
Randomized Intraclass-Distance Minimizing Binary Codes for Face Recognition

Hao Zhang J. Ross Beveridge Quanyi Mo Bruce A. Draper
Colorado State University
Fort Collins, CO 80523

{zhangh, ross, qmo, draper}@cs.colostate.edu

P. Jonathon Phillips
National Institute of Standards and Technology

jonathon.phillips@nist.gov

Abstract

A new algorithm for learning binary codes is pre-
sented using randomized initial assignments of bit labels
to classes followed by iterative refinement to minimize in-
traclass Hamming distance. This Randomized Intraclass-
Distance Minimizing Binary Codes (RIDMBC) algorithm is
introduced in the context of face recognition, an area of bio-
metrics where binary codes have rarely been used (unlike
iris recognition). A cross-database experiment is presented
training RIDMBC on the Labeled Faces in the Wild (LFW)
and testing it on the Point-and-Shoot Challenge (PaSC).
The RIDMBC algorithm performs better than both PaSC
baselines. RIDMBC is compared with the Predictable Dis-
criminative Binary Codes (DBC) algorithm developed by
Rastegari et al. The DBC algorithm has an upper bound
on the number of bits in a binary code; RIDMBC does
not. RIDMBC outperforms DBC when using the same bit
code length as DBC’s upper bound and RIDMBC further
improves when more bits/features are added.

1. Introduction
Binary codes play an important role in many classifi-

cation/recognition tasks. In biometrics, for example, they
are the basis for most iris recognition algorithms[19]. More
generally, hashing techniques for large-scale object recog-
nition measure similarity as Hamming distances between
binary codes [7, 8]. The goal is to learn hash functions such
that samples from the same category have small Hamming
distances between their codes, while samples from differ-
ent categories have large distances. The resulting binary
codes facilitate fast nearest-neighbor search using hash ta-
bles and/or Hamming ball queries, achieving query times
that are independent of dataset size. Even in classic nearest-
neighbor search settings, where query times scale linearly

with the size of the dataset, binary codes can accelerate
nearest-neighbor search by more than two orders of mag-
nitude on modern processors [8].

There has been significant progress on learning binary
codes to tackle conventional image classification tasks such
as Caltech256 [9] and fine-grained image classification
tasks such as Caltech-UCSD Birds-200-2011 [6]. However,
these datasets have fixed numbers of classes, e.g. 256 for
Caltech256. In comparison, face datasets equate class with
identity: more people means more classes. People used for
training must differ from those used to test an algorithm.
Only a few works [14, 12] have been proposed that use bi-
nary codes to perform face recognition.

Individual binary classifiers may be associated with se-
mantically meaningful binary attributes, e.g. gender. Ku-
mar et al. [11] present such an approach, although in their
case attributes are encoded as continuous values indicating
the degree of presence of that attribute, e.g. maleness, rather
than bits. Semantic attributes have the advantage that the
individual bits are meaningful to humans. Attributes have
the disadvantage that the number of known meaningful at-
tributes is small, while the cost of obtaining semantically
labeled data to train them with is large.

An alternative is to learn binary codes from data. Semi-
supervised and supervised methods employ category labels
of images or a match/non-match indicator of image pairs.
In the context of face recognition, the goal is to learn bi-
nary codes that place images of a given person close to each
other in Hamming space. The state-of-the-art binary code
learning method, Predictable Discriminative Binary Codes
(DBC [17]), therefore tries to optimize Fisher’s criterion
by both minimizing the Hamming distance between images
from the same class and maximizing the Hamming distance

1CSU was funded in part by the Department of Defense through the
Technical Support Working Group (TSWG). PJP was supported in part by
the FBI.



between images from different classes.
We present a new algorithm that learns largely uncorre-

lated binary codes by minimizing the Hamming distances
within classes. Each bit is determined by a linear classifier
and a goal is a classifier that assigns all images of a given
person the same bit label. A random assignment of labels,
0 or 1, to people is used for initialization. Then an itera-
tive procedure trains a classifier, updates label assignments
based on that classifier, and repeats until convergence. This
learning procedure generates highly uncorrelated bits in part
because of its randomized initialization. It also avoids naive
solutions, such as assigning all images the same label.

