O otherwise.

* NDCG evaluates both the relevance and position of items in the ranked list, assigning higher
importance to relevant items that appear earlier, thereby reflecting the overall quality of the ranking

22

system.

rely, 4
N 2_1 log (z+1)
NDCGQK = ‘U| Z SR A (10)
uEU :1 log, (i+1)

where rel,, ; is the relevance score of the item at position ¢ in the ranked list for user u, and R}, is
the ideal ranking of relevant items for user u.

D.4 Fine-tuning Dataset Template

Table 4: Examples of dataset templates used in Transformer Copilot.
Task Type ‘ Template

Input: Please choose the correct answer to fill in the blank to complete the given sentence: "After being
diagnosed with Parkinson’s, he now was taking supplements and prescriptions, but the doctor warned the ___
would be ineffective." Option]: supplements Option2: prescriptions Answer format: optionl/option2

Answer: The correct answer is optionl.

Input: Please choose the correct ending to complete the given sentence: High jump: The boy lands on his back
on to a red mat. The boy gets up from the mat. The boy: Ending]1: starts doing spins. Ending2: celebrates by
Commonsense Reasoning qlapping and flexing both arms. EndingS: is dancing on the mat. Ending4: does jump jacks on his stick. Answer
format: endingl/ending2/ending3/ending4

Answer: ending2

Input: Please answer the following question with true or false, question: is elder scrolls online the same as
skyrim? Answer format: true/false.

Answer: false

Input: Please answer the following math question step by step: Darnel sprinted 0.875 of a lap and then took a
break by jogging 0.75 of a lap. How much farther did Darnel sprint than jog?

Answer: Step 1: Find the total distance Darnel covered. Total distance = distance sprinted + distance
jogged Total distance = 0.875 + 0.75 = 1.625 laps Step 2: Find the distance Darnel sprinted. Distance sprinted =
0.875 laps Step 3: Find the distance Darnel jogged. Distance jogged = 0.75 laps Step 4: Find the difference
between the distance Darnel sprinted and jogged. Difference = Distance sprinted - Distance jogged Difference
=0.875 - 0.75 = 0.125 laps Therefore, Darnel sprinted 0.125 laps farther than jogged. The answer in Arabic
numerals is 0.125.

Input: If the probability that Stock A will increase in value during the next month is 0.56, and the probability
that Stock B will increase in value during the next month is 0.74. What is the greatest value for the probability
that neither of these two events will occur?

Answer: The probability that stock A does not increase is 0.44, and the probability that stock B does
not increase is 0.26. Now, how can the probability that both do not increase be more than individual probability
Arithmetic Reasoning of not increasing for each? So the probability that both do not increase can not be more than 0.26. Basically the
probability that both do not increase is between 0 and 0.26.

Input: A typical tournament of tennis has 4 rounds. There are 8 games in the first round, 4 in the second round,
2 in the third round and 1 during the finals. If each game requires new tennis balls, and on average each game
uses 5 cans of tennis balls, how many tennis balls in total are used at the end of the tournament if each can has 3
tennis balls?

Answer: Step 1: Calculate the number of tennis balls used in each game. Each can has 3 tennis
balls, so 5 cans have 3 x 5 = 15 tennis balls. Therefore, each game uses 15 tennis balls. Step 2: Calculate the
total number of games in the tournament. The first round has 8 games, the second round has 4 games, the third
round has 2 games, and the finals have 1 game. Therefore, the total number of games in the tournament is 8 +
4 + 2+ 1 =15.Step 3: Calculate the total number of tennis balls used in the tournament. Each game uses 15
tennis balls, so 15 games use 15 x 15 = 225 tennis balls.Therefore, the total number of tennis balls used in the
tournament is 225.0.

Input: Considering {dataset}, user_{user_id} has interacted with {dataset} items {history}. What is the next
recommendation for the user?

Downstream Recommendation
Answer: {dataset} {target}
E.g. Beauty item_1253

In Table 4, we provide examples of data instances for each task mentioned above during model
fine-tuning. All experiments are conducted in the zero-shot setting to better facilitate model-wise
evaluation using pass@1 accuracy (i.e., based on a single generation attempt).

23

E Experiment Setups

E.1 Hyperparameters and Training/Inference Details

Tables 5-10 present our hyperparameter settings of each task for reproducibility. We perform
hyperparameter tuning for both T-Copilot and baseline methods. Unless otherwise specified, both
our method and baseline implementations use beam search decoding [23] during inference. All
experiments have been run three times with random seeds, reporting average accuracy. For FLAN-TS,
LLaMA-3, and Qwen2.5 models, checkpoints are saved every 1,000 steps to track parameters and
monitor training to ensure robustness and avoid overfitting.

Table 5: Hyperparameter configuration of Transformer Copilot for LLaMA-3 and Qwen-2.5 series
models on the Commonsense Reasoning Tasks.

- | Pilot Model | Copilot Model
yperparameters

‘ LLaMA-3.2-1B LLaMA-3.2-3B LLaMA-3.1-8B ‘ T-Copilot (1B)
A \ [0.1,0.3,0.5,0.8,1.0]
Fine-tuning Configurations
Epochs 3 3 3 3
Batch Size 16 16 16 16
Micro Batch Size 4 4 4
Cut Off Length 256 256 256 256
Maximum Learning Rate 3e4 34 3e~* 5e~4
Learning Rate Scheduler Cosine Cosine Cosine Cosine
Optimizer AdamW AdamW AdamW AdamW
Warmup Steps 200 200 200 200
Weight Decay 0.00 0.00 0.00 0.00
LoRA Configurations
Rank r 32 32 32 32
LoRA Alpha 64 64 64 64
LoRA Dropout 0.05 0.05 0.05 0.08
Inference Configurations
Temperature 0.1
Top p 0.95
Top k 40
Num Beams 4
Maximum New Tokens 64

Table 6: Hyperparameter configuration of Transformer Copilot for LLaMA-3 and Qwen-2.5 series
models on the Arithemtic Reasoning Tasks.

- | Pilot Model | Copilot Model
yperparameters

‘ LLaMA-3.2-1B LLaMA-3.2-3B LLaMA-3.1-8B ‘ T-Copilot (1B)
A \ [0.1,0.3,0.5,0.8, 1.0]
Fine-tuning Configurations
Epochs 3 3 3 3
Batch Size 16 16 16 16
Micro Batch Size 4 4 4 4
Cut Off Length 256 256 256 256
Maximum Learning Rate 2¢4 2¢4 le ™t 3¢
Learning Rate Scheduler Cosine Cosine Cosine Cosine
Optimizer AdamW AdamW AdamW AdamW
‘Warmup Steps 100 100 100 100
Weight Decay 0.00 0.00 0.00 0.00
LoRA Configurations
Rank r 32 32 32 32
LoRA Alpha 64 64 64 64
LoRA Dropout 0.05 0.05 0.05 0.08
Inference Configurations
Temperature 0.1
Top p 0.95
Top k 40
Num Beams 4
Maximum New Tokens 256

24

Table 7: Hyperparameter configuration of Transformer Copilot for LLaMA-3.2-1B, LLaMA-3.2-3B,
and LLaMA-3.1-8B on the Downstream Recommendation Tasks.

- Pilot Model | Copilot Model
yperparameters

‘ LLaMA-3.2-1B LLaMA-3.2-3B LLaMA-3.1-8B ‘ T-Copilot (1B)
A | [0.1,03,0.5,0.8,1.0]
Fine-tuning Configurations
Epochs 3 3 3 3
Batch Size 32 32 32 32
Micro Batch Size 1 1 1 1
Cut Off Length 256 256 256 256
Maximum Learning Rate 3e~4 3e~4 3e~1 5e~4
Learning Rate Scheduler Cosine Cosine Cosine Cosine
Optimizer AdamW AdamW AdamW AdamW
Warmup Steps 100 100 100 100
Weight Decay 0.00 0.00 0.00 0.00
LoRA Configurations
Rank r 16 16 16 16
LoRA Alpha 16 16 16 16
LoRA Dropout 0.05 0.05 0.05 0.08
Inference Configurations
Temperature 0.1
Top p 0.95
Top k 40
Num Beams 4
Maximum New Tokens 64

Table 8: Hyperparameter configuration of Transformer Copilot for FLAN-T5-small/base/large on the
Commonsense Reasoning Tasks.

- | Pilot Model | Copilot Model
yperparameters

‘ FLAN-T5-small FLAN-T5-base FLAN-T5-large \ T-Copilot (small/base)
A | [0.1,0.3,0.5,0.8, 1.0]
Fine-tuning Configurations
Epochs 12 12 12 12
Batch Size 16 16 16 16
Micro Batch Size 1 1 1 1
Cut Off Length 256 256 256 256
Maximum Learning Rate le™3 le=3 le™3 3e3
Learning Rate Scheduler Cosine Cosine Cosine Cosine
Optimizer AdamW AdamW AdamW AdamW
Warmup Ratio 0.05 0.05 0.05 0.05
Weight Decay 0.01 0.01 0.01 0.01
Drop Out 0.1 0.1 0.1 0.1
Inference Configurations
Temperature 0.1
Top p 0.95
Top k 40
Num Beams 4
Maximum New Tokens 64

25

Table 9: Hyperparameter configuration of Transformer Copilot for FLAN-T5-small/base/large on the
Arithmetic Reasoning Tasks.

" \ Pilot Model | Copilot Model
yperparameters

‘ FLAN-T5-small FLAN-T5-base FLAN-T5-large ‘ T-Copilot (small/base)
A | [0.1,0.3,0.5, 0.8, 1.0]
Fine-tuning Configurations
Epochs 12 12 12 12
Batch Size 16 16 16 16
Micro Batch Size 1 1 1 1
Cut Off Length 256 256 256 256
Maximum Learning Rate le™® le™? le3 373
Learning Rate Scheduler Cosine Cosine Cosine Cosine
Optimizer AdamW AdamW AdamW AdamW
‘Warmup Ratio 0.05 0.05 0.05 0.05
Weight Decay 0.01 0.01 0.01 0.01
Drop Out 0.1 0.1 0.1 0.1
Inference Configurations
Temperature 0.1
Top p 0.95
Top k 40
Num Beams 4
Maximum New Tokens 256

Table 10: Hyperparameter configuration of Transformer Copilot for T5-small/base on the Down-
stream Recommendation Tasks.