The algorithm presented here is simpler than DBC, and
to some it may appear less sophisticated. After all, it only
minimizes intraclass (with-in class) similarity. As a re-
sult, however, it avoids two limitations that follow indirectly
from maximizing between-class distances. The first is that
if we view every bit of a binary code as a weak classifier,
DBC can only learn classifiers that partition the data evenly,
i.e. produce roughly as many 1’s as 0s. This excludes many
useful partitions of the data. Second, it limits the number
of classifiers (i.e. the length of the code) to the number of
dimensions in the input data if the features are to remain
sufficiently uncorrelated. Removing the interclass distance
constraint allows our new algorithm to produce longer and
more discriminative binary codes.

In the experiments below, RIDMBC and DBC algo-
rithms are trained on the Labeled Faces in the Wild
(LFW) dataset and evaluated on the Point-and-Shoot Chal-
lenge (PaSC). This experimental protocol addresses a pos-
sible concern about automatically trained binary codings.
Namely, are they overly specific to the dataset on which
they are trained? Our results show cross-dataset generaliza-
tion and the resulting RIDMBC algorithm outperforms both
DBC and the two PaSC baseline algorithms.

2. Related Work

We begin by discussing the Predictable Discriminative
Binary Codes (DBC) already mentioned in the introduction.
DBC is close enough to our own to warrant direct compar-
ison. Additional works related to binary codes and hashing
are then discussed. Finally, the related topic of attribute-
based face recognition is discussed.

2.1. Predictable Discriminative Binary Codes

Rastegari et al. [17] propose a representation of images
using binary codes called predictable discriminative binary
codes (DBC) which minimizes the Hamming distances be-
tween images from the same category while maximizing the
Hamming distances between images of different categories.
They formulate this goal as an optimization problem as fol-

lows: (we only show the key parts)

argmin
{ω}

∑
c∈1:C

∑
m,n∈c

d(Bm, Bn)−λ
∑

c′∈1:C
p∈c′

∑
c′′∈1:C

c′ 6=c′′,q∈c′′

d(Bp, Bq)

(1)
where B∗ denotes a binary code, C is the total number of
classes and {ω} represents the set of bit encoders (linear
support vector machines). The first and second term cor-
respond to intraclass and interclass distances, respectively.
DBC produces the state-of-the-art result on Caltech256 and
outperforms state-of-the-art binary code method on Ima-
geNet [5].

To achieve Equation 1, each bit is learned such that the
majority of its values assigned to each class is larger than
the same value assigned to the rest of the classes (measured
in percentage). This encourages the bit encoders to par-
tition the data evenly. However, partitioning the data this
way tends to create correlated bit encoders. To circumvent
this problem, Rastegari et al. initialize the binary codes by
projecting them onto orthogonal dimensions derived from
Principal Component Analysis (PCA). While this step re-
duces correlation, it also imposes a hard constraint on the
total number of possible bits to learn. Because of PCA pro-
jection, it is limited by either the number of training samples
or the dimensionality of the underlying features.

2.2. Hashing Related Methods

Weiss et al. propose Spectral Hashing [18] that relates
the search for a good binary representation to a specific
form of graph partitioning. This analysis not only shows
that the problem of finding the best binary code is NP-Hard,
but also suggests that a relaxed version of the problem can
be solved by spectral analysis. In Spectral Hashing, binary
codes are generated by thresholding a subset of eigenvec-
tors of the Laplacian of the similarity graph. Both learning
codes and generating codes for new data can be done effi-
ciently.

In [7], Gong et al. propose to formulate the binary code
learning as finding the best rotation of PCA projected data
that minimizes the quantization error of the rotated data to
the vertices of a zero-centered binary hypercube. An iter-
ative quantization method (ITQ) is proposed to solve the
problem. Both an unsupervised and a supervised version
of ITQ are provided in their paper while the former uses
PCA and the latter uses Canonical Correlation Analysis
(CCA). Unsupervised methods, including Sepctral Hashing
and ITQ with PCA, often assume the Euclidean distance as
the true measure of the similarity while supervised methods
may be able to learn more discriminative distances.