- | Pilot Model | Copilot Model
yperparameters

‘ T5-small T5-base ‘ T-Copilot (small/base)
A \ [0.1,0.3,0.5,0.8, 1.0]
Fine-tuning Configurations
Epochs 20 20 20
Batch Size 16 16 16
Micro Batch Size 1 1 1
Cut Off Length 256 256 256
Maximum Learning Rate | le™? le™3 le~3
Learning Rate Scheduler | Cosine Cosine Cosine
Optimizer AdamW AdamW AdamW
Warmup Ratio 0.05 0.05 0.05
Weight Decay 0.01 0.01 0.01
Drop Out 0.1 0.1 0.1
Inference Configurations
Temperature 0.1
Top p 0.95
Top k 40
Num Beams 4
Maximum New Tokens 64

26

Table 11: Total and Trainable Parameter Statistics. We report the total trainable parameter count for
encoder-decoder models. For other model types, we present the proportion of trainable parameters
under LoRA fine-tuning relative to the total model size.

Size Params

Type Model (Total) (Trainable)
TS-small 61M 61M
+ I-Copilot-small 92M 92M
T5-smallyo 122M 122M
T5-base 223M 223M
+ T-Copilot-base 349M 349M
TS/FLAN-TS T5.basey, 446M 446M

FLAN-TS5-small TIM TIM
+ T-Copilot-small 118M 118M

FLAN-T5-base 248M 248M
+ T-Copilot-base 385M 385M

FLAN-TS5-large 783M 783M
+ T-Copilot-small 824M 824M
+ T-Copilot-base 920M 920M

Llama-Pro-8B 89B 0.832%

LLaMA PO\ fiiral-Pro-8B 83B 0.858%
MoE Mistral-7B 7.3B 0.721%
Ministral-8B 8.0B 0.821%
MergeKit MergeKit-9B 89B 0.710%
Gemma Gemma-2-9B 9.2B 0.813%
LLaMA-3.2-1B 1.3B 1.215%
+ T-Copilot-1B 2.4B 1.246%
LLaMA-3.2-3B 3.2B 1.018%
LLaMA | T.Copilo-1B ~ 43B 1.018%
LLaMA-3.1-8B 8.0B 0.700%
+ I-Copilot-1B 9.1B 0.705%
Qwen2.5-3B 3.1B 1.244%
+ T-Copilot-0.5B 3.6B 1.650%
+ T-Copilot-3B 6.1B 1.263%
Qwen

Qwen2.5-7B 7.6B 0.814%
+ T-Copilot-0.5B 8.0B 0.819%
+ T-Copilot-3B 10.8B 0.815%

Qwen2.5-14B 148B 0.211%

E.2 T-Copilot Configurations and Implementations

In our implementation, we integrate the Transformer Copilot learning framework into both encoder-
decoder and decoder-only LLMs mentioned above. Specifically, we introduce a Copilot model as
an auxiliary component to the original Transformer architecture. Below, we provide details on our
models’ implementation and notations.

T5/FLAN-TS5:

» T-Copilot-small: This refers to our Copilot model being initialized from the decoder module
of a pre-trained T5-small or FLAN-T5-small model. Specifically, T-Copilot-small consists of 6
decoder layers with a hidden state dimension of 512, 8-headed attention, and a logit distribution
dimensionality of 32,100. To adopt the model for our method, we exclude the conventional
positional embedding mechanism and omit the softmax layer typically used for normalizing logits

27

into probability distributions. Additionally, we add a linear layer to map the Copilot inputs from the
logits distribution dimension to the decoder hidden state dimension. If the Copilot’s hidden state
dimension differs from the Pilot model, an additional linear layer is added for dimension alignment.

* T-Copilot-base: This refers to our Copilot model being initialized from the decoder module of
a pre-trained T5-base or FLAN-T5-base model. The overall model implementation is similar to
T-Copilot-small. T-Copilot-base consists of 12 decoder blocks with a hidden state dimension of
768, 12-headed attention, and a logits distribution dimensionality of 32,100.

LLaMA-3:

» T-Copilot-1B: This refers to our Copilot model being initialized from the decoder module of a
pre-trained LLaMA-3.2-1B model. T-Copilot-1B consists of 16 decoder blocks with a hidden state
dimension of 2048, 32-headed attention, and a logits distribution dimensionality of 128,256. To
adapt the model for our method, we exclude the conventional positional embedding mechanism
and omit the softmax layer typically used for normalizing logits into probability distributions.
To accelerate training, we incorporate the flash-attention mechanism. To enhance inference
efficiency, we apply mean pooling to the concatenated input hidden states h; ; (X;; 0},) without
compromising performance accuracy. We add a linear layer to map the Copilot inputs from the
logits distribution dimension to the decoder hidden state dimension. If the Copilot’s hidden state
dimension differs from the Pilot model, an additional linear layer is added for dimension alignment.

» T-Copilot-3B: This refers to our Copilot model being initialized from the decoder module of
a pre-trained LLaMA-3.2-3B. T-Copilot-1B consists of 28 decoder blocks with a hidden state
dimension of 3072, 24-headed attention, and a logits distribution dimensionality of 128,256.