Lin et al. [12] propose to learn a hash function such
that semantically similar objects are closer in Hamming
space. In particular, they propose to minimize the Kullback-
Leibler divergence between a distribution defined by the

2



ground truth affinity matrix and a distribution defined by the
learned Hamming distances. Two fast linear time approxi-
mate methods are adopted with which their method outper-
forms Spectral Hashing on the LabelMe dataset. On a face
dataset collected at Google which contains 276,436 face im-
ages of 3703 celebrities, they achieve an accuracy close to
the Neven Vision face recognition system1 [16] when using
1200 bits to represent a face image.

2.3. Attributes, Simile & ’Tom-vs-Pete’ Algorithms

Kumar et al. [11] use attributes such as gender, race, and
eye color to measure similarity among faces. The face at-
tributes are predefined manually, and classifiers for the at-
tributes are learned from human labeled training data. Test
images of new faces are input to every classifier, producing
vectors of attribute scores that are used as intermediate rep-
resentations of the test images. A verification classifier is
then trained to determine if pairs of attribute vectors rep-
resent matching or non-matching images. In addition to
attribute classifiers, Kumar et al. also learn a number of
simile classifiers to determine how similar a face image is
to a predefined model (e.g., Brad Pitt’s nose).

Berg and Belhumeur [1] learn many binary “Tom-vs-
Pete” classifiers that distinguish between pairs of subjects in
a reference set. These classifiers analyze different regions
of the face images. As a result, they tend to be decorrelated,
but face alignment becomes critical; Berg and Belhumuer
introduce an identity-preserving alignment process to ad-
dress this issue. During testing, the vector of distances to
the decision boundary of “Tom-vs-Pete” classifiers is used
to represent an image, and a second-layer classifier makes
yes-or-no decisions about whether a pair of images match.

These three approaches should not be confused with bi-
nary code methods. They all use intermediate represen-
tations defined in the space of Rn. Recall, attribute ap-
proaches encode ’maleness’ not merely ’male yes or no’.
In contrast, binary code learning methods yield represen-
tations residing in the space of Bn, where each of the n
element is either 0 or 1.

3. The RIDMBC Algorithm

Our goal is to construct an algorithm that projects face
images to binary strings and performs face recognition in
Hamming space. Each bit is learned by a linear classifier
with the goal of assigning the same binary value to all im-
ages belonging to each person.

1The identification of any commercial product or trade name does not
imply endorsement or recommendation by NIST.

Each linear classifier optimizes the following:

argmin
ω,ξk,l̂k

∑
c∈1:C

∑
i,j∈c
‖bi − bj‖+ γ‖ω‖2 + λ

∑
k∈1:N

ξk

subject to l̂k(ω
Txk) ≥ 1− ξk, ξk ≥ 0

(2)
where ω is the linear bit encoder, C is the total number of
classes, N is the total number of training samples, xk(k =
1, . . . , N) is a feature representation of an image, ξk is the
slack variable for xk and l̂k is its training label. Here bk =
sign(ωTxk) is the predicted bit value for xk. It is equal to
1 when ωTxk is positive and −1 otherwise.

Equation 2 presents a hard optimization problem. We
find locally optimal solutions by iterating two steps. In one
step, we fix the decision boundary ω and minimize the third
term corresponding to the slack variables by changing the
training labels l̂k of the data. In the other step, we train a
linear SVM given the new l̂k to update ω. While this proce-
dure does not guarantee descent in each iteration, we found
in our experiments that descent is achieved in each itera-
tion and convergence is obtained in only a few iterations.
There is a degenerate solution assigning the same label to
all samples, but in practice convergence on this degenerate
solution has never been observed for the training data used
in this paper.