Qwen2.5: The model configurations for Qwen2.5 are similar to LLaMA-3 models as they share
similar model implementation details. We provide the additional model configurations below:

* T-Copilot-0.5B: This refers to our Copilot model being initialized from the decoder module of
a pre-trained Qwen2.5-0.5B. T-Copilot-0.5B consists of 24 decoder blocks with a hidden state
dimension of 896, 14-headed attention, and a logits distribution dimensionality of 151,936.

» T-Copilot-3B: This refers to our Copilot model being initialized from the decoder module of a
pre-trained Qwen2.5-3B. T-Copilot-3B consists of 36 decoder blocks with a hidden state dimension
of 2048, 16-headed attention, and a logits distribution dimensionality of 151,936.

Notation. In our experiments, we represent our methods using the original model name “+" the
Copilot model. For example, FLAN-T5-small+T-Copilot-small denotes the integration of FLAN-
T5-small with T-Copilot-small, and LLaMA-3.1-8B+T-Copilot-1B indicates the incorporation of
LLaMA-3.1-8B with T-Copilot-1B.

E.3 Baseline Details

Frontier Models. Below, we detail the specific model versions of the backbone and baseline models
in our experiments.

(i) Encoder-Decoder Models: We use T5 and FLAN-T5 [65] with different sizes as our back-
bone and baseline models for the encoder-decoder Transformer architecture: T5-small, T5-base,
T5-large and FLAN-T5-small, FLAN-T5-base, FLAN-T5-large.

(ii) Decoder-Only Models: For the decoder-only models, we utilize the LLaMA-3 family [21] as
our backbone and baseline models. Our experiments include LLaMA-3.2-1B, LLaMA-3.2-3B,
LLaMA-3.1-8B, and LLaMA-2-13B.

(iii) MoE Models: For the Mixture-of-Expert based models, we use Mistral-7B with version
Mistral-7B-v0.3 and Ministral-8B with version Ministral-8B-Instruct-2410.

Layer/Adapter Expansion Models. In our experiments, we also compare against baseline methods
that utilize layer and adapter expansion approaches. Below, we provide the model configurations and
implementation details for these baselines.

(i) LLaMA Pro [84]: LLaMA-Pro-8B incorporates a content-addressable working memory module
to store and retrieve task-relevant information. In our implementation, we initialized with the

28

LLaMA-3.1-8B base model and expanded the number of blocks from 32 to 40 using an interleaved
approach. Mistra-Pro-8B is an enhanced version of the original Mistral model [37], augmented
with additional Transformer blocks. The model excels in integrating general language understanding
with domain-specific knowledge and follows the same methodology as LLaMA-Pro-8B for block
expansion. Following [84], we use the version of Mistral-Pro-8B-v0.1.

(ii) MergeKit [26]: MergeKit is an open-source toolkit designed for efficiently merging LLM
checkpoints to combine their strengths without additional training. In our experiments, we train and
apply one MergeKit model named MergeKit-9B. MergeKit-9B is initialized from LLaMa-3.1-8B
and replicates additional layers with post-merge healing. The model is merged using the Passthrough
method. In our experiments, we first compare the model with the original LLaMA-3.1-8B to ensure
that the merged model does not lead to performance degradation.

(iii) TIES [89]: T5-smallis and T5-baseqy are TS type models merged using the TIES method.
T5-small; 5 merges two T5-small models and extends the original T5-small to 12 encoder and decoder
layers. And T5-baseys merges two T5-base models and extends the original T5-base to 24 encoder
and decoder layers by duplicating existing layers.

Model Parameters. In table 11, we provided the detailed model sizes and trainable parameters for
both Transformer Copilot and baseline models.

F Additional Experiments
F.1 Full Table Report on Baseline Comparison

Table 12: Full performance comparison (%) with frontier baselines under matched-parameter scales. Results
are averaged over 3 independent runs.

Commonsense Reasoning (Acc. 1) Arithmetic Reasoning (Acc. 1)

PIQA WinoG. HellaS. BoolQ SIQA OBQA Avg. AQuA GSM8K MAWPS SVAMP Avg.

Model Params

<8B-level Frontier LLMs

Mistral-7B 7B 83.0 753 813 654 731 745 754 289 50.2 85.3 574 555
LLaMA-Pro-8B 8B 884 814 869 739 761 77.8 808 382 57.2 92.5 63.5 629
LLaMA-3.1-8B 8B 854 843 909 69.6 799 826 821 373 63.5 89.1 736 659
Ministral-8B 8B 857 841 913 703 775 813 817 374 62.9 90.2 732 659
Qwen2.5-3B + T-Copilot-0.5B 3.5B 854 79.1 913 66.8 781 86.0 8l.1 573 742 91.8 82.8 765
LLaMA-3.2-3B + T-Copilot-3B 6B 85.6 837 913 728 792 813 823 40.1 63.1 91.2 714 66.5
Qwen2.5-3B + T-Copilot-3B 6B 87.8 81.7 940 687 799 894 836 594 76.8 92.6 835 78.1

Qwen2.5-7B + T-Copilot-0.5B 7.5B 893 853 935 73.6 800 921 856 614 78.2 93.0 86.5 79.8

>8B-level Frontier LLMs

Gemma-2-9B 9B 81.4 828 935 702 795 86.1 823 40.1 64.3 82.7 75.0 655
MergeKit-9B 9B 86.1 847 91.1 71.1 793 802 821 37.0 65.2 90.3 752 66.9
Qwen2.5-14B 14B 91.8 85.6 943 752 845 931 874 635 79.5 92.4 87.9 80.8
LLaMA-3.1-8B + T-Copilot-1B 9B 86.2 868 935 71.8 827 832 840 389 66.1 90.8 754 678