The iterative solution process begins by assigning binary
values, 0 or 1, to people in a training set S. The initial as-
signment is random, but is performed at the level of people,
not images. Thus the same label is assigned to all images of
any one person. This procedure roughly balances the total
number of 0s and 1s. In practice, this random initialization
results in highly uncorrelated and roughly balanced bit as-
signments, as shown in Section 4.2.

Once initialized, the training set is divided into two sub-
ject disjoint image subsets, S1 and S2, to prevent overfitting.
A linear SVM classifier is trained on S1 based upon the ini-
tial randomized assignment of labels. This classifier is then
used to assign labels to S2. In general, some of the labels
assigned to images in S2 will violate the constraint that all
images of a given person are assigned the same label. The
assignment of labels to subjects is then adjusted. To carry
out this adjustment, whatever label is initially assigned to
the majority of that subject’s images is then assigned to all
images of that subject. This procedure is illustrated in Fig-
ure 1.

When the label assignments are adjusted, a new SVM is
trained on S2. It is then evaluated on S1 in what is now an
iterative process with S1 and S2 switching roles on each it-
eration. By design, S1 and S2 share no people in common.
The entire procedure iterates until it converges, where the
test for convergence is that the labels assigned to people are
no longer changing. This means that the labels assigned to
either subset are consistent with the ones assigned to the

3



other subset. In other words, an SVM learned on either
subset predicts well the labels on the other subset. After
convergence, there is one final step where S1 and S2 are
recombined and a final linear SVM is trained on both sets.
The estimation of the SVM on an image returns a binary
answer which composes one bit in its binary code represen-
tation.

Algorithm 1 summarizes the learning process for our
binary classifiers. Any number of such classifiers can be
learned by randomly initializing with different label assign-
ments. We will later demonstrate the effectiveness of using
random initialization in our experiments. Each random la-
bel assignment will result in one classifier (bit) in the binary
code representation. Our experience suggests the accuracy
for a single bit typically ranges between 68% and 73% when
averaged over S1 and S2. Also, the procedure typically con-
verges in fewer than 25 iterations. Consequently, it is both
feasible and desirable to construct thousands of bits. Af-
ter each image is represented as a binary code (bit string),
the similarity between a pair of images is computed as their
Hamming distance.

1	  

1	   1	   1	  

0	  0	  

0	  

0	  

0	  

0	   0	  

0	  

0	   1	  
Classification plane 

(a) Before Label Change

0	  

0	   0	   0	  

0	  0	  

0	  

0	  

1	  

1	   1	  

1	  

0	   1	  
Classification plane 

(b) After Label Change

Figure 1. Binary labels for three subjects, denoted by shapes, are
shown relative to an SVM decision boundary. Part (a) shows the
labels prior to label adjustment. Two subjects, depicted as circles
and rectangles, lie in majority (circle) or totally (square) on the
wrong side of the boundary. Their labels are therefore adjusted to
agree with the label assigned to the majority of their instances, as
shown in part (b).

4. Training and Pilot Studies on LFW
We show the generalization abilities of our algorithm

by training it on images from the Labeled Faces in the
Wild (LFW) dataset and evaluating it on images from the
Point-and-Shoot Challenge (PaSC) dataset. Section 4.1
presents details of training our algorithm on LFW. Eval-
uations on PaSC are reported in Section 5. Figure 2
shows example pictures from LFW and PaSC. The top row
shows four aligned images of the same person in LFW and
the bottom row shows four aligned images of the same
person in PaSC. We can see that PaSC images are even
more challenging with low-resolution images and large
pose/expression/illumination variations.

Algorithm 1 Learning Bit Encoders
INPUT: Two subject disjoint image sets S1 and S2,
for i from 1 to k, the number of bits do

Generate random L̂1 and L̂2 desired labels
Initialize Training Data = {S1, L̂1}
Initialize Test Data = {S2, L̂2}
while labels in L1 or L2 changing do

Train a classifier on Training Data
Test the classifier on Test Data
for Each subject j in Test Data do

Let Lj = {lj,1, lj,2, ..., lj,m} be the predicted la-
bels of all the images belonging to that subject
Let L̂j = {l̂j,1, l̂j,2, ..., l̂j,m}, be the corresponding
desired labels, satisfying l̂j,1 = l̂j,2 = ...,= l̂j,m
if majority of Lj not equal to L̂j then
{l̂j,1, . . . , l̂j,m} = {1− l̂j,1, . . . , 1− l̂j,m}

end if
end for
Swap the Training Data and Test Data.

end while
Combine {S1, L̂1} and {S2, L̂2} and train classifier ai.

end for
Output: bit encoders

Figure 2. Examples from PaSC and LFW. Top row: aligned images
of the same person in LFW. Bottom row: aligned images of the
same person in PaSC.