Qwen2.5-7B + T-Copilot-3B 10B 925 872 95.3 748 843 949 882 642 79.7 94.8 88.1 81.7

Table 12 shows the full comparison results of T-Copilot against baseline models and methods
with matched and larger parameter scales. Notably, under the same model architectures and with
less pre-trained knowledge, LLaMA-3.2-3B+T-Copilot-3B outperforms LLaMA-3.1-8B with 2B
fewer parameters, Qwen2.5-7B+T-Copilot-3B outperforms Qwen2.5-14B with 4B fewer parameters,
and Qwen2.5-3B+T-Copilot-3B outperforms Qwen2.5-7B with 1B fewer parameters. Our method
also outperforms other layer/adapter expansion baselines. These results underscore the parameter
efficiency and architectural strength of our learning framework.

F.2 Downstream Recommendation Evaluation

In Table 13 and Table 14, we report the results of T-Copilot on two downstream recommendation
datasets: Beauty and LastFM. We choose TS and LLaMA-3 series models as the backbone Pilot
models. Overall, T-Copilot improves the Pilot models by an average of 16.6% across all evaluation
metrics on the two datasets. Furthermore, compared to other baselines, incorporating T-Copilot

29

Table 13: Performance comparison on Beauty. All methods are evaluated using both Hit Rates
(H@K) and Normalized Discounted Cumulative Gain (N@K). The performance gains are also
reported relative to respective backbone methods.

‘ Beauty
Models

‘H@S H@10 H@20 H@100 N@5 N@10 N@20 N@100
T5-small; ‘ 1.9 3.2 5.3 154 1.3 1.8 3.9 6.2
T5-small 1.7 2.9 5.4 14.6 1.0 1.4 3.5 5.7
+ T-Copilot-small | 2.4 (+0.7) 3.4 (+0.5) 6.2 (+0.8) 17.8 (+3.2) 1.6 (+0.6) 2.1 (+0.7) 4.5 (+1.0) 6.4 (+0.7)
T5-baseoy ‘ 2.6 4.6 7.5 18.6 2.3 2.9 4.7 6.8
T5-base 2.3 3.3 6.2 17.4 2.1 2.6 4.5 6.2

+ T-Copilot-base

3.2(+0.9) 4.4 (+1.1) 82(+2.0) 19.8(+2.4) 2.7 (+0.6) 3.3 (+0.7) 5.2 (+0.7) 7.2 (+1.0)

LLaMA-3.2-1B
+ T-Copilot-1B

52 7.4 10.0 18.8 3.8 4.4 5.1 6.7
6.1 (+0.9) 8.1 (+0.7) 12.5 (+2.5) 24.6 (+5.8) 4.3 (+0.5) 5.1 (+0.7) 5.8 (+0.7) 7.4 (+0.7)

LLaMA-3.2-3B
+ T-Copilot-1B

5.1 7.6 10.8 22.1 3.6 4.5 53 7.2
6.7 (+1.6) 8.6 (+1.0) 13.2(+2.4) 25.6 (+3.5) 4.3 (+0.7) 5.6 (+1.1) 5.9 (+0.6) 7.8 (+0.6)

LLaMA-3.1-8B
+ T-Copilot-1B

5.8 8.3 11.1 21.5 4.1 4.9 5.6 7.5
7.1 (+1.3) 9.2(+0.9) 13.5(+2.4) 26.4 (+4.9) 4.7 (+0.6) 6.2 (+1.3) 6.4 (+0.8) 8.1 (+0.6)

Table 14: Performance comparison on LastFM. All methods are evaluated using both Hit Rates
(H@K) and Normalized Discounted Cumulative Gain (N@K). The performance gains are also
reported relative to respective backbone methods.

\ LastFM
Models

‘H@S H@l10 H@20 H@100 N@5 N@I10 N@20 N@I100
T5-small; \ 2.5 3.8 49 12.4 1.8 2.2 2.8 3.9
T5-small 2.1 3.7 4.2 11.0 1.6 2.0 2.5 32
+ T-Copilot-small | 3.2 (+1.1) 4.4 (+0.7) 5.7 (+1.5) 15.3 (+4.3) 1.9 (+0.3) 3.2 (+1.2) 3.8 (+1.3) 4.0 (+0.8)
T5-baseay 3.8 4.6 7.1 175 2.0 3.8 33 47
T5-base 2.7 4.2 5.3 14.9 1.9 2.4 2.9 34

+ T-Copilot-base

42 (+1.5) 5.1(#0.9) 8.1 (+2.8) 19.4(+4.5) 2.3 (+0.4) 3.5 (+1.1) 4.2 (+1.3) 5.2 (+1.8)

LLaMA-3.2-1B
+ T-Copilot-1B

5.0 5.7 9.1 21.9 24 3.0 3.9 6.2
6.4 (+1.4) 6.8 (+1.1) 11.2 (+2.1) 24.7 (+2.8) 2.9 (+0.5) 3.5(+0.5) 4.3 (+0.4) 6.7 (+0.5)