4.1. Algorithm Input Features & Training

In this section, we present the features that we adopted
for learning binary codes and the training data we use.

4.1.1 Input Features

For LFW, we use the provided images which are aligned
by a commercial face alignment software. We align PaSC
images according to the same rule as LFW. In a result, the
aligned images used for both datasets are 250× 250 pixels,
with eye coordinates at fixed locations. Before extracting
features, the images are further cropped to a 128×170 rect-
angle containing the face. Three different input representa-
tions are then extracted. The first is gray-scale pixel values,

4



resampled from the cropped window to a size of 32 × 42.
The second representation is Local Binary Pattern (LBP)
features, extracted from a 64 × 85 version of the face im-
age and computed with a sampling step of 8 and a radius of
1, using the open source package “mahotas” [4]. The third
representation is also based on LBP, this time with a sam-
pling step of 8 and a radius of 2. We call these features gray,
LBPr1, and LBPr2, respectively.

We also adopt a simple rule to compute a Hamming dis-
tance for an image pair when combining all three features:

d =
dgray
lgray

+
dLBPr1
lLBPr1

+
dLBPr2
lLBPr2

(3)

where d∗ is the Hamming distance computed from the par-
ticular feature and l∗ is the maximal value of that Hamming
distance, which is also the number of bits.

4.1.2 Training Data

Our algorithm is set up on the Labeled Faces in the Wild
(LFW) dataset [10]. This dataset is composed of 13,233
images of 5749 people. It is partitioned into 2 views. View
1 is further divided into a training part and a test part with-
out subject overlap. Although our emphasis is on general-
izing across training sets, we conduct several pilot studies
on LFW. We first examine the independence of the learned
binary bits. Then a direct comparison between our tech-
nique and DBC is performed on View 1 data. Finally, pilot
evaluations on View 1 are reported.

In all experiments carried out below, LFW View 1 train-
ing data are exclusively used as our training data. They con-
tain 3443 images of 2132 people. The reason for doing this
is to obtain a set of fixed binary classifiers to quickly gen-
erate a binary code for any future test image. The binary
classifier associated with each bit is a linear SVM imple-
mented using Libsvm package [3]. For computational effi-
ciency, the SVMs we learn do not have a bias (offset) term.
For each kind of feature, we learn a binary code of length
2000. Our experience suggests that using more bits will
only yield a slight improvement. In all cases, the Libsvm
parameter C = 10.

4.2. Pilot Study: Independence Between bits

Since the similarity is defined as the Hamming distance
where each bit is weighted equally, it is important to know
whether the learned bits are uncorrelated to each other. The
more uncorrelated they are, the more powerful they will be
when combined. To quantify the degree to which bit en-
coders make the same identity decisions over a set of image
pairs, the following experiment is carried out.

View 1 test data are subject-independent to View 1 train-
ing data. They contain 1000 image pairs, 500 of which are
from the same person while the rest are from two different

people. For each of the 1000 image pairs, a pair of bit clas-
sifiers li and lj are run. For li, a bit string of length 1000
is constructed where a 1 indicates the labels li(q) and li(t)
match between the query image q and target image t in the
pair. This essentially represents the decision of whether the
pairs match according to bit li. The same procedure is then
repeated for classifier lj and a second bit string of length
1000 is generated. The degree to which the decisions from
li and lj correlate is captured by the Hamming distance be-
tween these two strings.

Figure 3 presents histograms of the normalized Ham-
ming distance (ordinary Hamming distance divided by bit
length) between all pairs of bits. The histograms are nor-
malized such that the integral of each histogram is 1. We
observe that these histograms are centered at 0.5, represent-
ing a strong trend toward independence. There are no ex-
amples of pairs of binary encoders with significant, say 75%
or higher, agreement. These results bolster our confidence
in the independence of the bit encoders found using Algo-
rithm 1 and suggest the iterative procedure with different
random initializations is converging on different local op-
tima. Given our desire for independent bits, the existence
of so many local optima resulting from random initializa-
tions is a virtue.

4.3. Pilot Study: Comparison with DBC

In Rastegari et al.’s work [17], they also propose to learn
a binary representation of images. They learn discriminate
binary codes (DBCs) by formulating their goal as an opti-
mization problem where the distances of examples in the
same class are minimized and the distances of examples in
different classes are maximized after binary representation.
Their method is the state-of-the-art binary code technique
on classification problems. To show the effectiveness of our
approach, we conduct an independent experiment to make
a direct comparison between ours and theirs.

The comparison is performed on the LFW View 1 data
set. For both methods, View 1 training data serve as a train-
ing set where the projection to obtain a binary representa-
tion is learned, and View 1 test data serve as the test data
for evaluation. The classification is performed by first com-
puting the Hamming distance of each pair and then thresh-
olding it to get a match/non-match answer. The threshold is
the median value of all Hamming distances of test pairs. We
plot the classification rate corresponding to various lengths
of binary code in Figure 4. The feature we adopt in this
figure is LBPr1.

From Figure 4 we can see that although DBC performs
better at very short code lengths, our method achieves better
performance when the code length becomes large. The su-
perior performance at longer code lengths indicates that our
technique can learn many discriminative bits, while DBC
seems to saturate after learning relatively fewer bits. Also,

5



Figure 3. Normalized histogram for normalized Hamming Distance of classification result of all possible pairs of each feature.

Figure 4. A direct comparison to DBC: Classification rate on View
1 test set with various code lengths.

note that the code length of DBC is bounded at 1440 bits for
this data set (as shown by the gray vertical line in Figure 4).
Our method, however, is able to learn many more bits. In
general, performance is improved when the number of bits
becomes larger.

4.4. Pilot Evaluation on LFW View 1 Data

We present the classification rate on LFW View 1 test
data for each of the three kinds of features and for all three
features combined. Details are as follows. For View 1 test
data, Hamming distance between each image pair is com-
puted. Since there is no other validation set to determine
a threshold, we set the threshold to be the median value of

Gray LBPr1 LBPr2 Combined
RIDMBC 70.60 75.10 72.90 79.90

DBC 70.60 67.20 69.70 73.40

Table 1. Classification rate on LFW View 1 test data for RIDMBC
and DBC

all the Hamming distances given that a half of the test data
are match pairs and the other half are non-match pairs. The
performance of each of the three features and a combination
of them is reported.

Table 1 shows the classification rate of RIDMBC and
DBC on View 1 test data for each feature and the combined
feature. Note that the number of bits for each feature is
2000 for RIDMBC. For DBC, the number of bits cannot
exceed the dimension of the original feature space. So we
set the dimension of the feature (the maximal number) as
the number of bits DBC learns. In more detail, for DBC
the number of bits for the gray, LBPr1 and LBPr2 features
are 1344, 1440 and 1440 respectively. We can observe from
the table that our approach (RIDMBC) outperforms DBC in
most cases and that combining the three features performs
better than any single feature.

5. Performance on PaSC
One possible concern about automatically trained binary

codes is that they may become overly specific to a data set.
After all, it is difficult to intuit what a single binary classi-
fier is reacting to, yet alone what the encoding as a whole
has learned. To evaluate generalization ability, we there-
fore evaluate the performance of RIDMBC on the chal-

6



PaSC, all images
Gray LBPr1 LBPr2 Combined

RIDMBC 11.46 10.79 10.60 14.87
DBC 9.11 8.94 9.33 10.97

Table 2. Verification rate at FAR=0.01 on PaSC for RIDMBC and
DBC: all images

lenging Point-and-Shoot Challenge dataset (PaSC) [2] af-
ter it has been trained on LFW. PaSC is a new, unrelated
dataset of comparable or even greater difficulty than LFW.
The learned linear SVM classifiers associated with each bit
remain unchanged from LFW View 1 training set.