LLaMA-3.2-3B
+ T-Copilot-1B

6.1 6.4 9.2 23.9 2.6 3.5 4.2 6.8
6.8 (+0.7) 7.4 (+1.0) 12.1 (+2.9) 25.1 (+1.2) 3.1 (+0.5) 4.2 (+0.7) 5.3 (+1.1) 7.5 (+0.7)

LLaMA-3.1-8B
+ T-Copilot-1B

4.7 7.3 10.3 25.6 3.1 3.7 4.7 7.0
6.9 (+2.2) 8.6 (+1.3) 12.7 (+2.4) 28.0 (+2.4) 3.9 (+0.8) 4.8 (+1.1) 5.4 (+0.7) 7.9 (+0.9)

achieves 16.7% and 8.6% higher performance than T5-smallys and T5-basesyy, respectively, on
Beauty and LastFM, while using 30M and 126M fewer parameters. These results demonstrate that
the error-correction capabilities of T-Copilot are not confined to reasoning tasks but also generalize
effectively to other application domains, such as recommendation, where precise LLM decision-
making is critical for downstream utility.

F.3 Efficiency Analysis on Transformer Copilot

Table 15 presents the inference latency evaluation across six reasoning datasets. Our learning frame-
work achieves lower latency than baseline models with comparable parameter scales. Specifically,

30

Table 15: Efficiency Comparison on Inference Latency. We report the total response time (s) per
instance across six commonsense reasoning datasets, along with the average result.

Inference Latency (|) PIQA WinoG. HellaS. BoolQ SIQA OBQA Avg.

LLaMA-3.2-1B 033 0.36 027 023 027 024 0.28
+ T-Copilot-1B 036 0.39 028 026 029 025 031
LLaMA-3.2-3B 046 045 047 046 046 055 048
+ T-Copilot-1B 048 047 049 046 048 056 049
LLaMA-3.1-8B 0.52 0.52 051 049 049 062 0.53
+ T-Copilot-1B 0.52 053 053 049 050 0.63 0.53
LLaMA-Pro-8B 0.83 0.75 082 076 075 073 0.77
MergeKit-9B 0.64 0.64 0.57 054 063 0.72 0.62

LLaMA-3.1-8B+T-Copilot-1B consistently achieves 22.9% lower inference latency, 3% higher train-
ing throughput, and 57% higher tokens-per-second (TPS) on average compared to methods such as
LLaMA-Pro-8B and MergeKit-9B. Furthermore, we observe that incorporating T-Copilot increases
the inference latency by less than 2% relative to the original Pilot models, while yielding significant
performance gains.

F.4 Ablations and Analyses on Transformer Copilot

In this section, we perform multiple ablation studies to evaluate the influence of key hyperparameters
and alternative method design on the T-Copilot’s overall performance.

Model Design of T-Copilot. Table 16 compares T-Copilot-1B with a variant that excludes learning
from the Pilot model’s intermediate fine-tuning stages. The superior performance of T-Copilot
highlights the advantage of our joint training paradigm, where the Mistake Log is continuously
updated throughout the Pilot’s training trajectory and enables the Copilot to effectively leverage
intermediate-stage information.

Table 16: Ablation study on model design. We Table 17: Ablation study on A\. We use the
denote Latest as the variant where the 1B Copilot T-Copilot-1B on LLaMA-3 series models.
is trained using only the latest Pilot checkpoint.

| HellaSwag GSMB8K
Pilot Copilot AQuA GSM8K MAWPS SVAMP Avg. A
LLaMA-3.2-1B Lat‘est' 27.5 30.1 79.4 49.6 46.7 ‘ 1B 3B 8B 1B 3B 8B
T-Copilot 283 322 815 516 484 0.3]62.0 90.6 90.9 29.8 56.8 64.4
Latest 34.6 57.1 87.5 652 6l1.1
LLMA323B [t e e e e 0.5]62.8 90.9 91.5 304 57.6 65.9
0.8]63.1 91.2 92.4 31.8 58.1 65.7
Latest 37.6 64.6 90.0 73.9 66.5

LLaMA-3.1-88 T-Copilot 389 66.1 90.8 754 678 1.063.3 91.1 93.5 32.2 58.2 66.1

Design Variants of the Decoder-Only Copilot. To validate the efficacy of our proposed decoder-
only Copilot design, we explore several alternative architectural variants and empirically compare
their impact on the model’s final performance. Specifically, we examine different insertion patterns
for the Copilot’s new attention mechanism, i.e., the input and hidden states representations from the
Pilot model recorded in the Mistake Log. We experiment with various design patterns and modify the
Decoder-only Copilot model accordingly. The design options are listed below:

* Pattern 1 (Ours): Collect the hidden states across all Pilot model layers L® and insert them as
key-value (KV) inputs for the even-numbered layers of the Copilot model.

+ Pattern 2: Collect the hidden states across all Pilot model layers L’ and insert them as KV inputs
for each layer of the Copilot model. This setup examines whether integrating hidden states into all
layers of the Copilot model improves performance by leveraging more entry points for processing
the pilot model’s hidden states information.

31

« Pattern 3: Collect only the first half (L /2) layers of the Pilot model’s hidden states and insert
them as key-value (KV) inputs for the Copilot model. Combined with Pattern 4, this setup
investigates where the Pilot model makes more mistakes during the learning trajectory.