5.1. Point-and-Shoot Face Recognition Challenge

PaSC provides researchers with 3 different face recog-
nition tasks based on comparing different data sources,
namely, still images vs. still images, still images vs. videos
and videos vs videos. We focus on the still image compar-
isons. PaSC contains 9376 images of 293 people for testing.
The images are taken at nine locations (including indoors
and outdoors) using five point-and-shoot still cameras. The
pose of the subjects and their distance to the camera are
largely varied. The still images are balanced with respect
to distance to the camera, alternative sensors, frontal versus
not-frontal views, and varying locations.

The protocol of PaSC differs from LFW. The test set has
4688 query images and 4688 target images. Image pairs are
formed by taking one image from the query set and the other
from the target set. Algorithms generate similarity scores
for all image pairs in the test set. By looking at image pairs
of interest, two ROCs can be plotted, one for frontal image
pairs and one that combines both frontal and non-frontal
images.

5.2. Performance on PaSC

Figure 5 presents the ROCs for RIDMBC along with
those for two baseline algorithms provided by Colorado
State University as part of the PaSC [2]. ROCs are shown
for all still images and just the frontal images. Table 2
and Table 3 provide the associated verification rates at
FAR=0.01 for all still images and just the frontal images,
respectively. Note that verification rate = 1 − FRR. Our
algorithm outperforms DBC in all cases. Table 4 com-
pares our algorithm with two baseline methods supplied
with PaSC, LRPCA [15] and CohortLDA [13]. Although
trained on LFW View 1 training set, our method performs
the best over all still images. It also performs well when
only frontal images are included. The performance of Co-
hortLDA is less robust: it is the worst when all images are
considered, but the best when the evaluation is limited to
only frontal images.

PaSC, frontal images
Gray LBPr1 LBPr2 Combined

RIDMBC 19.73 15.67 15.80 23.48
DBC 18.42 12.60 14.07 18.19

Table 3. Verification rate at FAR=0.01 on PaSC for RIDMBC and
DBC: frontal images

Method all frontal
RIDMBC 14.9 23.5
DBC 11.0 18.2
LRPCA 11.5 19.6
CohortLDA 9.0 31.7

Table 4. Verification rate at FAR=0.01 on PaSC

6. Conclusion

We propose RIDMBC, a new algorithm for learning bi-
nary codes. RIDMBC is similar to the prior state-of-the-
art Predictable Discriminative Binary Codes algorithm in
that both seek to minimize intraclass distance in Hamming
space. However, the algorithms differ markedly in their
treatment of interclass distances. The DBC algorithm ex-
plicitly seeks to maximize interclass distances, essentially
optimizing Fisher’s criterion. RIDMBC, in contrast, does
not impose constraints on interclass distances. Instead, it
relies upon randomized initial assignment of labels to arrive
at largely uncorrelated binary features. Moreover, DBC has
an upper bound on the number of bits it is able to learn while
ours does not.

For face recognition, the RIDMBC algorithm is trained
on the LFW dataset and performance results are presented
on the PaSC dataset. As a point of comparison, the DBC
algorithm is likewise trained on LFW and tested on PaSC.
This experimental protocol aims to address the concern that
the learned binary codes are overly specific to the dataset on
which they are trained. In our experiments, the RIDMBC
algorithm performs better than DBC for face recognition.
The RIDMBC algorithm also outperforms two baseline al-
gorithms provided as part of PaSC.

References

[1] T. Berg and P. N. Belhumeur. Tom-vs-pete classifiers
and identity-preserving alignment for face verification. In
BMVC, volume 1, page 5, 2012.