 Pattern 4: In contrast to Pattern 3, Pattern 4 collects only the second half (L; layers) of the Pilot
model’s hidden states and inserts them as KV inputs for the Copilot model.

Table 18: Empirical comparison of different design patterns of the Decoder-only Copilot model. We
evaluate the LLaMA-3.2-1B Pilot model and T-Copilot-1B. We report the average accuracy on three
independent runs. The highest accuracy for each dataset is highlighted in bold.

Input Patterns PIQA HellaSwag BoolQ AQuA GSMS8K SWAMP

Pattern 1 80.2 63.3 65.5 283 32.2 51.6
Pattern 2 78.4 61.2 62.8 27.1 27.9 49.3
Pattern 3 75.7 60.7 63.6 28.1 30.4 49.8
Pattern 4 79.3 63.1 63.6 272 31.8 50.4

We follow the same experiment setups as stated in Section 5. Table 18 compares all 4 patterns on
three commonsense reasoning and three arithmetic reasoning tasks. The results of Pattern 2 indicate
that without the self-attention mechanism to capture dependencies in the Copilot model’s generated
outputs, the Copilot model struggles to effectively leverage the additional hidden state information
during fine-tuning and inference. Additionally, the results comparing Pattern 3 and Pattern 4 do not
reveal a clear performance trend. This suggests that the Pilot model makes mistakes at different
layers depending on the assigned task. Therefore, the Mistake Log M7 should capture all hidden
states from the Pilot model to ensure that no relevant error-related information is omitted during the
Copilot model’s learning process. Based on this empirical analysis, we demonstrate the effectiveness
of Pattern 1 for our Copilot model design.

Choice of . In theorem 4.1, we theoretically provide a bound on the range of A with 0 < A <).
Here, we empirically study the effect of different A configurations. The results in Table 17 show
that performance generally improves with larger A values in the range [0, 1]. The optimal value is
observed around A = 1.0. The results demonstrate that higher A amplifies the effect of T-Copilot,
which aligns with our Copilot model design.

Table 19: Comparison of pooling methods for Table 20: Comparison of loss functions for
LLaMA-3.1-8B + T-Copilot-1B. Qwen2.5-7B + T-Copilot-3B.

Pooling Methods GSMS8K AQuA Loss Type PIQA AQuA

Max Pooling 63.2 37.5 CE 88.1 60.7

Sum Pooling 658 383 KL Divergence 904 62.8

Mean Pooling 66.1 38.9 RMSE 925 64.2

Pooling Methods of Copilot’s Attention Input. In Section 3, we refine the Copilot model’s attention
mechanism by incorporating the mean-pooled hidden representations from the Pilot model as inputs
(Eq. 6). To assess the effect of this design choice, we also experiment with alternative pooling
strategies, including max pooling and sum pooling. The comparative results are presented in Table 19.
From the results, the mean pooling empirically provides the best balance of stability and efficiency.

Loss Types of T-Copilot. We adopt the RMSE loss as the training objective for T-Copilot. To validate
this choice, we conduct ablations with alternative loss formulations, including Cross-Entropy and
KL Divergence. The results, summarized in Table 20, show that RMSE consistently yields superior
performance across benchmarks.

32

G Additional Related Works

Transformers for Language Modeling The Transformer is a sequence-to-sequence model archi-
tecture that employs attention-based mechanisms, making it highly effective for autoregressive
language modeling [2, 13, 64]. The vanilla Transformer [77] follows an encoder-decoder structure,
comprising a stack of identical layers in both the encoder and decoder components. Each layer
consists of a multi-head self-attention mechanism [15], layer normalization [4], a position-wise
feedforward network, and residual connection [29]. The encoder-decoder structure serves as the
foundation for many early-stage influential LLMs, such as T5 [65], and BART [44]. These models
have demonstrated strong capabilities on certain generation tasks [38, 66]. On the other hand, (causal)
decoder-only Transformer models [62, 63], trained with the autoregressive language modeling objec-
tive [69, 78], have demonstrated exceptional performance in open-ended generation and reasoning
tasks [13, 82, 81]. The superior generalization capabilities have established decoder-only Trans-
formers as the backbone of recent state-of-the-art LLMs such as PaLM [16], Falcon [3], LLaMA
[76, 21], and ChatGPT [1, 50, 35]. In this work, we develop the Transformer Copilot framework to
support both encoder-decoder and decoder-only Transformer architectures. Our intuition is to provide
flexibility across a broad range of model configurations and downstream task scenarios.

LLMs Adaptation with Fine-tuning. Large language models perform well across many NLP tasks
[98, 92], yet adapting them to specialized tasks remains challenging [80]. The standard solution,
full-parameter fine-tuning [51], retrains all model parameters on task-specific data. Applying full
fine-tuning has proven effective at improving performance, but can sometimes be computationally
costly [73]. Recent work on parameter-efficient fine-tuning approaches [39, 32, 86, 100, 28], such
as prefix-tuning [46] and LoRA [32], aims to reduce the computational overhead by tuning only a
small subset of model parameters while still leveraging the expressive power of pre-trained models.
Our learning framework builds upon the aforementioned methods’ fine-tuning paradigm and aims
to refine the fine-tuning and inference by utilizing mistake information during the models’ learning
trajectory. Additionally, since the Copilot model retains the decoder module structure, our framework
can seamlessly integrate with various adaptation techniques such as DoRA [49] and ReFT [85].

Differences from Boosting and neural exploration. The core idea of Boosting [9, 24] is to train a
series of models, where each subsequent model focuses on correcting the errors made by the previous
ones. However, the proposed Copilot framework is distinct from boosting in several key ways. First,
in boosting, the subsequent model is trained to correct the errors of a fixed, post-trained weak model,
whereas the Copilot learns from the mistakes (errors) made by a strong, pre-trained pilot model
during its fine-tuning trajectory. Second, the labels (errors) that the subsequent model in boosting
attempts to predict are derived from the fixed parameters of the preceding weak model, whereas the
labels that the Copilot learns are based on the fine-tuning dynamics of the Pilot’s parameters. Third,
while all models in boosting only take data features as inputs, the Copilot also takes the internal state
of the Pilot model as part of its input. Fourth, boosting does not require modifications to the base
models, whereas the Copilot framework involves modifying the model structure, specifically the
Transformer architecture. Another related work is neural exploration methods [36, 87, 61, 5, 7, 83].
For example, one recent work called EE-Net [6] introduces an exploration neural network to manage
trade-offs between exploitation and exploration in the contextual bandits setting. In contrast, the
Copilot focuses on learning from the mistakes of the Pilot model in an offline, supervised learning
regime, specifically tailored for Transformer-based sequence-to-sequence generation tasks.

33

H Broader impact and Limitation

Broader Impact. This paper introduces Transformer Copilot, a novel framework that enhances
LLM fine-tuning by introducing a Mistake Log and an auxiliary Copilot model that learns to rectify
errors during inference. Our approach improves model reliability and efficiency with minimal
overhead and promotes more transparent and interpretable behavior by grounding predictions in prior
training dynamics. While our method has broad applicability across domains, we do not foresee any
specific societal risks or negative impacts that require special consideration.

Limitation. While Transformer Copilot demonstrates robust improvements in inference quality
by leveraging model-internal training signals, one potential consideration for future work lies in the
coverage and diversity of the Mistake Log itself. Since the Mistake Log is constructed from the
forward pass during supervised fine-tuning, its quality is inherently dependent on the richness and
representativeness of the fine-tuning data distribution. In scenarios with limited domain coverage or
skewed data sources, the Mistake Log may capture a narrower set of error patterns, potentially limiting
the Copilot’s generalizability. On the other hand, in our primary experimental setup, we fine-tune on
task-diverse datasets with ample coverage, which ensures that the Mistake Log remains informative
and representative. Our transferability experiments on the Copilot model further validate the Mistake
Log’s utility across unseen Pilot models, suggesting robustness to architectural and distributional
shifts. Still, exploring data augmentation strategies or adaptive logging policies to enrich Mistake
Logs for low-resource or domain-shifted settings remains an interesting future direction.

Overall, Transformer Copilot offers a promising paradigm shift toward internal signal utilization
during LLM fine-tuning. We are optimistic that future research will build upon these contributions to
develop even more precise and generalizable models through the continued adoption of reflective
learning mechanisms.

34

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Our claims are summarized properly in our Introduction section.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.
* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitation discussion is included in the Appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

 The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

35

Justification: We provide detailed assumptions and complete proof in the Appendix.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides detailed descriptions of the method implementation,
training details, and experimental setup in the Experiment Section and Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

36

Answer: [Yes]
Justification: Our code implementation is submitted along with the manuscript.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Experiment details are provided in detail in the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Each experiment’s results are reported as the average over three independent
experimental runs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

37

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The experimental details are provided in the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We comply with the Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We include the broader impact discussion in the Appendix.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

38

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not observe such risks of misuse in this paper.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All existing resources are properly cited in this paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

39

paperswithcode.com/datasets

13.

14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release any real-world dataset. Other code implementations
are detailed as supplementary material.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No human objects are involved in this paper.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

40

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: The LLM usage is described in detail in this paper.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

41

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Definition of Mistake Log
	Preliminary and Notations
	The Mistake Log

	Transformer Copilot
	The Copilot Model Design
	Training Paradigm.
	Inference Paradigm

	Analyses - Why Learn from the Mistake Log?
	Empirical Evaluations
	Incorporating T-Copilot into Pilot Models Yields Better Performance
	Efficiency, Transferability, and Scalability

	Related Works
	Conclusion
	References
	Table of Contents
	Additional Details on Transformer Copilot
	Architectural Advantages of T-Copilot.
	Decoder-only Copilot Details
	Buffer of the Mistake Log
	Conceptual Rationale on T-Copilot's Learning Objective

	Proof of Theorem 4.1
	Additional Empirical Analysis
	Datasets
	Commonsense Reasoning
	Arithmetic Reasoning
	Downstream tasks: Recommendation
	Fine-tuning Dataset Template

	Experiment Setups
	Hyperparameters and Training/Inference Details
	T-Copilot Configurations and Implementations
	Baseline Details

	Additional Experiments
	Full Table Report on Baseline Comparison
	Downstream Recommendation Evaluation
	Efficiency Analysis on Transformer Copilot
	Ablations and Analyses on Transformer Copilot

	Additional Related Works
	Broader impact and Limitation