[2] J. R. Beveridge, P. J. Phillips, D. S. Bolme, B. A. Draper,
G. H. Given, Y. M. Lui, M. N. Teli, H. Zhang, W. T. Scruggs,
K. W. Bowyer, et al. The challenge of face recognition from
digital point-and-shoot cameras. In Biometrics: Theory, Ap-
plications and Systems (BTAS), 2013 IEEE Sixth Interna-
tional Conference on, pages 1–8. IEEE, 2013.

7



(a) Entire challenge problem (b) Frontal face images only

Figure 5. ROC curves of our method (RIDMBC) and two baselines (LRPCA and CohortLDA) on PaSC for the still challenge (a) Entire
challenge problem (b) Frontal face images only

[3] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support
vector machines. ACM Transactions on Intelligent Systems
and Technology, 2:27:1–27:27, 2011.

[4] L. P. Coelho. Mahotas: Open source software for scriptable
computer vision. Journal of Open Research Software, 1, July
2013.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database.
In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pages 248–255. IEEE, 2009.

[6] K. Duan, D. Parikh, D. Crandall, and K. Grauman. Discover-
ing localized attributes for fine-grained recognition. In Com-
puter Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on, pages 3474–3481. IEEE, 2012.

[7] Y. Gong and S. Lazebnik. Iterative quantization: A pro-
crustean approach to learning binary codes. In Computer
Vision and Pattern Recognition (CVPR), 2011 IEEE Confer-
ence on, pages 817–824. IEEE, 2011.

[8] K. Grauman and R. Fergus. Learning binary hash codes for
large-scale image search. In Machine Learning for Computer
Vision, pages 49–87. Springer, 2013.

[9] G. Griffin, A. Holub, and P. Perona. Caltech-256 object cat-
egory dataset. 2007.

[10] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller.
Labeled faces in the wild: A database for studying face
recognition in unconstrained environments. Technical Re-
port 07-49, University of Massachusetts, Amherst, October
2007.

[11] N. Kumar, A. Berg, P. N. Belhumeur, and S. Nayar. Describ-
able visual attributes for face verification and image search.
Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, 33(10):1962–1977, 2011.

[12] R.-S. Lin, D. A. Ross, and J. Yagnik. Spec hashing: Similar-
ity preserving algorithm for entropy-based coding. In Com-
puter Vision and Pattern Recognition (CVPR), 2010 IEEE
Conference on, pages 848–854. IEEE, 2010.

[13] Y. M. Lui, D. Bolme, P. J. Phillips, J. R. Beveridge, and B. A.
Draper. Preliminary studies on the good, the bad, and the
ugly face recognition challenge problem. In Computer Vision
and Pattern Recognition Workshops (CVPRW), 2012 IEEE
Computer Society Conference on, pages 9–16. IEEE, 2012.

[14] D. C. Ngo, A. B. Teoh, and A. Goh. Biometric hash: high-
confidence face recognition. Circuits and Systems for Video
Technology, IEEE Transactions on, 16(6):771–775, 2006.

[15] P. J. Phillips, J. R. Beveridge, B. A. Draper, G. Givens, A. J.
O’Toole, D. S. Bolme, J. Dunlop, Y. M. Lui, H. Sahibzada,
and S. Weimer. An introduction to the good, the bad, & the
ugly face recognition challenge problem. In Automatic Face
& Gesture Recognition and Workshops (FG 2011), 2011
IEEE International Conference on, pages 346–353. IEEE,
2011.

[16] P. J. Phillips, W. T. Scruggs, A. J. O’Toole, P. J. Flynn, K. W.
Bowyer, C. L. Schott, and M. Sharpe. Frvt 2006 and ice 2006
large-scale experimental results. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, 32(5):831–846,
2010.

[17] M. Rastegari, A. Farhadi, and D. Forsyth. Attribute discov-
ery via predictable discriminative binary codes. In Computer
Vision–ECCV 2012, pages 876–889. Springer, 2012.

[18] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In
NIPS, volume 9, page 6, 2008.

[19] R. P. Wildes. Iris recognition: an emerging biometric tech-
nology. Proceedings of the IEEE, 85(9):1348–1363, 1997.

8


